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Abstract

Several algorithms are presented for solving linear least squares

problems; the basic tool is orthogonalization techniques. A highly
accurate algorithm is presented for solving least squares problems with

linear inequality constraints. p pethod is also given for finding the
least squares solution when there is a quadratic constraint on the

solution.



0., Introduction

One of the most common problems in any computation center is that of
finding linear least squares solutions. These problems arise in a variety
of areas and in a variety of contexts. For instance, the data may be
arriving sequentially from a source and there may be some constraint on
the solution. Linear least squares problems are particularly difficult
to solve because they frequently involve large quantities of data, and
they are ill-conditioned by their very nature.

In this paper, we shall present several numerical algorithms for
solving linear least squares problems in a highly accurate manner. In
addition, we shall give an algorithm for solving linear least squares

problem with linear inequality constraints.

1.  Linear least sauares

Let A be a given mxn real matrix of rank r and b a given

vector. We wish to determine % such that

(b, - a,.x.)” = min.
izl i=1 I
or using matrix notation

HD‘A§H2 = min. (1.1)

If m>n and r<n, then there is no unique solution. Under these

conditions, we require amongst those vectors x which satisfy (1.1) that

|E”2 = min.

For r =n, X satisfies the normal equations

aTax = aTo . (1.2)
Unfortunately, the matrix ATA is frequently ill-conditioned and
influenced greatly by roundoff errors. The following example illustrates

this well. Suppose
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which is clearly of rank 4 . Then

P -

l+e2 1 1 1

2

T 1 1 1 l+€2
ATA =L 1 1+¢ l+e ) 1

and the T 2 2

eigenvalues of A"A are Ub+e” , ¢, 82 , EZ . Assume that the

elements of A?A are computed using double-precision arithmetic, and then
rounded to single precision accuracy. Now let 1 be the largest number
on the computer such that f2(1+n) = 1 where f2(...) indicates the

floating point computation. Then if ¢ < /7,

[+ 1 1 1]

. 1 1 1 1
fL(AA) = L1 1 1 ,

11 1 1

a matrix of rank one, and consequently, no matter how accurate the linear
equation solver it will be impossible to solve the normal equations (1.2).
LONGLEY [1967] has given examples in which the solution of the normal

equations leads to almost no digits of accuracy of the least squares problem.

2. A matrix decomposition

Now “2”2 = (ZTX)I/Q so0 that ”Qg”2 = “2”2 when Q is an orthogonal

matrix, viz., dTQ =1 . Thus

where ¢ = Qb and Q is an orthogonal matrix. We choose Q so that

~

@ =R= |.% (2.1)

}(m-n)xn



where R is an upper triangular matrix C<D. Let

112 Ti2 . ¢ . Tip
3 Too .t Top
R =
r
nn
then
”b-AxHe-— (c,-r . x -r .x - -r. X )2
- 2= 171171 "1272 vt In'n
2
+ (CZ’ Ton¥s - r2nxn)
2
<+ s -
* (cn rnnxn)
2 2 2
Jrcn+:L+Cn+2Jr re :
o "~
Thus Hb-Ax“2 is minimized when
T Y%t L T T o
r22x2 * * r2n n- c2
r ¥ =c¢
nn'n n
i.e., Rk = @, where
~T
c = (Cl,Cz,---,Cn) P)
and
a2 2 2 2
“B Ai(H2 =Cuy tCup teeete . (2.2)
Then
R'R = [RIOJF[RI0] = R°R
T (2.3)

- [@al[eal =42,
and thus &%; is simply the Cholesky decomposition of A?A .
There are a number of ways to achieve the decomposition of (2.1);
e.g. one could apply a sequence of plane rotations to annihilate the

elements below the diagonal of A A very effective method to realize
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the decomposition (2.1) is via Householder transformations. A matrix P

is said to be a Householder transformation if

P =1I- 2u.uT , uTu =1

) T T T T
Note that 1) P = PT and 2) PTE = I -2uw -2w + huwuw =1 so

o~ ~e~

that P is a symmetric, orthogonal transformation.

