| AN

Y 7 T\ N

“ESIEJXTG]?I)]RI)EIi]EEE}EZXIi(IEI?IIQESdIIﬂFIJﬂEIE
Menlo Park, i{California 194025~ 1J.S.A.
A\ 1| /7 4

June 1969

*
THE APPLICATION OF THEOREM PROVING TO QUESTION-ANSWERING SYSTEMS

by
Cordell Green

Artificial Intelligence Group
Technical Note No, 8
SRI Project 7494

EY
Submitted to the Department of Electrical Engineering and the Committee
on the Graduate Division of Stanford University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

This paper shows how a question-answering system can use first-order
logic as its language and an automatic theorem prover, based upon the
resolution inference principle, as its deductive mechanism. The resolu-
tion proof procedure is extended to a constructive proof procedure, An
answer construction algorithm is given whereby the system is able not
only to produce yes or no answers but also to find or construct an object
satisfying a specified condition. A working computer program, QA3, based
on these ideas, is described. The performance of the program, illustrated
by extended examples, compares favorably with several other question-
answering programs. Methods are presented for solving state transforma-
tion problems. 1In addition to question answering, the program can do
automatic programming (simple program writing, program verifying, and
debugging), control and problem solving for a simple robot, pattern re-

cognition (scene description), and puzzles,

ii

FOREWORD

Portions of this work have already been presented in papers in the

! Machine Intelligence 4,2

Proceedings of the ACM National Conferecnce,
and the Proceedings of the International Joint Conference on Artificial

Intelligence.3

The research reported here was supported at Stanford Research Insti-
tute under Contract AF 30(602)-4147 and Contract F30602-69-C-0056, Rome
Air Development Center and the Advanced Research Projects Agency, Advanced
Sensors Group; and also under Contract AF 19(628)-5919, Air Force Cam-

bridge Research Laboratories.

iii

ACKNOWLEDGMENTS

Professor John McCarthy has given me many ideas and suggestions. I
owe a great debt to him for developing the "advice taker' approach to

artificial intelligence.

The research itself was done in the Stanford Research Institute
Artificial Intelligence Group under the patient guidance and supervision

of Dr. Bertram Raphael.

Robert A. Yates has contributed both substantial programming effort

to this research and many hours of valuable discussions.

Throughout my years at Stanford, Professor Thomas Cover has been
both a close friend and counselor. He has provided the opportunity for

me to do this interdepartmental research.

Professor Jerome Feldman has contributed a great deal of constructive

advice on my writing and research.

Discussions with Dr., Larry Wos of Argonne National Laboratories and
Dr. George Robinson of Stanford Linear Accelerator Center have been very
valuable, allowing me to learn from their experience in theorem proving.
I am very grateful to Robert Kowalski of Edinburgh University, who found

errors in my mathematics and provided suggestions for improvement,

I would like to acknowledge valuable discussions with Claude Brice,
Stephen Coles, Richard Duda, Claude Fennema, Peter Hart, Robert Kling,
John Munson, Nils Nilsson, and Charles Rosen, all of SRI, and David Luckham

and Zohar Manna of Stanford.

iv

CONTENTS

ABSTRACT.

FOREWORD.

o .

ACKNOWLEDGMENTS . & & v v+ 4 v o o o o o « o o o o o« « »

I

II

I1I

IV

INTRODUCTION. . . &« ¢ v 4 o & o o o o o o o o o o

A,
B.
C.

A Guide to Reading this ThesisS. . « « « o« o o .

General Description of a Question-Answering System.

Characteristics of Question-Answering Systems .

Methods for Computing Answers . o . « . . .
Languages . ¢ v v 4 e b e 4 e e e e e e e
Representation. v v ¢ ¢« v « o .« .
Memory Organization . . . ¢« ¢« ¢ o o & o .

General vs, Special Purpose

Level of Difficulty of Answering.
Consistency of Data Base. . « v v o« « + « &
Modifiability . . ¢« v ¢ ¢ v v v ¢ v o o o
Control of Interaction. . . . « o « o o o &

.

W OO dwhH-

.

Previous Work in Question Answering
Summary of Problem, Solution, and Contribution.

1. The Problem . . . ¢ ¢ v ¢ ¢ « o o« o o o »
2. S0lution. v «¢ v v 4 v 4 4 e e e e e e e e
3. Contribution to Information Processing. . .

REVIEW OF AUTOMATIC THEOREM PROVING . . « & o« + . .

THE THEOREM-PROVING APPROACH TO QUESTION ANSWERING.

A,
B.
C.
D

Introduction to the Formal Approach
An Explanatory Dialogue v v o « . .
Constructing ANSWETS. v v v o o o o o o o o o

The Answer Statement. . . . v v v v ¢ o o o o &

QA3, A QUESTION-ANSWERING PROGRAM

A-

QA3 Control LangUage. « o « « « o o o o o o o

1. Statements. . . . ¢ ¢ ¢ v ¢ ¢ v o 4 o v e
2, Questions . . v 4 v 4 e e b 4 e e e e e e .
. Proofs. . . & v i it e e e e e e e e e e
4, Editing the Data Base ., . e e e e . o o

Control of the Search ProcCess . « o« o o o o o &

.

ii

iii

(¥
<

000N W W N

=
o O ©

o
W O

16

28
28
29
34
39

46
46

46
47
48
48

49

Ly e
T
s oA ‘_n.vv-

A *QUESTI@NHANSWERING’EXAMPLES'L‘. PR T ENE AR 8

~A.

+B, \Examples-frem:SIR i « ¢ ¢ o ¢ «.0o o o o0 o =

“C . wAvSimplexChemistry\Exﬁmple.n;ﬂgaw_.1.;.:.;. .

Facts\ Ce e W el et e’ e el e el e’e e e e e e

2. Questlons and Answers B S

VI PROBIJENI SOLVING ."«“.'..':","."."‘,".':_‘.' .
A. ‘An Ihtiéductlon to’ State—Transformatlon Methods

B. fRef1nements of the Method t;::::;.?:;;:; .

~l.- -An Alternative Formulation.: .- .-.-e-o-o-4

2, No Change of State. T

3. Time. V. o TR o s e

4. ‘State-Indgpendent‘TruthS.1.-.'. R

5. fDéscriptors*of'TraﬁSformatiénS.l.;.-.?. .

6. Disjunctive ANSWers e o e e el

7. Answers with Cond1tionals e e e et e e

8. Acquisition of Informatlon.'}_; ‘f;t‘.‘ .

9. Assignment Operations . . . v v e e o o

. An Example: The Monkey.:and ;the Bananas . . .

BErategyi vuv i itele—mCete ROSCFIRTION, e, .

Speglal Uses of tne Tneorem _Prover. . . .

SRAirst DiflogUE. 4 it e o o o s o o o

VII SAMPLE PROBLEM-SOLVING APPLICATIONS

A.

. Formalizations for the Tower of Hanoi Puzzle.

Applications to the Robot Pfoject'. ...-.-. . .
1. Introduction to Robot Problem Solving
2, Real-World Problem Solving: Feedback . . .
3. A Simple Robot Problem. ¢ ¢ « o & .
Automatic Programming « « & o o o o = .
1. Introduction. . .« « ¢« ¢ « ¢ o« o o « o o & .
2. Axiomatization of a Subset of LISP. . . .
3. A Simplified Sort Problem
4, The Sort AXIiOomS . « ¢ « o o o o o o o =

5. Induction AXiOmS., +« « ¢ ¢ o « ¢ o o o o & .
6, The Sort Problem. . . « ¢ «¢ o « o o « o & .
7. Discussion of Automatic Programming Problems.

Self-Description. « ¢« + ¢ o« ¢ o o« o « o &

Rules of Inference. « ¢ o« o =&

1.

2. Proof by Refutation
3. Set-of-Support Strategy . . o« « .« . .
4, Unit-Preference Strategv. . . « « « .

vi

~52
55

56

56

261

164

65

. 68

<73

)?7

l.77

78
‘79
79
‘79
‘80
81
85
86

86
88

.95
95

95
99

101

103

103
106
108
110
112
112
115

118

119
120
121
121

D.

Pattern Recognition--Scene Description.

VIII DISCUSSION AND CONCLUSIONS. . . . « . . .

Appendix

.

.

Adequacy of Theorem Proving for Question Answering.

Theorem Proving and Problem Solving .

An Experimental Tool. . « « ¢ o & « .

A Brief Comparison to Other Systems .

Alternate Approaches. . . . « « « o &

Limitations and Improvements.

1.
2,
3.
4,

Speed 4 e e e e 0 e o
Difficult Questions
A Framework for a General Machine
Next System . . ¢+ ¢ ¢« ¢ ¢« ¢ o « &

Problems for Research « .« ¢« « ¢« « o« &

N O W=

Automatic Representation Changes.
Automatic Strategy Changes. . . .
Automatic Programming . . « . « o
Answer Construction
Better Automatic Theorem Provers.

Intelligence

Undertaking More Realistic Applications

Comparison of Methods

A--DESCRIPTION OF RESEARCH PROJECT . .

Appendix B--THE MONKEY AND BANANAS PROOF. . . .

Appendix C--~THE SORT PROOF., . & v ¢ ¢ o o o o o«

Appendix D--THE CUBE PROOF. . . ¢ ¢ ¢ o & o o

REFERENCES.

vii

123

131
131
131
132
133
135
137

138
139
140
142

142

142
143
143
143
143
144
144

145

147

149

155

158

I INTRODUCTION

A, A Guide to Reading this Thesis
This section provides a guide to reading this thesis.

The reader who wishes to begin with an example of question answering

by theorem proving will find explanatory examples in Secs, III-B, V-A,
and V-C, The remainder of this introductory section (Sec. I) provides

background material and an overview of the research described in this thesis,

For the reader who is unfamiliar with automatic theorem proving by
resolution, a review and summary is presented in Sec., II. A dialogue
illustrating the basic question and answer process is provided in Secs,
III-A and B. The mathematical basis for the type of answer construction
used in this research is provided in Secs., III-C and III-D, but the reader
unfamiliar with automatic theorem proving may want to skip the rather com-
plicated answer construction algorithm and corresponding proof of correct-
ness in Sec., III-D, Extended question-answering dialogues are presented

in Sec. V, using a program, QA3, described in Sec, IV.

A very wide class of problems that can be posed as various kinds of
state transformation problems do not on the surface fit into first-order
logic. 1In Sec. VI a method is presented whereby state transformation
problems can be solved by means of the answer mechanism in a first-order,
resolution theorem prover. This method is illustrated by the well~known
"Monkey and Bananas" and "Tower of Hanoi' puzzles. An application is
presented in Sec., VII-A in a discussion of the Stanford Research Institute

robot project,

Another promising application, discussed in Sec. VII-B, is automatic
program writing, program debugging and verifying, and program simulation.
The programming language used is "pure' LISP 1.5, a lambda-calculus-like
language. LISP is the language in which the question-answering program
itself is written. To raise the issue of purposeful self-modification,
an oversimplified self-description of the program's own problem-solving
strategy (in its own problem-solving language) is presented in Sec., VII-C.

Finally, a simple scene description problem--describing a cube from a

two-dimensional projection of its edges=--is given in Sec. VII-D,

B. General Description of a Question-Answering System

The purpose of this section is to roughly define a question-answering
system. A question-answering system may be broadly defined as a system
that accepts information and uses this information to answer questions.
Often the information, questions, and answers are presented in a form that
is relatively easy for people to learn, such as some restricted class of
typewritten English sentences. If the’question-answering system, a com~-
puter program, produces reasonable responses, it may be attributed the

human characteristic, '"understanding."

The following diagram shows the essential components of a question-

answering system,

Fact s ———»
USERZ——Questions—{ TRANSLATOR | EXECUTIVE MEMORY
‘\\\~Answers<————

Its operation is as follows: The user presents statements (facts and
questions). A translator converts them into an internal form. Facts

are stored in memory. (The store of facts is referred to as the data
EEEE') Answers to questions are formed in two ways: (1) the explicit
answer is found in memory, or (2) the answer is computed from the infor-
mation stored in memory., The executive program controls the process of
storing information, finding information, and computing answers. This
first description of a question-answering system is greatly oversimplified,
but will serve as a starting point for discussion. Elaboration of the

components and processes will be provided in the next section.

Before discussing question-answering systems as such, we distinguish

between a question-answering (QA) system and an information-retrieval (IR)

system (or an information-storage-and-retrieval system). In an information-

retrieval system, all the information that is available to the user is

explicitly stored in memory. Such a system may be a document-retrieval

system or a fact-retrieval system. Typically, the data base is quite

large, and may be stored on magnetic tapes, discs, or other mass storage

devices.

A quesLion-aﬁswering system, on the other hand, does not explicitly
store all information that is available to the user. Instead, a smaller
data base of compactly coded facls is usced. Now information, nol cxplic-
itly stored in the data base, but implicd by the stored lacts, is compulcod

or deduced I'rom this dala base by an answer—-computation mechanism.

The dividing line between a question-answering system and a fact-
retrieval system is not always clear-cut. (For example, a fact-retrieval
system may encode its facts to such an extent that a considerable compu-
fation process is necessary to recover the information.) Often one labels
a system as a question-answering system when the human user believes that

the system is making inferences during the answer—computation process,

C. Characteristics of Question-Answering Systems

The purpose of this section is to acquaint the reader with some of
the significant characteristics of question-answering systems, as well as
the terminology used to describe such systems.

This thesis discusses a particular kind of question-answering
system. The most recent working version of a system of this kind is a

computer program called QA3. QA3 will be characterized in the following

discussion of characteristics of question-answering systems,

1. Methods for Computing Answers

The method of computing answers is one of the most distinguishing
features of a question-answering systém. There are many methods (and
variations thereof) for finding answers not explicitly stored. They in-

clude the following:

(1) A different prewritten subprogram computes answers for
each class of question. Such a system is Raphael's SIR,?%,%
The disadvantages are that (a) a noew subprogram must be
written for each class of questions, and (b) if questions
require interactions between existing classes, either
combinations involved must have been anticipated or else

new subprograms must be written.

(2) Each question is automatically translated directly into a
particular program for answering this question. Such a

system is Kellog's.6

This method requires that the auto-
matic translator be general enough to produce a program

for answering every desired question.

(3) All questions are presented to a subprogram that examines

- the question and infers the answer. The program discussed
herein, QA3, is basically of this type, using a theorem
prover as this subprogram. This method requires that the
inference mechanism of the subprogram be general enough

to infer an answer to any desired question.

A system can of course use mixtures of these methods. For

example, QA3 uses Method 1 for certain arithmetic question answering.
2. Languages

Another important characteristic of question-answering systems
is the set of languages used. At the outermost level is the dialogue
language or languages. These may include (1) a language for presenting
facts to the system (often one or more restricted natural languages) ,

(2) a query language employed by the user, and (3) an answer language
employed by the system. In the process of answering a question, some
systems may require additional information from the user. This requires
a query language employed by the system and an answer language employed
by the user. QA3 uses first-order logic for all these purposes, although
an English-to-logic translator of Coles’ »® is linked to the system to pro-
vide a restricted English fact-input and query language. A system may

also have a control language employed by the user to control the system.

The control language of QA3 is described in Sec. IV-A,

A system may have other forms of input and output (e.g., graph-
ical). Information conveyed in these other ways is not explicitly lin-
guistic, but can be translated into a language (such as a picture-
description language, discussed in Sec, VII-C). Section V-B describes

an application of QA3 in which information is input to sensors and output

to effectors.

Usually a question-answering system will have one or more

internal languages. These languages are used either as intermediate steps

1

in translation or as '"working' languages in which the system calculates,

infers, stores, retrieves, etc. The internal language of QA3 is the

language of clauses (see Sec. II).

One frequently mentioned characterization of a language is the

degree to which it is a formal language. A formal language (such as

first-order logic) is syntactically well defined by a set of rules [such

as a set of Backus Naur Form (BNF) productions].

3. Representation

The problem of representing data may be divided into three

parts:

(1) Determining the relevant semantic content of the data.

For example, we may decide that the semantics of the

1

sentence, ''John is the father of Bill," is expressed by
the binary relation "is-the-father-of" applied to the

objects named "John" and "Bill,"

(2) Choosing a language in which to express this semantic
content. TFor example, we may use the notation of mathe-
matical logic and pick appropriate symbols--i.e.,
Father(John,Bill). (Forms of language were discussed

above.)

(3) Choosing an internal representation of the language. TFor

example, a binary relation may be expressed by a list of
three elements in which the first element of the list is
the name of the relation and the next two elements are

two arguments of the relation--e.g., (Father John Bill).

In expressing the semantic content of, say, a sentence of
English, we are deciding what information that sentence can provide for
the question-answering svstem. For example, the style or tone of the
sentence may carry considerable information about, say, the psychology

of the creator of the sentence, but we may choose to ignore all such

information and just take the explicit facts. More precisely, when we
choose an internal representation, we restrict the set of statements that
may be inferred or calculated from the representation of that sentence.
Thus, one goal-directed criterion used to determine what is selected in
specifying semantic content is: Will the system be able to correctly

answer questions concerning the subject matter of that sentence?

The language mentioned in Item 2 above should be selected to
represent, unambiguously and compactly, the semantic content of the data.
A crucial factor in selecting the language is that one must be able to
use this language--i.e., be able to construct an answer-computation
program that can effectively produce correct answers from facts expressed
in this language. For example, a theorem-proving program can answer

questions from facts expressed in the language of logic.

Many considerations are important in selecting the internal
representation~-storage efficiency, ease of translation, usability by
question-answering subprograms, etc. QA3 uses a list-structure represen-
tation of clauses. - Meta-statements about statements, such as "This

A}

information is useful in answering a certain question,' must also be
expressed in some way. Typically, meta-level information is not neces-
sarily in the form of explicit statements, but instead may be known to
hold because of the position of the item in the memory--e.g., QA3 uses
the convention that if an item is on a particular list, then it is

relevant to answering a certain question,

4. Memory Organization

An issue that is very closely related to representation, and

nearly inseparable from it, is that of memory organization. This refers

to where and how the internal representations are stored. Important
issues here include: What kind and how much indexing of the statements

is to be done? How much common substructure is to be shared by items of
data? What information should be explicitly stored? How will information
be added or accessed? As one example of memory organization, consider a
commoﬁly used property-list technique. In the LISP programming system,

statements may be placed on property lists of atomic symbols--e.g., on

the property list of the atomic symbol "John" we place the value "Bi1l"

Al

under the attribute "Father." The atomic symbol provides an entry point--
an index--to the information, "John is the father of Bill." The first

argument "John" of the relation "father of'" is not stored explicitly with
the relation, but instead is implied by the fact that the attribute-value

pair occurs on the property list of John.

Other candidates for storage methods include the many varieties
of node-link list structures, hash coding techniques, arrays, and files
of various sorts., Large, slower secondary storages present their own
special organization problems. The memory organization of QA3 is described

in Sec., IV-C,.

The stored information, including the language, semantic content,
internal representation, and memory organization is sometimes referred to
as the system's model of its world. To fully characterize its "model,"
the question-answering routines must be included; in some systems some of
the question-answering mechanisms themselves are explicitly stored in the

model.

5. General vs. Special Purpose

It is important to emphasize the distinction between general vs,
special-purpose question answering. If the class of questions asked of
a system is small, completely specified in advance, and concerned with a
particular subject area, such as the question-answering system of Green,
Wolf, Chomsky, and Laughery9 concerned with baseball, or the question-
answering system of Lindsaylo concerned with family relétions, then we
will call such a system '"special purpose.” Frequently the goal in
designing a special-purpose system is to achieve good performance,
measured in terms of running speed and memory utilization. In this case
the best approach may be first to construct a special data base or memory
that is optimized for that subject area and question class, and then to
write special question-answering subroutines that are optimized for the
particular data base and question class. On the other hand, a "general"
question-answering system is one that allows the addition of widely varied

subject areas, questions, and interactions between subject areas during

the process of answering a question, QA3 is a general question-answering

system.

6. Level of Difficulty of Answering

The major consideration here is the average amount of computa-
tion necessary to answer a question., One obvious measure of difficulty
is the average distance of the answer from the question, measured, for
example, in terms of the number of fixed~size steps of inference from the
facts, Another way of viewing this is the degree of decoding necessary
to recover an implicit answer. This aspect of a question may be termed

the average depth of questions.

Another factor contributing to the search effort is the number
of different questions that are answerable, To increase the number of
answerable questions (without increasing the depth of questions), one may
increase the size of the data base of else expand the capabilities of the

answer-computation mechanism or both,

Systems having broad, possibly interrelated data bases whose
answer-computation mechanism is not capable of great depth tend to be

called question-answering systems. Systems having less-interrelated data

bases whose answer-computation mechanism is capable of more depth tend to

be called problem-solving systems, QA3 seems to be on the boundary line

between the two kinds of systems.

7. Consistency of Data Base

As the amount of stored information increases, one problem can
be the consistency of this information. Systems with informal inference

11 are still effective with inconsistent data

rules, such as Colby's,
bases. In formal logic systems, such as QA3, inconsistency can lead to
incorrect answers, so that new information must be checked for consistency

before acceptance.

8, Modifiability

A very interesting feature is the degree to which new informa-
tion modifies the system. As new information is entered, the performance

of the system is altered, and we can refer to this as a modification of

the program even though only the data is altered. 1In more ‘sophisticated
systens new information can have an effect on how questions are answered.
Consider the following increasingly sophisticated ways in which new

information can modify a program's performance:
(1) A new fact provides the answer to a new question.

(2) A new fact provides the information needed to get the

answers to a new class of questions.

(3) A new fact provides a new procedure for answering a new

class of questions.
(4) A new fact modifies the representation of information.

(5) A new fact modifies the question-answering strategies of

the program,

New information in the form of reprogramming can, of course, provide all
such modifications to the system. The more interesting case is when
information in the dialogue language can effect such changes as a major
modification of question-answering strategies., A system possessing a
high degree of modifiability through a formal dialogue language has been

termed an advice taker'®,*® by McCarthy.

Another source of information besides the user is the system
itself. New information may be generated by the system through question-
answering routines, sensors, internal monitoring of performance statistics,
etc, Such information may also be stored and be usable to improve per-

formance.

QA3 has the abilities described in Items 1 and 2 above. The
control language allows some modification (see Sec, IV) of the question-
answering procedures and strategies. The program-wfiting and self-
description capability allows for theoretical self-modification, but in
practice this problem lies beyond the problem-solving capacity of QA3.
Representation of information can only be modified by the user's editing

the data base.

9. Control of Interaction

This leads us to the modes of control in complex information

processing systems. The control is not always so clearly resident in the
11

T

human "user." There exist programs’ that are also question-asking

systems that interrogate the 'user" and store (possibly after significant
processing) the answers. One of the ultimate goals of research in machine
intelligence is to create an independent system. In QA3 control is clearly
with the user, although in some applications (see Sec. VII-A) QA3 requests

information from the user and from other programs.

D. Previous Work in Question Answering

A great deal of work has been done on the many aspects of question
answering and several reviews of the subject have appeared. Rather than
repeat a review of the past and present state of the art, I shall mention
several of these papers, Aspects of question answering are discussed
under many titles, including computational linguistics, structural lin-
guistics, semantics, psycholinguistics, (natural) language processing,
mechanical translation, verbal understanding, word concepts, semantic

memory, belief systems, and semantic interpretation.

Two excellent reviews of question answering have been written by
Simmons. His reviews discuss both natural language processing and
question-answering procedures., The first survey14 covers early work
until 1965, including fifteen experimental English language question-

answering systems. The second paper15

surveys systems from 1965 up to
1969, In addition, Raphael's SIR® dissertation provides an early dis-
cussion of question answering and understanding. Wood's ''Semantics for

a Question-Answering System''®

discusses several systems, as well as the
representation of English sentences by mathematical logic. A paper by
Bobrow, Fraser, and Quillian17provides a review of relevant recent lin-

guistic literature.

E, Summary of Problem, Solution, and Contribution

1. The Problem

The problem investigated in this research effort is primarily

that of calculating an answer to a question stated in mathematical logic,

10

given facts stated in logic. The principal subproblems focused on are:

(1) How does one represent statements, questions, and answers-—-
for a reasonably wide range of subjects--in mathematical

logic (in particular, first-order predicate calculus)?

(2) How does one compute an answer to a question stated in

logic, given a set of facts stated in logic?

(3) How does one develop such a working system--i.e., embed
such a "logic machine'" in a larger question~answering or

information-processing system?

Involved in these subproblems are problems of information storage and
retrieval, memory organization, measurement of relevance, generality of

inference systems, and the many other problems of heuristic programming.

We refer to this "logic machine," which is capable of question
answering in logic, as the Question-Answering System, abbreviated QAS.
It is assumed that in a given application QAS may be used in conjunction
with language translators such as English-to-logic and logic-to-English
translators. Indeed, as mentioned earlier, a working version of QAS,
called QA3, has been coupled to an English-to-logic translator by Coles.
The translation problems are not the subject of this paper. (One view
of question answering holds that once there exists a suitable underlying
logical question-answering system, then a solution to the translation
problem will be simpler, The translation target language--logic--is well
defined, the semantics of the target language is well defined, and the
logic problem solver is available to provide necessary .assistance in the
translation process. If one knows how the semantics of a given subject
is to be expressed in logic, it is then easier to develop an English-to-

logic translator.)

2. The Solution

This section presents a summary of the solutions offered to
the three subproblems listed above: representation, answer computation,

and development of a question-answering system.

11

The problem of representation was solved by encoding facts and
questions in terms of statements of first-order logic. The particular
technique of encoding is illustrated in detail for several common question-
.answering and problem-solving subjects. These subjects include simple
games and puzzles, many 'common sense' topics (classification systems such
as family relationships, structures of objects, part-whole relationships,
set-theoretic relationships, etc.), picture descriptions, state transfor-
mation processes, programming languages, induction, and theorem proving
itself,

Our solution to the problem of computing answers to questions
follows from our representation of facts as axioms, and questions as
conjectures to be established as theorems. The question-answering process
is a modification of the process of proving such theorems, The theorem-
proving process is based on Robinson's "Resolution" techniquesls;lg:zo.
These techniques are extended to include "constructive' proofs. An algorithm
for generating '"constructive' answers is developed, and the answers pro-
vided by the algorithm are proved correct. Also, proof strategies and

heuristics suitable for question answering are developed. The system

can answer questions in each of the subject areas discussed above.

The solution to the third problem, system development, consists
of the design and implementation of QA3, a system of programs written in
the LISP language for the SDS 940 computer. The system has a control
language, storage and retrieval capabilities, significant problem-solving
capabilities, an interface with a natural language translator, an inter-

face with libraries of programs in LISP and FORTRAN, and an interface

with sensors and effectors (for the robot application, described in

Sec, VII-A), In terms of the previous characterizations of question-
answering systems, the implemented system is a general, formal question-
answering system, Its dialogue language is first-order logic, and its
internal language consists of clauses. Its answer-computation mechanism
is an extended resolution theorem prover. Interactions between subject
areas are allowed. The answers it generates are always logically correct
consequences of its data base (which therefore should only contain con-
sistent information). It can handle difficult problems if compared to

existing general question-answering programs, but only easy problems
12

compared to existing specialized programs (chess programs, for example).
To some extent, rules for answering questions can be given in dialogue.
Some modification and guidance of the question-answering strategy is

possible through the special control language.

3. Contribution to Information Processing

The purpose of this section is to outline the contribution of

this work to information processing.

The notion of using logic to describe the world has been pur-
sued by philosophers, logicians, and mathematicians for centuries. The
particular representations and axiomatizations given here are somewhat
original, but a greater contribution lies in showing how such axiomatiza-

tions can be used in problem solving and question answering,

This work represents one of the first developments of the theory
and application of a formal, complete, first-order logic proof procedure
to question answering, In particular, it applies the resolution proof
procedure to question answering, thus showing in detail how perhaps the
best of the known theorem-proving methods can be applied to question
answering, It extends the resolution procedure, in theory and practice,
to constructive proofs and to methods for solving state-transformation
problems, The representation selected for state-transformation problems
provides a machine-usable first-order logic basis for McCarthy's situational

1 . .
2,18 It extends the resolution procedure to interface a "pure"

logic,
theorem-proving program with other problem~solving subprograms, Many of
the above results have been thought feasible or plausible by some logicians
for many years, However, this work represents concrete, implemented,
proven solutions, rather than feasibility or plausibility discussion; thus

it makes many previous ideas more precise.

The feasibility of constructive proof procedures by Herbrand
methods has been known to logicians essentially since the 1930's. McCarthy
saw this potential in the resolution procedure. Robinson®! carried the
development of related ideas nearer to realizability. My work probably
represents the first implement development of such constructive resolution

proof procedurces., Independently, Waldinger and Lee®® developed and

13

implemented another successful approach. Slightly later, I believe,

. 23
Sussman,

and then Burstall,34 developed related systems. Sussman's
system seems Lo have a sophisticated hecuristic theorem prover, Darlington
has been successfully exploring logical question answering by related
approaches for several years.®®>2¢,°7 Darlington®® developed possibly

the closest forerunner of this work; he used a method reiated to resolu-
tion although the method was logically incomplete and did not include
constructive proofs. Other related work is discussed in Section VIII-D

and E,.

In addition to its contributions to theory, this work has
resulted in a working question-answering system that in certain respects
can do what no previous such system could do. This system has contributed
to several rescarch projecté at SRI. In applications other than those
mentioned herein, Raphael and Coles®® have begun to study medical question
answering in a project for the National Library of Medicine, supported by
the National Institutes of Health. This application has required exten-
sions of QA3 to deal efficiently with finite sets, and a two-way communi-
cation facility, Kling29 has used and modified QA3 in a research project
concerning the use of analogy to discover difficult proofs, - The SRI
automaton (robot)3° uses QA3 as one of its problem-solving mechanisms,

This application is discussed further in Sec. VII-A.

Anéther contribution of this work is that it shows how one
~formal problem~solving mechanism can be used for seemingly diverse
problems. !It emphasizes the strong unity underlying the many aspects of
machine intelligence, I believe that from this and similar work empha-
sizing generality, we will approach more purposefully self-modifying and

and independent ''learning' machines.
g

It is hoped that formal techniques such as those developed
here may be of general value to the field of artificial intelligence.
The use of a formal framework can lead to insights and generalizations
that are difficult to develop while working with an 32 Egs system, A
common, well-defined framework facilitates communication between
researchers, and helps to unify and relate diverse results that are

difficult to compare,

14

The theorem proving by resolution solution to the formal
guestion-answering problem works. We will show that it is adequate for
many question-answering and problem-solving tasks, Its performance
compares favorably to SIR, DEDUCOM,31 and other previous question-
answering systems., Its principal limitation is that it cannot solve
very difficult or highly specialized problems, A more detailed dis-
cussion of the advantages and disadvantages of this approach, as well

as a comparison to other systems, is given in Sec. VIII-D.

15

II REVIEW OF AUTOMATIC THEOREM PROVING

The purpose of this scetion is to provide a bricl review of logic
and automatic¢ theorem proving by resolution. An introduction to theorem
proving by resolution can be found in "A Review of Automatic Theorem
Proving" by J. A. Robinson.*® Cooper, in Ref. 32, provides an introduc-
tion to pre-resolution automatic theorem proving. J. A. Robinson'® pre-
sents a recent and broad treatment of theorem proving in "The Present
State of Mechanical Theorem Proving,” and also provides an excellent

bibliography of relevant work.

Progress in automatic theorem proving is exemplified by two of the
most powerful theorem-proving systems--that of Wos, Robinson, et
al.,33334!35 and that of Guard et al.®® The program of Wos, Robinson,
et al. is a highly developed "pure' resolution theorem prover (with
special treatment of equality). Guard's system (quite closely related
to resolution) is a highly interactive man/machine system that has al-

ready proved a lemma leading to a previously unproven mathematical result.

The branch of formal logic referred to as first-order logic deals

with well-defined strings of symbols called well-formed formulas (wffs).

Well-formed formulas (also called statements) are composed of constants
(I will often use a,b,c,d,e, other lower~-case letters, or numbers to
represent constants), variables (usually s,t,u,v,w,x,y,z), function

letters (usually f,g,h,j, or other lower-case letters), predicate letters

(usually P,Q,R,A,B,C, or other upper-case letters), connectives, and

quantifiers. A term is either a constant, a variable, or a function

(formed by applying a function letter to other terms)--e.g., f(b,y) is
a term, The word "function" is often conveniently misused to refer to
either a function letter, a term composed of a function letter applied
to its arguments, or else a function (the mapping itself). A function
of n variables is called an n-ary or n-place function. A constant is
often considered to be a special case of a function--namely, a function

of no variables. An atomic formula is obtained by applying a predicate

16

letter to terms--e.g., P(x,a) is an atomic formula. A predicate letter
of n arguments is an n-ary or n-place predicate letter., A proposition
is an atomic predicate of no arguments. A well-formed formula is either
an atomic formula, a formula obtained by applying connectives to other
wffs, or a formula obtained by applying a quantifier to another wff., We
will use the connectives ~, =, V, A, and =, meaning, respectively, NOT,
IMPLIES, OR, AND, and EQUIVALENCE. The quantifiers are the universal

quantifier V and the existential quantifier 34, The string of quantifiers

(Vxl)(sz)...(Vxn) is sometimes abbreviated as (Vxl,xz,...,xn). If a wff
contains a variable that is not bound by either a universal or existential

quantifier, then that variable is said to be a free variable., Wffs con-

taining no free variables are closed wffs,

An example of a well-formed formula is
(Vx) (Fy) [P(x,a) 2 ~R(x,f(b,y))] .