Let A(l) = A and let A(e) , A(B) seses A(n+l) be defined as follows:
aler1) | (i), (k) (k = 1,2,...,n)
(k) ), )T )T () (x)
where P =1 - 2w 'w , W w =1 . The matrix P is
(k+1)  (k+1) (k1) _ Th £ K
chosen so that aku_k = %HQ Bttt T é,k 0 . us after
transformations
(2) (2) (2)
&1 %12 . : © %1p
(3) (3)
0 ngo ) . . . a2n
O . . L]
a(k+1 a(k+1
. kk_ ) . . kn )
A(k+l) = //’“\\
o \\ fktl, k1l
oo | o . .
\
.
0 o (k+1) _ a(k+1)
m, k+1 mn
—

m
Note that ]a£§+l)] = (Ezi—k (agi))E)l/E since P(k) is an orthogonal
transformation. The details of the computation are given in BUSINGER and

GOLUB [1965] and GOLUB [1965]. The Householder transformations have been used

in a highly effective manner by KALFON et al. [1968] in the implementation
of the projection gradient method.
Clearly

R - A(n+l)'
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and

Q= pMp(n-1) (1)

although one need not compute Q explicitly. The number of multiplications
required to produce R is roughly Bm?-(nB/j) whereas approximately

mm2/2 multiplications are required to form the normal equations (1.2).

3. The practical procedure

It is known that the Cholesky method for solving systems of equations
is numerically stable even if no interchanges of rows and columns are
performed. Since we are in effect performing a Cholesky decomposition
of A?A no interchanges of the columns of A are needed in most
situations. However, numerical experiments have indicated that the
accuracy 1is slightly improved by the interchange strategies outlined
below, and consequently, in order to ensure the utmost accuracy one
should choose the columns of A by some strategy. In what follows,
we shall refer to the matrix A(k) even if some of the columns have
been interchanged.

One possibility is to choose at the kth stage the columns of

(k+1)

k . . L
A( ) which will maximize la | This is equivalent to searching for

kk
the maximum diagonal element in the Cholesky decomposition of ATA .
Let
m
k k)\2
s(8) Y (al ).) for J = kk+l,...,n .
J B0,
j=k
. +
—T?eg since ,aéﬁ l)l = (slik))l/2 , one should choose that column for which
- (k . . +
:s:I is maximized. After A(k 1) has been computed, one can compute
k+
S§ 1) as follows:
(k+1) (k) (k+1) 2
S. = S. - R 7 = L)
3 3 (a1- X, j ) (J kt1, )n)

since the orthogonal transformations leave the column lengths invariant.
Naturally, the sgk) 's must be interchanged if the columns of A(k) are

interchanged.

et
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The above strategy is useful in determining the rank of a matrix.

If the rank of A is r and the arithmetic is performed exactly, then

after r transformations

~ !

R S N
AL | o T |
0 N
and
+
sgr .o for J = r+l,...,n
which implies N = 0 . 1In most situations, however, where rounded
arithmetic is used [N| = ¢ . 7Tt is not easy to determine bounds on ¢

when the rank of A is unknown.

The strategy described above is most appropriate when one has a
sequence of vedtorsb 62,...,bp for which one desires a least squares

estimate. In many problems, there is but one vector b and one wishes

to express it in as few columns of A as possible. Or more precisely,

one wishes to determine the k indices such that

n k
E: .. X, )2 = min.

D—l 13 Iy

We cannot solve this problem, but we shall show how to choose index k

when the first k-1 indices are given so that the sum of squares of

residuals is maximally reduced. This :is the stage-wise regression problem.

We define
(2) 2 (2)
fno oo T1k 11 e 1k
(3) (3)
. (k+1)
kk kk
- _ N .
l ~
Let g( ) =Db and c(k+l) = P(k)c(k) * Now R(k) (k 1 . C(k) where
A(k-l) . .
is the least squares estimate based on (k-1) columns of A and
~ k
c( ( ) (k),..., éki) Thus by (2.2)
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”S(k+1) ) E(k+l)%(k)”: _ Z (c §k+l)>2
J=k+1
_ j.z:k(”](kﬂ))z (c£k+l))2
_ j§k<0§k))2 (clik+l))2

since length is preserved under an orthogonal transformation. Consequently,

we wish to choose that column of A(k) which will maximize lc£k+l)l

Let
k
Z ( ) (k)) for J = ktl,e.u,n
. k+1 m k) (k k
Then 81nce,c£‘ )l = ,(§:1 =k £k) ( )/ ( )‘ , one should choose that
column of A(k) for which (t(k))2 (k) is maximized. After P( X

applied to A(k)

, one can adjust as follows:

L)
J

(k+1) k+1) (k
tj T tgk) - aéj+ )cé +1)

In many statistical applications, if (t§k))2/s(k) is sufficiently small
J J '
then no further transformations are performed.