The terms it contains are x, y, a, b, and f(b,y). The terms x and y are
variables bound by the quantifiers, By definition, a and b are constants.
The atomic formulas it contains are P(x,a) and R(x,f(b,y)). We may read
the statement as "For every x there exists a y such that if P(x,a), then

it is not the case that R(x,f(b,y))."

By presenting the formula above or by stating the formula P(x,a) as
in the last sentence, one typically means to assert that it is "true" or
that it "holds" in some sense. The precise sense of ''truth" (or lack of

such precision) is usually evident from the context.

In first-order logic variables may occur only as term variables,

never as predicate or statement variables. Thus the statement (Vx)P(x)
is a legal first-order logic construction, whereas the formulas (VP) (P(x))

and (Vs)s are not legal, These constructions are higher-order logic,

Other notations that are related include the descriptive operator ¢

and the notation for a set {x:P(x)}. The term zx.P(x) means '"the unique
x" such that P(x) holds, and if there is not a unique x such that P(x)

holds, then the term x.P(x) is typically taken as undefined or equal to

17

some special value--say, 0. In Sec. III-C and D we shall introduce a
method for finding some x such that P(x) holds; this is close to x.P(x),
but not necessarily restricted to a unique x. The set notation {x:P(x)}

means the set of all x such that P(x) holds.

Two aspects of logic are the syntactic notions and the semantic
notions, A wff is a syntactic or linguistic entity. Legal wffs are
completely specified by a set of grammar rules. One usually intends a
wff to have some ''meaning’ or semantics. The notion of semantics and its
correspondence to syntax can be made quite rigorous. The semantics of a

statement is specified by an interpretation. An interpretation consists

of (1) a non-empty set of objects called the domain (or universe), (2) an
assignment of an object in the domain to each constant, (3) an assignment
of an n-ary function on the domain to each n-ary function letter, and (4)
an assignment of an n-ary relation (set of ordered n-tuples) on the domain
to each n-ary predicate letter., A variable then ranges over the elements

of the domain.

A closed wff (no free variables) is then true or false with respect
to this interpretation. We shall consider only closed wffs. An inter-
pretation that makes a wff true is said to satisfy the wff, or equiva-
lently, the interpretation is said to be a model of the wff, A wff is
satisfiable if and only if there exists an interpretation that satisfies

the wff, A wff is logically valid if and only if it is satisfied by all

possible interpretations, or equivalently if the negation of the wff is

unsatisfiable.

The propositional calculus (or boolean logic) does not allow quan-

tifiers or variables. An atomic formula is considered as the smallest
undecomposable element. In propositional calculus, a logically valid
wff is a tautology. For example, the propositional statement P V ~P is
a tautology. In propositional calculus, an unsatisfiable wff is said

to be a contradiction, or truth-functionally unsatisfiable. The method

of truth tables may be used to indicate that a propositional wff is a

tautology or truth-functionally unsatisfiable., We can consider a pred-

icate calculus formula to be a propositional formula by considering an

18

atomic formula to be a proposition. For example, the formula P(x) V ~P(x)

is obviously truth-functionally unsatisfiable.

The theorems of a logical system are usually intended to be the valid
wffs., However, since it is not practical in general to enumerate and test
all possible interpretations, formal syntactic procedures called 23225
procedures must be used to establish theorems. If every theorem produced
by a proof procedure is indeed valid, the procedure is called sound. If
every valid formula can be demonstrated to be a theorem, the procedure is
complete, In the desirable case that a proof procedure is both sound and
complete, the theorems of the procedure coincide with the valid wffs., A

decision procedure is a procedure that can decide in a finite number of

steps whether or not any given wff is valid,

Unfortunately, it is known that there are proof procedures for first-
order logic, but there is no decision procedure for first-order logic.
This means that there is no guarantee that a proof procedure will converge
to a proof in a finite number of steps when attempting to prove a non-

theorem,

As a practical matter, however, this lack of a decision procedure
does not limit the applicability of logic as much as it may at first
appear. Because of the time and space constraints on practical computa-
tion, the heuristic power of a proof procedure--i.e., its ability to prove
useful theorems efficiently~-is more important than its theoretical
limitations. This issue is discussed fully in an interesting paper by
Robinson®? (see also Ref. 18). A decision procedure that requires enor-
mous amounts of time or intermediate storage is indistinguishable, in

practice, from a proof procedure that never terminates for some wffs.

In recent years, much work has been done on the development of proof
procedures suitable for implementation on a digital computer., The most
effective of these seem to be those that use the Robinson resolution
principle in conjunction with Herbrand's "semantic tableau' methods of

theorem proving.

A wff Q is a logical consequence of (follows from, semantically) a

set of axioms (premises) B if and only if every model of B is a model

19

of Q. [The corresponding syntactic notion is that a conjecture Q is a
theorem if it can be proved (by a proof procedure) from a set of axioms B.]
It can be easily shown that Q is a logical consequence of B if and only if
B O Q is logically valid, or, equivalently, if the statement ~{B O Q]
(logically equivalent to B A ~Q) is unsatisfiable, The basic approach of

Herbrand proof procedures is to use syntactic rules of inference in an

effort to determine that the negation of the wff to be proved (B N ~Q) is
unsatisfiabiey From a set of formulas, the rules of inference produce
new formulas, preserving unsatisfiability, until an explicitly unsatis-
fiable formula--a contradiction--is produced. The resolution procedure

is such a Herbrand type of procedure.

The resolution procedure finds proofs by refutation, To prove a
theorem Q by refutation, one assumes that the theorem is not a logical
consequence of the axioms B, and then derives a contradiction. The

resolution procedure is a refutation algorithm that deduces from B N ~Q

an explicit contradiction. The search for a contradiction is an attempt
to construct a model that satisfies B A ~Q. It has been shown that the
resolution procedure deduces a contradiction if and only if B A ~Q is
unsatisfiable (B @ Q is logically valid); thus, resolution is a sound and
complete proof procedure. To prdve that a statement Q does 223 follow
from a set of axioms B, one assumes it does and attempts to derive a
contradiction from B A Q. No decision procedure exists for the first-
order logic, so in general, for a given B and a given Q, one cannot
guarantee that the proof procedure will terminate in either the attempted

proof of Q or the attempted disproof of Q from B.

In most automatic theorem proving, statements are converted into a
standard quantifier-free form. First, a wff C is converted algorithmically

into a prenex conjunctive normal form C', in which all the quantifiers

/
occur in one quantifier prefix at the beginning of C/. The rest of C ,
called the matrix, is an "and" of "or's" of atomic formulas. Each exis-

tentially quantified variable can be replaced by a Skolem function applied

to those universally quantified variables within whose scope the exis-
tential quantifier lies. The Skolem functions are formed from new func-

tion letters. For example, in the statement (Vx) (dy)P(x,y) the

20

existentially quantified variable y is replaced by the Skolem function
£(x), and the quantifier ("Ix) is dropped to yield the new statement
(Vx)P(x,f(x)). The function f(x) may be thought of as denoting the y
that is asserted to exist. The dependence of y on x is reflected by the
fact that the Skolem function depends on x. ‘The next step in the conver-
sion process is to drop the universal quantifiers, leaving it understood
that all variables are universally quantified, The final quantifier-free
form of the statement is satisfiable if and only if the original statement
is satisfiable. An equivalent notion is that the original formula and

the final formula are interprovable; one is a theorem if and only if the

other is a theorem. The proof of this, along with a detailed discussion

of the conversion algorithm, is given by Davis,®8

In the resulting quantifier-free conjunctive normal form formula,
each conjunct is called a clause. Each clause is a disjunction of
literals; a literal is either an atomic formula or the negation of an
atomic formula, As an example, the wff (Vx) (7y)[P(x) @ R(y)] is con-

verted to the clause

~P(x) V R(£(%))

where f denotes the Skolem function replacing y. A conjunction of several

clauses may be referred to as a set of clauses. A clause may be referred

to as a set of literals, and may be represented as a set--i.e.,

{~x),R(£(x 1.

The resolution proof procedure uses statements in the standard
clause form., First, the formula B A ~Q (B is a set of axioms, ~Q is the
negation of the theorem) is represented as a set of clauses. Then new
clauses--resolvents—-are deduced from the starting clauses by the
resolution rule of inference. The main theorem of resolution states that
if a resolvent is not satisfiable, then neither of its antecedents are
satisfiable, and that the empty formula is not satisfiable, The goal of
the procedure is to deduce the empty clause, an explicit contradiction
that is not satisfiable. This demonstrates that all its antecedents,

including the starting wff, are not satisfiable,

21

The rule of resolution is best illustrated first in its propositional
form: if p V @ and ~p V B are two wffs in which p is any proposition and
« and B are any wffs, one may deduce the wff a V B, More concisely,
(pVaA)A(pVBE D(VB.

The exact statement of the resolution rule requires that we introduce

the notion of a substitution. A substitution gives a set of terms that

are to be substituted for a set of variables. A substitution O may be

written as a set, 0 = {tl/x t,. /x ceey tn/xn}, meaning that term t. is

1’ "2° 79 1
1’ t2 for x2, etc. If L is a formula then 1o
denotes the formula resulting from performing the substitution O on the

to be substituted for x

formula L,

Two formulas L1 and L2 are said to unify if there exists a substi-

tution O such that LlU = L26. f L' = 1o, for any O, then L’ is said to

be an instance of L. The substitution O is said to be the most general

unifier of two formulas L1 and L_ if Llc = L_O and, for any other unifier

2 2
A of Ll and L2, le = Lzl is an instance of L O = LZG. Robinson has shown

1 4
that if two formulas unify, there exists a most general unifier of the

two formulas,

The heart of the resolution process is the unification algorithm

that determines whether or not two formulas unify, and, if they do, finds
the substitution set O that is the most general unifieerf the two for-
mulas. This algorithm guarantees that in one sense each resolution
inference step is as generﬁl as possible, since eﬁery'less general uni-

fication is implied.

The exact statement of the resolution rule of inference begins as
follows, Let L. be any atomic formula. Let ~L2 be the negation of an

1
atomic formula consisting of the same predicate symbol letter of L but

1’
in general with different arguments. Using the set notation to represent

clauses, the resolution rule of inference is: Given two clauses {Ll,a}

and {~L2,B} where @ and B are disjunctions of literals and L1 and L2 are

1 and L2 have the most general unifier O, infer

by resolution the resolvent {«,Bl}o.

atomic formulas; and if L

32

Example:

P(x,f(y)) V Q(x) V R(f(a),y)
and

~P(f(f(a)),z) V R(z,w)
imply, by resolution,
Q(f(£(a))) V R(f(a),y) V R(f(y),w)

where the substitution ¢ = {f(f(a))/x, f(y)/z} applied to the two
literals P(x,f(y)) and ~P(f(f(a)),z) yields the two literals
P(£(f(a)),f(y)) and ~P(f(£(a)),f(y)) so that the two clauses

resolve,

The complete statement of the resolution rule is in Refs. 19 and 20.
There are several variations of the resolution principle. The theorem
prover in QA3 uses a variation (not that given by Robinson in Ref. 20) of
resolution that employs another rule of inference, factoring. Given a

clause C = {Ll vV L,V B}, where L. and L, are literals and $§ is a dis-

1 2
junction of literals, if L1 and L2 unily with the most general unifier o
(thus Llo = ch), infer the factor C’ - (Llo V Bo).

The resolution rule tells us how to derive a new clause from a
specified pair of clauses containing a specified literal, but does not
tell us how to choose which clauses to resolve. A mechanical attempt to
resolve all possible pairs of clauses generally results in the generation
of an unmanageably large number of irrelevant clauses, Therefore, various
heuristic search principles have been developed to guide and control the
selection of clauses for resolution. Among the most important of these
are the set of support,”® unit preference,®* and subsumption®® strategies.

All these strategies preserve completeness of the theorem prover.

The statement of a theorem to be proved usually consists of a set

of premises (axioms) and a conclusion. The set-of-support strategy

consists of designating the conclusion, and perhaps a small number of

23

the most relevant axioms, as "having the support property''--i.e., lying
in the set of support for the theorem. Thereafter, only those pairs of
clauses containing at least one member with support are considered for
resolution, and every resolvent is automatically attributed the support
property, This strategy is aimed at avoiding the deduction of conse-
quences for some of the premises that are independent of (and irrelevant

to) the particular conclusion desired. The extended set-of-support35

strategy is like the set-of-support strategy, but non-set-of-support
clauses are allowed to resolve together or be factored, if the resultant
clause is less than a given level. The intent of this strategy is to
allow a potential "lemma" to be produced by, say, resolving two axioms.

If the lemma is used several times in the proof, less seérch is required.

The unit-preference strategy essentially orders the clauses to be

resolved by their length--i.e., by the number of literals they contain.
Contradictions become apparent only when two unit (one-literal) clauses
resolve together to produce the empty clause. Therefore, one might hope
to discover a contradiction in the least time by working first with the
shortest clauses. This strategy says to first produce the shortest
resolvent possible in which at least one of the "parent' clauses is a
unit. If no such resolutions are possible, attempt to produce the

shortest possible resolvent or factor next,

Occasionally any strategy like the unit-preference strategy may
cause one to continue to resolve sequences of unit resolutions to the
neglect of longer but perhaps more fruitful clauses. This difficulty
can be overcome by placing a bound on computation that will determine
when the unit-preference strategy should be abandoned in favor of a
broader search, One such bound sets a maximum on the number of levels--
i,e., intermediate steps, between a deduced clause and the original

theorem., Of course, these bounds cause loss of completeness.

In the course of a resolution proof, several clauses may be intro-
duced that carry equivalent information and therefore lead to distracting,
extraneous steps. In particular, if C is any clause, and if C0 = CO is

obtainable as an instance of C by some substitution O, and if clause

24

D = C0 V o, where @ is any formula, then C subsumes D in the sense that
the set of clauses {C,D} is satisfiable if and only if C alone is satis-
fiable. Therefore, we delete from our proof any clause that is subsumed

by another clause in the proof,

The proof procedure implemented as part of QA3 is a resolution
procedure using some form of each of the above search strategies, as well

as extensions thereto.

As an example of a proof using resolution, set-of-support strategy,

and unit-preference strategy, let the axioms be

Axiom 1 P(a)

Axiom 2 Ey)Q(y)

Axiom 3 P(a) O R(a)

Axiom 4 ("x) [P(x) A R(x) 2 Q(g(x))]

where a is a constant, g is a function letter, and P, Q, and R are predi-

cate letters. The axioms are converted to the following corresponding

clauses:
Clause 1 P(a) from Axiom 1
Clause 2 Q(b) from Axiom 2
Clause 3 ~P(a) V R(a) from Axiom 3
Clause 4 ~(x) V~RE V Qlgx)) from Axiom 4.

The constant "b" in Clause 2 is the Skolem function of no arguments
generated by the elimination of (Jy) in Axiom 2. The theorem to be

proved from these axioms is

(Tx)Q(g(x)) .

The clause representing the negation of the theorem is

Clause 5 ~Q(g(x)) from negation of theorem.

25

We show that this set of clauses is unsatisfiable. From the negation
of the theorem, suppose Clause 5 is selected (as is typical) as the only
clause in the set of support. Following the unit-preference strategy, the
first inference attempted is to resolve Clause 5 with Clause 1, a unit
clause, which fails, Similarly, Clause 5 does not resolve with Clause 2.
Then Clause 5 fails to resolve with Clause 3, a two-clause (clause of

length 2). Finally, Clause 5 resolves with Clause 4, producing
Clause 6 ~P(x) V ~R(x) from 4 and 5;

then Clause 6 resolves with the unit Clause 1, yielding

Clause 7 ~R(a) from 1 and 6;
then

Clause 8 ~P(a) from 3 and 7;
then

Clause 9 contradiction from 1 and 8,

completing the proof. (The QA3 theorem-proving program is more clever
than the strategy outlined above., For example, it would never even

attempt to resolve Clause 5 with Clause 1, since they share no common
predicate letter, The details of the real strategy used are given in

Sec . IV-C) .

Observe that there is an alternate proof if the unit-preference
strategy is not used. The axioms and the negation of the theorem are
the same as before. First, Clause 6 can be produced from 4 and 5 as

before.

Clause 6 ~P(x) V ~R(x) from 4 and 5.
Then Clause 6 and Clause 3 resolve to produce

Clause 7’ ~P(a) V ~P(x%) from 3 and 6,

26

By the other rule of inference, factoring, we have

Clause 8’ ~P(a) from 7’
Finally,
Clause 9 contradiction from 1 and 8',

completing the proof.

As shown by the first proof of the above theorem, a proof is some-
times possible without factoring, but, in general, factoring is necessary

for completeness,

27

III THE THEOREM-PROVING APPROACH TO QUESTION ANSWERING

A, Introduction to the Formal Approach

The use of a theorem prover as a question answerer can be explained
very simply. The question answerer's knowledge of the world is expressed
as a set of axioms, and the questions asked it are presented as theorems
to be proved. The process of proving the theorem is the process of
deducing the answer to the question. For example, the fact "George is
at home'" is presented as the axiom, AT(George,home). The question "Is
George at home?" 1is presented as the conjectured theorem, AT (George ,home) .
If this theorem is ﬁroved true, the answer is yes. (In this simple exam-
ple the theorem is obviously true since the axiom is the theorem.) The
theorem prover can also be used to find or construct an object satisfying
some specified conditions. For example, the question "Where is George?"
requires finding the place x satisfying AT (George,x). The theorem prover
is embedded in a system that controls the theorem prover, manages the data
base, and interacts with the user. These ideas are explained in more

detail later in Seé. Iv.

Even though it might be clear that theorem proving can be used for
question answering, why would one want to use these very formal methods?
One answer is that one is seeking generality. Theorem proving may be a

good approach to the achievement of generality for several reasons:

(1) The language is well defined, unambiguous, and rather general,
so that one can hope to describe many desired subjects, ques-

tions, or answers,

(2) The proof procedure used allows all possible interactions among
the axioms and is logically '"complete''--i.e., if a theorem is
a logical consequence of the axioms, then this procedure will
find a proof, given enough time and space. This completeness
property is important, since several general question-answering
programs have resulted in incomplete deductive systems, even
in the practical sense of being unable to answer some simple

types of questions that are short, reasonable deductions from

28

the stored facts--e.g., the author's QA1,’ Raphael's SIR*
and Slagle's DEDUCOM.*?

(3) The theorem prover is subject-independent, so to describe a
new subject or modify a previous description of a subject,
only the axioms need to be changed, and it is not necessary

to make any changes in the program.

(4) Theorem provers are becoming more efficient. Even though the
theorem~-proving method used is theoretically complete, in
practice its ability to find proofs is limited by the avail-
ability of computer time and storage space. However, the
kind of theorem proving--resolution--used by the program
described herein has been developed to the point of having
several good heuristics. Further improvements in theorem
proving are ahead, and, hopefully, the improvements will
carry over into correspondihg improvements in question an-
swering. It should be possible to communicate precisely
new theorem-proving results to other researchers, and it
is relatively easy to communicate precisely particular for-

malizations or axiomatizations of subjects.

B. An Explanatory Dialogue

The explanation of question answering given in this section will be
illustrated primarily by the techniques used in a working question-
answering program called QA3 (see Sec. IV) and is on the SDS 940 computer,
which has a time-sharing system. The user works at a teletype, entering
statements and questions, and receiving replies. The notation we present
in this thesis is slightly different from the actual computer input and
output, as the character set available on the teletype does not contain
the symbols we use here. QA3 is an outgrowth of QA2! (see Appendix A),
but is somewhat more sophisticated and practical, and is now being used

for several applications.

29

Facts are presented as statements of first-order logic. The state-
ment is preceded by STATEMENT to indicate to the program that it is a
statement. These statements (axioms) are automatically converted to
clauses and stored in the memory of the computer. The memory is a list
structure indexed by the predicate letters, function symbols, and constant
symbols occurring in each clause., A statement can be a very specific

fact such as

STATEMENT: COLOR (book,red)

corresponding to the common attribute-object-value triple. A statement

can also be a more general description of relations, such as:
STATEMENT: (Vx) (VA) (VYB)[A S B A xeA D xeB]

meaning that if A is a subset of B and if x is an element of A, then x

is an element of B.

Questions are also presented as statements of first-order logic.
QUESTION is typed before the question. This question becomes a conjec-
ture and QA3 attempts to prove the conjecture in order to answer YES, If
the conjecture is not proved, QA3 attempts to prove thé negation of this
question in order to answer NO, The theorem prover attempts a proof by
refutation. During the process of séarching for a proof, clauses that
may be relevant to a proof are extracted from memory and utilized as
axioms. If the qtestion is neither proved nor disproved, then a NO PROOF

FOUND answer is returned. ANSWER indicates an answer.,

We now present a very simple dialogue with QA3. The dialogue illus-
trates a "yes" answer, a 'no" answer, and an "or" answer. Questions 4,
7, and 8 below illustrate questions whose answer is a term generated by
the proof procedure. These kinds of answers will be called "constructive"

answers.

30

(1) The first fact is "Smith is a man."

STATEMENT: MAN(Smith)

OK

The OK response from QA3 indicates that the statement is accepted, con-

verted to a clause, and stored in memory.

(2) We ask the first question, "Is Smith a man?"

QUESTION: MAN (Smith)

ANSWER: YES

(3) We now state that "Man is an animal," or, more precisely, "If

x is a man then x is an animal,"”

STATEMENT: (Vx)[MAN(x) © ANIMAL(x)]

OK

(4) We now ask "Who is an animal?" This question can be restated

as "Find some y that is an animal" or "Does there exist a y such that y

is an animal? If so, exhibit such a y."

QUESTION: (Ty) ANIMAL (y)

ANSWER : YES, y = Smith

The YES answer indicates that the conjecture (Hy)ANIMAL(y’ has been
proved (from Statements 1 and 3 above). 'y = Smith" indicates that

"Smith" is an instance of y satisfying ANIMAL(y)--i.e., ANIMAL(Smith)
is a theorem.

(5) Fact: Every robot is a machine.

STATEMENT: (Vx) [ROBOT(x) © MACHINE(x)]

OK

31

(6) Fact: Rob is a robot.

STATEMENT: ROBOT (Rob)

OK
(7) Fact: No machine is an animal.

STATEMENT: (Vx)[MACHINE(x) D ~ANIMAL(x)]

OK

(8) The question "'Is everything an animal?" is answered NO,

counterexample is exhibited--namely, Rob the robot.

QUESTION: (Vx) ANIMAL(x)

ANSWER: NO, x = Rob

A

The answer indicates that ~ANIMAL(Rob) is a theorem. Note that a NO

answer produces a counterexample for the universally quantified variable

x. This is a dual of the construction of a satisfying instance for an

existentially quantified variable in a question answered YES.

(9) Fact: Either Smith is at work or Jones is at work,

STATEMENT: AT(Smith,work) V AT(Jones,work)

OK

(10) '"Is anyone at work? If so, who?"

QUESTION: (dx) AT (x ,work)

ANSWER : YES, x = Smith

or X = Jones

From the previous statement it is possible to prove that someone is at

work, although it is not possible to specify a unique individual.

32

Statements, questions, and answers can be more complex so that their
corresponding English form is not so simple. Statements and questions
can have many quantifiers and can contain functions. The answer can also
contain functions. Consider the question "Is it true that for all x there
exists a y such that P(x,y) is true?" where P is some predicate letter.

Suppose QA3 is given the statement,
(11) STATEMENT: (Vz)P(z,f(2))
where f is some function. We ask the question

(12) QUESTION: (Vx) (Ay)P(x,y)

ANSWER : YES, y = f(x)

Notice that the instance of y found to answer the question is a function
of x, indicating the dependence of y on x. Suppose that instead of
Statement 11 above, QA3 has other statements about P. An answer to

Question 12 might be
ANSWER : NO, x = a

where "a" is some instance of x that is a counterexample.

A term in the answer can be either a constant, a function, a variable,
or some combination thereof. If the answer is a constant or a known
function, then the meaning of the answer is clear, However, the answer
may be a Skolem function generated by dropping existential quantifiers.

In this case, the answer is an object asserted to exist by the existential
quantifier that generated the Skolem function. To know the meaning of
this Skolem function, the system must exhibit the original input stétement
that caused the production of the Skolem function. Free variables in
clauses correspond to universally quantified variables, so if the answer
is a free variable, then any term satisfies the formula and thus answers

the question.

33

Two more types of answers are NO PROOF FOUND and INSUFFICIENT INFOR-
MATION, Suppose the theorem prover fails to prove some conjecture and
also fails to disprove the conjecture. If the theorem prover runs out of
time or space during either the attempted "yes" proof or the attempted
"no" proof, then there is the possibility that some proof is possible if
more time or space is available. The answer in this case is NO PROOF

FOUND.

Now suppose both proof attempts fail without exceeding any time or
space limitations. The theorem-proving strategy is complete so that if
no time or space limitation halts the search for a proof and the conjec-
ture is a logical consequence of the axioms, then a proof will be found.
So we know that neither a ''yes'" nor a "no" answer is possible from the
given statements. The answer returned is INSUFFICIENT INFORMATION., For

example, suppose QA3 has no statements containing the predicate letter "R".
QUESTION: (dx)R(x)

The negated question is the clause {~R(x)}, and no other clauses in the

memory of QA3 can resolve with it, Thus the system will respond
ANSWER: INSUFFICIENT INFORMATION .

C. Constructing Answers

The Resolution method of proving theorems allows us to produce
correct constructive answers. This means that if, for example, (Ux)P(x)
is a theorem, then the proof procedure can find terms tl,tz,...,tn such

that P(tl) \ P(tz) e V P(tn) is a theoremn.

First, we will present some examples of answer construction. After
these examples we will show how a proof by resolution can be used to

generate an answer,

Examples of answer construction will be explained by means of the
ANSWER predicate used by QA3 to keep track of instantiationms. Consider

the question

34

QUESTION: (Hy)ANIMAL(y)

which is negated to produce the clause
{~aNn1MAL(y)} .

The special literal, ANSWER(y), is added to this clause to give

{~ANIMAL(y) V ANSWER(y)} .
The proof process begins with this clause. When the literal ANIMAL(x) is
resolved against the literal ~ANIMAL(y), the term y is instantiated to
yield the term x. In the new clause resulting from this resolution, the
argument of ANSWER is then x. In the next resolution the argument of
ANSWER becomes Smith., We list the complete proof of the clause

{ ANSWER (Smith) 1.

(1) {~ANIMAL(y) V ANSWER(y)} Modified negation of the question.

2) {~MAN(x) V ANIMAL(x) } Axiom fetched from memory.

(3) {~MAN(x) V ANSWER(x)} From resolving 1 and 2.

(4) {MAN(Smith)} Axiom fetched from memory.

(5) {ANSWER(Smith)} "Contradiction" from 3 and 4 for
y = Smith,

The first clause can be interpreted as "For every y, either y is not an
animal or else y is an answer." The second clause means "For all x, x
is an animal or x is not a man.' From these two statements, we deduce
the third clause, "For all x, either x is not a man or X is an answer."
Clause 4 states that Smith is a man, and we deduce that Smith is an
answer. The argument of the ANSWER predicate is the instance of y

(namely, Smith) that answers the question. QA3 returns

ANSWER: YES, y = Smith .

35

This answer means, as will be explained later, that

ANIMAL(Smith)

‘is a theoren.

The ANSWER literal is added to each clause in the negation of the
question. The arguments of ANSWER are the existentially quantified vari-
ables in the question. When a new clause is created, each ANSWER literal
in the new clause is instantiated in the same manner as any other literal
from the parent clause, However, the ANSWER literal is treated specially;
it is considered to be invisible to resolution in the sense that no literal
is resolved against it and it does not contribute to the length (size) of
the clause containing it. We call a clause containing only ANSWER literals
an "answer clause.'" The search for an answer (proof) successfully termi-
nates when an answer clause is generated. The addition of the ANSWER
predicate to the clauses representing the negation of the theorem does
not affect the completeness of this modified proof procedure. The theorem
prover generates the same clauses, except for the ANSWER predicate, as the
cdnventional theorem prover. Thus in this system an answer clause is
equivalent to the empty clause that establishes a contradiction in a con-

ventional system.

An answer clause specifies the sets of values that the existentially
quantified variables in the question may take in order to preserve the
provability of the question., The precise meaning of the answer will be
specified in terms of a question Q that is proved from a set of axioms

B = {Bl,Bz,...,Bb].

As an example illustrating some difficulties with Skolem functions,

let the axioms B consist of a single statement,
STATEMENT: (Vz) (Aw)P(z,w) .
Suppose this is converted to the clause

{P(z,f(2))]}

36

where f(z) is the Skolem fTunctiion duc to the elimination of Lhe quantificer

(w). We ask Lthe question Q,
QUESTION: (Vy) (Ex)P(y,x) .
The negation of the question is ~Q,
@y) (Vx)~P(y,x) .

The clause representing ~Q is {~P(b,x)], where b is the constant (function
of no variables) introduced by the elimination of (¥y). Adding the answer

literal, the initial clause in the proof is
{~P(b,x) V ANSWER(x)} .

The proof, obtained by resolving these two clauses, yields the answer

clause

{ANSWER(£ (D))} .
The Skolem function b is replaced by y, and the answer printed out is
ANSWER: YES, x = f(y) . 1)

At present in QA3 the Skolem function f(y) is left in the answer.
To help see the meanihg of some Skolem function in the answer, the user
can ask the system to display the original statement that, when converted

to clauses, caused the generation of the Skolem function.

As an illustration, consider the following interpretation of the
statement and question of this example. Let P(u,v) be true if u is a
person at work and v is this person's desk. Then the statement
(Vz) (Aw)P(z,w) asserts that every person at work has a desk, but the
statement does not name the desk. The Skolem function f(z) is created
internally by the program during the process of converting the statement

(Vz) (Aw)P(z,w) into the clause {P(z,f(z))}. The function f(z) may be

37

thought of as the program's internal name for z's desk. [The term f(z)
could perhaps be written more meaningfully in terms of the descriptive

t

operator ¢ as "tw,P(z,w)"--i.e., "the w such that P(z,w)," although w is

not necessarily unique.]

The question (Vy) (Fix)P(y,x) asks if for every person y there exists
a corresponding desk. The denial of the question, (y) (Vx)~P(y,x),
postulates that there exists a person such that for all x, it is not the
case that x is his desk. The Skolem function of no arguments, b, is also
created internally by the program as it generates the clause {“P(b,x)}.
The function b is thus the program's internal name for the hypothetical

person who has no desk,

The one-step proof merely finds that b does have a desk--namely,
f(b). The user of the system does not normally see the internal clause
representations unless he specifically requests such information. If
the term f(b) that appears in the answer clause were given to the user
as the answer--e.g., YES, x = f(b)--the symbols f and b would be meaning-
less to him, But thé program remembers that b corresponds to y, so b is
replaced by y, yielding a slightly more meaningful answer, YES, x = f(y).
The user then knows that y is the same y he used in the question. The
significance of the Skolem function f is slightly more difficult to
express. The program must tell the user where f came from. This is
done by returning the original statement (Vz)P(z,f(2)) to the user
[alternatively, fhe descriptive operator could be used to specify that
f(z) is "tw.P(z,w)"]. As a rule, the user remembers, or has before his
eyes, the question, but the specific form of the statements (axioms) is
forgotten. In this very simple example the meaning of f is specified
completely in terms of. the question predicate P, but in general the
meanings of Skolem functions will be expressed in terms of other predi-

cates, constants, etc,

The exact meaning of the answer x = f(y) is that the statement

y)P(y,f(y))

38

follows from the axioms. For this example, this statement is an axiom
clause, so it obviously follows from the axiom clauses. In general the

precise meaning of an answer may not be so obvious.

The statement above is called the "answer statement.'" In the next
section, we will show in general how to construct an answer statement.
The answer statement will be a wff in prenex form, that (1) has only
universal quantifiers, (2) contains no Skolem functions from the negation
of the theorem, (3) is a logical consequence of the axiom clauses, and

(4) provides an exact meaning for the answer.