4. Statistical calculations

In many statistical calculations, it is necessary to compute certain

—auxiliary information associated with A:A . These can readily be obtained

‘from the orthogonal decomposition. Thus

Ty 2
det (A"A) = (ry) X Tpp X . . . xr, )
Since
T ~m~ - ~e1" -
a'a = ®'R , (aTa)! - g IRT

The inverse of R can be readily obtained since ﬁ is an upper triangular

matrix. It is possible to. calculate (ATA)_l directly from R . Let
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T -1
(A"A) = X = (icl}fz"“;fn)-

Then from the relationship

RX=R"
and by noting that {E-T}ii = l./rii , 1t is possible to compute XX preeoX) |
The number of operations 1is roughly the same as in the first method but
more accurate bounds may be established for this method provided all inner
products are accumulated to double precision.

In some applications, the original set of observations are augmented
by an additional set of observations. In this case, it 1is not necessary
to begin the calculation from the beginning again if the method of
orthogonalizaE}on is used. Let gl’gl correspond to the original data
after it has been reduced by orthogonal transformations and let AQ’PE

correspond to the additional observations. Then the up-dated least squares

solution can be obtained directly from

~2
A = .2 9 b = eve .
R’ S1

This follows immediately from the fact that the product of two orthogonal
transformations is an orthogonal transformation.

The above observation has another implication. One of the arguments
frequently advanced for using normal equations is that only n(n+l)/2
memory locations are required. By partitioning the matrix A by rows,
however, then similarly only nOHJJ/E locations are needed when the
method of orthogonalization is used.

In certain statistical applications, it is desirable to remove a row
of the matrix A after the least squares solution has been obtained. This

can be done in a very simple manner. Consider the matrix
R ¢

A = er oo and d = Q-T-

i - iB

where @ is the row of A which one wishes to remove, B 1s the corresponding

element of b , and i =/-1 . Note that
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sTs = R'R - ala = ATA
Let
cos @ 0
0 1
2y n+1 =
sin ©

We choose cos @ so that {8(2)}

[S(e)}l,l

= /(x5 )

- QQ
. . . sin ©
1 0
0 -cos O;
(@) (1)
and S = Zl,n+ls
n+l,1 = 0 . Thus

2
, = (rllrlj-alaj)/,/‘(rll-al

2

. 2 2
3 = tlagry o) )/ (x,-07)

J =2,3,...,n

J = 2,3,s0u,n .

Note no complex arithmetic is really necessary. The process is continued

as follows:

Let

“k,nHl T

sin ©

k Al

n+l

-cos @

k ) (4.1)

n+1l
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Then

g(k+1) _ o (K

K, n+1 ) k =1,2,...,n ,

k+1) ]

and cos Ok is determined so that (S( 0 . Thus roughly 5n2

multiplications and divisions and n squarek}gZis are required to form the
new R .

Suppose it is desirable to add an additional variable so that the
matrix A is augmented by a vector g (say). The first n columns of

z(n)

are unchanged. Now one computes

»(2)5(1)

+1)

n:
From h one can compute P(

no=p®)

g

and apply it to P(n). “P(])b . This
technique is also useful when an auxiliary serial storage (e.g. magnetic
tape) 1s used.

It is also possible to drop one of the variables in a simple fashion
after R has been computed. For example, suppose we wish to drop

variable 1 , then

r r

12 .. 1n1
Yoo i
R =
5
r
nn

nx(n-1)

"By using plane rotations, similar to those given by (k.1), it is possible

to reduce R to the triangular form again.

5. Gram-Schmidt orthogonalization

In $2, it was shown that it is possible to write

QA = R . - (5'1)

The matrix Q is constructed as a' product of Householder transformations.

10

hec |

ey e
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From (5.1), we see that

A =QR=PS

T
where PP =1 , s : . Each row of S and each column of P is

uniquely determined up to a scalar factor of modulus one.

In order to avoid

computing square roots, we modify the algorithms so that S is an upper

triangular matrix with ones on the diagonal. Thus PTP

=D , a diagonal

matrix. The calculation of P and S may be calculated in two ways.

a) Classical Gram-Schmidt Algorithm (CGSA)

The elements of S are computed one column at a time.