D. The Answer Statement

We will now show how to construct an "answer statement,” and then
we will prove that the answer statement is a logical consequence of the
axiom clauses. On some questions the user may require that an answer
statement be exhibited, in order to better understand the meaning of a

complicated answer,.

Consider a proof of question Q from the set of axioms B = {Bl,Bz,
...,Bb}. B logically implies Q if and only if B A ~Q is unsatisfiable.
The statement B A ~Q can be written in prenex form PM(Y,X), where P is
the quantifier prefix, M(Y,X) is the matrix, Y = {yl,yz,...,yu} is the
set of existentially quantified variables in P, and X = {xl,xz,...,xe}

is the set of universally quantified variables in P.

Eliminating the quantifier prefix P by introducing Skolem functions
to replace existential quantifiers and dropping the universal quantifiers

produces the formula M(U,X). Here U is the set of terms {ul,u ,...,uu},

2
such that for each existentially quantified variable yi in P, ui is the

corresponding Skolem function of all the universally quantified variables
in P preceding vy Let M(U,X) be called S. The statement B A ~Q is
unsatisfiable if and only if the corresponding statement S is unsatis-
fiable. Associated with S is a Herbrand Universe of terms H that includes
X, the set of free variables of S, If ¢ = {tl/x

1 tz/xz, cees tn/xn}

1,tz,...,tn from H for the variables

xl,xz,...,xn, then the formula SP denotes the instance of S over H formed

represents a substitution of terms t

39

by substituting the terms tl,tz,...,tn from H for the corresponding

variables xl,xz,...,xn in S.

Let Si represent a variant of S--i.e., a copy of S with the free
variables renamed. Let the free variables be renamed in such a way that
no two variants Si and Sj have variables in common. By the Skolem-
Lowenheim-G6del theorem,'® S is unsatisfiable if and only if there exists
an instance of a finite conjunction of variants of S that is truth-
functionally unsatisfiable. A resolution theorem prover proves S un-

satisfiable by finding such a finite conjunction.

Suppose the proof of Q from B finds the conjunction Sl A S2 AN Sk
and the substitution ©® such that

A A A 6
(S1 82 e Sk)
is truth=functionally unsatisfiable, Let FO denote the formula
A A L 2 A e L]
(S1 82 Sk)
Let L be the conjunction of variants of M(Y,X),
= A A A
L M(Yl,xl) M(Y2,X2) M(Yk,xk)
and let A be the substitution of Skolem functions for variables such that

= A A
LA = M(U X)) A M@U,,K) A eee A MU LX)

A A A
S1 52 o Sk .

Thus, LAG = FO.
Before constructing the answer statement, observe that the Skolem

functions of FO can be removed as follows, Consider the set

U = {u sU, 3000l 1 of Skolem-function terms in S, Find in F, one
1772 u 0

instance--say, ui—-of a term in U. Select a symbol, zl, that does not
/

occur in FO. Replace every occurrence of uy in FO by Zy5 producing

40

statement Fl. Now again apply this procedure to Fl’ substituting a new

variable throughout F_. for each occurrence of some remaining instance of

1

‘a Skolem-function term in F yielding F_. This process can be continued

1’ 2
until no further instances of terms from U are left in Fn’ for some n.

The statement Fi for 0 £ i < n is also truth-functionally unsatisfi-
able for the following reasons, Consider any two occurrences of atomic
formulas-~say m_and m --in F., If m and m in F_ are identical, then

a b 0 a b 0

the corresponding two transformed atomic formulas m and mbl in F2 are

identical. If ma and m_ are not identical, then m and m are not

b al bl
identical. Thus, F. must have the same truth table, hence truth value,

1

as FO. This property holds at each step in the construction, so

FO’Fl""’Fn must each be truth-functionally unsatisfiable,

This term-replacement operation can be carried out directly on the
substitutions--i.e., for each statement Fi’ 0 < i < n, there exists a
substitution Gi such that F, = Lo We prove this by showing how such a

i i’
i =)\6 = R i -
o, is constructed, Let O {tl/vl, tz/vz, cees tp/vp} By defini

0

o= DJO. Let t; denote the term formed by replacing every occur-

’
rence of u1 in tj by z1

applied to L yields Fl-—i.e., F

tion, F
. The substitution O, = {t'/v t'/v owe t,/V }

1 1 T2t T2? *p’p
1= L01. Similarly one constructs Gi and
shows, by induction, Fi = LOi, for 0 < i < n,.

Now let us examine some of the internal structure of F Assume

0.
that S = M(U,X) is formed as follows., The axioms may be represented as

PBB(YB,XB), where P_ is the quantifier prefix, YB is the set of

B

universally-quantified variables, and X_ is the set of existentially-

B
quantified variables. These axioms are converted to a set of clauses
denoted by B(YB,UB); where UB is the set of Skolem-function terms created

by eliminating XB.

The question may be represented as PQQ(YQ,XQ), where PQ is the quan-
tifier prefix, YQ is the set of universally-quantified variables, and XQ

is the set of existentially-quantified variables. Assume that the vari-
ables of the question are distinct from the variables of the axioms. The
negation of the question is converted into a set of clauses denoted by
~Q(U ,XQ), where UQ is the set of Skolem-function terms created by

41

eliminating Y.. The function symbols in UQ are distinct from the func-

Q
tion symbols in Up. Thus, M(U,X) = [B(Y Ug) A ~Q(U xQ)] Now let
- A A A
Ly = [B(YBI X5,) N B(Yg,,Xp,) .. B(Y Bi’ ka)] and let ~L, ['*Q(YQI -
A A AN = A
~(Y Q2 Q2) .. "Q(qu Qk)] Thus, L = Ly ~Ly-
Observe that one can construct a sequence of formulas F0 Fl""’F;

(similar to the sequence FO’FI""’Fn) in which the only terms replaced

by variables are those terms that are instances of terms in U.. This

Q

. o /
construction process terminates when, for some m, the set of clauses Fm

contains no further instances of terms in U.. By the same argument given

Q

earlier, each formula F/ is truth-functionally unsatisfiable., Similarly,

i

14
one can construct from A0 a sequence of substitutions 00 01,...,Um such
' 4

thatm.:F.o L'etc=co
1 1 m

To construct the answer statement, substitute O into LQ’ forming
o = oV ovVv.,..V R
Lo = [Q¥g, X, V Q(¥y, X)) Q¥g, X5,)0]
Since O replaces the elements of YQJ by variables, let the set of vari-
ables Z_ . denote Y..0. Thus
Qs “°M9%C Yqj !
o = Z _,X o) VQ(z o) V... VQZ c .
L = (2 X 10) V Q(Zg, ,X,,0) QZy, %, O]
Now, let Z be the set of all variables occurring in LQU. The answer
statement is defined to be (VZ)LQU. In its expanded form the answer

statement is

(Vz)[Q(z o) Ve(z, ,X,. %9 V ...V Q(z o] . (2)

1’ Ql Q2’7Q2 Qk’ Qk

We now prove that the answer statement is a logical consequence of

the axioms inftheir clausal form. Suppose not; then B(U XB) A ~Lb0 is

~ satisfiable; thus, B(UB,XB) A (EZ)~LQG is satisfiable, implying that the

conjunction of its instances LBX A (HZ)~LQG is satisfiable. Now drop

the existential quantifiers (dZ), Letting the elements of Z in ~LQ0

denote a set of constant symbols or Skolem functions of no arguments,

the resulting formula LBX A ~1Qc is also satisfiable.

42

)

Note that LBO is an instance of LBX. To see this, let KB be the
restfictlon of A to variables in LB' Thus, LBX = LBXB. Suppose
0 = lrl/wl, r2/w y eees rp/wp}. Recall that O is formed from A6 by re-
placing in AP each occurrence of each instance--say, u’--of a "question"
Skolem term by an appropriate variable, The "axiom" Skolem functions
are distinct from the question Skolem functions, and occur only in AB‘
Thus no such u; is an instance of an axiom Skolem term. Therefore each
occurrence of each such u; in ABe must arise from an occurrence of ul in

in ©, o =LA = {4

s?me rj in) Thus, LB LB Bw, where the substitution ¢ ,{rl/wl,
r2/w2, cees rp/wp} is formed from © by replacing each such uq in each rj
by an appropriate variable, Since LBK = LBAB’ LBA¢ = LﬁU. Since the only
free Yariables of LBK-A ~LQU occur in L_A, [LBK A ~Lho]¢ = LBkm A ~LQG.

The formuia Lbkw AN ~L 0 logically implies all of its instances, in

Q

particular the instance LBkw A ~LQG. Thus, if LBA A»ﬁLQG is satisfiable,

its instance LBX¢ N~ 0 is satisfiabfe. Since [LBlw'A *LQU] = [LBU N “LQG]
= [LB A~~1Q]c = 1o = F_ for some m, F must be satisfiable. This contra-

. dicts our earlier result that F; is truth-functionally unsatisfiable, and

thus proves that the answer statement is a logical consequence of the

axiom clauses, .

We make'oné further refinement of the answer statement (2), It is

unnecessary to include the jth disjunct if XQJG = XQJ--i'e" if O does

not instantiate X,.. Without loss of generality, we can assume that for

Qj
r < k, the last k - r disjuncts are not instantiated--i.e.,

X.0 =X .

Xar+1° = Xqre1 Xorea® = Xorear o000 XK Qk
Then the stronger answer statement
(Vz)[Q(le,lec) Vlzg, X0 V... Vaz r,erc)] (3)

is logically equivalent to (2). [Since the matrix of (3) is a subdisjunct
of (2), (3) implies (2). If j < r, the jth disjunct of (2) implies the
jth disjunct of (3). If r < j £ k, the jth disjunct of (2) implies all

of its instances, in particular all disjuncts of (3).]

43

The ANSWER predicate provides a simple means of finding the instances
of Q in (3). Before the proof attempt begins, the literal ANSWER(XQ) is

added to each clause in “Q(UQ,XQ). The normal resolution proof procedure
then has the effect of creating new variants of X as needed. The jth

Q

variant, ANSWER(XQJ), thus receives the instantiations of “Q(UQj,XQj).

When a proof is found, the answer clause will be
0) V 8) V Vv 0 .
{ANSWER(XQl) V ANSWER(X,,6) V ... V ANSWER(X,)}

Variables are then substituted for the appropriate Skolem functions to

yield

{ANSWER(XQlc) v ANSWER(XQZO) V...V ANSWER(XQrG)} .

Let X . = \x..,,x,
QJ { J1’7j2

. }. Let 0 restricted to X_. be {t, /X ..,
! Jm J1 gl

t eeey t .

J.z/szs ’ Jm/xjm

QJ

The answer terms printed out by QA3 are

or [xll = tll and x12 = t12 and ... and x1m = tlm]
[le =t, and x,, =t and ... and x, = th]
or
or
[xrl =t_, and X =t and ... and x = trm] . (4)

According to (3), all the free variables in the set Z that appear in the
answer are universally quantified. Thus, any two occurrences of some
free variable in two terms must take on the same value in any interpre-

tation of the answer,.

In the example given above whose answer (1) had the single answer

term f(y), the complete answer statement is

Py, f(y)) .

In Sec. VI-A we present more examples.

44

The answer statement proved can sometimes be simplified. For
example, consider

QUESTION: (dx)P(x)

ANSWER: YES, x

or x =Db

meaning that the answer statement proved is

[(P(a) V P(b)]

Suppose it is possible to prove ~P(b) from other axioms.

Then a simpler
answer is provable--namely,

ANSWER: YES, x = a

On some problems an '"or'" answer is not allowed. One example is in
the program-writing problem., To prevent ''or" answers, the theorem prover

is not allowed to create any clauses having two or more answer literals
that do not unify.

45

IV QA3, A QUESTION-ANSWERING PROGRAM

In this section we describe the principal features of the QA3 pro-
gram, QA3 is a system of programs written in the LISP language on the
SDS 940 computer. The design goal of the system is the embedding of
theorem-proving programs in a usable question-answering system. There
is a "standard" proof strategy available that is designed for quick
answering of easy questions. The strategy is flexible so that the pro-
gram can be fitted to various applications. The user can observe and
modify the proof process in an interactive mode. The system has two
levels of memory, the first being a large data base of information that
the user can easily modify. The second level is an active set of clauses;
during a proof search, clauses are selected from the data base and added

to an active set of clauses that the theorem prover considers.

A, QA3 Control Language

This section describes the control language that can be used in
dialogues with QA3. The user can converse in this language, which is
described below, with the top-level LISP program in the QA3 system. The
principal commands are QUESTION and STATEMENT. described in the previous
section, These commands are abbreviated Q and S, respectively. In the
following discussion, a ''meta-level" word surrounded by the brackets,

(), names a type of entity--e.g., (wff) stands for "any well-formed

formula,"
1. Statements
A statement is entered in one of the following formats:
1) s{wtf)
(2) S{name){wff)

where the letter S signifies that the wff is to be converted to clausecs
and then both wff and clauses are added to the system's data base. In
Case 1 the statement is given an internally generated name of the form
AXlOO. In Case 2 the user supplies the name of the axiom. The clauses

are also named internally, If the axiom named AX17 is converted to three

46

clauses, the clauses arc named AX17-1, AX17-2, and AX17-3. The naming
is optional. If the statement is accepted, the system responds with the

names of the statement and clauses.

A wff is formed as in ordinary first-order predicate calculus
(see Sec. II)., An atomic formula is represented in LISP in prefix form--
e.g., the atomic formula P(f(x),a) is presented to QA3 as (P(F X)A).
Wff's are formed by using quantifiers and connectives as prefixes. The

symbols used by QA3 to represent first-order logic symbols are:

QA3 Logic

Symbol Symbol Meaning Example

FA v "for all" - universal quantifier (FA(X) (P X))
EX i "there exists" - existential quantifier (EX(X) (P X))
IF,IMP D, "implies'" - implication (IF(P A)(Q A))
AND A& "AND" -~ conjunction (AND(P A) (P B))
OR \% "OR" - disjunction (OR(P A) (P B))
NOT ~,—- "not'" - negation (NOT (P A))
IFF,EQV =, "if and only if" - equivalence (IFF(P A) (Q A))

An example of a wff is a predicate calculus statement such as

(IN JOHN BOY)
or

((FA(X Y 2) (IF(AND(IN X Y) (INCLUDE Y Z)) (IN X Z))) .

The first states that John is a boy, or, more precisely, that John is an

element of the set named Boy.

The second is equivalent to the predicate calculus statement:
(Vx) (Vy) (Vz) [xey N y S z D xez] .

2. Questions

A question is entered in a similar fashion:
Q{wft)

47

where Q signifies that the wff that follows is to be treated as a question

to the system.

When a question is received, the negation of the question

is put into conjunctive normal form and passed on to a subexecutive pro-

gram that attempts to answer the question based on the current information

in the data base. (Sec. III shows how various questions may be posed as

wff's,)

3.

(@Y

)

3

Proofs

UNWIND
After a question has been successfully answered, the UNWIND
command will print the proof of the answer given to the

question.

CONTINUE

If the system was unsuccessful in answering a question,

the CONTINUE command will cause the system to continue
searching for proof with the level bound raised. Level
bound is the maximum depth of the search tree, measured

by the number of steps of resolution or factoring required.

The initial value of the level bound is set by the user.

STATUS
STATUS lists the relevant parameters of the system such
as level bound, term depth bound, etc., along with their

current values.

Editing the Data Base

(1)

(2)

(3)

LIST(p{)
The command LIST(p&) will list all of the input statements
in the data base that contain the predicate letter (p&>.

LISTC pL)
The command LIST(pL) will list all of the clauses in the
data base that contain the predicate letter {pi)

FORGET{p?)¢{n)
The command FORGET(p{){n), where {n) is an integer, will

th . .
cause the {n) statement in the list generated by

48

LIST{pY) to be deleted.

(4) FORGETC(p?){n)
The command FORGETC<D&><n>, where (n) is an integer, will
cause the (n)th clause in the list generated by the command
LISTC(pL) to be deleted.

(5) WRITE(file)
The command WRITE<file>, where (file) is the name of a
file (tape, disc, drum, or core), creates a file of that
name. The file contains the commands entered after the

WRITE(file) command. The command STOP terminates the file.

(6) RUN{file)
The command RUN(file) causes each of the commands in the

file named (file> to be executed.

In addition to the editing commands listed here, there are other
QA3 commands, special LISP functions, and LISP system functions for editing.
These facilities allow list-structure editing, QA3 file editing, accessing
statements and clauses by their names, data-base transferring (to be used
to transfer a data base or a subset thereof to the new version on the

occasions when QA3 is revised), etc,

B. Control of the Search Process

The '"standard' strategy described in Sec. IV-C, below, is satisfac-
tory for many question-answering applications, as illustrated in Sec. V.
However, for applications involving difficult problem solving or for
applications requiring a flexible question-answering or theorem-proving

research tool, the system must be extended to allow new search strategies.

In this section we describe the extensions to the system that have
been useful. A few of these facilities here are available within the
QA3 command structure, but most are in the form of special LISP functions

available to the user.

The first five features of the system, listed below, are simple
controls on what is basically the normal strategy of QA3. These are

controlled by simple program switches or high-level commands. The

49

remaining features constitute means of exerting greater degrees of con-

trol, and generally require the user to modify parts of the QA3 program.

These features are as follows:

(1)

2)

3)

(4

(5)

(6)

The user can request a search for just a "yes'" answer, instead
y ’

of both "yes" and "no."

The CONTINUE command allows the program to keep trying, by
increasing its effort if no proof is found within present

limits. This lets QA3 search for a more difficult proof.

The user can request that a proof be printed out when it is
found. Included with the printout of the proof are statistics
on the search: the number of clauses retained out of the
number of clauses generated, the number of clauses subsumed
out of the number attempted, the number of successful resolu-
tions out of the number attempted, the number of successful
factors generated out of the number attempted, and the proof
time, These automatic statistics help the user to quickly
determine the effect of a particular heuristic or modification

of the strategy.

The user can request that the course of the search be exhibited
as it is in progress, by printing out each new clause as it is
generated or selected from memory, along with specified infor-
mation about the clause, such as level, corresponding answer

clause, etc.

The bounds on level and maximum term depth can be set by the

user,

A standard breadth-first strategy is available that first
creates all possible resolvents and factors of Level 1, then 2,
etc., Also, the program can optionally use different effort
bounds such as the sum of the length plus the level of the
candidate clauses, rather than just a level bound on the

candidate clauses.

50

(7N

(8)

Meta-statements about statements can be used to control the
strategy. The statements about clauses are kept on a special
form of a property list of each clause, Properties of a clause
include the support property, level, history (its parent clause
or clauses), its answer clause (if it has one), and its name.
The property list also includes bookkeeping information from
which the strategy program computes how to avoid equivalent
proofs in selecting the next candidates for resolution and
factoring. The user can add, fetch, and delete his own prop-
erties from clauses (such as some particular method of measuring
the value of a clause), and then utilize such information to
guide the proof, Axiom clauses in memory can have "permanent"
properties stored with them. Clauses generated during a proof
can have computed properties, based on, say, some evaluation
function, parent clauses, etc. After each attempted resolution
or factoring, the strategy programs consider a new candidate
clause or pair of candidate clauses. The new candidates are
selected by the "standard' strategy described in the next sec-~
tion. However, the user can create new acceptance tests for
clauses based on the property lists of the clauses, as well as
the clauses themselves, The strategy can then be put into a
search mode where it examines all clauses until suitable candi-

dates are found, based on the user's new acceptance tests.

The predicate evaluation mechanism has the ability to use LISP

to evaluate atomic formulas or terms within atomic formulas.

For example, when i and j are numbers, the predicate i < j can
be evaluated by executing the LISP function LESSP with arguments
i and j. This mechanism has an effect equivalent to generating,
whenever needed, such axioms as ~LESSP(3,2) or LESSP(2,3). This
mechanism also allows one form of tranéfer of control out of

the theorem prover to peripheral devices or systems. This
feature has been useful for handling arithmetic calculationms,
finite-set operations, a limited kind of equality, symbolic

vector calculations, and special data representations,

al

(9) A limited form of equality is available during the unification
process. This allows two terms to unify that would not unify
under the standard unification algorithm. As an example, the
commutative function (PLUS A B) can be allowed to unify with
(PLUS B A). This feature provides a fast, built-in extension
of the matching capabilities of the theorem prover. The user

can provide his own special matching functions in LISP,.

(10) A built-in polynomial clause evaluation facility allows the
user to simply specify a new evaluation function to use on
clauses in order to select the next candidates for resolution
or factorization. This allows the user to experiment with
simple search heuristics or a particularly suitable strategy
to guide search for some class of problems, such as the hill-

climbing strategy described in Sec. VII-D,

(11) The user can guide fhe search completely or partially by hand.
At each step the user indicates the name of the next two can-
didates for resolution or factorization. Each newly created
clause is assigned a name or number as it is created. The
automatic and manual modes can be mixed; as the user is watching
the progress of a proof, he may interrupt it for a while to

guide it by hand,
C. Strategy

The standard theorem-proving strategy used in QA3 is similar to the

unit-preference strategy, using an extended set of support and subsumption.

The principal modification for the purpose of the question-answering
system is to have two sets of clauses during an attempted proof. The
first set, called "Memory," contains all the statements (axioms) given
the system. The second set, called 'Clauselist,” is the active set of
clauses containing only the axioms being used in the current proof attempt
and the new clauses being generated. Clauselist is intended to contain
only the clauses most relevant to the question. (Neither Clauselist nor

Memory are really lists, but rather indexed sets.)

52

.

There is a high cost, in computer time and space, for each clause
actively associated with the theorem prover. The cost is due to the
search time spent when the clause is considered as a candidate for reso-
lution, factoring, or subsumption, and the extra space necessary for
bookkeeping on the clause. Since most clauses in Memory are irrelevant
to the current proof, it is undesirable to have them in Clauselist,
unnecessarily consuming this time and space. So the basic strategy is
to work only on the clauses in Clauselist, periodically transferring new,
possibly relevant clauses from Memory into Clauselist. If a clause that
cannot lead to a proof is brought into Clauselist, this clause can generate
many unusable clauses. To help avoid this problem the strategy is reluc-

tant to enter a non-unit clause into Clauselist.

Since the proof strategy of the program is modified frequently, the

following is merely an approximate overview of its operation,

(1) First, let Clauselist be the set qf clauses representing the
negation of the question to be proved., All clauses representing
this negated sentence are given T-support, (Note that a theorem
of the predicate calculus--e.g., (Vx)[P(x) V ~P(x)]--may be

provable without reference to facts in memory.)

(2) If no proof is found, the theorem prover then addresses Memory
for a limited number of additional clauses that will resolve
with clauses in Clauselist having T-support. (Suitable memory
organization and use of the subsumption test can be used to

increase the efficiency of the search.)
(3) If no proof is found with the new clauses, return to Step 2.

A modified unit-preference strategy is followed on Clauselist, using a
bound on level, As this strategy is being carried out, clauses from

Memory that resolve with clauses in Clauselist (a rough measure of rele-

vance) are added to Clauselist. This strategy is carried out on Clause-

list until no more resolutions are possible for a given level bound.

Finally, the bound is reached. Clauselist, with all of its book-
keeping, is temporarily saved. If the theorem prover was attempting a

" "

yes'" answer, it now attempts a ''no" answer., If attempting a '"no"

53

answer, it also saves the "no" Clauselist, and returns a NO PROOF FOUND

answer.

The user may then continue the search by typing CONTINUE. If

the bound is not reached in either the yes or no case, the INSUFFICIENT

INFORMATION answer is returned. The strategy has the following additional

features:

1)

(2)

3)

(4)

(5)

(6)

After a newly created unit fails to resolve with any units in
Clauselist, it is checked against the units in Memory for a

contradiction. This helps to quickly find short proofs.

Frequently in question-answering applications a proof consists
of a chain of applications of 'two-clauses'--clauses of length
two. Semantically this usually means that set membership of
some element is being found by chaining through successive
supersets or subsets. To speed up this process, a special fast
section is included that resolves units in Clauselist with two-
clauses in Memory. Our experience so far is that this heuristic

is worthwhile,

Each new clause generated is checked to see if it is subsumed
by a shorter clause in Clauselist. All longer clauses in
Clauselist are checked to see if they are subsumed by the new

clause. The longer subsumed clauses are deleted.

Hart's theorem (1965) shows how binary resolution can generate
redundant equivalent proofs. Equivalent proofs are avoided in
the unit section by a bookkeeping device that prevents redundant
resolutions. Wos terms this property "Singly-connected.” We

do not have a similar algorithm for the non-unit section.

An extended set of support is used that allows pairs of clauses
in Clauselist but not in the set of support to resolve with one

another up to a level of 2.

The sets, Memory and Clauselist, are indexed to facilitate
search. The clauses in Memory are indexed by predicate letters
and, under each predicate letter, by length. The clauses in

Clauselist are indexed by length.

54

In scarching Memory for relevant clauses to add to Clauselist, clauses
alrecady in Clauselist arc not considercd., The clauses of cach length in
Clauselist are kept on a sub-list, with new clauses being added at the end
of the list. Pointers, or place-keepers, are kept for these lists, and
are used to prevent reconsidering resolving two clauses and also to pre-

vent generating equivalent proofs in the unit section.

The strategy is ''complete" in the sense that it will eventually find

any proof that exists within the degree and space bound.

D. Special Uses of the Theorem Prover

The "theorem prover'" refers to a collection of LISP functions used
during the theorem-proving process--e.g., RESOLVE, FACTOR, PROVE, PRENEX,
CHECKSUBSUMPTION, etc.

The management of the data in the data base, Memory, is aided by the
theorem prover., The S command normally causes new clauses to be stored
in Memory. However, a statement is stored in Memory only if it is neither
a tautology nor a contradiction. A new clause is not stored in Memory if
there already exists in Memory another clause of equal length or shorter
length that subsumes the new clause. Two other acceptance tests are
possible although they are not now implemented. A statement given the
system can be checked for consistency with the current data base by
attempting to prove the negation of the statement, If the statement is
proved inconsistent, it would not be stored. As another possible test,
the theorem prover could attempt to prove a new statement in only one or
two steps. If thé proof is sufficiently easy, the new statement could

be considered redundant and could be rejected.

The theorem prover can also be used to simplify the answer, as

described in Sec. III-D,

55

V QUESTION-ANSWERING EXAMPLES

This section presents listings of two dialogues with QA2 (a prede-
cessor of QA3) and one dialogue with QA3. The first dialogue is with
QA2 and includes a few question answered by Raphael's SIR plus a few
more questions that are more difficult. The input and output format is

that used when working with the system.

A, First Dialogue

S (IN JOHN BOY)
OK

The statement (indicated by "S") that John is contained in the set

of boys is accepted and the response is "OK."

Q (IN JOHN BOY)
YES

The question (indicated by "Q") "Is John in the set of boys?" is
answered 'Yes." This is an example of a simple yes or "no proof found"

answer,
Q (EX(X) (IN JOHN X)
YES WHEN X = BOY

The question asked is '"Does there exist an x such that John is in
the set x?" Note that the program reports what assignment is made to x

to complete its proof,

S (FA(X) (IF(IN X BOY) (IN X PERSON)))
OK

This says that every boy is a person, or (Vx)[xeBOY O xePERSON]

Q@ EX(X) (IN X PERSON))
YES WHEN X = JOHN

The question asked is '"Does there exist a member of the set of
humans?" The theorem prover must have used two statements: John is a

boy, and every boy is a person.

56

™

UNWIND

SUMMARY

1 IN(JOHN,BOY) AXIOM

2 -IN(X,PERSON) NEG OF THM
3 -IN(X,BOY) IN(X,PERSON) AXIOM

4 -IN(X,BOY) FROM 2,3

(CONTRADICTION FROM CLAUSES 1 AND 4)
(5 CLAUSES GENERATED)

The command UNWIND caused the proof to be printed out. Each numbered

line corresponds to one clause., A clause may come from three sources:

AXIOM ~ retrieved from memory
NEG OF THM - the negation of the question
FROM N,M -~ the result of resolving together

clauses N and M,

The number of clauses generated represents the size of the proof
tree upon generating the empty clause; this is a measure of the amount

of effort involved in completing the proof.

S (FA (X) (IF (IN X PERSON) (IN X HUMAN)))
OK
It unquestioningly believes that all persons are human,
Q (EX (X) (IN X HUMAN))
YES WHEN X = JOHN

S (FA (X) (IF (IN X HUMAN) (HP X ARM 2)))
OK

Q (HP JOHN ARM 2)
YES
(HP JOHN ARM 2) means that John Has-as-Parts two elements of the

set of all arms.

S (FA (Y) (IF (IN Y ARM) (HP Y HAND 1)))
OK

Q (EX (X) (HP JOHN HAND X))
NO PﬁOOF FOUND

57

The crucial axiom, given next, was missing

S (FA (X YZ M N) (IF (AND (HP X Y M)
(FA (U) (IF (INU Y) (HP U Z N)))) (HP X z (TIMES M N))))
OK
Q (EX (N) (HP JOHN HAND N))
YES WHEN N = TIMES (2,1)
TIMES (2,1) represents the product of 2 and 1 (=2).

UNWIND
SUMMARY
1 IN(JOHN,BOY) AXIOM
2 -HP(JOHN,HAND,N) NEG OF THM
3 IN(SK8(N,M,Z,Y,X) ,Y) -HP(X,Y,M)
HP(X,Z,TIMES(M,N)) AXIOM
4 -HP(JOHN,Y,M) IN(SK8(N,M,HAND,Y,JOHN),Y) FROM 2,3
5 -IN(Y,ARM) HP(Y,HAND,1) AXIOM
6 -HP(JOHN,ARM,M) HP(SK8(N,M,HAND,ARM,JOHN) HAND,1) FROM 4,5
7 -HP(SK8(N,M,Z,Y,X),Z,N) -HP(X,Y,M)
HP(X,Z,TIMES (M,N)) AXIOM
8 -HP(JOHN,Y,M) ~HP(SK8(N,M,HAND,Y,JOHN) ,HAND,N) FROM 2,7
9 -HP(JOHN,ARM,M) FROM 6,8
10 -IN(X,HUMAN) HP(X,ARM,2) AXIOM
11 -IN(JOHN,HUMAN) FROM 9,10
12 -IN(X,PERSON) IN(X,HUMAN) AXIOM
13 -IN(JOHN,PERSON) FROM 11,12
14 -IN(X,BOY) IN(X,PERSON) AXIOM
15 =-IN(JOHN,BOY) FROM 13,14

(CONTRADICTION FROM CLAUSES 1 AND 15)
(27 CLAUSES GENERATED)

This required an 8-step proof. SK8 is the name generated by the
program for a Skolem function used to eliminate an existential quan-

tifier.

S (OR (AT JOHN HOME) (AT JOHN SRI) (AT JOHN AIRPORT))
OK
Q (EX (X) (AT JOHN X))

YES WHEN X = SRI
OR WHEN X = AIRPORT
OR WHEN X = HOME

58

TN

Note that the output may be a logical "OR" of several possibilities.

The precise form of allowed outputs is described in Sec, III-D.

S (FA (X) (EQUALS X X))

OK

S (FA (X Y) (IF (EQUALS X Y) (EQUALS Y X)))
OK) .

S (FA (X Y Z) (IF (AND (EQUALS X Y) (EQUALS Y Z)) (EQUALS X Z)))
OK

S (FA (X Y Z) (IF (AND (AT X Y) (AT X Z)) (EQUALS Y 2)))
OK

S (NOT (EQUALS SRI AIRPORT))
OK

S (NOT (EQUALS AIRPORT HOME))
OK

Q (EX (X) (IF (NOT (AT JOHN AIRPORT)) (AT JOHN X))
YES WHEN X = HOME

OR WHEN X = SRI

S (IF (AT JOHN AIRPORT) (WITH JOHN BILL))
OK

S (FA (XY Z) (IF (AND (AT X Y) (WITH Z X)) (AT Z))
OK

Q (EX (X) (IF (AT JOHN AIRPORT) (AT BILL X)))
NO PROOF FOUND

S (FA (X Y) (IF (WITH X Y) (WITH Y X)))
OK

Q (EX (X) (IF (AT JOHN AIRPORT) (AT BILL)N
YES WHEN X = AIRPORT

Q@ (EX (X) (IF (NOT (WITH BILL JOHN)) (AT JOHN X)))
YES WHEN X = SRI

OR WHEN X = AIRPORT
OR WHEN X = HOME

S (AT JOHN SRI)
OK

Q (NOT (AT JOHN AIRPORT))
YES

S (FA (X Y) (IFF (DISJOINT X Y) (FA (U)
(IF (IN U X) (NOT (IN U Y))))))
OK

59

Q (FA (XY) (IF (DISJOINT X Y) (DISJOINT Y X)))
YES
S (DISJOINT BOY GIRL)
‘OK
S (IN JOHN BOY)
OK
Q (NOT (IN JOHN GIRL))
YES
S (IN JUDY GIRL)
OK
S (FA (XY 2) (IF (AND (IN X Y) (INCLUDE Y Z)) (IN X 2)))
OK
S (INCLUDE BOY PERSON)
OK
Q (EX (X) (IN X PERSON))
YES WHEN X = JOHN
S (INCLUDE GIRL PERSON)
OK
Q (EX (X) (AND (NOT (IN X BOY)) (IN X PERSON)))
YES WHEN X = JUDY
UNWIND
SUMMARY
1 DISJOINT(BOY,GIRL) AXIOM
2 INCLUDE (GIRL,PERSON) AXIOM
3 IN(JUDY,GIRL) AXIOM
4 IN(X,BOY) -IN(X,PERSON) NEG OF THM
5 ~INCLUDE(Y,Z) -IN(X,Y)
IN(X,Z) AXIOM
6 IN(X,BOY) -IN(X,Y)
-INCLUDE (Y, PERSON) FROM 4,5
7 -INCLUDE(GIRL,PERSON) IN(JUDY,BOY) FROM 3,6
8 IN(JUDY,BOY) FROM 2,7
9 =DISJOINT(X,Y) -IN(U,X)
-IN(U,Y) AXIOM
10 -IN(JUDY,Y) ~DISJOINT(BOY,Y) FROM 8,9
11 ~IN(JUDY,GIRL) FROM 1,10

(CONTRADICTION FROM CLAUSES 11 AND 3)
(92 CLAUSES GENERATED)

60

B. Examples 'rom SIR

This dialogue with QAZ is drawn entirely from questions answered by
SIR. 1t is not edited, and illustrates how the user corrects errors,

lists axioms, and changes axioms by using the control language.