Let
(x)
AN = [piBy e s D58y eesa ]
and assume h
! =0, ,d i
Py Py = 914% s 1< 1,5 < k-1
At step k , we compute
= (p; a,/d.) 1< i< k-1
k ~i K i 4 ~ - =
%il 5
- S. P. 5 = ||p .
in ik =i dk ~k“2
b) Modified Gram-Schmidt Algorithm (MGSA)
Here the elements of S are computed one row at a time. . 4ofine
k
( ) (pl’p2’°°"p'lz 1,3( ) @ @ ., f(i ))
and assume
T - (k) _ :
EiEj‘ﬁijdi'j’lJ , 1<i,j<k1l , k<f<n.

k
At step k , we take £Dk = %}({ ) » and compute

A = HPk“g » Sgp = (Pk §<k))/d ) (k+l) §k> “Sx4

11

P o ktl1 < I < n



In both procedures, S = 1 . The two procedures in the absence of
roundoff errors, produce the same decomposition. However, they have
completely different numerical properties when pn >2 , If A is at all
"ill-conditioned", then using the CGSA, the computed columns of P will
soon lose their orthogonality. Consequently, one should never use the
CGSA without reorthogonalization, which greatly increases the amount of
computation. Reorthogonalization is never needed when using the MGSA.

A careful roundoff analysis is given by BJ&M([1967]. RICE [1966] has
shown experimentally that the MGSA produces excellent results.

The MGSA has the advantages that it is relatively easy to program,
and experimentally (cf. JORDAN [1968]), it seems to be slightly more
accurate than the Householder procedure. However, it requires roughly

mn2/2 operations which is slightly more than that necessary in the

Householder procedure. Furthermore, it is not as simple as the Householder

procedure to add observations.

6. Sensitivity of the solution

We consider first the inherent sensitivity of the solution of the
least squares problem. For this purpose it is convenient to introduce the

condition number k(A) of a non-square matrix A . This is defined by

€)= ayfey oy = e il / il 5 o, = min el / I,

2 2 . T
so that 0., and a = are the greatest and the least eigenvalues of A'A .

From its definition it is clear that k(A) is invariant with respect to

unitary transformations. TIf R is defined as in (2.1) then

o (8) = o,(8) , o (R) =0 (&), k®= x@) ,

while

I

o ®) = [, ana o &) = 1/ K, -

The commonest method of solving least squares problems is via the normal

equations

Alax = ATy . / (6.1)

12

-.r,m,&w.:»s-.m«J
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The matrix A?A is square and we have
c (AT) = <Py .

This means that if A has a condition number of the order of ot/2 then
ATA has a condition number of order zt and it will not be possible
using t-digit arithmetic to solve (6.1). The method of orthogonal
transformations replaces the least squares problem by the solution of
the equations Rx = & and k(R)= k(A) . Tt would therefore seem to have
substantial advantages since we avoid working with a matrix with condition
number K2(A) .

We now show that this last remark is an oversimplification. To this
end, we compare the solution of the original system [A . b] with that of

a perturbed system. It is convenient to assume that
9, = HAHQ = “E“g =13

this is not in any sense a restriction since we can make HA“2 and ”b”2
of order unity merely by scaling by an appropriate power of two. e n;w

have

k(A) = k@®) = [EH, = 1/a .

Consider the perturbed system
B+ eBin e el = e, = 1,

where g 1is to be arbitrarily small. The solution x of the perturbed

system satisfies the equation

(A +eB)' (& + eB)x = 2 + eB) (b + eg) (6.2)

If X is the exact solution of the original system and Q is the exact

~

orthogonal transformation corresponding to A we have

-

R ‘ R+ er | £ )
QA.= o d ‘ ’ Q(A + EE)' NN NN 9 Qeﬂ n':o,
0 eG - g
. = J
and
p T

13
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Equation (6.2) therefore becomes

(& + BT (A + cm) = (a7 + o) (ax + g + ee)

giving
T . . . ~
R+ eF| R+ eF| R + eF R £
s00se o0 cessee X = eecsove cee] X + ¢ o‘:'. +€ET1‘ .
eG eG |7 eG o\~ g ~

Neglecting €&  where advantageous,

- T,z - ~ ~ ~
(B + eF) (R + M = (R + )" B + e(F + en)” £ + ¢2¥ . + o(ed)

X

il

~ ol ~- ~ - M
(R+eF)™" Bx+e@®+eF)™F £+ ¢(RR)L ¢y + 0(e)

A ~-1 A "l - :‘T:
- =X - R PR+ eRT £+ e £+ e(RRA)EEx + 0(cd)

giving

sl < elEHRLIR, + B e, + l&HE s, + o)
< ek@El, + ec(ad) + @zl + o(®) .
We observe that the bounds include a term EKQUUHSHE . It is easy to

verify by means of a 3 x 2 matrix A that this bound is realistic and

that an error of this order of magnitude does indeed result from almost

any such perturbation E of A . We conclude that although the use of

the orthogonal transformation avoids some of the ill effects inherent in

the use of the normal equations the value « %A) is still relevant to some

extent.
When the equations are compatible "ﬂg = 0 and the term in KQGU
d&appears. In the non-singular linear equation case r is always null
and hence it is always «k(A) rather than « 4) 'which-is relevant.

Since the sensitivity of the solution depends on the condition number,
it is frequently desirable to replace the original unknowns x by a new
vector of unknowns D-lx where D is a-diagonal matrix with-non-zero

diagonal elements. Thus we wish to find ¥ for which

~

”E-CQHE = min. ,

14
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where C = AD and ¥y = D "X . Let sn be the set of all n x n diagonal

matrices with non-zero diagonal elements. We wish to choose D so that
k(AD) < k(AD) for all Ded
o o] )
Let Deﬁn and {D}ii = l/”ai”2 . VAN, DER SIUIS [1968] has shown that
0 ~
k(AD) < /n k(AD) .

Therefore in the absence of other information, it would appear that it is
best to precondition the matrix A so that all columns of the matrix A
have equal length. In practice, one adjusts the exponents of the stored
elements of A so that the mantissa of the floating point representation

is not changed,

7. Iterative refinement for least squares problems

The iterative refinement method may be used for improving the

solution to linear least squares problems. .t

Qp = b-AX s, a>0

~

so that

aaly = £ b-aa% - 0

When & =1, the vector p is simply the residual vector r . Thus

aL { A P b

e el | B0 I , (7.2)
or - ) )

Cy = g .

One of the standard methods for solving linear equations may now be used

to solve (7.1). However, this is quite wasteful of memory space since the
dimension of the system to be solved is (mn) . We may simplify this

problem somewhat by noting with the aid of (2.3) that

15



of | A /o1 ‘ 0 Jo I ﬁa.A
= = Ww. (7.2)
T 1 ,T| 1 =T 1=
—_— 0 -
A OJ \7-&1\ /GR 7&R

Once an approximate solution to Cy = g has been obtained, it is
frequently possible to improve the accuracy of the approximate solution.
Let ¥ be an approximate solution, and let‘y'=~g-qi . Then if y = §j§~,

3 satisfies the equation
Co=v . (7'3)

Equation (7.3) can be solved approximately from the decomposition (7.2). Of -
course, it is not possible to solve precisely for 8 so that the process
may be repeateds
We are now in a position to use the _iterative refinement method
(cf. MOLER [1967], WILKINSON [1967]) for solving linear equations. Thus one

might proceed as follows:

(o)

1) Solve for using one of the orthgonalization procedures outlined

in § 2 or 5. R must be saved but it is not necessary to retain Q . Then
~ [0 ~ ~
(s+1) . . . .
2) The vector vy 1s determined from the relationship
NESSENOMO
where
CE(S) = g—cy(s) = V(S) . (7.4)

This calculation is simplified by solving

()

B G .
(s)

then rounding to single precision.

1, (8)

The vector v must be calculated using double precision accuracy and

16
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3) Terminate the iteration when ”B(SN|/ ”y(s)” is less than a
prescribed number.
Note that the computed residual vector is an approximation to the

residual vector when the exact solution X is known. This may differ

~

from the residual vectorcomputed from the approximate solution to the
least squares problem.
There are three sources of error in the process: (1) computation

of the vector V(s) , (2) solution of the system of equations for the

~

correction vector S(S , and (3) addition of the correction vector to
9 . It is absolutely necessary to compute the

s . o .

components of the vector v( ) using double precision inner products and

~

then to round to single precision accuracy. The convergence of the iterative

the approximation y

refinement process has been discussed in detail by MOLER [1967]. Generally
speaking, for a large class of matrices for k > ko all components of y S
are the correctly rounded single precision approximations to the components
of Y . There are exceptions to this, however, (cf. KAHAN [ 1966]).

Experiment&llis it has been observed, in most instances, that if
“5(O)Hm / Hy(o H < 2P yhere

(o]
M, = max .|
1<i<n
then ko > [t/p] . We shall return to the subject of iterative refinement

when we discuss the solution of linear least squares problem with linear
constraints.
A variant of the above procedure has been analyzed by BJORCK [1967b],
[1968], and he has also given an ALGOL procedure. This has proved to be
a very effective method for obtaining highly accurate solutions to linear

" least squares problems.