S (FA (X) (IF (IN X KEYPUNCH-OPERATOR) (IN X GIRL)))
OK

LIST IN
LISTING OF PREDICATE IN

1 (FA (X) (IF (IN X KEYPUNCH-OPERATOR) (IN X GIRL)))

S (FA (Y) (IF (IN Y GIRL) (IN Y PERSON)))
OK

Q (IN KEYPUNCH-OPERATOR PERSON)
NO PROOF FOUND

Q (FA (X) (IF (IN X KEYPUNCH-OPERATOR) (IN X PERSON)))
YES

Q (FA (X) (IF (IN X PERSON) (IN X PERSON)))
YES

Q (FA (X) (IF (IN X PERSON) (IN X GIRL)))
NO PROOF FOUND

Q (FA (X) (IF (IN X MONKEY) (IN X KEYPUNCH-OPERATOR)))
NO PROOF FOUND

S (IN MAX COMPUTER)
OK

LIST IN

LISTING OF PREDICATE IN

1 (IN MAX COMPUTER)

2 (FA (Y) (IF (IN Y GIRL) (IN Y PERSON)))

3 (FA (X) (IF (IN X KEYPUNCH-OPERATOR) (IN X GIRL)))
FORGET IN 1

DONE
S (IN MAX IBM-7094)
OK
S (FA (X) (IF (IN X IBM-7094) (IN X COMPUTER)))
OK
Q (IN MAX COMPUTER)
YES
UNWIND
SUMMARY
1 IN(MAX, IBM-7094) AXIOM
2 -IN(MAX,COMPUTER) NEG OF THM
3 -IN(X,IBM-7094) IN(X,COMPUTER) AXIOM
4 -IN(MAX, IBM-7094) FROM 2,3

61

(CONTRADICTION FROM CLAUSES 1 AND 4)

(5 CLAUSES GENERATED)

S (IN BOY STANFORD-STUDENT)

OK

S (FA (Z) (IF (IN Z STANFORD-STUDENT) (IN Z BRIGHT-PERSON)))
OK

LIST IN

LISTING OF PREDICATE IN
1 (FA (Z) (IF (IN Z STANFORD-STUDENT) (IN Z BRIGHT-PERSON)))
2 (IN BOY STANFORD-STUDENT)
3 (FA (X) (IF (IN X IBM-7094) IN X COMPUTER)))
4 (IN MAX IBM-7094)
5 (FA (Y) (IF (IN Y GIRL). (IN Y PERSON)))
6 (FA (X) (IF (IN X KEYPUNCH-OPERATOR) (IN X GIRL)))
FO

RGET IN 1

DONE

FORGET IN 1

DONE
LIST IN

LISTING OF PREDICATE IN

1 (FA (X)) (IF (IN X IBM-7094) (IN X COMPUTER)))

2 (IN MAX IBM-7094)

3 (FA (Y) (IF (IN Y GIRL) (IN Y PERSON)))

4 (FA (X) (IF (IN X KEYPUNCH-OPERATOR) (IN X GIRL)))

S (FA (X Y) (EQV (IS X Y) (IS Y X)))
OK

S (FA (Y Z W) (IF (AND (IS Y Z) (IS Z W)) (IS Y W)))
OK :

S (IN JOHN TEACHER)
OK

S (IS JOHN JACK)
OK

Q (IN JACK TEACHER)
NO PROOF FOUND

CONTINUE
NO PROOF FOUND

UNWIND
(NO PROOF)

\

62

S (FA (XY Z) (IF (AND (IN XY) (IS Z X) (IN Z Y)))

OK
Q@ (IN JACK TEACHER)

YES
UNWIND
SUMMARY
1 IS (JOHN,JACK) AXIOM
2 IN(JOHN,TEACHER) AXIOM
3 -IN(JACK, TEACHER) NEG OF THM
4 -1S(Z,X) -IN(X,Y)

IN(Z,Y) AXIOM

5 -IN(X,TEACHER) -IS(JACK,X) FROM 3,4
6 ~IS(JACK, JOHN) FROM 2,5
7 IS(X,Y) -IS(Y,X) AXIOM
8 -IS(JOHN,JACK) FROM 6,7

(CONTRADICTION FROM CLAUSES 1 AND 8)
(12 CLAUSES GENERATED)

S (FA (S) (IF (IN S FIREMEN) (OWNS S PAIR-OF-RED-SUSPENDERS)))
OK

Q (OWNS PAIR-OF-RED-SUSPENDERS PAIR-OF-RED-SUSPENDERS)
NO PROOF FOUND

S (FA (X) (IF (IN X FIRECHIEF) (IN X FIREMEN)))
OK

Q (FA (X) (IF (IN X FIRECHIEF)(OWNS X PAID-OF-RED-SUSPENDERS)))
YES

Q (EX (X) (IF (IN X FIRECHIEF)(OWNS X PAIR-OF-RED-SUSPENDERS)))
YES WHEN X = S

S (OWNS ALFRED LOG-LOG-DECITRIG)
OK '

S (IN LOG-LOG-DECITRIG SLIDE-RULE)
OK

Q (EX (X) (AND (IN X SLIDE-RULE) (OWNS ALFRED X)))
YES WHEN X = LOG-LOG-DECITRIG

S (IN VERNON TECH-MAN)
OK

S (FA (X) (IF (IN X TECH-MAN) (IN X ENGINEERING-SUTDENT)))
OK

S (FA (X) (IF (IN X ENGINEERING-STUDENT) (EX (Y) (AND (IN Y SLIDE RULE)
OWNS X Y)))))
OK

s (FA (X) (IN (IN X TECH-MAN) (IN X ENGINEERING-STUDENT)))
OK

Q (EX (X)(AND (IN X SLIDE-RULE) (OWNS VERNON X)))
YES WHEN X = SK7(VERNON)
63

C. A Simple Chemistry Example

This section presents the results of testing the question-answering
program QA3 on the problem éet used by W, S, Cooper.39 The subject was
simple chemistry. For his question-answering system Cooper used a res-
tricted English language input. The statements and questions were
translated by hand into first-order logic before being given to QA3.
Coles' English-to-logic program sometimes translates these sentences

into different but still logically equivalent logic statements,

QA3 was able to answer all 23 of the answerable questions, Cooper's
program answered 19 of them, failing on Questions 19, 20, 22, and 23.
Slagle's Deducom™® was able to answer 7 of the answerable questions—--

namely, Questions 1, 2, 3, 5, 6, 11, and 23,

It took about two hours to translate all the facts and gquestions
into logic, It took about two hours to type all statements and questions

into the computer and receive answers.

There were 38 facts, translating into 38 clauses, the longest clause
having 3 literals, There were 17 different constants, 16 different
predicate letters, and no functions. There were 24 questions, the
longest translating into 2 clauses. The longest clause in a question

had 2 literals, The proofs were not difficult.

One detail should be mentioned. Cooper interprets the sentence

"All P's are Q's" to mean
(Tx)P(x) A (¥x) [P(y) 2 a(y)]

to avoid the possibility that (dx)P(x) is false, This explains the

translations rendered for Questions 11 and 17.

The following abbreviations are used in the facts and questions:

Abbreviations of Chemical Names

MA Magnesium

MAO Magnesium Oxide
0 Oxygen

FES Ferrous Sulfide
FE Iron

S Sul fur

64

Abbreviations of Chemical Names Cont'd

N Nitrogen

H Hydrogen

C Carbon

Cu Copper

H2S04 Sulfuric Acid
NACL Sodium Chloride

1. Facts

The facts given QA3 are listed below. The first line of each

fact is the English language representation. The second line, prefaced

by
it

1.

"s," is the first-order logic translation. QA3 responds with OK if

accepts the statement. (All were accepted.)

Magnesium is a metal,
S (METAL MA)
OK

Magnesium burns rapidly.
S (BURNSRAPIDLY MA)
OK

Magnesium oxide is a white metallic oxide,
S (AND(WHITE MAO) (METALLIC MAO) (OXIDE MAO)
OK

Oxygen is a nonmetal,
S (NONMETAL O)
OK

Ferrous sulfide is a dark-gray compound that is brittle,.
S (AND(DARKGRAY FES) (COMPOUND FES)(BRITTLE FES))
OK

Iron is a metal.
S (METAL FE) .
OK

Sulfyr is a nonmetal,
S (NONMETAL S)
OK

Gasoline is a fuel.

S (FUEL GASOLINE)
OK

65

10,

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

Gasoline is combustible,
S (COMBUSTIBLE GASOLINE)
OK

Combustible things burn,
S (FA(X) (IMP(COMBUSTIBLE X)(BURNS X)))
OK

Fuels are combustible,
S (FA(X) (IMP(FUEL X) (COMBUSTIBLE X)))
OK

Ice is a solid.
S (SOLID ICE)
OK

Steam is a gas.
S (GAS STEAM)
OK

Magnesium is an elcement.
S (ELEMENT MA)
OK

Iron is an element.
S (ELEMENT FE)
OK

Sulfur is an element.
S (ELEMENT S)
OK

Oxygen is an element,
S (ELEMENT O)
OK

Nitrogen is an element.
S (ELEMENT N)
0K

Hydrogen is an element.
S (ELEMENT H)
OK

Carbon is an element,
S (ELEMENT C)
OK

Copper is an element,.
S (ELEMENT CU)
OK

66

However, Statements 14 through 21 can be written as:

S (AND(ELEMENT MA) (ELEMENT FE) (ELEMENT S)(ELEMENT O)
(ELEMENT N) (ELEMENT H) (ELEMENT C) (ELEMENT CU))
OK

22, Salt is a compound.
S (COMPOUND SALT)
OK

23, Sugar is a compound.
S (COMPOUND SUGAR)
OK

24, Water is a compound,
S (COMPOUND WATER)
OK

25. Sulfuric acid is a compound.
A (COMPOUND H2S04)
OK

Similarly, Statements 21 through 25 can be written as:

S (AND(ELEMENT CU) (COMPOUND SALT) (COMPOUND SUGAR)
(COMPOUND WATER) (COMPOUND H2S04))
OK

26. Elements are not compounds.
S (FA(X) (IMP(ELEMENT X) (NOT(COMPOUND X))))
OK

27, Salt is sodium chloride.
S (IS SALT NACL)
OK

28. Sodium chloride is salt.
S (IS NACL SALT)
OK

29, Oxides are compounds,
S (FA(X) (IMP(OXIDE X) (COMPOUND X)))
OK

30. Metals are metallic.

S (FA(X) (IMP(METAL X) (METALLIC X)))
OK

67

31. No metal is a nonmetal.
S (FA(X) (IMP(METAL X) (NOT(NONMETAL X))))
OK

32, Dark-gray things are not white.
S (FA(X) (IMP(DARKGRAY X) (NOT(WHITE X))))
OK

33. A solid is not a gas.,
S (FA(X) (IMP(SOLID X) (NOT(GAS X))))
OK

34. Any thing that burns rapidly burns.
S (FA(X) (IMP(BURNSRAPIDLY X) (BURNS X)))
OK

In addition to Cooper's axioms, QA3 required the following axioms:
35, Ferrous sulfide is a sulfide.

S (SULFIDE FES)

OK

The following three facts were stated directly in logic rather than in
English.

36. Equality is reflexive. (The predicate "IS" is used for
S (FA(X)(IS X X)) equality, following Cooper's
OK phrasing.)

37. Equality is symmetric.
S (FA(X Y)(IMP(IS X Y)(IS Y X)))

OK
38. Equals can be substituted for equals. (Only one instance of this
S (FA(X Y)(IMP(AND(IS X Y) axiom schema was needed,)
(COMPOUND X)) (COMPOUND Y)))
OK

2, Questions and Answers

The questions and answers, along with a few proofs are listed
below, The first line of question is the Enélish language question,
The second line, beginning with "Q", is the first-order logic question
actually typed into QA3. The answer is prefaced by an "A". Notice
that‘Cooper's questions are statements requiring yes or no answers.

QA3 sometimes gives additional information.

68

Magnesium is a metal?
Q (METAL MA)
A YES

Magnesium is not a metal?
Q (NOT(METAL MA))
A NO

Magnesium is a nonmetal?
Q (NONMETAL MA)
A NO

Magnesium is not a nonmetal?
Q (NOT(NONMETAL MA))
A YES

Magnesium is a metal that burns rapidly?
Q (AND(METAL MA) (BURNSRAPIDLY MA))
A YES

Magnesium is magnesium?
Q (IS MA MA)
A YES

Some oxides are white?
Q (EX(X) (AND(WHITE X)(OXIDE X)))
A YES X = MAO

No oxide is white?
Q (NOT(EX(X)(AND(OXIDE X)(WHITE X))))
A NO

The proof is exhibited by typing the command UNWIND,

UNWIND
SUMMARY
1 OXIDE(MAO) AXIOM
2 -OXIDE(X) ~-WHITE(X) NEG OF THM
3. -WHITE(MAO) FROM 1,2
4 WHITE (MAO) AXIOM
5 CONTRADICTION FROM 3,4
3 CLAUSES LEFT

2 CLAUSES GENERATED
3 CLAUSES ENTERED

. 2 RESOLUTIONS OUT OF 5 TRIES

SUBSUMED § TIMES OUT OF 2 TRIES
FACTORED ¢ TIMES OUT OF 2 TRIES

69

9. Oxides are not white?
Q (FA(X)(IMP(OXIDE X)(NOT(WHITE X))))
A NO

10, Magnesium oxide is an oxide?
Q (OXIDE MAO)
A YES

11. Every oxide is an oxide?
Q (AND(EX(X) (OXIDE X))(FA(Y)(IMP(OXIDE Y)(OXIDE Y))))
A YES, X = MAO

12, Ferrous sulfide is dark gray?
Q (DARKGRAY FES)
A YES

13, Ferrous sulfide is a brittle compound?
Q (AND(COMPOUND FES)(BRITTLE FES))
A YES

14, Ferrous sulfide is not brittle?
Q (NOT(BRITTLE FES))
A NO

15. Some sulfides are brittle?
Q (EX(X)(AND(SULFIDE X)(BRITTLE X)))
A YES, X = FES

16. Ferrous sulfide is not a compound that is not dark gray?
Q (NOT(AND(COMPOUND FES) (NOT(DARKGRAY FES))))
A YES

17, Anything that is not a compound is not ferrous sulfide?
Q (AND(EX(X) (NOT(COMPOUND X))) (FA(Y) (IMP(NOT(COMPOUND Y))
(NOT(IS Y FES)))))
A YES, X = MA

The proof is given below. Note that line 3, ~ COMPOUND(MA) is the
resolvent of the two axioms (meither is in the set of support) in Line 1
and Line 2, This resolvent in Line 3 is then used twice, being resol-

ved against Lines 4 and 7. This example illustrates how the extended

set of support strategy in QA3 produces a useful lemma.

Also, the proof illustrates the use of equality axioms (Lines 9

and ‘11), rather than an automatic treatment of equality.

70

UNWIND

SUMMARY

1 ELEMENT(MA)

2 -COMPOUND(X) -ELEMENT(X)

3 -COMPOUND(MA)

4 COMPOUND(X) -COMPOUND(SK5)

5 -COMPOUND(SK42)

6 COMPOUND(FES)

7 COMPOUND(X) IS(SK42)FES)

8 IS(SK42,FES)

9 IS(Y,X) -IS(X,Y)

10 IS(FES,SK42)

11 COMPOUND(Y) -IS(X,Y)
~COMPOUND (X)

12 COMPOUND(SK42) -COMPOUND(FES)

13 COMPOUND(SK42)

14 CONTRADICTION

48 CLAUSES LEFT.

40 CLAUSES GENERATED

50 CLAUSES ENTERED

40 RESOLUTIONS OUT OF 292 TRIES
SUBSUMED 12 TIMES OUT OF 579 TRIES
FACTORED 0 TIMES OUT OF 7 TRIES

AXIOM
AXIOM

FROM 1,2
NEG OF THM
FROM 3,4
AXIOM

NEG OF THM
FROM 3,7
AXIOM

FROM 8,9

AXIOM
FROM 10,11
FROM 6,12
FROM 5,13

18, No dark gray thing is a sulfide?
Q (NOT(EX(X)(AND(DARKGRAY X) (SULFIDE X))))
A NO, X = FES
19, Ferrous sulfide is white?
Q (WIHITE FES)
A NO
20. Sodium chloride is a compound?
Q (COMPOUND NACL)
A YES
UNWIND
SUMMARY
1 IS(SALT,NACL) AXIOM
2 -COMPOUND (NACL) NEG OF THM
3 ~-COMPOUND(X) -IS(X,Y) COMPOUND(Y) AXIOM
4 -IS(X,NACL) -COMPOUND(X) FROM 2,3
5 =COMPOUND (SALT) FROM 1,4
6 COMPOUND(SALT) AXIOM
7 CONTRADICTION FROM 5,6

71

10 CLAUSES LEFT

4 CLAUSES GENERATED

10 CLAUSES ENTERED

4 RESOLUTIONS OUT OF 25 TRIES
SUBSUMED O TIMES OUT OF 35 TRIES
FACTORED O TIMES OUT OF 1 TRIES

21, Salt is an element?
Q (ELEMENT SALT)
A NO

22, Sodium chloride is an element?
Q (ELEMENT NACL)
A NO

23, Gasoline is a fuel that burns?

Q (AND(FUEL GASOLINE) (BURNS GASOLINE))

A YES
The following question is Cooper's example of an unanswerable question.
24, Some oxides are not white?

Q(EX(X) (AND(OXIDE X) (NOT(WHITE X))))
A NO PROOF FOUND

72

VI PROBLEM SOLVING

This section shows how our extended proof procedure can solve prob-
lems involving state transformations. We explore in particular the
question of alternative predicate calculus representations for state-
transformation problems. The "Monkey and Bananas' puzzle and the '"Tower

of Hanoi" puzzle are presented along with their solutions obtained by QA3.

Exactly how Qne'can use logic and theorem proving for problem solv-
ing requires careful thought on the part of the user. Judging from my
experience, and that of others using QA2 and QA3, one of the first dif-
ficulties encountered is the representation of problems, especially
state~transformation problems, by statements in formal logic. Interest
has been shown in seeing several detailed examples that illustrate
alternate methods of axiomatizing such problems--i.e., techniques for
"programming"” in first-order logic. This section provides detailed
examples of various methods of representation. After presenting methods
in Secs. A and B, we provide a solution to the classic ''Monkey and
Bananas' problem in Sec. C. Next, Sec. D considers the "Tower of Hanoi"
puzzle. Two related applications, robot problem solving and automatic

programming, are discussed later in Sec., VII,

A, An Introduction to State-Transformation Methods

The concepts of states and state transformations have of course
been in existence for a long time, and the usefulness of these concepts
for problem solving is well known. The purpose of this section is not
to discuss states and state transformations as such, but instead to show
how these concepts can be Eégg‘by an automatic resolution theorem prover.
In practice, the employment of these methods has greatly extended the
problem-solving éapacity of QA2 and QA3, McCarthy and Hayes4° present
a relevant discussion of philosophical problems involved in attempting

such formalizations,

First we will present a simple example, We begin by considering

how a particular universe of discourse might be described in logic.

73

Facts describing the universe of discourse are expressed in the form
of statements of mathematical logic. Questions or problems are stated as
conjectures to be proved. If a theorem is proved, then the nature of our
extended theorem prover is such that the proof is "constructive'--i.e.,
if the theorem asserts the existence of an object then the proof finds or

constructs such an object.

At any given moment the universe under consideration may be said to

be in a given state.

We will represent a particular state by a subscripted s--e.g., 517.
The letter s, with no subscript, will be a variable, ranging over states.
A state is described by means of predicates, For example, if the predi-

cate AT(objectl,b,sl) is true, then in state s_. the object object K is at

1 1

position b. Let this predicate be Axiom Al:
Al. o AT(objectl,b,sl) .

The question 'Where is object1 in statel?" can be expressed in logic as

the theorem ({x)AT(object x,sl). The answer found by using system QA3

l’
to prove this theorem is 'yes, x = b."

Changes in states are brought about by performing actions and se-
quences of actions. .An action can be represented by an action function
that maps states into new states (achieved by executing the action). An

axiom describing the effect of an action is typically of the form

(Vs)[P(s) D Q(£(s))]

where

s 1s a state variable

P is a predicate describing a state

f is an action function (corresponding to some action)
that ﬁaps a state into a new state (achieved by executing
the action)

Q is a predicate describing the new state.

74

(Entities such as P and f are termed "situational fluents" by McCarthy.*°)

As an example, consider an axiom describing the fact that object1

can be pushed from point b to point c¢. The axiom is

A2, (Vs)[AT(objectl,b,s) :)AT(objectl,c,push(obJect b,c,s))] .

1!

The function push(object_,b,c,s) corresponds to the action of pushing

1 ’

object1 from b to c. (Assume, for example, that a robot is the executor

of these actions.)

Now consider the question, '"Does there exist a sequence of actions
such that objectl‘is at point c?" Equivalently, one may ask, ''Does there
exist a state, pdssibly resulting from applying action functions to an
initial state Sl’ such that object1
logic, is (Hs)AT(objectl,c,s), and the answer, provided by the theorem-

is at point c?" This question, in

proving program applied to Axioms Al and A2, is 'yes, s = push(objectl,

b,c,sl)."

Suppose a third axiom indicates that object1 can be pushed from c

to d:

A3. (Vs)fAT(objectl,c,s) S AT(object d,push(bbjectl,c,d,s))] .

1’

17 obgect1 can

be pushed from b to ¢, and then from c to d. ‘This sequence of actions

Together, these three axioms imply that starting in state s

(a program for our robot) can be expressed by the composition of the two

push functions, push(object_ ,c,d,push(object b,c,sl)). The normal order

1’ 1’
of function evaluation, from the innermost function to the outermost,

gives the correct sequence in which to perform the actions.

To find this solution to the problem of getting object. to position

d, the following conjecture is posed to the theorem proVer:1 "Does there
exist a state such that objectl is at position d?" or, stated in logic,
(Hs)AT(objectl,d,s). The answer returned is ''yes, s = push(objectl,c,d,
push(objectl,b,c,sl))."

75

The proof by resolution, given below, demonstrates how the desired
answer is lormed as a composition of action functions, thus describing a
sequence of necessary actions. The mechanism for finding this answer is

a specijal literal, the answer literal. This method of finding an answer

is explained in detail in Sec. III. For our purposes here, we will just
show how it works by example. At each step in the proof the answer lit-
eral will contain the current value of the object being constructed by

the theorem prover. 1In this example the object being constructed is the
sequence of actions s. So initially the answer literal ANSWER(s) is added
to the clause representing the negation of the question. (One can inter-

pret this clause, Clause 1, as "either object., is not at d in state s, or

s is an answer.") The state variable s, insiie the answer literal, is

the "place holder" where the solution sequence is constructed. The con-
struction process in this proof consists of successive instantiations of

S. An instantiation of s can occur whenever a literal containing s is
instantiated in the creation of a resolvent. Each instantiation of s

fills in a new actidn or an argument of an action function. In general,

a particular inference step in the proof (either by factoring or resolving)
need not necessarily further instantiate s. For example, the step might
be an inference that verifies that some particular property holds for the
current answer at that step in the proof. The final step in the proof

yields Clause 7, "an answer is push(objectl,c,d,push(objectl,b,c,sl)),"

which terminates the proof.

Proof

Negation of

d,s) V ANSWER(s) theorem

1. ~AT(object ,

2. «AT(objectl,c,s) \Y; AT(ohjectl,d,push(objectl,c,d,s)) Axiom A3

3. nAT(objectl,c,s) V ANSWER(push(object. ,c,d,s)) Resolve 1,2

1,

4. ~AT(object_,b,s) V AT(object.,c,push(object. ,b,c,s)) Axiom A2

1’ 1’ 1’
5. ~AT(objectl,b,s) V ANSWER(push(objectl,é,d, Resolve 3,4
push(objectl,b,c,s)))
6. AT(objectl,b,sl) Axiom Al

76

7. Contradiction Resolve 5,6

ANSWER (push (object. ,c,d,push(object b,c,sl))) .

1 1’

For the particular proof exhibited here, the order of genecrating
the solution sequence during the search for the proof happens to be the
same order in which the printout of the proof indicates that s is instan-
tiated. This order consists of working backward from the goal by filling
in the last action, then the next-to-last action, etc. 1In general, the
order in which thé solution sequence is generated depends upon the proof
strategy, since the proof strategy determines the order in which clauses
are resolved or factored. The proof that this method always produces
correct answers, given in Sec, III-D, shows that the answers are correct

regardless of the proof strategy used.

B. Refinements of the Method

The purpose of this section is to discuss variations of the formula-
tion presented in the previous section and to show how other considera-
tions such as time and conditional operations can be brought into the

formalism,

1. An Alternative Formulation

The first subject we shall discuss is an alternative to the
previously given formulation. We shall refer to the original, presented
in Sec. VI-A, as Formulation I, and this alternative as Formulation II.
Formulation II corresponds to a system-theoretic notion of state trans-

formations. The state transformation function for a system gives the

mapping of an action and a state into a new state. Let f represent the
state transformation function, whose arguments are an action and a state
and whose value is the new state obtained by applying the action to the
state. Let {ai} be the actions, and nil be the null action. Let g be

a function that maps two actions into a single composite action whose
effect is the same as that of the argument actions applied sequentially,
For ekample, axioms of the following form would partially define the

state transformation function f:

77

Bl. (¥s)[P(s) 2 Qf(a;,s))]
B2, (Vs)[£(nil),s) = s)

B3, (Vs,ai,aj)[f(aj,f(ai,s)) = f(g(ai.aj),S)] .

The predicates P and Q represent descriptors of states. Axiom
Bl describes the result of an action a1 applied to the class of states
that are equivalent in that they all have the property P(s):. The re-
sulting states are thus equivalent in that they have property Q(s). Ax-
iom B2 indicates that the null action has no effect. The equation in B3
says that the effect of the composite action sequence g(ai,aj) is the
same as that of actions ai and aj applied sequentially. The question
posed in this formulation can include an initial state--e.g., a question
might be (Hx)Q(f(x,sO)), meaning ''Does there exist a sequence of actions

x that maps state s, into a state satisfying the predicate Q?'" Observe

(0]
that we are not insisting on finding a particular sequence of actions,
but any sequence that leads us to a satisfactory state within the target

class of states.

This representation is more complex, but has the advantage
over the previous representation that both the starting state of a trans-
formation and the sequence of actions are explicitly given as the argu-
ments of the state-transformation function. Thus, one can quantify over,
or specify in particular, either the starting state or the sequence, or

both.

Next we shall show how other considerations can be brought
into a state-transformation formalism. Both the original formulation

(I) and the alternate (II) will be used as needed.

2, No Change of State

This kind of statement represents an implication that holds
for a fixed state. An axiom typical of this class might describe the
relationship between movable objects--e.g., if x is to the left of y

and y is to the left of z, then x is to the left of z:

78

(vx,y,z,s)[LEFT(x,y,s) A LEFT(y,z,s) D LEFT(x,z,s)] .

3. Time

Time can be a function of a state, to express the timing of .
actions and states. For example, if the function time(s) gives the time

of an instantaneous'state, in the axiom
(¥s)[P(s) > [Q(f(s)) A EQUAL(difference(time(f(s)),time(s)),r)]] ,

where P(s) describes the initial state and Q(s) describes the final state,

the state transformation takes 1 seconds to complete.

4, State-Independent Truths

The following is an example of an axiom having state-independent

functions and predicates:
(Vx,y,z) [EQUAL(plus(x,17),z) D EQUAL(difference(z,x),17)] ,

illustrating how functions and predicates are implicitly made state-

independent by not taking states as arguments.

5. Descriptors of Transformations

A descriptor or modifier of an action may be added in the form
of a predicate that takes as an argument the state transformation that
is to be described, For example (in Formulation II),

WISHED-FOR(f (action,state),person)
might indicate a wished-for occurence of an action;

LOCATION(f (action,state),place)

indicates that an action occurred at a certain place.

79

6. Disjunctive Answers

Consider a case in which an action results in one of two pos-

sibilities. As an example, consider an automaton that is to move from

START a d GOAL

a to d. The above figure shows that action i leads to either b or c from
a. The function f is singlevalued but we don't know its value, The goal

d can be reached from b by action j, or from ¢ by action k. In the for-
malization given below it is possible to prove that the goal is reachable
although a correct sequence of actions necessary to reach the goal is not
generated. Instead the answer produced is a disjunction of two sequences--

J(i(so)) or k(i(so)).

We use Formulation I. Axiom M1 specifies the starting state s0
and starting position a. Axioms M2, M3, and M4 specify positions re-

sulting from the allowed moves,

M1. AT(a,s)

M2, (vs)[AT(a,s) D AT(b,i(s)) V AT(c,i(s))]
M3. (vs)[AT(b,s) D AT(d,j(s))]

M4. (Vs)[AT(c,s) D AT(d,k(s))] .

To find if the goal d is reachable, we ask the following question:

Question: (4s)AT(d,s)

80

to which an answer is:
Answer: Yes, s = j(i(so)) or s = k(i(so)) .

The proof is:

Proot

1. ~AT(d,s) V ANSWER(s) o
2, ~AT(b,s) V AT(d,j(s)) Axiom M3
3. ~AT(b,s) V ANSWER(j(s)) From 1,2
4, ~AT(c,s) V AT(d,k(s)) Axiom M4
5. ~AT(c,s) V ANSWER(k(s)) From 1,4
6. ~AT(a,s) V AT(S,i(s)) V AT(c,i(s)) - Axiom M2
7. ~AT(a,s) V AT(b,i(s)) V ANSWER(k(i(s))) From 5,6
8. ~AT(a,s) V ANSWER(j(i(s))) VvV ANSWER(k(i(s))) From 3,7
9. AT(a,s) Axiom M1
10. Contradiction From 8,9

ANSWER(j(i(so))) v ANSWER(k(i(SO))) .

Observe that Clause 8 has two answers, one coming from Clause 3
corresponding to the action k and one from Clause 7 corresponding to the

action j. This shows how an ''or" answer can arise,

7. Answers with Conditionals

A conditional operation such as "if p then q else r'" allows a
program to branch to either operation q or operation r, depending on the
outcome of the test condition p. By allowing a conditional operation, a
better solution to the above problem is made possible--namely, ''beginning

in state s, take action i; if at b take action j, otherwise take action k."

Consider the problem above that yields disjunctive answers.
The information in the above problem formulation, Axioms M1 through M4,

plus additional information, allows the creation of a program with a

81

conditional and a test operation. The following additional information

is needed, which we shall furnish in the form of axioms.

The first addition needed is a conditional operation, along
with a description of what the operation does. Since our programs are
in the form of functions, a conditional function is needed. One such
possible function is the LISP conditional function "cond" which will be
discussed in Sec. VII-B. However, another function, a simple '"select’
function, is slightly easier to describe and will be used here. The
function select(ﬁ,y,z,w) is defined to have the value 2z if x equals y

and w otherwise,

z]
wl .

M5. (V%,y,z,w)[x = y D select(x,y,z,w)

M6. (¥x,y,z,w)[x # y D select(x,y,z,w)

i}

The second addition needed is a test operation, along with a
description of what it does. Since our programs are in the form of

functions, a test function is needed. We shall use "atf," meaning "at-
function.” The function "atf" applied to a state yields the location

in that state--e.g., atf(so) = a, The atf function is described by
M7. (Vx,s)[AT(x,s) = (atf(s) = x)] .
These gxioms lead to the solution
s = ;eiect(atf(i(so)),b,j(i(so)),k(i(so))) ,

meaning "if at b after applying i to s,, take action j, otherwise

action k."

Although the new axioms allow the conditional solution, just
the addition of these axioms does not guarantee that disjunctive answers
will not occur, To'ﬁrevent the possibility of disjunctive answers, we
simpiy tell the theorem prover not to accept any clauses having two
answers that don't unify. This method will disallow all "constructive"

proofs that yield more than one answer literal.

82

What may be a preferable problem formulation and solution can
result from the use of the alternative state formulation (II) exemplified
in Axioms Bl, B2, and B3 above. Recall that f(i,s) is the state trans-
formation function that maps action i and state s into a new state; the
function g(i,j) maps the action i and the action j into the sequence of

the two actions--i then j. The interrelation of f and g is described by
B3. . (¥1,53,9)0£05,£(1,8)) = £(g(i,i),s)] .

Axioms M1 through M4 remain the same but Axioms M5, M6, and M7 are re-

placed. The new select function is described by the two axioms:

Ms’. (Vi,j,s,p,b)[test(p,s) = b D f(select(p,b,i,j),s) = £(i,s)]

M6’. (Vi,j,s,p,b)[test(p,s) # b D f(select(p,b,i,j),s) = £(j,s)]

where the function test applies the test condition p (which will corre-
spond to atf for this problem) to state s. The test condition atf is

defined by

M7’. (Vx,s)[AT(x,s)

i

(test(atf,s) = x)7] .

The new solution' is

10}
n

f<g(i,se1ect(atf,b.3,k)).so) .

Further discussion of program writing, including recursion, is given in

Sec. VII-B.

Another method of forming conditional answers is possible.
This involves inspecting an existence proof such as the one given in
Sec. VI-B-6, above. First, such a proof is generated in which clauses
having multiple answers are allowed. The conditional operation is con-
structed by observing the two literals which are resolved upon to gener-
ate the two-answer clause. For example, in the above proof Clauses 3

and 7 resolve to yield 8. This step is repeated below, using the

83

variable s’ in 3 to emphasize that s’ is different from s in 7.

Clause 3. ~AT(b,s’) V ANSWER(j(s'))
Clause 7. - ~AT(a,s) V AT(b,(i(s))) V ANSWER(k(i(s)))
Clause 8. ~AT(a,s) V ANSWER(j(s)) V ANSWER(k(i(s))) .

Clause 3 may be read as "if at b in state s’, the answer is to

"

take action j when in state s’." Clause 7 may be read as "if not at b
in state i(s) and if at a in state s, the answer is to take action k
when in state i(s)." Observing that the resolution binds s’ to i(s) in
Clause 8, one knows from Clauses 3 and 7 the test condition by which one
decides which answef to choose in Clause 8: "if at a in state s the
answer depends on i(s); if at b in i(s) take action j; otherwise take

action k."

This discussion illustrates that the creation of a clause with
two answer literals indicates that a conditional operation is needed to
create a single conditional answer. This information provides a useful
heuristic for the‘program-writing applications of QA3: When a clause
having two answer literals is about to be generated, let the proof
strategy call for.the axioms that describe the conditional operation
(such as M5 and M6). These axioms are then applied to create a single

conditional answer.

Waldinger and Lee®2 have implemented a program-writing program
PROW that also uses a resolution theorem prover to create constructive
proots, but by a different method than that of QA3. (The second method
for creating conditionals by combining two answers is closely related
to a technique used in PROW.) Information about the following is em-
bedded in the PROW program: (1) the target program operations, (2) the
general relationship.of the problem statement and axioms to the allowed
target program operations including the test conditions, and (3) the
syntax of the target language. In QA3 this information is usually in the
axioms--such as Axioms M5, M6, and M7. (The distinction is not entirely
clearcut; for example, PROW could use axioms such as M5 and M6, and QA3

uses some knowledge of the target language to simplify the answers produced.,)

84

8. Acquisition of Information

Another situation that arises in problem solving is one in
which at the time the problem is stated and a solution is to be produced,
there is insufficient information to completely specify a solution. More
precisely, the solution cannot name every action and test condition in
advance. As an example, consider a robot that is to move from a to c.
The action i leads from a to b but no path to ¢ is known, as illustrated

below.

start a ———- ® ¢ goal

However, once point b is reached, more information can be acquired--for
example, a guide to the area lives at b and will provide a path to point
c if asked. Or perhaps once point b is reached, the robot might use its

sensors to observe or discover paths to c.

To formalize this, assume that the action ask-path(b,c) will
result in a proper path to ¢, when taken at b. For simplicity, assume
that the name of the path is equal to the state resulting from asking

the question. Using Formulation II, one suitable set of axioms is:

N1, AT(a,sO) /\ PATH(a,b,i)
N2. (Vs,x,y,3)[AT(x,s) A PATH(x,y,j) D AT(y,£(j,s))]
N3. (V¥s)[AT(b,s) D PATH(b,c,f(ask-path(b,c),s)) A

AT(b, f (ask-path(b,c),s))]

where PATH(a,b,i) means that i is a path from a to b. The question

(ds)AT(c,s) results in the solution,

"yes, s = f(f(ask-path(b,c),f(i,so)),f(i,so))".

85

Axiom N3 illustrates an important aspect of this formalism for
problem solving: If a condition (such as the robot's) is made state-
dependent, then we must specify how this condition changes when the state
is changed. Thus, in Axiom N3 we must indicate that thé robot's location
is not changed by asking for a path. In a pure theorem-proving formalism,
this means that if we want to know any condition in a given state, we
must prove what that condition is. If a large number of state-dependent
conditions need to be known at each state in a solution, then the theorem
prover must prove what each condition is at each state in a conjectured
solution. 1In such a case the theorem prover will take a long time to

find the solutioh; McCarthy4° refers to this problem as the frame problem,

where the word '"frame'" refers to the frame of reference or the set of
relevant conditions. Discussion of a method for easing this problem is

presented in Sec., VII-A.

9. Assignment Operations

An assignment operation is one that assigns a value to a vari-
able. An example of an assignmént is the statement a ~ h(a), meaning
that the value of a is to be changed to the value of the function h(a).
In our representation we shall use an assignment function--i.e.,
assign(a,h(a)). Using Formulation II this function is described by the

axiom

(Vh,ao,s)[VALUE(a,ad,s)’D VALUE(a,h(aO),f(assign(a,h(a)),s))]

,S) means that variable a has value a_. in

where the predicate VALUE(a,a 0

0
state s.

C. An Example: The Monkey and the Bananas

To illustrate the methods described earlier, we preseht an axiom-

atization of McCafthy'slB'"Monkey and Bananas' problem,

The monkey is faced with the'problem of getting a bunch of bananas
hanging from the:ceiling just beyond his reach. To solve the problem,
the monkey must push a box to an empty place under the bananas, climb on

top of the box, and then reach the bananas.

86

The constants are monkey, box, bananas, and under-bananas. The

functions are reach, climb, and move, meaning the following:

reach(m,z,s) The state resulting from
the action of m reaching z,

starting from state s

climb(m,b,s) The state resulting from
the action of m climbing b,

starting from state s

move(m,b,u,s) The state resulting from
the action of m moving b to

place u, starting from state s.

The predicates are:

MOVABLE(b) b is movable

AT(m,u,s) m is at place u in state s
ON(m,b,s) m is on b in state s
HAS(m,z,s) m has z in state s
CLIMBABLE(m,b,s) m can climb b in state s

REACHABLE(m,b,s) m can reach b in state s.

%k
The axioms are:

MB1. MOVABLE (box)
MB2. AT(box,placeb,so)
MB3. (Vx) ~AT(x,under-bananas,so)

*The astute reader will notice that the axioms leave much to be desired.
In keeping with the "'toy problem' tradition we present an unrealistic
axiomatization of this unrealistic problem. The problem's value lies
in the fact that it is a reasonably interesting problem that may be
familiar to the reader,

87

MB4. (Vb,pl,pz,s)[[AT(b,pl,s) A MOVABLE(b) A (V¥x) ~AT(x,p2,s)] -
[AT(b,pz,move(monkey,b,pz,s)) A
AT(monkey,pz,move(monkey,b,pz,s))]]

MB5. (Vs)CLIMBABLE(monkey,box,s)

MB6. (Vm,p,b,s)[[AT(b,p,s) A CLIMBABLE(m,b,s)] D
[AT(b,p,climb(m,b,s)) A ON(m,b,climb(m,b,s))]]

MB7. (Vs)[[AT(box,under-bananas,s) A ON(monkey,box,s)] D
REACHABLE (monkey ,bananas,s)]

MBS8. (Vm,z,s)[REACHABLE(m,z,s) D HAS(m,z,reach(m,z,s))]

The question is "Does there exist a state s (sequence of actions) in

which the monkey has the bananas?'
QUESTION: (7s)HAS (monkey,bananas,s) .
The answer is yes,

s = .reach(monkey,bananas,climb(monkey,box,

move(monkey,box,under—bananas,so))) .

By executing this function, the monkey gets the bananas. The monkey
must, of course, execute the functions in the usual order, starting with
the innermost and working outward. Thus he first moves the box under the

bananas, then climbs on the box, and then reaches the bananas.
The printout of the proof is given in Appendix B.

D. Formalizations for the Tower of Hanoi Puzzle

The first applications of our QA2 and QA3 programs were to 'question-
answering' examples. Commonly used question-answering examples have short
proofs, and usually there are é few obvious formulations for a given sub-
ject area. (The major difficulty in question-answering problems usually
is searching a large data base, rather than finding a long and difficult

proof.) Typicaliy, any reasonable formulation works well. As one goes

88

on to problems like the Tower of Hanoi puzzle, more effort is required

to find a representation that is suitable for efficient problem solving.

This puzzle has proved to be an interesting study of representation,
Several people using QA3 have set up axiom systems for the puzzle., Ap-
parently, a "good" axiomatization--one leading to quick solutions--is not
entirely obvious, since many axiomatizations did not result in solutions.
In this section we will present and compare several alternative represen-

tations, including ones that lead to a solution.

There are three pegs-—pegl, pegz, and pegs. There are a number of

discs each of whose diameter is different from that of all the other

discs, Initially all discs are stacked on peg in order of descending

1’
size. The three-disc version is illustrated below., The object of the

PEG PEG PEG

DISC 1

DISC 2

DISC 3

puzzle is to find a sequence of moves that will transfer all the discs
from peg1 to peg3. The allowed moves consist of taking the top disc from
any peg and placing it on another peg, but a disc can never be placed on

top of a smaller disc.

In order to correctly specify the problem, any formalization must:
(1) specify the positions of the discs for each sta:e, (2) specify how
actions change the‘position of the discs, and (3) specify the rules of

the game--i.e., what is legal.

Let the predicate ON specify disc positions. In the simplest re-
presentation the predicate ON specifies the position of one disc--e.g.,

ON(disc pegl,s) says that in state s disc, is on peg.. This represen-

1’ 1 1
tation requires one predicate to specify the position of each disc. The

89

relative position qf each disc either must be specified by another state-
ment, or else if two discs are on the same peg it must be implicitly
understood that they are in the proper order. Perhaps the simplest ex-
tension is to allow the predicate another argument that specifies the
position of the position of the disc--i.e., ON(discl,pegl,positionz,s).

Again, this requires many statements to specify a compléte configuration.

Since a move can be construed as constructing a stack of discs, and
since a stack can be represented as a list, consider, as an alternative
representation, a liéﬁ as a representation of a stack. Let the function
2(x,y) represent the list that has x as its first element (representing
the top disc in thé stack) and y as the rest of the list (representing
the rest of the disgs in the stack). This function £ corresponds to the
"cons" function in LISP. Let nil be the empty list. The statement
ON(L(discl,L(disQé;nil)),pegl,s) asserts that the stack having top disc,
discl, and second disc, discz, is on pegl. This representation illus-
trates a useful technique in logic--namely, the use of functions as the

construction (and selection) operators. This notion is consistent with

the use of action functions as constructors of sequences.

Next, consiaer_how to express possible changes in states. Perhaps
the simplest idea is to say that a given state implies that certain moves
are legal. One must then have other statements indicating the result of
each move, This method is a bit lengthy. It is easier to express in one
statement the fact that given some state, a new state is the result of a
move. Thus one such move to a new state is described by (Vs)[ON(E(discl,
nil),pegl,s) A QN(nil,pegz,s) A 0N(£(disc2,£(disc3,nil)),pegs,s) D ON(nil,
pegl,move(discl,pégl,pegz,s))FA ON(E(discl,nil),pegz,move(discl,pegl,pegz,
s)) A ON(z(discz,l(disc3,nil)),peg3,move(discl,pegl,pegz,s))].

With this method it is possible to enumerate all possible moves and
configuration combinations. However, it is still easier to use variables
to represent whole classes of states and moves., Thus, (Vs,x,y,z,pi,pj,
pk,d)[ON(z(d,x),pi,s) A ON(y,pj,s) A ON(z,p, ,s) :)ON(x,pi,move(d,pi,pJ,s))
A ON(L(d,y),pj,move(d,pi,pj,s)) A ON(z,pk,move(d,pi,pj,s))] specifies a

whole class of moves. The problem here is that additional restrictions

90

must be added so that illegal states cannot be part of a solution. In
the previous formalism, one could let the axioms enumerate just the legal

moves and states, and thus prevent incorrect solutions.

The first methed for adding restrictions is to have a predicate that
restricts moves to just the legitimate states. Since the starting state
is legal, one might think that only legal states can be reached. However,
the resolution process (set-of-support strategy) typically works backward
from the goal stéte toward states that can reach the goal state--such

states are sometimes called 'forcing states."

Thus, illegal but forcing
states can be reached by working backward from the goal‘state. This does
not allow for inéorrect solutions, since the only forcing states that can
appear in the solution must be those reached from the startihg state
(which is a legal state). The restriction of moving only to new states
thus prevents an error. But the search is unnecessarily large, since
the theorem prover'is considering illegal states that cannot lead to a
solution. So a 5etter solution is to eliminate these illegal forcing
states by allowing moves only 2522 the legal states to legal states.
This is perhaps the best specification, in a sense. Such an axiom is
(’v’s,x,y,z,pi,pj,pk,d)EON(L(d,x),pi,s) A ON(y,p;,s) A ON(z,p,s) A LEGAL
(£(d,x)) A LEGAL(24(d,y)) A DISTINCT(pi,pJ,pk)) ON(x,pi,move(d,pi,pj,s))
A ON(L(d,y),pj,moVe(d,pi,pj,s)) A ON(z,pk,move(d,pi,pj,s))]. The predi-
cate LEGAL(x) is true if and only if the discs are listed in order of
increasing size. (One can ''cheat' and have a simpler axiom by omitting
the predicate thét requires that the state resulting from a move have a
legal stack of discs. Since the set-of-support strategy forces the
theorem prover to W6rk backward starting from a legal final state, it
will only consider iegal states. However, one is then usihg an axiomat-
ization that, by itself, is incorrect.) The additional LEGAL predicate
is a typical example of how additional information in the axioms results
in a quicker solution. The predicate DISTINCT(pi,pJ,pk) means no two

pegs are equal,

‘The clauses generated during the search that are concerned with
illegal states are subsumed by ~LEGAL predicates such as (Vs) ~LEGAL(Z

(discz,(discl,x))), The stacks are formed by placing one new disc on

91

top of a legal stack. 1If tﬁe new top disc is smaller than the old top

disc then it is of course smaller than all the others on the stack. Thus
the legal stack axioms need only to specify that the top disc is smaller
than the second disc for a stack to be legal. This blocks the construc-

tion of incorrect stacks.

One complete axiomatization is as follows:

AX1, (¥x,y,2,m,n,p,,P;,p,) [ON(L(d@),x),p;,8) A ON(y,p,,8) A
ON(z,p, ,5) A DISTINCT(pi’pJ’pk) A LEGAL(4(d(m),x)) A
LEGAL(£(d(n),y)) D ON(x,p, ;move(d(m),p;,p,,s)) A
ON(z(d(m).y).pj.move(d(m).pimj.S)) A
ON(Z.pk,move(d(m),pi,pj,s))]

AX2, (¥m,n,x)[LEGAL(£(d(m), £(d(n),x))) = LESS(m,n)] A
(Vn)LEGAL(4(d(n),nil)) A LEGAL(nil) .

Instéad'of naming each disc, the disc number n is an argument of
the function d(n) that represents the nth disc. This representation
illustrates how the proof procedure can be shortened by solving frequent
decidable subproblems with special available tools--namely, the LISP
programming language. The theorem prover uses LISP (the '"'lessp'" function)
to evaluate the LESS(n,m) predicate--a very quick step. This predicate
evaluation mechanism has the effect of generating; whefever needed, such
axioms as ~LESS(3,2) or LESS(2,3) to resolve against or subsume literals

in generated clauses. Similarly, LISP evaluates the DISTINCT predicate.

Note that the move axiom, AX1l, breaks up into three clauses, each
clause specifying the change in the stack for one particular reg. The
process of making one move requires nine binary resolutions, and two

binary factorings of clauses.

Still othef solutions are possible by using sbecial term-matching
capabilities in QA3 that extend the unification and subsumption algo-

rithms to include list terms, set terms, and certain types of symmetries.

In another axiomatization, the complete configuration of the puzzle

in a given state is specified by the predicate ON. ON(x,y,z,s) means

92

that in state s, stack x is on peg stack y is on pegy, and stack z is

1 y
on peg,. Thus, if the predicate ON(E(dl,z(dz,nil))),nil,Z(d3,nil),sk)
holds, the stack dl - d2 is on peg1 and d3
LEGAL again indicates that a given stack of discs is allowed.

is on pegs. The predicate

Two kinds of axioms are required--move axioms and legal stack axioms.
One legal stack axiom is LEGAL(Z(dl,E(dz,nil))). One move axiom is
(vd,x,y,z,s)[ON(£(d,x),y,z,s) A LEGAL(4(d,x)) A LEGAL(Z(d,y)) D ON(x,
z(d,y),z,move(d,pl;pz,s))]. This axiom states that disc d can be moved
from pegl to peg2 if the initial stack on pegl is legal and. the resultant

stack on peg,_ is legal.

2
In this last-mentioned formalization, using 13 axioms to specify
the problem, QA3 easily solved this problem for the three-disc puzzle.
During the search for a proof, 98 clauses were generated but only 25 of
the clauses were accepted., Of the 25, 12 were not in the proof. The
solution entails sevén moves, fhus passing through eight states (counting
the initial and final states). The 12 clauses not in the proof corre-
spond to searching.through 5 states that are not used in‘the solution,
Thus the solution is found rather easily. Of course, if a sufficiently
poor axiomatization is chosen--one requiring an enumeration of enough
correct and incorrect disc positions--the system becomes saturated and
fails to obtain a solution within time and space constraints. An impor-
tant factor in the proof search is the elimination of extra clauses
corresponding to alternate paths that reach a given state. 1In the above
problem it happens'that the subsumption heuristic eliminates 73 of these
redundant clauses. However, this particular use of subsumption is
problem-dependent, thus one must examine any given problem formulation
to determine whether or not subsumption will eliminate alternative paths

to equivalent states.

The four-disc. version of the puzzle can be much more difficult than
the three-disc puzzle in terms of search. At about this level of diffi-

culty one must be somewhat more careful to obtain a low-cost solution.

Ernst*’ formalizes the notion of 'difference' used by GPS and shows

what properties these differences must possess for GPS to succeed on a

93

problem. He then presents a 'good" set of differences for the Tower of
Hanoi problem. Utilizing this information, GPS solves the problem for
four discs, considering no incorrect states in its search. Thus Ernst

has chosen a set of differences that guide GPS directly to the solution.

Another method of solution is possible. First, solve the three-disc
puzzle (using the answer statement). Then ask for a solution to the four-
disc puzzle. The solution then is: Move the top three discs from peg1
to pegz; move disc4
peg3. This method produces a much easier solution. But this can be

from peg1 to pegs; move the three discs on peg, to

considered as cheating, since the machine is '"guided" to a solution by
being told which subproblem to first solve and store away. The use of
the differences by GPS similarly lets the problem solver be "guided"

toward a solution.

There is another possibly more desirable solution. The four-disc
puzzle can be posed as the problem, with no three-disc solution. If the
solution of the three-disc puzzle occurs during the search for a solution
to the four-disc puzzle, and if it is automatically recognized and saved

as a lemma, then the four-disc solution should follow easily.

Finally, if an induction axiom is provided, the axioms imply -a solu-
tion in the form of a recursive program that solves the puzzle fqr an
arbitrary number of discs. Aiko Hormann*® discusses the related solutions
of the four-disc problem by the program GAKU (not an automatic theorem-
proving program). The solutions by lemma finding, induction: ahd search

guided by differences have not been run on QA3.

94

VII SAMPLE PROBLEM-SOLVING APPLICATIONS

This section presents four sample problem-solving applications:
robot problem solving, automatic program writing, self-description, and

scene description.

A, Applications'to the Robot Project

1. Introduction to Robot Problem Solving

In this section we discuss how theorem-proving methods are
being tested for several applications in the Stanford Research Institute
Artificial Intelligence Group's automaton (robot). We emphasize that
this section describés work that is now in progress, rather than work
that is completed. These methods represent explorations in problem
solving, rather than final decisions about how the robot is to do problem
solving. An overview of the current status of the entire robot project
is provided by Nilssdn.ao Coles® has developed an English-to-logic

translator that is part of the robot.

We use theorem-proving methods for three purposes, the simplest
being the use of QA3 as a central information storage and retrieval sys-
tem that is accessible to various parts of the system as well as the
human users. The data base of QA3 is thus one of the robot's models of

its world, includihg itself.

A second use is as an experimental tool to test ouf a partic-
ular problem formulation. When a suitable formulation is found, it may
then be desirable to write a faster or more efficicient specific program
that implements this formulation, perhaps involving little or no search.
If the special program is not as general as the axiom system is, so that
the-rspecial program fails in certain cases, the axioms can be retained
to be used in the troublesome cases. Both solutions can be made avail-
able by storing, as the first axiom to be tried, a special axiom that
describes the special solution. The predicate-evaluation mechanism can
then call LISP to run the special solution. If it fails, the other

axioms will then be used.

95

The third use is as a real-time problem solver. In the imple-
mentation we are now using, statements of logic--clauses--are the basic
units of information. Statements are derived from several sources: tele-
type entries, axioms stored in memory, clauses or statements generated by
the theorem prover, and statements evaluated by programs--subroutines in
LISP, FORTRAN, or machine language. These programs can use robot sensors

and sensory data to verify, disprove, or generate statements of logic.

The SRI robot is a cart on wheels, having a TV camera and a
range-finder mounfed on the cart, There are bumpers on the cart, but no
arms or grasping agents, so the only way the robot can manipulate its
environment is by simple pushing actions. Given this rather severe re-
striction of no grasping, the robot must be clever to effectively solve
problems involving modifying its world. We present below some axioms

for robot problem solving.

The first axiom describes the move routines of the robot:

R1. (Vs,pl,pz,pathlz)[AT(robot,pl,s) A PATH(pl,pz,pathlz,s) o
AT(robot,pz,move(robot,pathlz,s))] .

This action says‘that if the robot is at p. and there is a path to p2,

1
the robot will be at P, after moving along the path. "The predicate PATH

indicates there exists a robot-path, path from place p1 to place P,-

12’ _
A robot-path is a path adequate for the robot's movement. The terms p1

and P, describe the position of the robot.

In generai, it may be very inefficient to use the theorem

prover to find the path such that PATH(pl,pz,pathlz) is true, Several

existing FORTRAN subrouiines, having sophisticated problem-solving capa-
bilities of their own, may be used to determine a good path through
obstacles on level ground. We will show later a case where the theorem
prover may be used to find a more obscure kind of path. For the less’
obscure paths Axiom Rl is merely a description of the semantics of these
FORTRAN programs, so that new and meaningful programs can be generated

by QA3 by using the efficient path-generating programs as subprograms.

96

The '"predicate-evaluation' mechanism is used to call the FORTRAN path-
finding routines. The effect of this evaluation mechanism is the same
as if the family of axioms of the form PATH(pl,pz,pathlz) for all 1 and
P, such that path12 exists, were all stored in memory and available to

the theorem prover.

The second axiom is a push axiom that describes the effect of
pushing an object. The robot has no arm or graspers, just a bumper.
Its world consists of large objects such as boxes, wedges, cubes, etc,

These objects are roughly the same size as the robot itself.

The basic predicate that specifies the position of an object

is ATO, meaning at-object. The predicate

ATO(object)

descriptionl,position

1’ 1753

1» having structural description "descriptionl",
" "

is in position "positionl", in state s,". At the time of this writing,

a particular set of "standard" structure descriptions has not yet been

indicates that object

selected. So far several have been used, The simplest description is a
point whose position is at the estimated center of gravity of the object.
This description is used for the FORTRAN ''push in a straight line" rou-
tine. Since all the objects in the robot's world are polyhedrons, rea-
sonably simple complete structural descriptions are possible. For exam-
ple, one structural description consists of the set of polygons that form
the surface of the polyhedron. In turn, the structure of the polygons is
given by the set of vertices in its boundary. Connectivity of structures
can be stated explicitly or else implied by common boundaries. The posi-
tion of an object is given by a mapping of the topologically described
structure into the robot's coordinate system. Such structural descrip-
tions may be givén as axioms or supplied by the scene-analysis programs

used by the robot.

A basic axiom describing the robot's manipulation of an ob-

ject is:

97

R2. (Vs,obgl,descl,posl,posz)[ATO(objl,descl,posl,s) A
MOVABLE(Obji) A ROTATE-TRANSLATE-ABLE (desc
OBJECT-PATH (desc
ATO(objl,desc

1 1POS,,POS,) A

, pos ,posz,pathlz,s) >

,pathlz,s))] .

1 1

,posz,push(obj

1 1

This axiom says that if object 1, described by description 1, is at
position 1, and object 1 is movable, and object 1 can be theoretically
rotated and translated to the new position 2, and there is an object-path
from 1 to 2, then 6bject 1 will be at position 2 as a result of pushing
it along the path. The predicate ROTATE—TRANSLATE—ABLE(descl,posl,posz)
checks the necessary condition that the object can be theoretically
rotated and translated into the new position. The predicate

OBJECT-PATH (desc

pos. ,pos ,pathlz) means that pos,, is the estimated new

1’ 2
position resulting from pushing along push-path, pathlz.
Let us now return to the frame problem. More specifically, in
a state resulting from pushing an object, how can we indicate the loca-
tion of objects thét were not pushed? One such axiom is:
R3. (Vobjl,objz,desc ,pos

,path 2,s)[ATO(objl,descl,posl,s) A

1 1l 1
~8AME(ob31,ob32) :)ATO(ob31,descl,posl,push(osz,pathlz,s))] .

This axiom says that all objects that are not the same as the pushed ob-
ject are unmoved. The predicate evaluation mechanism is used to evaluate
SAME and speed up the proof. One can use this predicate evaluation mech-
anism, and perhaps other fast methods for handling classes of deductions
(such as special representations of state-dependent information and
special programs for updating this information--which is done in the
robot), but another problem remains. Observe that Axiom R3 assumes that
only the objects diréctly pushed by the robot move. This is not always
the case, since an object being pushed might accidentally strike another
object and move it. This leads to the question of dealing with the real

world and using axioms to approximate the real world,

98

2, Real-World Problem Solving: Feedback

Our descriptions of the real world, axiomatic or otherwise,
are at best only approximations. For example, the new position of an
object moved by the robot will not necessarily be accurately predicted,
even if one goes to great extremes to calculate a predicted'new position,
The robot does not have a grasp on the object, so that some slippage may
occur. The floor surface is not uniform and smooth. The weight distri-
bution of objects is not known. There is only rudimentary Kinesthetic
sensing feedback--namely, whether or not the bumper is still in contact
with the object._ Thus it appears that a large feedback loop iterating
toward a solution is necessary: Form a plan for pushing the object
(possibly using the push axiom), push according to the plan, back up,
take a look, see where the object is, compare the position to the desired
position, start over again. The new position (to some level of accuracy)
is provided by thevsensors of the robot. This new position is compared
to the position pfedicted by the axiom. If the move is not successful,
the predicate (provided by sensors in the new state) that reasonably
accurately gives the:object's position in the new state must be used as

the description of the initial state for the next attempt.

This feedback method can be extended to sequences of actions,
Consider the problem: Find Se such that PS(Sf) is true. Suppose the
starting state is Sy with property Po(so). Suppose the axioms are as

follows:
Py(sy)
(¥s)[Py(s) D P (£,(s))]
(VS)[Pl(s) o) Pz(fz(s))]

(¥18)[Py(s) D Po(£,(s))] .

The sequénce of actions fs(fz(fl(so))) transforms state SO

with property Po(sb) into state Se having property Ps(sf).

The solution is thus Sp = fs(fz(fl(so))).

929

Corresponding to each "theoretical' predicate Pi(s) is a 'real-
world" predicate P{(s). The truth value of P{(s) is determined by sensors
and the robot's internal model of the world., It has built-in bounds on
how close its measurements must be to the correct values in order to
assert that it is true.* The proof implies the following description of

the result after each step of execution of f3(f2(f1(so))):

Actions and Predicted Predicted
Successive Theoretical Real-World
States Results Results
' I}

SO Po(so) Po(so)
— 4
s, = £,(s0) P, (s)) P, (s;)
— 7
S, = fz(sl) Pz(sz) Pz(sz)
— 7
sp = f3(sz) P3(53) P3(Sf)

To measure progress after, say, the ith step, one checks that P{(Si) is
true. If not, then some other condition P”(s.) holds and a new problem
is generated, given P (s) as the starting point. If new information is
present, such as is the case when the robot hits an obstacle that is not
in its model, the model is updated before a new solution is attempted.
The position of this new object of course invalidates the previous plan--
i.e., had the new‘object‘s position been known, the previous plan would

not have been generated.

The new solution may still be able to use that part of the old
solution that is not invalidated by any new information. For example,
if P"(s) holds, it may still be possible to reach the J th intermediate
state and then contlnue the planned sequence of actions from the Jth
state. However, the obgect—pushlng axiom is an example of an axiom that

probably will incorrectly predict results and yet no further information,

except for the new position, will be available. For this case, the best

At this time, a many-valued logic having degrees of truth is not used,
although this is an interesting possibility.

100

approach is probably to iterate toward the target state by repeated use
of the push axiom to generate a new plan. Hopefully, the process con-

verges.

For a given axiomatization, feedback does not necessarily make
it any easier to find a proof. However, knowing that the system uses
feedback allows us to choose a simpler and less accurate axiom system.

Simple axiom systems can then lead to shorter proofs.

One can envision formalizing this entire problem-solving pro-
cess, including the notion of feedback, verifying whether or not a given
condition is met, updating the model, recursively calling the theorem
prover, ctc, The:author has not attempted such a formalization, although
he has written a first-order formalization of the theorem prover's own
problem-solving strategy. This raises the very interesting possibility
of self-modification of strategy; however, in practice such problems lie

well beyond the current theorem-proving capacity of the program.

3. A Simple Robot Problem

Now let us consider a problem requiring the use of a ramp to

roll onto a platform, as illustrated below.

POSITION X, b,

TOP-EDGE
SIDE-EDGE ~

BOTTOM-EDGE

TA-7494-5

The goal is to push the box bl from position a1 to a2. To get

onto the platform, the robot must push the ramp r_ to the platform, and

1
thenlroll up the ramp onto the platform.

A simple problem formulation can use a special ramp-using

axiom such as:

101

R4. (Vxl,xz,
xz,bottom-edge,xl,s) A AT-PLATFORM(side-edge,xz,s) -
AT(robot,x

s,top—edge,bottom—edge,rampl)[AT-RAMP(rampl,top-edge,

2,climb(rampl,x1,x2,s))] .
with the obvious meaning. Such a solution is quick but leaves much to

be desired in terms of generality.

A more general problem statement is one in which the robot has
a description of its own capabilities, and a translation of this state-
ment of its abilities into the basic terms that describe its sensory and
human-given model of_the world. It then learns from a fundamental level
to deal with the world. Such a knowledge does not make for the quickest
solution to a frequently encountered problem, but certainly does lend
jtself to learning, greater degrees of problem solving, and self-reliance

in a new problem situation.

Closer to this extreme of greatest generality is the following

axiomatization:

RS5. (Vxl,xz,r)[RECTANGLE(r,xl,x2) A LESSP(maxslope(r),k) A
LESSP(ro,width(r)) A CLEAR(space(r,hO),s) A SOLID(r) O
PATH(xl,xz,r)] .

This axiom says that r describes a rectangle having ends x1 and Xgoe The
maximum slope is less than a constant ko, the width of r is greater than

the robot's width w the space above r to the robot's height hO is clear,

0’
and the rectangle r has a solid surface.

Two paths can be joined as follows:

R6. (Vxl'xz’xs’rl’rz)[PATH(xl’x2’rl) A PATH(xz,x3,r2) =
PATH(xl,x3,301n(r1,r2))] .

From these two axioms (R5 and R6), the push axiom (R2), and a
recognition of a solid object that can be used as a ramp, a solution can

be obtained in terms of climb, push, join, etc. This more general method

102

will probably be more useful if ihe robot will be required to construct
a ramp, or recognize and push over a polential ramp that is standing on

its wide end.

The danger in trying the more general methods is that one may
be asking the theorem prover to rederive some significant portion of math

or physics, in order to solve some simple problem,

B. Automatic Programming

1. Introduction

The automatic writing, checking, and debugging of computer
programs are problems of great interest both for their independent im-
portance and as useful tools for intelligent machines, This section
shows how a theorem prover can be used to solve certain automatic pro-
gramming problems. The formalization given here will be used to pre-
cisely state and solve the problem of automatic generation of programs,
including recursive programs, along with concurrent generation of proofs
of the correctness of these programs. Thus any programs éutomatically

written by this method have no errors.

We shall take LISp*344 as our example of a programming lan-
guage. In the LISP ianguage, a function is described by two entities:
(1) its value, and (2) its side effect. Side effects can be described
in terms of their effect upon the state of the program, Methods for
describing state-transformation operations, as well as methods for the
automatic writing 6f programs in a state-transformation language, were
presented in Secs, VI-A and B. For simplicity, in this section we shall
discuss "pure" LISP, in which a LISP function corresponds to the standard

notion of a function--i.e., it has a value but no side effect,

Thus we shall use pure LISP 1.5 without the program feature,
which is essentiélly the lambda calculus. 1In this restricted system, a
LISP program is merely a function. For example, the LISP function car
applied to a list returns the first element of the list. Thus if the
variable x has as value the 1list (a b c¢), then car(x) = a. The LISP

function cdr yields the remainder of the list; thus cdr(x) = (b ¢), and

103

car(cdr(x)) = b. There are several approaches one may take in formalizing
LISP; the one given here is a simple mapping from LISP's lambda calculus
to the predicate calculus. LISP programs are represented by functions.
The syntax of pure LISP 1.5 is normal function composition, and the corre-
sponding syntax for the formalization is also function composition. LISP
"predicates' are represented in LISP--and in this formalization--as func-
tions having either the value nil (false) or else a value not equal to

nil (true). The semantics are given by axioms relating LISP functions

to list structures--e.g., (¥Vx,y)car(cons(x,y)) = x, where cons(x,y) is

the list whose first element is x and whose remainder is y.

In our formulation of programming problems, we emphasize the
distinction between.the program (represented as a function in LISP) that
solves a problem, and a test for the validity of a solution to a problem
(represented as a predicate in logic). It is often much easier to con-
struct the predicate than it is to construct the function. Indeed, one
may say that a probleﬁ is not well defined until an effective test for

its solution is pfovided.

For example, suppose we wish to write a program that sorts a
list. This problem is not fully specified until the meaning of "sort"
is explained; and the method of explanation we choose is to provide a
predicate R(x,y) that is true if list y is a sorted version of list x
and false otherwise. (The precise method of defining this relation R

will be given later.)

In general, our approach to using a theorem prover to solve
programming problems in LISP requires that we give the theorem prover

two sets of initial axioms:

(1) Axioms defining the functions and constructs of the sub-

set of LISP to be used

(2) Axibms defining an input-output relation such as the rela-
tidn R(x,y), which is to be true if and only if x is any
input of the appropriate form for some LISP program and y
ié the corresponding output to be produced by such a pro-

gram,

104

Given this relation R, and the LISP axioms, by having the
theorem prover prove (or disprove) the appropriate question we can formu-
late the following.four kinds of programming problems: checking, simula-
tion, verifying (debugging), and program writing. These problems may be

explained using the sort program as an example, as follows:

(1) Cheécking: The form of the question is R(a,b) where a and
b are two given lists. By proving R(a,b) true or false,
2 is_checked to be either a sorted version of a or not.

The desired answer is accordingly either yes or no.

(2) Simulation: The form of the question is (E¥x)R(a,x), where
a is a given input list. If the question (%x)R(a,x) is
ahswered yes, then a sorted version of x exists and a
sorfed version is constructed by the theorem prover. Thus
the theorem prover acts as a sort program. If the answer
is no, then it has proved that a sorted version of x does

not exist (an impossible answer if a is a proper 1list).

(3) Verifying: The form of the question is (Vx)R(x,g(x)),
where g(x) is a program written by the user. This mode
is kﬁown as verifying, debugging, proving a program cor-
rect; or proving a program incorrect. If the answer to
(Vx)R(x,g(x)) is yes, then g(x) sorts every proper input
list and the program is correct. If the answer is no, a
cpuhterexample list ¢, which the program will not sort,
must be constructed by the theorem prover. This mode
requires induction axioms to prove that looping or recur-

sive programs converge,

(C)) Program Writing: The form of the question is (Vx) (8y)R(x,y).

In this synthesis mode the program is to be constructed or
else proved impossible to construct. If the answer is yes,
then a program--say, f(x)--must be constructed that will
sortgall proper input lists. If the answer is no, an un-
sortable list (impossible, in this case) must be produced.

This mode also requires induction axioms. The form of the

105

problem statement shown here is oversimplified for the

sake of clarity. The exact form will be shown later.

In addition to the possibility of the '"yes" answer and the "'no"
answer, there is always the possibility of a "no proof found" answer if
the search is halted by some time or space bound. The elimination of
disjunctive answers, which is assumed in this section, was explained in

Sec. VI-B.

These methods are summarized in the following table. The reader

may view R(X,y) as representing some general desired input-output rela-

tionship.
Programming
Problem Form of Question Desired Answer

Checking R(a,b) yes or no
Simulation (dx)R(a,x) yes, x = b

or no
Verifying (Vx)R(x,g(x)) yes

or no, X = ¢
Program (Vx) (By)R(x,y) yes, y = £(x)
Writing or no, X = C

We now present an axiomatization of LISP followed by two axiom-
atizations of the sort relation R (one for a special case and one more

general).

2, Axiomatization of a Subset of LISP

All LISP functions and predicates will be written in small let-
ters. The functions "equal(x,y)", "atom(x)", and "null(x)" evaluate to
"nil" if false and‘something not equal to "nil"--say "T"--if true. The
predicates of firsf—order logic that are used to describe LISP are written

in capital letters. These, of course, have truth values.

The version of LISP described here does not distinguish between
an S-expression and a copy of that S-expression. There is some redun-

dancy in the following formulation, in that certain functions and

106

predicates could have been defined in terms of others; however, the re-
dundancy allows us to state the problem more concisely. Also, some axioms
could have been eliminated since they are derivable from others, but are
included for clarity. The variables x, y, and z are bound by universal
quantifiers, but the quantifiers are omitted for the sake of readability

wherever possible. The formulation is given below:

Predicates Meaning

NULL(x) X = nil

LIST(x) x is a list

ATOM(x) X is an atom

X =Yy X is equal to y

Functions Meaning

car(x) AThe first element of the list x.

cdr (x) The rest of the list x.

cons(x,y) If y is a list then the value of cons(x,y) is

cond(x,y,z)

nil

equal(x,y)

a new list that has x as its first element
and y as the rest of the list--e.g.,
cons(1,(2 3)) = (1 2 3). 1f y is an atom
instead of a list, cons(x,y) has as value a

"dotted pair''--e.g., cons(1,2) = (1.2).

The conditional statement, if x = nil then y

else z. Note that the syntax of this func-

tion is slightly different than the usual
LISP syntax.

The null (empty) list containing no elements.

Equality test, whose value is 'mil" if x does

not equal y.

107

. "

atom(x) Atom test, whose value is "nil" if x is not

an atom.

null (x) : Null test, whose value is '"nil" if x is not

equal to nil.

Axioms
Ll. X = car(cons(x,y))
L2. ' y = cdr(cons(x,y))
L3. ~ATOM(x) D x = cons(car(x),cdr(x))
14. ~ATOM(coné(x,y))
15. ATOM(nil)
16. X = nil D cond(x,y,z) = =z
L7. | x # nil O cond(x,y,z) =y
18, X =y = equal(x,y) # nil
19. ATOM(X) = atom(x) # nil

= null(x) # nil .

L10. NULL(x)

3. A Simplified Sort Problem

Before examining a more general sort problem, consider the
following very simple special case. Instead of a list-sorting program,
consider a program that "sorts' a dotted pair of two distinct numbers--
i.e., given an input pair the program returns as an output pair the same
two numbers, but the first number of the output pair must be smaller
than the second. To specify such a program, we must define the simple
version of R, Ro(x,y). Let us say that a dotted pair of numbers is
"sorted" if the first number is less than the second., Thus, Ro(x,y) is
true if and only if y equals x when x is sorted and y is the reverse of

x when x is not sorted. Stated more precisely, we have:

Pl1. (Vx,y){RO(x,y) = [[car(x) <cdr(x) oy = x] A [car(x) & cdr(x) D
car(y) = cdr(x) A cdr(y) = car(x)]]} .

108

The correspondence of the LISP "lessp" function to the "less-

than' relation is provided in the following axiom:
P2. (Vx,y)[1lessp(x,y) # nil = x <y] .

Using the predicate RO we will give examples of four program-

ming problems and their solutions:

(1) Checking:

Q: Ro(cons(Z,l),cons(l,Z))
A: yes

(2) Simulation:

Q: (Wx)RO(cons(z,l),x)

A: yes, x = cons(1,2)
(3) Verifying:

Q: (Vx)RO(x,cond(lessp(car(x),cdr(x)),x,

cons(cdr(x),car(x)))

A: yes
Thus the program supplied by the user is correct.

(4) Program writing:

Q: (Vx) (TR (x,Y)

A: yes, y = cond(lessp(car(x),cdr(x)),Xx,

cons (cdr(x),car(x)))
Translated into a more readable form, the program is:

if car(x) < cdr(x) then x else cons (cdr(x) ,car(x)) .

Given only the necessary axioms--Ll, L2, L6, L7, Pl, and P2--

QA3 found a proof that constructed the sort program shown above. A

109

limited form of the paramodulation®*®’4® rule of inference was used to

handle equality.
We now turn to a more difficult problem.

4, The Sort Axioms

The definition of the predicate R is in terms of the predicates

ON and SD. The meaning of these predicates is given below:

R(x,y) . A predicate stating that if x is a list of numbers
with no number occurring more than once in the
list, then y is a list containing the same ele-
ments as x, and y is sorted--i.e., the numbers

are arranged in order of increasing size.

ON(x,y) A predicate stating that x is an element on the

list y.
SD(x) A predicate stating that the list x is sorted.

First we define R(x,y), that y is a sorted version of x, as

follows:
si. (¥x,y){R(x,y) = [(Vz)[ON(z,x) = ON(z,y)] A sD(y)]} .

Thus, a sorted version y of list x contains the same elements as x and

is sorted.

Next we define, recursively, the predicate ON(x,y):
s2. (Vx,y){ON(x,y)_E [~aTOM(y) A [x = car(y) V ON(x,cdr(y))]]} .

This axiom states that x is on y if and only if x is the first element

of y or if x is on the rest of y.

Next we define the meaning of a sorted list:

S3. (¥x){8D(x) = [NULL(x) V [~ATOM(x) A NULL(cdr(x))] V [~ATOM(x) A
~NULL(cdr(x)) A car(x) s car(edr(x)) A SD(cdr(x))]]} .

110

This axiom states that x is sorted if and only if x is empty, or x con-
tains only one element, or the first clement of x is less than the second

element and the rest of x is sorted.

To simplify the problem statement we assume that the arguments
of the predicates and functions range only over the proper type of ob-
jects--i.e.,, either numbers or lists. In effect, we are assuming that
the input list will ihdeed be a properly formed list of numbers. (The
problem statement could be modified to specify correct types by using

predicates such as NUMBERP(x)--~true only if x is, say, a real number.)

The problem is made simpler by using a "merge' function. This
function and a predicate P describing the merge function are named and

described as follows:

sort (x) ' A LISP sort function (to be constructed) giving

as its value a sorted version of x.

merge(x,u) A LISP merge function merging x into the sorted
list u, such that the list returned contains
the elements of u, and also contains x, and

this list is sorted.

P(x,u,y) A predicate stating that y is the result of

merging x into the sorted list u.

We define P(x,u,y), that y is u with x merged into it:

s4. (¥x,u,y){P(x,u,y) = [SD(u) O [SD(y) A (¥z)(ON(z,y) =
(ON(z,u) V z = x))]]} .

Thus P(x,u,y) holds if and only if the fact that u is sorted implies that
y contains x in éddition to the elements of u, and y is sorted. One such
merge function is merge(x,u) = cond(null(u),cons(x,u),cond(lessp(x,car(u)),

cons (x,u),cons(car(u),merge(x,cdr(u))))).

The axiom required to describe the merge function is:
S5. (Vx,u)P(x,u,merge(x,u)) .

111

This completes a description of the predicates ON, SD, R, and
P. Together, these specify the input-output relation for a sort function
and a merge functidn. Before posing the problems to the theorem prover,
we need to introduce axioms that describe the convergence of recursive

functions.

5. Induction Axioms

In order to prove that a recursive function converges to the
proper value, the thgérem prover requires an induction axiom., An example
of an induction principle is that if one keeps taking ''cdr"” of a finite
list, one will reach the end of the list in a finite number of steps.

This is analogous Fo an induction principle for the non-negative integers--

i.e., let "P" be a predicate, and "h" a function. Then, for finite lists,
[P(h(nil)) A (¥x)[~ATOM(x) A P(h(cdr(x))) D P(h(x))]]1 D (Vz)P(h(z))
is analogous to
[P(a(0)) A (¥n)[n # 0 A P(h(n-1)) 2 P(h(n))]] > (¥m)P(h(m))

for non-negative integers.,

There ére other kinds of induction criteria besides the one
given above. Unfortunately, for each recursive function that is to be
shown to converge, the appropriate induction axiom must be carefully
formulated by the user. The induction axiom also serves the purpose of
introducing the name of the function to be written. We will now give
the problem statgment for the sort program, introducing appropriate in-

duction information where necessary.

6. The Sort Problem

The fdllowing examples illustrate the four kinds of problems:
(1) Checking:

Q: R{(cons(2,cons(l,nil)),cons(l,cons(2,nil)))

A: yes

112

(2)

(3)

(4)

Simulation:

Q: (9x)R(cons(2,cons(l,nil)),x)

A: yes, x = cons(l,cons(2,nil))

Verifying: Now consider the verifying or debugging prob-
lem. Suppose we are given a proposed definition of a sort
function and we want to know if it is correct. Suppose

the proposed definition is

86. (Vx)[sort(x) = cond(null(x),nil,merge(car(x),
sort(cdr(x))))] .

Thus sort is defined in terms of car, cdr, cond, null,
mergé, and sort. Each of these functions except sort is
already described by previously given axioms. We also
néed the appropriate induction axiom in terms of sort.
Of course, the particular induction axiom needed depends
on the definition of the particular sort function given.
For this sort function the particular induction axiom

needed is

7. [R(nil,sort(nil)) A (Vx)[~ATOM(x) A R(cdr(x),
' sort(cdr(x))) D R(x,sort(x))]] 2 (Vy)R(y,sort(y)) .

The following conjecture can then be posed to the theorem

prover:

Q: (Vx)R(x,sort(x))

A: yes

Program writing: The next problem is that of synthesizing
or writing a sort function. We assume, of course, that

no definition such as S6 is provided. Certain information
néeded for this particular problem might be considered to

be a part of this particular problem statement rather than

113

a part of the data base, We shall phrase the question so
that in addition to its primary purpose of asking for a
solution, the question provides three more pieces of in-
formation: (1) The question assigns a name to the func-
tion that is to be constructed. A recursive function is
defined in terms of itself, so to construct this defini-
tion the name of the function must be known (or else
created internally). (2) The question specifies the num-
ber of arguments of the function that is to be considered.
(3) The question (rather than an induction axiom) gives
the particular inductive hypothesis to be used in con-

strucfing the function.

In this form, the question and answer are

Q: (Vx)(Ay){R(nil,y) A [[~ATOM(x) A R(cdr(x),
sort(cdr(x)))] D R(x,y)]}

A: .yes, y = cond(equal(x,nil),nil,merge(car(x),

sort(cdr(x)))) .

Thus the question names the function to be "sort'" and
specifies that it is a function of one argument. The
question gives the inductive hypothesis--that the function
sorts cdr(x)--and then asks for a function that sorts x.
When the answer y is found, y is labeled to be the func-

tion sort(x).

Using this formulation, QA3 was unable to write the sort pro-

gram in a reasonable amount of time, although the author did find a cor-
% .

rect proof within the resolution formalism, The creation of the merge

function can alsoAbe posed to the theorem prover by the same methods.

*
In Appendix C the problem is reformulated using a different set of
axioms. In the new formulation QA3 created the sort program
"sort(x) = cond(x,merge(car(x),sort(cdr(x))),nil)."

114

7. Discussion of Automatic Programming Problems -

The axioms .and conjectures given here illustrate the fundamental
ideas of automatic programming. However, this work as well as earlier
work by Simon,*” Slagle,®' Floyd,*® Manna,*® and others provides merely
a small part of what needs to be done. Below we present discussion of

issues that mightiprofit from further investigation.

Loops. One obvious extemsion of this method is to create pro-
grams that have loops rather than recursion. A simple teChnique exists
for carrying out this operation. First, one writes just recursive func-
tions. Many recursive functions can then be converted into iteration--
i.e., faster-running loops that do not use a stack. McCarthysogives cri-
teria that determihe how to convert recursion to iteration. An algorithm
for determining cases in which recursion can be converted to iteration,
and then performing the conversion process, is embedded in modern LISP
compilers. This algorithm could be applied to recursive functions written

by the theorem-proving program.,

Separatioh'of Aspects of Problem Solving. Let us divide infor-

mation into three types:

(1) Information concerning the problem description and seman-
tics. An example of such information is given in the

axiom AT(a,so), or Axiom Sl which defines a sorted list.

(2) Information concerning the target programming language,

such as the axiom [x = nil D cond(x,y,z) = z].

(3) Information concerning the interrelation of the problem
and the target .language, such as [LESS(x,y) = lessp(x,y) #
nilj.

These kinds of information are not, of course, mutually exclusive.

In the axiom systems presented, no distinction is made between
such classes of information. Consequently, during the search for a proof
the theorem prover might attempt to use axioms of type 1 for purposes
where it needs information of type 2. Such attempts lead nowhere and

generate useless clauses, However, as discussed in Sec. VI-B-6, we can

115

place in the proof strategy our knowledge of when such information is to
be used, thus leading to more efficient proofs. One such method--calling
for the conditional axioms at the right time, as discussed in Sec. VI-B-6--

has been implemented in QA3.

The PROW program of Waldinger and Leezgprovides a very promising
method of separating the problem of proof construction from the problem
of program construction. In their system, the only axioms used are those
that describe the subject--i.e., state the problem. Their proof that a
solution exists does not directly construct the program. Instead, infor-
mation about the target-programming language, as well as information
about the relationship of the target-programming language to the problem-
statement language, is in another part of the PROW program--the "post-
processor.' The post-processor then uses this information to convert the
completed proof into a program. The post-processor also converts recur-

*
sion into loops and allows several target programming languages.

If our goal is to do automatic programming involving complex
programs, we will probably wish to do some optimization or problem solving
on the target language itself, For this reason we might want to have
axioms‘that can give the semantics of the target language, and also allow
the intercommunication of information in the problem-statement language
with information in the target language. Two possible ways to do this

effectively suggest themselves:

(1) Use the methods presented here, in which all information
is in first-order logic. To gain efficiency, use special
problem-solving strategies that minimize unnecessary inter-

action.

(2) Use a higher-order logic system, in which the program con-
struction is separated from the proof construction, pos-
sibly by being at another level. The program construction
process might then be described in terms of the first-order

existence proof,

* 1
It would be possible to use the "PROW techniques' in QA3 and vice-versa.

116

Problem Formulation. The axiomatization given here has con-

siderable room for improvement: Missing portions of LISP include the
program feature and the use of lambda to bind variables. The functions
to be written must be named by the user, and the number of arguments must

also be specified by the user.

Heuristics for Program-Writing Problems, Two heuristics have

been considered so far., The first consists of examining the program as
it is constructed (by looking inside the answer literal). Even though
the syntax is guaranteed correct, the answer literal may contain various
nonsense or undefined constructions [such as car(nil)]; Any clause con-
taining such constructed answers should be eliminated. Another heuristic
is to actually run the partial program by a pseudo-LISP interpreter on a
sample problem. The theorem prover knows the correct performance'on
these sample problems because they have either been solutions or else
counterexamples to program-simulation questions that were stored in
memory, or else they have been provided by the user. If the pseudo-LISP
interpreter can produce a partial output that is incorrect, the partial
program can be eliminated. If done properly, such a method might be

valuable, but in our limited cxperience its usefulness is not yet clear,

Higher-Level Programming Concepts. A necessary requirement for

practical program writing is the development of higher-level concepts
(such as the LISP "map" function) that describe the use of frequently

employed constructs (functions) or partial comnstructs.

Induction. The various methods of proof by induction should
be studied further and related to the kinds of problems in which they are
useful. The automatic selection or generation of appropriate induction

axioms would be most helpful.

Program Segmentation. Another interesting problem is that ol

automatically generating the specifications for the subfunctions to be
called before wrifing these functions. For example, in our system the
sort problem was divided into two problems: First, specify and create a
merge function; next, specify a sort function and then conétruct this
function in terms of the merge function. The segmentation into two prob-

lems and the specification of each problem was provided by the user.

117

C. Self-Description

One of the goals‘for future problem solving by a theorem-proving-
based systém is the ability to deal with self-descriptions. In this
section a portion of the operation of QA3 itself is axiomatized. The
resolution theorem-proving strategy--namely, the unit-preference strategy

with the set-of-support strategy--is formalized.

It is intended that this strategy axiomatization be a step toward
self-usable self-descriptions of programs. The uses fall into two

categories:

(1) Given a description of a strategy, the program will be able to

carry out the strategy.

(2) Given a description of a strategy, the program will be able to

reason about, make inferences about, or modify, a strategy.

There are at least three methods (and combinations thereof) by which
a program could carry out an axiomatically-described strategy. The first
is to use a theorem prover to prove (by its own strategy) that there
exists a proof (by the described strategy) of a given theorem, The
theorem prover operates according to its own strategy--say, Strategy 1I.
The axiomatically-described strategy is, say, Strategy II. The object:
constructed by Strategy I will be a complete proof search according to
Strategy II. Such a technique would be very slow. A second and faster
method to carry 6ut an axiomatically-described strategy would be to build
an interpreter of strategy axioms, using extensions of techniques such as
predicate evaluati¢n. A third method is to have the theorem prover prove
the existence of, and hence write, a special program (algorithm) that

will carry out the proof search according to the described strategy.

The other uée of strategy description is reasoning about strategies,
Once we have the description in the language of logic, the theorem'prover
can make inferences about the strategy. One can imagine a proof that a
strategy is complete, a proof that one strategy dominates_another under
certain conditioné, or a proof that proves the existence of a better

strategy and creates it. A logical strategy description could also

118

provide a dialogue language in which a user can discuss strategy with the
program, discussing, for example, the feasibility of a proposed strategy

change.

In practice, these uses of a strategy description are beyond the
capabilities of the program. The methods given here do establish one
possible approach, but I believe that a practical system would require a
very careful and uniform problem formulation, better than the one given

here, possibly in a suitable, hierarchically-organized higher-order logic.

The axioms are first-order, in that variables are allowed only at
the level of terms., 'However, the terms are allowed to range over wffs

of first-order logic. The wffs are treated as symbol string terms.

First, a very simple axiomatization of theorem proving is presented
to illustrate the basic ideas., Then, the formalization is modified to

show how more information about proof strategies can be intioduced.

1. Rules of Inference

This first set of axioms illustrates how clauses can be inferred
by resolution. Upper-case variables will be used to represent types of
variables, Subscfipts indicate specific individuals of each type. The

following are the variable types, relations, and axioms that will be used.

Variable Types Representation
Literal Li
Clause Ci
Set of clauées Bi
Well-formed formula S

of first-order logic

Relations Meaning

RESOLVE(Cl,Cz,CS) C3 is a resolvent of C1 and Cz.

INFER(Bi,Ci) Ci is inferred from Bi by successive
resolution or factorings.

MEMBER(Ci,Bi) Ci is a member of the set of clauses Bi'

119

Axioms
T1. (VCi,Bi)[MLMBER(Ci,Bi) f)INFLR(Bi,Ci)]

T2, (VBi,Ci,CJ,Ck)[INFER(Bi,Ci) A INFER(Bi,CJ) A
RESOLVE(Ci,CJ,Ck) - INFER(Bi,Ck)]

Observe that RESOLVE(Ci,CJ,Ck) is decidable. That is, if we
are given any Ci and Cj, then there is a program that could determine if
there is a resolvent Ck and produce it if it exists. 1In a proof we might

use the predicate evaluation mechanism to produce such a Ck‘

2, Proof by Refutation

To describe proof by refutation we need the following additional

functions:
Functions Meaning
not(Si) The negation of a statement Si
union(Bi,Bj) The union of sets Bi and Bj
clauses(Si) The set of clauses representing
statement Si
null The null clause.‘

Now let the theorem to be proved be denoted by S Assume the

f.
theorem is to follow from a set of axioms. This set of axioms will be

represented by the conjunction of the axioms S forming a single state-

0’
ment,
We say that the predicate PROVES(SO,Sf) is true if and only if

there exists a refutation proof of S, from SO' This fact is described

£
by the axiom

T3. (VSO,Sf)[INFER(union(clauses(So),clauses(not(Sf))),null) -
PROVES(SO,Sf)]

where infer is defined by Tl and T2, Thus, to show that Sf follows from
SO’ we show PROVES(SO,Sf) to be valid.

120

3. Set~of-Support Strategy

To express the set-of-support strategy, T2 must be modified,

Let SUPPORT(Ci) be a predicate indicating that clause C, has support from

i
the theorem, The negation of the theorem Sf will be the initial set of

support, The modified version of T2 is:

T2, [(VCi)[MEMBER(Ci,clauses(not(Sf))) :>SUPPORT(Ci)]] A
{(VBi,Ci,CJ,Ck){[INFER(Bi,Ci) A INFER(Bi,Cj) A
RESOLVE(Ci,Cj,Ck) A [SUPPORT(Ci) Vv supponm(cj)]] -
INFER(B,,C,) A supponT(ck)}} .

4, Unit-Preference Strategy

The above formulations of provability are nonsequential, in the
sense that the order of creation of clauses by resolution is not specified.
We show below how the unit-preference strategy, which is sequential, can

be described. Several new concepts are needed:

Expression Meaning

length(Ci) A function whose value is the length
of the clause Ci (number of literals),

ORDER(Ci,j) A predicate meaning that the clause Ci

is the jth clause created.

RESOLVE(Ca,Cb,L) This RESOLVE predicate is different
than the previous RESOLVE predicate.
RESOLVE(ca,cb,Lj is true if and only
if the third argument L is the list
of all possible resolvents created by

resolving Ca against C. on all possible

b
combinations of literals, If there are
no resolvents, L is the empty list.

TRY(Bi?n,Ci,Cj) A predicate meaning that on the nth

step of the proof search from clauses

B,, the resolution of C, against Cj

i’ i
is attempted. Thus, n counts the

attempted resolutions,

121

The unit-preference strategy does not completely specify the
order in which clauses are resolved--e.g., it does not specify which two
unit clauses should be resolved first. The axioms below give an ordering
down to the clause level, but not at the literal level. The axiom pre-
sumes that all possible resolvents of two clauses are created in one step.

Axioms T4 and T5 specify the next pair of candidates for resolution.

. ~ = A = = =
T4 (Vn,a,b,x,y,ca,cb,cx,Cy,Bi){[[((c,=c_Ac, cy) A CH € AC=C T A
INFER(B.,C) A INFER(B, ,C.) A INFER(B.,C) A INFER(B,,C) A
i’ a i"b i x iy
ORDER(Ca,a) A ORDER(Cb,b) A ORDER(Cx,x) A ORDER(Cy,y) A
(Ym) [m<n O [~TRY (Bi.m,Ca,Cb) /\AJI‘RY(Bi,m,Cx,Cy) A
~TRY (B, ,m,C, ,C) A~ATRY(B,,m,C ,C)11 A
i b" a i y X
[length (Ca) =1V length(Cb) =1V (ch,cv) [(1ength(Cu) =1V
length(CV) =1) D (FL) (L<n A TRY(Bi,Z,Cu’,CV))]] A a<b A
[length(Ca) +length(Cb) < length(Cx) +1eng‘th(Cy)] A
[[length(Ca)-+length(Cb) = length(Cx)-+length(Cy)] D
E[min(length(Ca),length(Cb)) gznin(length(cx),length(Cy))] A
[a=xD b<yll]l A _ ’
[SUPPORT(C_) V SUPPORT(C,)] A n= 0] D TRY(B,,n,C ,C)}
a b i a b

o}
T5. (VCa,Cb,Ci,Cj,m,Bi){[TRY(Bi,m,Ci,Cj) A (€ #C vV cb;écj)]
wRY(Bi,m,ca,cb)} .

Two more axioms, T6 and T7, are required to specify the assignment of an
order to each clause. The predicate 'NEXTORDER(n,m)'" states that the
resolvents created on the nth try are to be ordered sequentially starting
with m. "ASSIGNORDER(L,q,k)" implies that the clauses on the list L are
assigned orders q+l1 through q+k. First(L) and rest(L) are functions
referring respectively to the first element of the list L and the rest of

the list L (the empty list has zero length).
T6. (Vn,q,k,L,Ca,Cb,Bi){[NEXTORDER(n,q) N TRY(Bi’n’Ca’Cb) A |

RESOLVE(Ca,Cb,L) A length(L) =k] D
[NEXTORDER (n+1,q+k) A ASSIGNORDER(L,q,k)1}

122

T7. (Vq,k,L){ [ASSIGNORDER(L,q,k) A k#0] D
[ORDER (first (L) ,q+1) A ASSIGNORDER(rest(L),q+1,k-1)1} .

The clauses in the initial set, BO==UNION(c1auses(So),clauses(not(Sf))),
are assumed to be assigned orders in such a way that longer clauses have
higher orders. The initial condition for assigning orders to generated

clauses is given by
T8. NEXTORDER (0, b)

where b is the number of clauses in BO. To complete the formalization,

T2’ must be modified to use TRY:

"

T2”, [(VCi)[MEMBER(Ci,clauses(not(Sf))) o SUPPORT(Ci)]} A
{(vci ,CJ,,SJ.,n,L,Bi){[TRY(Bi,n,Ci,Cj) A RESOLVE(Ci,CJ.,L) A ON(C, ,1)] D

[INFER(SJ_ € A suppon'r(ck)‘]}} .

The predicate ON(Ck,L) means that the clause C, is on the list L.

The complete set of axioms describing a unit-preference, set-
of-support proof is T1, T2”, T3, T4, T5, T6, T7, and T8. To see if So
follows from Sf by this strategy, the statement PROVES(SO,Sf) must be
shown to follow from T1, T2”, T3, ..., T8. The course of the proof must
necessarily imply a sequence of true statements of the form
TRY(Bi,o,ci',cJ),TRY(Bi,l,ck,cz),...,TRY(Bi,n,cp,cq), where C_ and C_

resolve to yield the empty clause.

D. Pattern Recognition--Scene Description

This section presents a pattern-recognition problem consisting of
finding, in a line drawing of a scene, a two-dimensional projection of
a cube. The problem is a scene-description or scene-analysis task:
Given a set of line segments the problem is to find a cube and describe

it in terms of its vertices.

123

This problem is an interesting exercise in developing heuristics for

using the theorem prover. This problem is a study in the specialization

of the theorem prover to a particular well-defined problem, rather than
an effort toward generality. The initial problem formulation and proof
strategy selected resulted in an extremely inefficient search. An im-
provement in efficiency resulted from several changes: a better repre-
sentation, an extension of the unification algorithm to automatically
handle certain equalities, and the use of a measure of progress so that
a hill-climbing search method could be used., Using these heuristics the
theorem prover is‘made to perform very well on this scene-description
problem. However, because the heuristics are aimed at this particular
problem rather than a more general problem, we have not established that
theorem-proving methods would be applicable to more difficult scene-

description problems.

The scene consists of nine line segments connected together to form

a two-dimensional projection of a cube, shown below. The cube can be

f
£ f /e—-——f
a by a’__ b///
a b
Je ¢
d c d c d ¢
The Cube Its Three Faces Its Nine Edges

decomposed into its ﬁhree faces and further decomposed into its nine edges
or line segments. The input data for the problem consist of the nine line
segments, where each line segment is named by its two end points. The

line drawing is aséﬁmed perfect (a mechanism for postulating the existence

of missing lines is discussed later).

The axiomatization discusses three kinds of objects--lines, quadri-

%k
laterals, and cubes--which are defined as follows:

E 3
It might be better to characterize the problem by some other means, such
as regions, connections, and cubes,

124

(1) A line is the basic element.
(2) A quadrilateral is a set of four suitably connected lines.
(3) A cube is a set of three suitably connected quadrilaterals,

Now consider two alternative axiomatizations within this framework.
The first formulation uses the predicate LINE(a,b) to represent the fact
that in the scene there is a line segment ab between points a and b. As
the second alternative, the line segment from a to b can be represented
by a single term p(a,b), where p(a,b) denotes the line joining together
the arguments a and b. In this alternative formulation, which we shall
use, the predicafe LINE(p(a,b)) means that in the scene there is a line

segment ab.

Now assume that we are given as an axiom this fact that the line
segment ab is in the scene, and we wish to deduce the fact that line seg-
ment ba is in the scene. This deduction is correct, since a line segment

is not considered to be directional, For alternative 1, the axiom
(Vx,y)[LINE(x,y) D LINE(y,x)]
is needed. For alternative 2, the equality axiom

(vx,y)[p(x,y) = ply,x)]

along with an equality substitution axiom or mechanism is needed., The
addition of either one of these two clauses to the data base results in

the deduction of many extra clauses during the search for the cube.

Using the second alternative, the search can be narrowed by extending
the unification algorithm to allow the two terms p(a,b) and p(b,a) to
unify. Thus, as an example, the deduction of LINE(p(a,b)) from
LINE(p(b,a)) follows in one resolution step. This is a way of automati-

cally treating a particular kind of equality.

125

*

Consider the definition of a quadrilateral,

Cl: (vx,y,z,w){ [LINE(p(x,y)) A LINE(p(y,z)) A LINE(p(z,w)) A
LINE(p(w,x))] O QUADRILATERAL(p(x,y,z,w))1} ,

which can be illustrated as follows:

O

This axiom states that four suitably connected line segments form a quad-

rilateral, p(x,y,z,ﬁ). The term p(x,y,z,w) is thus allowed a variable
number of arguments and denotes the line segments Xy, yz, zw, and wx,

The equality mechanism for the single line segment allows the line seg-
ments to be named arbitrarily, from either end. ' It alloWs the quadri-
lateral to be named starting from any vertex, and tracing around the ver-
tices in a particular direction--say, clockwise. Thus the two quadri-

laterals xyzw and yzwx are considered equal. The same extension of the

unification algorithm is used to handle this case. The precise statement
of this treatment of equality is as follows: the function letter p is
allowed an indefinite number of arguments; any two terms p(al,az,...,am)

and p(bl,b bn) unify if and only if m = n and there exists a cyclic

2,-..,
b 0

permutation of b bn that unifies with al,az,...,am.

1 2,-..,

*
Instead of a quadrilateral one might assume that some geometry informa-
tion is available, so that one might look for, say, a perspective trans-
formation of a rectangular parallelipiped.

TThe reader may have observed that Axiom C, admits as quadrilaterals a
wide class of line graphs that might be subgraphs of a given graph.

For example, it admits non-convex quadrilaterals as well as convex quad-
rilaterals crossed by diagonal line segments. A more restrictive defi-
nition might be advantageous if there were many lines in the scene.

§

The subsumption algorithm is also made compatible with this special
equality. ’

126

Now consider the definition of a two-dimensional projection of a

*
cube:

c2. (Vt,u,v,w,x,y,z) {[QUADRILATERAL(p(t ,u,v,w)) A"
QUADRIIATERAL(p(y,u,t,x)) A QUADRILATERAL(p(v,u,y,z))] D
CUBE(p(p(t’u’V,W):p(quytyx)’p(vvu:sz)))} ’

which can be illustrated as follows:

Again the function p is used, with p(a,b,c) representing the cube whose

quadrilaterals (clockwise) are 2, b, and c.

The problem is posed to the theorem prover by giving as axioms C1,
C2, and the line segments. A line segment is presented as an axiom such
as LINE(p(a,b)).‘-It is presumed that these lines are supplied by a line-
finding scene—analysis program. The quadrilaterals can be given as data
instead of the lines, or else any suitable combination of quadrilaterals

and lines can be provided as data.

In a test run, one quadrilateral and nine lines were given as the

input data, as shown below.

E 3
In dealing with complicated line graph structures, one might want a
more restricted definition of a cube.

127

Co———-v-—elf

a b
a
‘///’g
c
d (]
de——————ecC

This scene is described by the following axioms:

QUADRILATERAL(p(a,b,c,d))
LINE(p(a,b))
LINE(p(b,c))
LINE(p(c,d))
LINE(p(d,a))
LINE(p(a,e))
LINE(p(f,g))
LINE(p(£f,b))
LINE(p(g,c))

LINE(p(e,f)) .

The problem was then posed as the question (¥x)CUBE(x). Even with the
addition of the special treatment of equality, the search does not pro-
ceed as desired. One form of undesired intermediate clause made two of
the vertices of a quadrilateral or two vertices of the cube be the same
vertex. Such a deduction can lead to a proof only in the case where the
cube is seen from the edge in such a manner that two vertices coincide.
Suppose, for the sake of exploring another search-narrowing trick, we
will admit only cubes whose two-dimensional projections merge no vertices,

Then we can use the new predicate DISTINCT(4(x ,...,xn)) that is true

1'%2

128

if and only if the points xl,xz,...,xn are distinct. The term function
letter { stands here for a list of indefinite length. Axioms Cl and C2
are revised, yielding

c1’. (vx,y,z,w){[LINE(p(x,y)) A LINE(p(y,z)) A LINE(p(z,w)) A
LINE(p(w,x)) A DISTINCT(L(x,y,z,w))] D
QUADRILATERAL(p(x,y,z,w))}

cz2’. (Vt,u,v,w,x,y,z){ [QUADRILATERAL(p(t,u,v,w)) A
QUADRILATERAL(p(y,u,t,x)) A QUADRILATERAL(p(v,u,y,z)) A
DISTINCT(4(t,u,v,w,x,y,z))] D
CUBE(p(p(t,u,v,w),p(y,u,t,x),P(v,u,y,z)))} .

The predicate evaluation mechanism is then used to evaluate the predicate
DISTINCT. When a clause is generated in which two arguments (ground terms
or not) of DISTINCT are the same, the literal is effectively subsumed and

the clause is deleted,.

One further improvement was made by using a hill-climbing proof
strategy instead of the unit-preference proof strategy. For this partic-
ular problem a good measure of progress is available--namely, how much of
the cube is constructed, For example, a partial solution consisting of
two completed quadrilaterals is further along than a solution consisting

of one completed quadrilaterél plus one more edge, as shown below:

To measure progress a value is computed for each clause generated
in the proof search. The user creates an evaluation function that assigns
this value to a clause. The value of a potential resolvent is predicted

before the resolvent is actually generated. The next clause generated

129

at any step is the clause that is predicted to have the highest value.
The value of an initial clause is zero; one point is added for each line
added to the cube being constructed, and thus four points are added when

a quadrilateral is completed.

Together, all these methods finally result in a search that finds a
proof and generates no incorrect nodes at all. The proof is shown in
Appendix D. This completes an illustration of how one can 'tune'" the

theorem prover to work well on a particular problem.

This cube-recognition problem leads to a method by which missing
lines can be postulated, thus generating requests for the line finder to
look again in a particular place. Recall that as the proof progresses,
the theorem prover. requests additional data, in thé form of clauses, from
memory. Suppose that in a search for a cube all lines but one are filled
in so that the measure of progress is very high. Since the lines that
would eventually connect to the missing line are filled in, the end
points of the missing line are known. Because of the high progress mea-
sure, when the theorem prover requests this missing line from memory the
request could be channeled to the line finder, asking the line finder to

look harder in that place.

130

VIII DISCUSSION AND CONCLUSIONS

A, Adequacy of Theorem Proving for Question'Answering

The method of theorem proving by resolution has been demonstrated
to be an adequate deduction technique for many question-answering tasks,
The answer construction mechanism greatly extends the question-answering
power of the theorem-proving method. The simple measure of relevance
used for selecting clauses from the data base--whether or not they resolve
with the best candidate clause in the active clause set--is adequate for
easy problems but needs improvement., The simple memory organization--
indexing of clauses by predicate letters and length, with the clauses
sharing as much common substructure as possible--is adequate for the
question-answering tasks considered so far and is not a limiting factor
in the system's performance. For the subjects treated it has been
possible to adequately express the semantiecs in the language of first-

order logic.

B. Theorem Proving and Problem Solving

The first applications of QA2 and QA3 were to ''question answering.,"
Typical question-answering applications are usually easy for a resolution-
type theorem prover. Examples of such easy problem sets given QA3 include
the questions done by Raphael's SIR,4 Slagle's DEDUCOM,3 and Cooper's
chemistry question-answering program.39 Usually there are a few obvious
formulations for some subject area, and any reasonable formulation works
well, As one goes to harder problems like the Tower of Hanoi puzzle, and
program-writing problems, good and reasonably well-thought-out representa-

tions are necessary for efficient problem solving,

As problems become more difficult, not only are representations more
critical, but the proper selection of strategies becomes increasingly
important. The theorem prover may be considered an "interpreter" for a
high-level assertational or declarative language--logic. As is the case
with most high-level programming languages the user may be somewhat
distant from the efficiency of "logic" programs unless he knows something

about the strategies of the system.

131

Some representations are better than others only because of the par-
ticular strategy used to search for a proof. It would be desirable if the
theorem prover could adopt the best strategy for a given problem and
representation, or even change the representation. I don't believe these
goals are impossible, but at present they have not been reached. However,
a library of strategy programs and a strategy language is slowly evolving
in QA3. To change strategies in the present version the user must know
about set-of-support and other program parameters such as level bound
and term-depth bound. To radically change the strategy, the user pres-
ently has to know the LISP language and must be able to modify certain
strategy sections of the program. In practice, several individuals who
have used the system have modified the search strategies to suit their
needs. To add and debug a new heuristic or to modify a search strategy
where reprogramming is required seems to take from a few minutes to
several days. Ultimately it is intended that the system will be able to
write simple strategy programs itself, and "understand" the semantics of

its strategies,

C. An Experimental Tool

The program QA3 as well as its predecessor QA2 has served as a usable
experimental tool for several researchers. The computer program is reason-
ably clean and well-documented (as experimental programs go), It is pro-
vided with many user-oriented features such as editing facilities for the
data base, extensive on-line tracing of proof searches, controls on the

search process, and statistics on each search (cf. Sec, IV).

One experimental use of the theorem-proving program is to test prob-
lem formulations, In exploriqg difficult problems it can be useful to
write a computer program to test a problem formulation and solution tech-
nique. The machine tends to sharpen one's understanding of the problem,
I believe that in some problem-solving applications the "high-level
language' of logic along with a theorem-proving program can be a quick
programming method for testing ideas., One reason is that a representa-
tion in the form of an axiom system can correspond quite closely to

one's conceptualization of a problem. Another reason is that it is

132

sometimes easier to reformulate an axiom system than to rewrite a
problem-solving program, and this ease of reformulation facilitates
exploration. As mentioned earlier, part or all of the problem formulation
(and possibly some solutions) can be saved as axioms and used as part of

the final problem-solving mechanism if desired.

Raphael, Coles, and others®® have begun to study some medical
question-answering applications in a project supported by the National
Library of Medicine, One experiment successfully utilized a data base
of 300 clauses to suggest suitable drugs for particular cases. This
experiment used the predicate evaluation mechanism in a special treat-
ment of the exhaustive enumeration of finite sets. This particular
project has emphasized the need to develop special fast search and

retrieval methods for "easy" questions in a large data base,

Kling29 has used and modified QA3 in a research project concerning
the use of analogy to discover difficult mathematical proofs in geometry
and algebra, He uses a previously solved problem and its resolution
proof as a model for a newly posed allegedly analogous one, Both prob-
lems (theorems) are posed on a common data base, and the analogy is used
to provide relevance-criteria for deciding which subset of the data base
should be used for solving the new problem, In addition, various "cues"
such as interesting (analogous) lemmas are extracted from the model
proof, proved in the analog case and added to CLAUSELIST. The analogy
system (ZORBA) uses QA3 in the last step of a process that began with

the analogy generation and cue extraction,

D. A Brief Comparison to Other Systems

The program has been tested on several question sets used by earlier
question-answering pfograms. The subjects for the first question set,

1

reported by Green and Raphael,” consisted of some set membership,

set inclusion, part-whole relationship, and similar problems.

Raphael's SIR*,® gave a similar but larger problem set also having
the interesting feature of requiring facts or axioms from several sub-
jects to interact in answering a question, SIR used a different sub-

routine to answer each type of question, and when a new relation was

133

added to the system, not only was a new subroutine required to deal with
that relation but also changes throughout the system were usually neces-
sary to handle the interaction of the new relation with the previous
relations. This programming difficulty was the basic obstacle in
enlarging SIR. Raphael proposed a "formalized question answerer' as

the solution, QA3 was tested on the SIR problem set with the following
results: All the facts programmed into or told to SIR were entered into
the QA3 memory as axioms of first-order logic, and QA3 answered essen-
tially all the questions answered by SIR. The questions missed used
the special SIR heuristic, the "exception principle.” It was possible
to hand-translate, as they were read, questions and facts stated in

SIR's restricted English, into first-order logic.

Slagle, in his paper on Deducom,al a question-answering system,
presented a broader, though less interactive, problem set consisting of
gathered questions either answered by programs of, or else proposed by,

4,5 39 . 53
? and Simon.

Raphael, Black,51 Safier,sz McCarthy,l"3 Cooper,
Deducom was considered one of the best question-answering systems using
non-English inputs. Included in this set were several examples of
sequential processes, including one of McCarthy's End Game Questions,13
Safier's Mikado Question,®? McCarthy's Monkey-and-Bananas Question,13

and one of Simon's State Description Compiler Questions.53 Using the
technique discussed in Sec. VI to describe processes, it was possible

to axiomatize for QA3 all the facts and to answer all the questions
printed in Slagle's paper, Furthermore, QA3 overcame some of the

defects of deducom: QA3 could answer all answerable questions, the order
of presenting the axioms did not affect its ability to answer questions,
and no redundant facts were required. QA3 was then tested on the entire
set of 23 questions presented by Cooper.39 QA3 correctly answered all
the questions, including four not answered by Cooper's program and six-

teen not answered by Deducom,

In addition to these common Question-answering problems, QA3 also
solved the Wolf, Goat, and Cabbage puzzle in which a farmer must trans-
port the wolf, goat, and cabbage across the river in a boat that can

hold only himself and one other. The wolf cannot be left alone with the

134

goat and the goat cannot be left alone with the cabbage. QA3 has also
solved the Tower of Hanoi puzzle (see Sec, VI-D) and some simple analogy

puzzles,

In all of the problems mentioned above, QA3 was given the facts
and questions in first-order logic, whereas Raphael's program and
Cooper's program used a restricted English input. However, in a test
run Coles' program translated Cooper's questions from English into

logic, and QA3 was able to answer all the questions,

The General Problem Solver (GPS) of Newell, Shaw, and Simon, dis-
cussed at length in Newell and Ernst,®® has solved many problems, some
rather difficult. QA3 can do the easier GPS problems, but it does not
perform as well on some of the most difficult, The difference is that
GPS is designed so that if the user supplies "differences' that specify
which subproblem to attempt next, the search procedure effectively uses
this information to narrow its search. Such search guidance is not
built into QA3. It would be of interest to introduce the GPS search
strategy or a similar search strategy into a resolution program such as
QA3. An advantage of QA3 is that the language of mathematical logic is
more elegant and often easier to use, in my own opinion, than the trans-
formation language of GPS. QA3 is also more of a true question-answering
system than GPS, having storage and retrieval capabilities and a larger
interactive data base (rather than necessarily being tuned like GPS for

one problem at a time).

E. Alternate Approaches

A detailed comparison of all'the known possible alternate approaches
to question answering and problem solving would be very‘valuable, but
unfortunately no one has yet undertaken this task. ' In this section I
will mention a few of the more obvious approaches and provide references,
Simmons 4’18 provides a description of some methods that have already

been implemented for use in question-answering systems,

One large class of candidates for the basis of a question-answering
system consists of the various classical kinds of logic, These include
prbpositional logic, first-order logic, higher-order logic, and modal

logic. (Many working question-answering programs use some comparable

135

systems of logic but defy such simple categorizations.) The higher-order
logics and modal logics can be more powerful than first-order in their
ability to express concepts, and first-order is in turn more powerful
than propositional. If this is so, why use anything except a higher-
order logic in a question—answering system? The answer lies in the
present state of knowledge about methods of using each system. For
propositional logic there exist fast, tested decision procedures. First-
order logic is not decidable; however, there exist slower but reasonable
machine-implementable proof procedures. In general not as much is known
about how one can implement a practical higher-order system. One method
for using logic that may be feasible in certain cases is to state a prob-
lem in, say, modal logic and then translate it into first-order logic so
that a first-order proof procedure may be used. McCarthy and Hayes40
present a relevant philosophical discussion of logics. Hewitt®® presents
a programming system intended for the implementation of a higher-order-

logic theorem prover. Robinson®® presents a higher-order logic system.

In addition to the more nearly classical logical approaches to con-
structing a problem solver, several problem-solving systems utilizing
other approaches have been proposed and several have been implemented.
Because all such systems (as well as QA3) are relatively new, and because
the systems use quite different mechanisms (at least on the surface), a
detailed comparison to resolution theorem-proving methods is difficult,

and remains an open question.

A subject method closely related to logic is set theory. Set-
theoretic methods can be imbedded in logic (and vice versa). But some-
times one would rather speak explicitly in terms of predicates, and
sometimes one would rather speak explicitly in terms of sets, especially
in problems involving the enumeration of finite sets. As far as I know,
the present state of knowledge about what question-answering and problem-
solving procedures could be used effectively within a set-theoretic
framework is not as advanced as knowledge of first-order-logic proof
procedures. Suppes®” discusses ""Set Theoretical Structures in Science,"”
and Sandwallf® discusses a promising machine-implementable set-based

question-answering system.

136

Burstall developed "A Combinatory Approach to Relational Question
Answering and Syntax Analysis,"®® His system is based upon combinators,

which are functions having functions as arguments and functions as values.

In another, quite different approach, Fikes®® discusses a problem-
solving system in which problems are stated as ALGOL-like procedures and
then a problem-solving program finds the correct values of variables left

constrained but unspecified in the problem statement.

One feature of many of these methods that has struck me is that there
is an underlying similarity in the development of each of the diverse
approaches to the development of resolution theorem proving., Each
approach seems to first enter a phase in which it is discovered that
the approach is "incomplete" in some practical sense. Typically there
is a quick and effective strategy for easy problems-?corresponding to
a depth-first unit-preference strategy. Later comes a difficult trans-
ition to case analyses, and breadth-first search-~-corresponding to the
non-unit strategies. Initial strategies tend to resemble the set-of-
support strategy. Matching procedures are at first often not as general
as possible, so that each problem-solving step unnecessarily binds vari-

ables to incorrect values. Later one sees the need for.sophisticated
| and versatile sﬁbject-dependent strategies, and better problem represen-
tations, More elaborate matching procedures are desired, such as those
described in Sec, VII-D, Larger steps of deduction are desired--corres-
ponding, say, to maximal clashes.® One might conjecture that a researcher
developing a new approach to question answering would do well to borrow
from the store of resolution and other well-developed methods such as

GPS and translate these methods into his approach,

F, Limitations and Improvements

In thié section I shall discuss two limitations on the performance
of QA3 and what can be done to improve performance., The first limita-
tion is that the system is slow. The second is that it cannot solve
difficult or highly specialized problems: it cannot do real game-playing
(checkers, chess, étc.) requiring a great deal of an#lysis and special
data structures; it cannot write long or complex programs; and it becomes
inundated if supplied with too many possible relevant facts about its

problem areas,

137

1. Speed

What do we mean by saying the system is too slow? We mean that
on some problems the time required to answer the question is large, even
though the proof strategy is well suited to the problem, the representa-
tion is the desired representation, and a theorem-prover seems to be a
suitable problem-solvihg mechanism. On such problems, an examination of
the program's internal operations indicates that the number and type of
LISP operations being done on a typical problem is quite reasonable.

The easiest questions, such as the chemistry questions, take several
seconds. The particular Monkey and Bananas problem formulation given in
Sec. VI-C requires one minute and fourteen seconds for a proof. These
times are all console (real) time, not CPU time, since QA3 is running

under a time-sharing system~--the SDS 940.

The major cause of this slowness is the computer system in which
QA3 is programmed. The program is written in a version of LISP imple-
mented by Bolt, Beranek, and Newman for the SDS 940. The 940 has only
16K 24-bit words for the user, but LISP uses a paging system and drum to
extend the effective memory size to 125K or more. The price one pays is
that this version of LISP is very slow--e.g., a function call or a "cons'
takes about 1.5 milliseconds. Since the 940 word is only 24 bits, there
is only one LISP cell per computer word. The QA3 program occupies about
25K words. On large problems, the QA3 program, the LISP system, and
free storage have required about 100K and more of storage. A detailed
analysis of where time was going revealed that time was fairly evenly
distributed among the many subprograms of QA3. The key algorithms such
as subsumption and unification were programmed about as well as possible,
using the known tricks within fhis version of LISP. Two possibilities
for increasing speed are: (1) convert to machine language (or FORTRAN,
etc.), and (2) switch to a new machine. Because one of the goals of
this system has been to maintain flexibility, it would probably be a
mistake to recode the program in machine language or FORTRAN. The flex-
ibility of the LISP language has been very valuable for writing, debugging,

modifying, and experimenting with the program. Fortunately a faster

138

machine is available; the system is being transferred to a PDP-10, a
computer with a larger word--36 bits--so that therc are two LISP cells
per computoer word. The PDP-10 has a large core memory (up to 206K) and
a fast LISP system. In summary, one scevere limitation is Lhe system in
which QA3 is programmed, and the limitation can be overcome by a larger,

faster system.

The LISP language has been adequate, but the proposed LISP-2
language, if it existed, would seem to be an excellent langhage in which

to implement a new question-answering system.

2. Difficult Questions

Another kind of limitation is the inability of QA3 to handle a
difficult question. In a typical case, a user will try a set of axioms
and find that the search for a solution takes Lloo long. By observing
the scarch process, Lhe user feels that the search is quite unreasonable
for the problem. It may be the case that the program is not well suited
Lo the problem (such as difficult game-playing). On the other hand, it
may bc¢ the case that the program's performance can be improved. By
observing how and why Lhe search process is poor, the user often sees
how simple changes will lead to the desired resulls. We list four such

changes that are possiblc:

1) Representation Changes. The Tower of Hanoi example illustrated

how successively better representations led to easier solutions.

(2) Strategy Changes. The cube-finding problem illustrated how a

measure of progress allowed a very efficient hill-climbing

proof strategy.

(3) Predicate Evaluation. The predicate evaluation mechanism

discussed in the cube-finding problem and in the Tower of
Hanoi problem used special LISP programs to quickly trim poor
nodes from the search tree and add fast computational ability
to the theorem prover. The LISP program can of course use

special data structures in its computations.

(4) Special Term-Matching During Unification. The special equality

mechanism discussed in the cube-finding problem also decreased

the number of clauses produced during the search.

A still better improvement is theoretically possible, though
not yet practical: The user could ask QA3 tor write its own special
program to solve the problem at hand. The LISP sort program problem
jllustrated how the theorem prover has the potential to go from a simula-
tion mode to a program-writing mode in which the‘theorem prover can

write a fast program that quickly solves the particular problem.

On the problems studies so far, the user tends to sec good jdeas
for improvements faster than he is able to implement them. To help
alleviate such a condition the present version of QA3 is gradually being

modified to make each of the above methods easier to use.

3. A Framework for a General Machine Intelligence

One of the unstated but implicit goals of this research has
been the development of a framework and a system in which to embed the
many aspects of intelligence that will ultimately be necessary for a
true machine intelligence. This goal has not of course been reached,
but some light has been shed, and some directions for the future are

clearer now.

Many possibly important aspccts of machine intelligence have
been diScussed in detail hercein. Once such ability is program writing
in the system's own language. Automatic program writing will facilitate
cffective sclf-modification and will allow automatic specialization.
By specialization I mean the ability to automatically improve performance
on a particular-task by creating better and better programs for such
tasks. The key to this ability is the capacity for describing and
"understanding" the semantics of the programs. The rest of this task
is to develop good methods, constructs, systems, etc. for efficient
automatic programming. As an examplc of such a process, initially the
machine will have a set of rules thal describe a process, such as the

. . " . . " .
rules for describing a cube. In a slow interpretive mode the machine

140

can deal with these rules to recognize and describe a cube. When such

a process is deemed sufficiently important, the machine will create a
special program for recognizing a cube. If no further modification of
this program is necessary, then the 'semantics’ of the internal operation
of this special program will not be saved (perhaps analogous to an
"unconscious' stored subroutine). If the program is to be modified or

if subprograms are to be used later in other operations, the semantics

of its internal operation will be saved to enable such a process.

Another important ability is the communication of information
among problem-solving subsystems. Specific problem-solving subroutines
cannot operate effectively by themselves, especially in changing environ-
ments and changing requirements. For example, to reach a given goal the
machine may need to first recognize an object. The recognition of the
object requires moving Lhe machine to another position. The recognition
process might integrate visual information such as texture, outline, and
_color with temporal information, (It's afternoon), contextual information
(such as '"'I know there is an x somewhere in this room and it's not any-

where else, so this may well be an x'").

Such integration of types of information requires a versatile
and clean interface for the many subprograms. Each subroutine must be
able to request additional information from any other subsystem. Like-
wise any subsystem must be able to send information such as answers to
requestls or other useful but unrequested data to other subsystems. Such
an attempt was made in QA2 and QA3 in that in various applications the
"{heorem proven' could request and accept needed information from LISP,

MEMORY, scnsors, teletype, FORTRAN, ctc.

Although QA2 and A3 possessed rudimentary abilities of the
kind described, they were not really adequate. The system organization
was nol suffliciently clean and versatile to allow a multitude of inter-
communications and diversc problem solvers to ceffectively cooperate in

achieving their goals on difficult problems.

The next system being designed will hopefully come closer to this

jdeal and also overcome the limitations mentioned in Sec. VIII-F-2, above.

141

4, Next System

In addition to the modifications being made to QA3, Robert A.
Yates and I are designing an entirely new system, called QA4. The
specification of the new system is not yet complete, so that we cannot
yet say exactly what it will consist of, but several features now being
developed will probably be part of QA4: The new system will use a
higher-order-logic language; it will include a strategy language for
describing storage and retrieval operations, proof-finding strategies,
and general problem-solving strategies; and it will include special
primitive set operations and special internal representations for finite

sets.

The design goals of the system include greater flexibility than
QA3, more usable self-descriptive capabilities, more usable automatic
program-writing capabilities, ease of memory reorganization, ease of
changing strategies, ease of changing representation, ease of changing
inference mechanisms, and greater ability to specialize the system for
hard-problem domains. The system will be more semantically oriented and
less syntactically oriented than QA3. The system is intended to approach
more closely the goal of the advice taker-~i.e., it will be able to take
more advice abouf its performance but will require less knowledge on the
part of the user about its internal operations and representations.
Such a system is of course difficult to design, but preliminary results

are promising.

G. Problems for Research

We summarize here several broad, important research problems worthy
of further work. Good solutions to these problems would contribute to

the field of artificial intelligence.

1. Automatic Representation Changes

An important problem is that of creating a system that can
automatically find substantial improvements in its representations of
information. 1In a paper illustrating the importance of representation

changes, Amarcel®?! discusses seven successively better representations

142

for the missionary and cannibals puzzle. With each improved represen-
tation, the problem becomes easier. Amarel also indicates the factors
that make each change possible. Can such a process be automated? Can
a theorem-proving system be made to examine its axioms and revise them

to yield better bui logically equivalent axioms?

2. Autlomatic Strategy Changes

An important problem is devising a system that can automatically
find substantial improvements in its problem-solving strategies. Can a
theorem prover be made Lo observe its axioms and performance and then

%) metrics, indicators of relevance, or other means of

find differences,
successfully guiding search and selecting strategies? Can a theorem
prover be made to construct new strategies and/or prove new strategies

to be better under particular conditions?

3. Automatic Programming

Automatic program writing seems to be a field of great importance
in itself and especially for artificial intelligence. Much research
today requires constant reprogramming. The self-modifying machines of
the future might well use automatic program~-writing facilities. The
work on automatic program writing reported here and elsewhere is just

a small beginning.

4, Answer Construction

The concept of answer construction is worthy of further study.
Under what conditions and how can one find a "better'" answer? What is
a best answer? In a constructive proof, the answer clause contains a
partially-constructed answer. Can this answer be used to guide the

o " o < .
roof search or provide a 'meaning’ for a step in the proof?
p P P P

5. Better Automatic Theorem Provers

Better automatic theorem provers lead to better question-answering
systems and better problem-solving systems. In addition to the need for
bettler theorem-proving formalisms there is much room for improvement

within the resolution formalism.

143

One of the most important requirements for improving theorem
provers is that of finding better proof strategies. It seems likely
that no one fixed strategy will be best for all problems, so the key is
finding flexible and suitable strategies, An important consideration in
developing a new strategy is that the strategy should avoid redundancy.
This can be done by two means: (1) avoid the creation of new but un-
necessary inferences, and (2) create new inferences but eliminate un-
necessary ones, It seems especially difficult to change proof strategies
and still avoid the creation of unnecessary inferences. It is easier to
change proof strategies and eliminate unnecessarily created inferences,
although such a system will usually be less efficient. The subsumption
algorithm provides a quite general means of eliminating unnecessarily
created clauses, Improvements of the subsumption algorithm would be

quite worthwhile,

Also important to resolution theorem proving is the development
of efficient techniques for treating the equality relation, techniques
for treating finite sets, and techniques for enumeration and testing of
elements of sets. An important part of each of those problems is that

of providing good strategies that tell us when to employ these techniques.

6. Undertaking More Realistic Applications

Increases in the level of realism and difficulty of an appli-
cation of a question-answering system can lead to new problems and force
new solutions. One important question-answering application would be
the use of a very large, interactive data base where difficult questions
are asked. Another important and difficult application is one where the
system must interact with the real world through sensors and effectors,

such as the SRI robot project.

7. Comparison of Methods

An important and difficult problem is that of comparing and
evaluating the known approaches to question answering and problem solving.
What are the domains of applicability of each of these techniques? Do
any of the known systems provide the right framework in which to embed

a general intelligence?

144

Appendix A

DESCRIPTION OF RESEARCH PROJECT

The plan for this research has been to design, implement, experiment
with, and evaluate an evolving series of question-answering systems (in
the form of computer programs). The research has been carried out under

the supervision of Dr. Bertram Raphael.

The first step taken was to choose some simple subject areas. These
first subjects included part-whole relationships, set memberships, set
inclusions, spatial relations, family relations, and other relatively

simple-to-formalize subjects.

QAl was the first system implemented. This system was described in
detail, first in Ref. 62, and later in a revised and published version of
the same papér.1 It was largely an attempt to improve on the SIR system
of Raphael. The major advantage of QAl over SIR lies in the ability of
QAl to hold in its list-structured memory logical statements about how
various kinds of facts might interact. Thus QAl does not require as many
separate ad hoc question-answering routines as did SIR. The data repre-
sentation and memory organization of QAl were adequate but the deduction
techniques required improvement, so the control lanéuage and logical
deduction programs of QAl were left in rather rough form. To progress
further, a decision was reached to start anew, and to base the new work

upon relevant research in the field of automatic theorem proving.

The next version, QA2 (also described in Refs., 62 and 1), thus used
first-order logic and an automatic theorem prover applying J. A.'Robinson's
resolution techniques. First, it was necessary to devise ways in which
a pure theorem prover could be extended to a question-answering system.

QA2 was then implemented; it was successful on all thg simple problems
that had been selected. The next step was to formalize more difficult
subject areas that are basically processes-involVing changes of state,
including writing computer programs in LISP, describing the actions of a
robot, and theorem proving itself. These harder p:oblems also served as

goals for the next question-answering system, QA3. QA3 is conceptually

145

similar to QA2, using first-order logic and theorem proving by resolution,
but QA3 is more sophisticated, has more frills, and is a much more effi-
cient program., The goal of the project was not to study and improve
theorem provers as such, but to a certain extent this has been necessary
in order to use the latest theorem-proving techniques to solve hard prob-

lens.

QAl was programmed in LISP on the Q32 computer of Systems Development
Corporation in Santa Monica., QA2 was also written in LISP on the Q32 com-
puter, and was then transferred to the SDS 940 of the Artificial Intelli-
gence Laboratory of Stanford Research Institute. The slowness of QA2 on
the 940 helped provide impetus for seeking efficienéy in a new system.
Thus QA3 was programmed on the SDS 940. The author programmed QAl. For
the programming effort on QA2 and QA3, Bob Yates joined the author, pro-

viding a considerable contribution.

146

Appendix B

THE MONKEY AND BANANAS PROOF

The axioms for the Monkey and Bananas problem are listed below,
followed by the proof. The term SK24(S,P2,P1,B) that first appears in
clause 16 of the proof is a Skolem function generated by the elimina-
tion of (Vx) in the conversion of axiom MB4 to quantifier-free clause
form. (One may think of it as the object that is not at place P2 in
state S.)

LIST MONKEY

MB1 (MOVABLE BOX)

MB2 (FA(X) (NOT(AT X UNDER-BANANAS S#)))
MB3 (AT BOX PLACEB S#)

MB4 (FA(B P1 P2 S)(IF(AND(AT B P1 S)(MOVABLE B) (FA(X) (NOT(AT X P2 S)))) (AND
(AT MONKEY P2(MOVE MONKEY B P2 S)) (AT B P2(MOVE MONKEY B P2 S)))))

MB5 (FA(S)(CLIMBABLE MONKEY BOX S))

MB6 (FA(M P B S)(IF(AND(AT B P S) (CLIMBABLE M B S)) (AND (AT B P(CLIMB
M B S))(ONM B(CLIMB M B S)))))

MB7 (FA(S) (IF (AND (AT BOX UNDER-BANANAS S) (ON MONKEY BOX S)) (REACHABLE
MONKEY BANANAS S)))

MB8 (FA(M B S)(IF(REACHABLE M B S)(HAS M B(REACH M B S))))
" DONE

Q (EX(S) (HAS MONKEY BANANAS S))

A YES, S = REACH(MONKEY,BANANAS,CLIMB (MONKEY,BOX,MOVE (MONKEY , BOX,
UNDER-BANANAS,S9)))

PROOF

1 -AT (X, UNDER-BANANAS , S9) AXIOM

2 AT (BOX,PLACEB,S@) AXIOM

3 CLIMBABLE (MONKEY,BOX,S) AXIOM

4 -HAS (MONKEY,BANANAS, S) NEG OF THM
ANSWER (S)

5 HAS(M,B,REACH(M,B,S)) -REACHABLE(M,B,S) AXIOM

6 ~REACHABLE (MONKEY , BANANAS, S) FROM 4,5

ANSWER (REACH (MONKEY , BANANAS,S))

147

10

11

12
13

14

15

16

17

18

19

20
21

11
28
22
27

REACHABLE (MONKEY , BANANAS,S)
-ON (MONKEY , BOX, S)

-AT (BOX, UNDER-BANANAS, S)

-AT (BOX, UNDER-BANANAS, S)
ANSWER (REACH (MONKEY , BANANAS,S))
ON(M,B,CLIMB (M,B,S)) ~CLIMBABLE (M, B, S)

-AT (BOX, UNDER~BANANAS , CLIMB (MONKEY ,BOX,S))
~-AT(BOX,P,S) -CLIMBABLE (MONKEY,BOX,S)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY ,BOX,S)))

-AT (BOX , UNDER~BANANAS , CLIMB (MONKEY ,BOX,S))
-AT (BOX,P,S)

ANSWER (REACH (MONKEY ,BANANAS , CLIMB (MONKEY , BOX, S)))
AT (B,P,CLIMB(M,B,S)) -AT(B,P,S) ~CLIMBABLE(M,B,S)

-AT (BOX,XX1,S) -AT (BOX,UNDER-BANANAS,S)
-CLIMBABLE (MONKEY , BOX, S)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX,, S)))
-AT (BOX,XX1,S) -AT(BOX,UNDER-BANANAS,S)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX,S)))
-AT (BOX , UNDER-BANANAS , X)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX,S)))

AT (B, P2,MOVE (MONKEY,B,P2,S)) -MOVABLE(B) -AT(B,P1,S)
AT (SK24(S,P2,P1,B),P2,S)

-ON (MONKEY,BOX, S)

-AT(B,P,S)

-MOVABLE (BOX) ~-AT (BOX,P1,S)
P1,BOX), UNDER-BANANAS,S)

ANSWER (REACH (MONKEY , BANANAS, CLIMB (MONKEY , BOX,
MOVE (MONKEY , BOX , UNDER-BANANAS,S)))) :

-MOVABLE (BOX) AT (SK24 (S@, UNDER-BANANAS , PLACEB, BOX) ,
UNDER-BANANAS , S@)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX,
MOVE (MONKEY , BOX , UNDER-BANANAS,S@))))

AT (SK24 (S, UNDER-BANANAS,

-MOVABLE (BOX)

ANSWER (REACH (MONKEY , BANANAS , CLIMB (MONKEY , BOX ,
MOVE (MONKEY , BOX , UNDER-BANANAS ,S9))))

MOVABLE (BOX)

CONTRADICT ION
ANSWER(REACH(MONKEY,BANANAS,CLIMB(MONKEY,BOX,
MOVE (MONKEY , BOX , UNDER-BANANAS,S%))))

CLAUSES LEFT

CLAUSES GENERATED

CLAUSES ENTERED

RESOLUTIONS OUT OF 91 TRIES

SUBSUMED 23 TIMES OUT OF 179 TRIES
FACTORED 1 TIMES OUT OF 25 TRIES

148

AXIOM

FROM 6,7

AXIOM
FROM 8,9

FROM 3,10

AXIOM
FROM 11,12

FROM 3,13

FACTOR 14

AXIOM

FROM 15,16

FROM 2,17

FROM 1,18

AXIOM
FROM 19,20

Appendix C

THE SORT PROOF

L3
The following axiomatization is shorter than that given in Sec.
VII-B. This axiomatization results in a proof that creates a sort pro-

gram.

These axioms use the SAME predicate instead of the ON predicate.
SAME(x,y) holds if and only if the lists x and y contain the same ele-
ments (not necessarily in the same order). SAME can be defined in terms

of ON as:
vo. (v¥x,y)[SAME(x,y) = (¥z)[ON(z,x) - ON(z,y)]] ,

although this definition is not needed for the sort proof. The only
information needed about SAME is the definition of R in terms of SAME.
Similarly, we do not need the definition of SD, just the definition of
R in terms of SD and the description of merge in terms of SD. First,

the predicate R is defined in terms of SAME and SD:

ul. (vx,y)[R(x,y) = [SAME(x,y) A SD(y)1] .

Next, the merge function is described by Axioms U2 and U3:
u2. (vx,y)[SD(y) > sD(merge(x,y))] .

Axiom 2 states that if the input lisi to merge is sorted, then the out-

pul is sorted.
U3. (Vu,x,y)[[SD(y) A SAME(x,y)] 5 SAME(cons (u,x) ,merge(u,y))] .

Axiom U3 may be thought of as follows: Let y be the sorted input list
to merge(u,y). The new element to be added is u. The sef of elements
in the 1ist cons(u,x) is just the elements of x plus the element u. If
y and x have the same elements, then the lists merge(u,y) and cons (u,Xx)

have’the same elements.

*
The axiomatization is based on a suggestion by R. Yates.

149

We also state the terminating condition on R, namely that the sorted

version of the empty list is the empty list itself,
v4d. (Vx)[x = nil D R(x,nil)] .

(Axiom U4 could be derived from UO and the definition of R given in Sec.
VII-B, but we shall take it as an axiom to simplify the proof.) One
of the fundamental LISP axioms (comparable to L3 in Sec. VII-B) will be

used:
U5. (¥x)[x # nil D x = cons(car(x),cdr(x))] .

Since we are assuming a domain of lists for U5, x is either the empty

(1]

1ist ''nil" or else a non-empty list. In case it is a non-empty list, we

say that x is equal to cons (car(x),cdr(x)).

We will use an equality axiom to specify the substitutivity property
of the equality relation. The particular one needed is
Ué. (vx,y,2)[[x = y A SAME(y,z)] > SAME(x,z)] ,
which allows us to substitute equal terms for equal terms in the first
argument of the SAME predicate. No other equality axioms are used.

The machine form of the axioms and the proof is given below. A
discussion of the rather complicated proof follows the listing of the

proof.
The only axioms used in the proof are listed below in -the QA3 input
form:
Ul. (FA(X Y)(IFF(R X Y)(AND(SAME X Y)(SD Y))))
v2. (FA(X Y)(IF(SD Y)(SD(MERGE X Y))))
u3. (FA(X Y U) (IF(AND(SD Y)(SAME X Y)) (SAME(CONS U X)(MERGE U Y))))
U4. (FA(X)(IF(EQUAL X NIL)(R X NIL)))
us. (FA (X) (IF (NOT(EQUAL X NIL)) (EQUAL X(CONS(CAR X) (CDR X))))

ué. (FA(X Y Z)(IF (AND(EQUAL X Y)(SAME Y Z))(SAME X z))) .

150

The question, answer, and proof are:

Q (FA(X) (EX(Y) (AND(IF(EQUAL X NIL)(R X Y))(IF(AND(NOT(EQUAL X NIL))
(R(CDR X) (SORT(CDR X))))(R X Y))))
A YES, Y = COND(X,MERGE(CAR(X) ,SORT(CDR(X))) ,NIL)
UNWIND
SUMMARY
1 -R(SK62,Y) NEG OF THM
ANSWER(Y)
2 R(X,NIL) -EQUAL(X,NIL) AXIOM
3 -EQUAL(SK62,NIL) FROM 1,2
ANSWER(NIL)
4 EQUAL(X,CONS(CAR(X),CDR(X))) EQUAL(X,NIL) AXIOM
5 SD(MERGE(X,Y)) -SD(Y) AXIOM
6 R(X,Y) -SAME(X,Y) -SD(Y) AXI1OM
7 -SAME(SK62,Y) =-SD(Y) FROM 1,6
ANSWER(Y)
8 -SD(Y) ~-SAME(SK62,MERGE(X,Y)) FROM 5,7
ANSWER (MERGE (X,Y))
9 SD(Y) -R(X,Y) AXIOM
10 -SAME(SK62,MERGE(X,Y)) -R(XX16,Y) FROM 8,9
ANSWER (MERGE (X,Y))
11 EQUAL(SK62,NIL) R(CDR(SK62),SORT(CDR(SK62))) NEG OF THM
ANSWER (XX1)
12 -SAME(SK62,MERGE(X,SORT(CDR(SK62)))) EQUAL(SK62,NIL) FROM 10,11
ANSWER (MERGE (X ,SORT(CDR(SK62))))
13 -SAME(SK62,MERGE(X,SORT(CDR(SK62)))) FROM 3,12
ANSWER (COND(SK62 ,MERGE (X, SORT (CDR(SK62))) ,NIL))
14 SAME(X,Z) -EQUAL(X,Y) -SAME(Y,Z) AXIOM
15 —EQUAL(SKGZ,Y) ~SAME(Y ,MERGE (X ,SORT(CDR(SK62)))) FROM 13,14
ANSWER (COND (SK62 ,MERGE (X , SORT (CDR (SK62))) ,NIL))
16 EQUAL(SK62,NIL) -SAME(CONS(CAR(SK62),CDR(SK62)),
MERGE (XX117 ,SORT(CDR(SK62)))) FROM 4,15

ANSWER (COND(SK62 ,MERGE (XX117 ,SORT(CDR(SK62))) ,NIL))

151

17

18

19

20
21

22

23
24

26

-SAME (CONS (CAR(SKG2) ,CDR (SK62)) ,MERGE(XX117,
SORT (CDR(SK62)))) FROM 3,16

ANSWER (COND(SKG62,MERGE (XX117 ,SORT(CDR(SK62))) ,NIL))

R (CDR(SK62) ,SORT (CDR (SK62))) FROM 3,11
ANSWER (COND(SK62,XX1,NIL))

SD(SORT (CDR(SK62))) FROM 18,9
ANSWER (COND(SK62,XX1,NIL))

SAME (CONS (U,X) ,MERGE(U,Y)) -SD(Y) -SAME(X,Y) AXIOM

SAME (CONS (U,X) ,MERGE (U,SORT(CDR(SK62))))

-SAME (X ,SORT(CDR (SK62)) FROM 19,20
ANSWER (COND(SK62,XX1,NIL))

~-SAME (CDR (SK62) ,SORT (CDR (SK62))) FROM 17,21
ANSWER (COND(SK62 ,MERGE (CAR (SK62) ,SORT (CDR (SK62))) ,NIL))

SAME(X,Y) ~R(X,Y) AXIOM

-R(CDR(SK62) ,SORT(CDR(SK62))) FROM 22,23
ANSWER (COND (SK62 ,MERGE (CAR (SK62) ,SORT (CDR(SK62))) ,NIL))

EQUAL(SKG2,NIL) FROM 24,11
ANSWER (COND (SK62 ,MERGE (CAR (SK62) ,SORT (CDR(SK62))) ,NIL))

CONTRADICTION FROM 3,25

ANSWER (COND(SK62 ,MERGE (CAR (SK62) ,SORT (CDR(SK62))) ,NIL))

115 CLAUSES LEFT

286 CLAUSES GENERATED

115 CLAUSES ENTERED

552 RESOLUTIONS OUT OF 2403 TRIES

SUBSUMED 220 TIMES OUT OF 19059 TRIES
FACTORED 170 TIMES OUT OF 393 TRIES

The strategy is somcewhat "'tuned” for this problem (and hopefully

for other programming problems). A preference is given to clauses whose

answers do not contain many nested occurrences of any one function.

Clauses having the answer "nil" are not preferred. The preferences are

handled by increasing the level of nonpreferred clauses beyond their

normal level.

152

Often answer simplification is possible. For example, the function
cond(x,cond(x,y,w),z) is equivalent to the shorter function cond(x,y,z).
QA3 can automatically make this simplification (as shown in Clauses 17

and 26).

As discussed in Sec. VII-B, the "cond" axioms (L6 and L7) are not
used explicitly. Instead, a special mechanism simulates the use of
these axioms. To see this, observe that the answer in Clause 13 is a
conditional answer constructed from the two answers in Clauses 3 and 12.
However, this operation is equivalent to using the cond axioms., To see
this, we give below a simple resolution derivation showing how two clauses
having two different answers can be combined by a standard resolution

proof.

Suppose the two clauses are:

Al. a=nil V P V
‘ ANSWER (b)

A2, a£nil V Q@ V
ANSWER(c)

where P and Q represent arbitrary, possibly emﬁty, disjunctions of 1lit-
erals. Note that Al has the answer b and A2 has the answer c. Al and

A2 may be considered analogous, respectively, to Clauses 12 and 3 in the
above proof, where "a" corresponds to SK62, "b" corresponds to

merge (x,sort(cdr(x))), and "c" corresponds to nil. We will now derive

Al3 by a conventional, unabbreviated resolution proof. Clause Al3 will

be seen to have a single conditional answer, cond(a,b,c), and is analogous

to Clause 13 of the above proof,

The clauses describing the conditional operation are:

A3, x = nil V cond(x,y,2)

!
«

|
N
L]

A4, x £ nil V cond(x,y,z) =

An axiom describing the substitutivity of equality in the ANSWER

predicate is as follows:

153

AS.

The answers

of resolutions:

A6, y
A7, y
A8, a -

A9, a

Al0. a

All. a

Al2, P

Al3. P

The special

and shortens the

y # xV
~ANSWER(x) V ANSWER(y) .

from Al and A2 can be combined by the following sequence

ZbVas=nil VPV From Al,A5
ANSWER (y)
#cVai#nil VvV From A2,A5
ANSWER (y)

nil V x = nil VPV From A3,A6

ANSWER(cond(x,b,z))

nil Vx # nil VvQV From A4,A7
ANSWER (cond (x,y,c))

=nil VPV Factor A8
ANSWER(cond(a,b,z))
#Znil VvQV Factor A9

ANSWER (cond(a,y,c))

vQvV From Al0,All

'ANSWER (cond(a,b,z)) V ANSWER(cond(a,y,c))

v QV Factor Al2
ANSWER (cond(a,b,c))

mechanism for combining answers speeds up this process

proof.

154

Appendix D

THE CUBE PROOF

The following axioms represent picture data:
(QUADRILATERAL (P A B C D))
(LINE (P A B))
(LINE (P B C))
(LINE (P C D))

(LINE (P D A))
(LINE (P A E))
(LINE (P F G))
(LINE (P F B))
(LINE (P G C))
(LINE (P E F))

The following two axioms define a quadrilateral and a cube,

respectively.
(FA (XY Z W) (IF (AND (LINE (P X Y)) (LINE (P Y Z)) (LINE (P Z W))
(LINE (P W X)) (DISTINCT (L X Y Z W))) (QUADRILATERAL (P X Y Z W))))

(FA (X1 X2 X3 X4 X5 X6 X7) (IF (AND (QUADRILATERAL (P X1 X2 X3 X4))
(QUADRILATERAL (P X6 X2 X1 X5)) (QUADRILATERAL (P X3 X2 X6 X7)) (DISTINCT
(L X1 X2 X3 X4 X5 X6 X7))) (CUBE (P (P X1 X2 X3 X4) (P X6 X2 X1 X5)

(P X3 X2 X6 X7)))))

The question, answer, and proof are:

Q (EX(X) (CUBE X))
YES, X = P(P(¥,B,A,E),P(C,B,F,G),P(4,B,C,D))
UNWIND

SUMMARY 01/07/69 1545:07

1 LINE(P(F,G)) AXIOM
2 LINE(P(F,B)) AXIOM
3 LINE(P(B,C)) AXIOM
4 LINE(P(E,F)) AXIOM
S LINE(P(A,E)) AXIOM
6 LINE(P(A,B)) AXIOM
7 QUADRILATERAL(P(A,B,C,D)) AXIOM

155

10

11

12

13

14

15

16

17

~CUBE (X)
ANSWER (X)

CUBE (P (P (X1,X2,X3,X4),P(X6,X2,X1,X5),P(X3,X2,X6,X7)))

-QUADRILATERAL (P (X3,X2,X6,X7))
-QUADRILATERAL (P (X1,X2,X3,X4))
-QUADRILATERAL (P (X6,X2,X1,X5))

-DISTINCT (L(X1,X2,X3,X4,X5,X6,X7))

-QUADRILATERAL (P (X3,X2,X6,X7))
-QUADRILATERAL (P (X1,X2,X3,X4))
-QUADRILATERAL (P (X6,X2,X1,X5))

-DISTINCT (L(X1,X2,X3,X4,X5,X6,X7))

NEG OF THM

AXIOM

FROM 8,9

ANSWER (P (P (X1,X2,X3,X4),P(X6,X2,X1,X5),P(X3,X2,X6,X7)))

-QUADRILATERAL (P (X1,B,A,X4))
-QUADRILATERAL (P (C,B,X1,X5))

-DISTINCT (L(X1,B,A,X4,X5,C,D))

ANSWER (P (P (X1,B,A,X4),P(C,B,X1,X5),P(A,B,C,D)))
QUADRILATERAL(P(X,Y,Z,W)) -LINE(P(W,X))

-LINE(P(Y,Z)) -LINE(P(X,Y))

-LINE(P(Z,W)) =DISTINCT(L(X,Y,Z,W))

-QUADRILATERAL(P(C,B,X,X5))
-DISTINCT (L(X,B,A,W,X5,C,D))

-LINE(P(W,X)) -LINE(P(B,A))
-LINE(P(X,B)) ~-LINE(P(A,W))

-DISTINCT (L(X,B,A,W))

ANSWER (P (P (X,B,A,W),P(C,B,X,X5),P(A,B,C,D)))

-QUADRILATERAL(P(C,B,X,X5))
-LINE(P(W,X)) -LINE(P(X,B))

-LINE(P(A,W)) -DISTINCT(L(X,B,A,W))
ANSWER (P (P(X,B,A,W),P(C,B,X,X5),P(A,B,C,D)))

-QUADRILATERAL(P(C,B,X,X5))
-DISTINCT (L(X,B,A,E,X5,C,D))
~-LINE(P(E,X)) =-LINE(P(X,B))
-DISTINCT(L(X,B,A,E))

ANSWER (P (P (X, B,A,E),P(C,B,X,X5),P(A,B,C,D)))

~QUADRILATERAL (P(C,B,F,X5))
-DISTINCT (L(F,B,A,E,X5,C,D))
-LINE (P (E,F))

ANSWER (P (P(F,B,A,E),P(C,B,F,X5),P(A,B,C,D)))

~QUADRILATERAL (P (C,B,F,X5))
-DISTINCT (L(F,B,A,E,X5,C,D))

ANSWER (P (P (F,B,A,E),P(C,B,F,X5),P(4,B,C,D)))

156

FROM 7,10

AXIOM

FROM 11,12

FROM 6,13

FROM 5,14

FROM 2,15

FROM 4,16

18

19

20

21

22
23

18
23
18
23

-DISTINCT (L(F,B,A,E,W,C,D))
-LINE(P(W,C)) -LINE(P(B,F))
-LINE(P(C,B)) -LINE(P(F,W))
~-DISTINCT (L(C,B,F,W))

ANSWER (P(P(F,B,A,E),P(C,B,F,W),P(A,B,C,D)))

-DISTINCT (L (F,B,A,E,W,C,D))
-LINE(P(W,C)) <-LINE(P(B,F))

-LINE(P(F,W)) -DISTINCT(L(C,B,F,W))
ANSWER (P(P(F,B,A,E),P(C,B,F,W),P(A,B,C,D)))

-DISTINCT (L(F,B,A,E,W,C,D))
-LINE(P(W,C)) -LINE(P(F,W))
-DISTINCT (L(C,B,F,W))

ANSWER (P (P (F,B,A,E),P(C,B,F,W),P(A,B,C,D)))

-LINE(P(G,C))

ANSWER (P (P(F,B,A,E),P(C,B,F,G),P(A,B,C,D)))

LINE (P(G,C))
CONTRADICTION

ANSWER (P (P(F,B,A,E),P(C,B,F,G),P(A,B,C,D)))

CLAUSES LEFT

CLAUSES GENERATED

CLAUSES ENTERED

RESOLUTIONS OUT OF 83 TRIES

SUBSUMED 7 TIMES OUT OF 252 TRIES

FACTORED ¢ TIMES OUT OF @ TRIES

157

FROM 17,12

FROM 3,18

FROM 2,19

FROM 1,20

AXIOM
FROM 21,22

10.

11.

12,

REFERENCES

C. Green and B, Raphael, "The Use of Theorem-Proving Techniques in
Question-Answering Systems," Proc. 23rd Nat, Conf. ACM (Thompson
Book Company, Washington, D.C., 1968),

C. Green, "Theorem Proving by Resolution as a Basis for Question-
Answering Systems," Machine Intelligence 4, D. Michie and B, Meltzer,

Eds. (Edinburgh University Press, Edinburgh, Scotland, 1969),

C. Green, "Application of Theorem Proving to Problem Solving,”" Proc.
International Joint Conference on Artificial Intelligence, D. E,
Walker and L. M. Norton, Eds., Washington, D.C., 7-9 May 1969 (to
be published).

B. Raphael, "A Computer Program Which 'Understands'," Proc. FJCC
pp. 577-589 (1964).

B. Raphael, "SIR, A Computer Program for Semantic Information
Retrieval,” in Semantic Information Processing, M. Minsky, Ed. (MIT
Press, Cambridge, Massachusetts, and London, England, 1968),

C. H. Kellogg, "A Natural Language Compiler for On-Line Data Manage-
ment ," AFIPS Conference Proceedings, Vol. 33, pp. 473-493 (Thompson
Book Co.,, Washington, D.C., 1968).

L. S. Coles, "An On-Line Question-Answering System with Natural
Language and Pictorial Input,' Proc. Nat, Conf. ACM, (1968).

L, S, Coles, "Talking with a Robot in English," Proc. International
Joint Conference on Artificial Intelligence, D, E, Walker and L. M,
Norton, Eds., Washington, D,C,, 7-9 May 1969 (to be published).

B, F, Green, Jr., A, K, Wolf, C., Chomsky, and K, Laughery, "BASEBALL:
An Automatic Question Answerer,” Computers and Thought, E, A, Feigen-
baum and J. Feldman, Eds. (McGraw-Hill Book Company, Inc., 1963).

R. K. Lindsay, "Inferential Memory as the Basis of Machines Which
Understand Natural Language,'' Computers and Thought, E. A. Feigenbaum
and J, Feldman, Eds, (McGraw-Hill Book Company, Inc., 1963).

K. M., Colby and D. C, Smith, "Dialogues Between Humans and an Arti-
ficial Belief System," Proc, International Joint Conference on
Artificial Intelligence, D, E, Walker and L. M, Norton, Eds., Wash-
ington, D.C., 7-9 May 1969 (to be published).

J. McCarthy, "Programs with Common Sense,'" Proc. Symposium on Mech-
anization of Thought Processes (Her Majesty's Stationery Office,
London, England, 1959).

158

13.

16.

17,

18,

19,

20,

21,

22,

23.

24,

25,

26,

1

J. McCarthy, "Situations, Actions, and Causal Laws,” Memo No. 2,
Stanford Artificial Intelligence Project, Stanford University,
Stanford, California (July 1963).

R. F. Simmons, "Answering English Questions by Computer: A Survey,"
COMM. ACM, Vol. 8, No. 1 (January 1965).

R. F. Simmons, "Natural Language Question Answering Systems: 1969, "
TNN-87, University of Texas Computation Center, Austin (January 1969).

W. A. Wood, "Semantics for a Question-Answering System,” Ph.D. Thesis,
Division of Engineering and Applied Physics, Harvard University,
Cambridge, Massachusetts (August 1967). Also Report NSF-19, Harvard
Computation Laboratory.

D. G. Bobrow, J. B. Fraser, M. R. Quillian, "Automated Language
Processing," Annual Review of Information Science and Technology,
(Interscience New York, 1967, Vol. 2).

J. A. Robinson, "The Present Statc of Mechanical Theorem Proving,"
to appear in Proceedings the Fourth Systems Symposium, Cleveland,
Ohio, November 19-20, 1968.

J. A. Robinson, "A Review of Automatic Theorem-Proving," Proc, Symp.

Appl. Math., Vol, 19, Amer. Math. Soc., Providence, R.I. (1967).

J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution
Principle,”" J. ACM, Vol, 12, No, 1, pp. 23-41 (January 1965).

J. A. Robinson, "The Generalized Resolution Principle,” Machine
Intelligence 4, D. Michie and B, Meltzer, Eds., (Edinburgh

University Press, Edinburgh, Scotland, (1968),

R. J. Waldinger and R, C. T. Lee, "PROW: A Step Toward Automatic
Program Writing," Proceedings of the International Joint Conference
on Artificial Intelligence, D. E. Walker and L. M. Norton, Eds.,
May 7-9, 1969, Washington, D.C. (to be published).

G. Sussman, Project MAC, MIT, Cambridge, Mass. (private communication),

R. Burstall, University of Edinburgh, Edinburgh, Scotland (private
communication,)

J. L. Darlington, "Machine Methods for Proving Logical Arguments
Expressed in English,” Mech. Trans., Vol. 8, pp. 41-67 (June-
October 1965). :

J. L. Darlington, "Theorem Proving and Information Retrieval,"
Machine Intelligence 4, D. Michie and B, Meltzer, Eds., (Edinburgh
University Press, Edinburgh, Scotland, 1969).

159

27.

28,

29,

30.

31.

32,

33.

34.

35.

36.

37.

38,

39.

J. L., Darlington, "Theorem Provers as Question Answerers," Proceedings
of the International Joint Conference on Artificial Intelligence,

D. E. Walker and L. M. Norton, Eds., May 7-9, 1969, Washington, D.C,
(to be published).

J. H. Chadwick, L. S. Coles, O. W. Whitby, B. Raphael, and J. H,
Jones, "Medical Applications of Remote Electronic Browsing," Final
Report to EDUCOM, University of Pittsburgh, (1969).

R. E. Kling, "Reasoning by Analogy with Application to Resolution
Logic," to appear in Proceedings of the International Conference
on Cybernetics, (1969).

N. J. Nilsson, "A Mobile Automaton: An Application of Artificial
Intelligence Techniques,' Proceedings of the International Joint
Conference on Artificial Intelligence, D. E. Walker and L, M, Norton,
Eds., May 7-9, 1969, Washington, D.C. (to be published).

J. R. Slagle, "Experiments with a Deductive, Question-Answering
Program,” Comm. ACM, Vol. 8, pp. 792-798 (December 1965).

D. C. Cooper, 'Theorem Proving in Computers,’” Advances in Programming
and Non-Numerical Computation, L. Fox, Ed., (Pergamon Press, 1966) .

L. Wos, G. A. Robinson, and D. F. Carson, "Efficiency and Completeness
of the Set of Support Strategy in Theorem Proving," J. ACM, Vol. 12,
No. 4, pp 536-541 (October 1965).

L. Wos, D. Carson, and G. Robinson, '"The Unit Preference Strategy
in Theorem Proving," Proc. AFIPS 1964 FJCC, Vol, 26, Pt. II,
pp. 615-621 (Spartan Books, 1964).

L. Wos, G. A. Robinson, D. F. Carson, and L. Shalla, "The Concept
of Demodulation in Theorem Proving," J. ACM, Vol. 14, No. 4,
pp. 698-709 (October 1967),

J. R. Guard, F. C, Oglesby, J. H. Bennett, and L. G. Settle,
"Semi-Automated Mathematics,' J. ACM, Vol. 16, No. 1, pp. 49-62
(January 1969).

J. A, Robinson, "Heuristic and Complete Processes in the Mechanization
of Theorem Proving," Systems and Computer Science, J. F., Hart and
S. Takasu, Eds., pp. 116-124, (University of Toronto Press, 1967).

M. Davis, "Eliminating the Irrelevant from Mechanical Proofs,"
Proc, 15th Symp. in Appl. Math., Amer, Math. Soc., Providence, R.I.,
pp. 15-30 (1963).

‘W. S. Cooper, "Fact Retrieval and Deductive Question Answering

Information Retrieval Systems,' J. ACM, Vol, 11, pp. 117-137
(April 1964).

160

40,

41,

42,

43.

44,

435,

46,

47,

48,

49,

50.

51,

52,

53.

J. McCarthy and P. Hayes, "Some Philosophical Problems from the
Standpoint of Artificial Intelligence," Machine Intelligence 4,
D, Michie and B, Meltzer, Eds. (Edinburgh University Press,
Edinburgh, Scotland, 1969).

G. Ernst, "Sufficient Conditions for the Success of GPS," Report
No. SRC-68-17, Systems Research Center, Case Western Reserve
University, Cleveland, Ohio (July 1968).

A. Hormann, "How a Computer System Can Learn,"
1964).

IEEE Spectrum (July

J. McCarthy, P. W, Abrahams, D. J. Edwards, T. P. Hart, and M. I.
Levin, LISP 1,5 Programmer's Manual (The MIT Press, Cambridge,
Massachusetts, 1962).

C. Weissman, LISP 1.5 Primer (Dickenson Publishing Company, Inc.,
Belmont, California, 1967).

L. Wos and G. Robinson, "Paramodulation and Set of Support," IRIA
Symposium on Automatic Demonstration at Versailles, France,
December 16-21, (proceedings to be published),

G. Robinson and L. Wos, "Paramodulation and Theorem-Proving in
First-Order Theories with Equality,"” Machine Intelligence 4,
B. Meltzer and D. Michie, Eds. (Edinburgh University Press,
Edinburgh, Scotland, 1969).

H., Simon, "Experiments with a Heuristic Compiler," J. ACM, Vol. 10,
pp. 493-506 (October 1963),

R. W. Floyd, "'The Verifying Compiler,” Computer Science Research

Review, Carnegie Mellon University (December 1967).

Z, Manna, "The Correctness of Programs,' J, Computer and Systems

Sciences, Vol., 3 (1969).

J. McCarthy, "Towards a Mathematical Science of Computation, "

Proceedings ICIP (North Holland Publishing Company, Amsterdam, 1962).

F. Black, A Deductive Question-Answering System, Harvard University
Ph.D. Thesis (1964).

F. Safier, "The Mikado as an Advice Taker Problem,' Memo, Stanford
Artificial Intelligence Project, Stanford University (July 1963).

H., Simon, "Experiments with a Heuristic Compiler," J, ACM, Vol. 10,

pp. 493-506 (October 1963).

161