8. Least squares problems with constraints

Frequently, one wishes to determine X so th.at”b-A?cH2 is minimized
subject to the condition that GX = h where G is a pxn matrix of rank p
One can, of course, eliminate p of the columns of A by Gaussian elimination

after a pxp non—singula} submatr}x of G has been determined and then solve

17



— the resulting normal equations. This, unfortunately, would not be a numerically

stable scheme since no row interchanges between A and G would be permitted.

— If one uses Lagrange multipliers, then one must solve the (n+p)x(n+p)
) system of equations.
, r o~ - . —
X ATy
R N I (8.1)
_ o . 2 T ,y=1,T T,\-1.T
where M is the vector of Lagrange multipliers. Since %X = (K A) "A"b-(A"A) "G\ ,
aata)™t ¢ A = 6zg
where
g 2 = (&)t a’ b
Note z 1s the least squares solution of the original problem without
o constraints and one would frequently wish to compare this vector with the
final solution X . The vector z , of course, should be computed by the
— orthogonalization procedures discussed earlier.
i Since A'A = ﬁTﬁ , G(ATA)-]'GT - WW where W = ﬁ-TGT . After W is
v computed, it should be reduced to a pxp upper triangular matrix K by
orthogonalization. The matrix equation
- KTK?\. = Hz-g
| : should be solved by the obvious method. Finally, one computes
: % = z-(aTA)"t @
L
where (ATA)-]'G?\. can be easily computed by using R
It is also possible to use the techniques described in §7. Again,
S
let r.= b-AX so that from (8.1)
[~ < - - -
- I | A 0 [ r b
e O (8.2)
At o ¢t % = o
0 G 0 A h
; S L J L.
18
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or

Dz=g

Note D is an (mtntp)x(min+p) matrix. We may simplify the solution
of (8.2), however, by noting that

r - . ' 9 r-
1|l alo I]0]o0 I|A] O
T o -
A o e | = | aT|{-E'| o o| &]-B (8.3)
ol aglo o | st| sT ofo]s
L. . .J — - -

where B = (éﬁ})T = PS and.PmP = I with S : Y . The decomposition
(8.3) can be used very effectively in conjunction with the method of iterative
refinement. BJORCK and GOLUB [1967] have given a variant of the above

procedure which requires Q and P

9. Linear least squares solutions with inequality constraints

Again let A,G be given real matrices of orders mxn , pxn , with
m>n, and let b , h be given real vectors of orders m , p . For any

vector x we define

~

r = b-Ax

~

and we wish to determine an X such that
625 = min.'

- subject to

Gx >h

Our problem can therefore be stated as follows: find r , x , w such that

19



These problems can be solved by quadratic programming but we present

an algorithm in this section which leads to a much smaller system of equations
and highly accurate results.

If we define

7 r - yT(r+Ax-b) - zT(Gx-W—h)

1]

f(r,vw,x,y,2) =

~ o~~~ e~

where we require without loss of generality that z >@,, then an equivalent
problem is to determine r,w,X,y,Zz such that

W,z > ©

f = min.

Equating to zero the partial derivatives of f with respect to r.x.¥.z
respectively, we get

r-y =6

~

-ATy - GTZ

1
1O

I
©

r +Ax - D

GxX—-w—-h=28

~ ~

Further, let the elements of W,z be W,z (i = 1,2,...,p) . Then
of ”
Sw. i

1

Now if w. > 0 in the optimal solution, the constraint W, 2 0 is not

'—binding and we have

Since Z; > 0 , this further means that
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(For otherwise, zi >0 => wi >0 = zi = 0 which is a contradiction.)

Accordingly, our problem has become one of finding a solution of the

system -
r + Ax =D (9.1)
Alr + Glz =0 (9.2)
Gx -w=nh (9.3)
such that
T
z>6e , w >0 ’ Zw=0

We now determine an orthogonal matrix Q and an upper-triangular

matrix R such that

where R is nxn and non-singular if rank(A) = n . Then
ata - R'¢"@r = R'R

Letting B = (GR-l)T and eliminating r from (9.1) and (9.2) it is easily
verified that

S
it

% + R 1Bz , (9.4)
where

% = ()L aTp

I

is the unconstrained least squares solution (i.e., the solution of (9.1) and

(9.2) with z = 6 )e X is found by the methods of §7.

~

We now determine if %X satisfies the original inequalities: if we

define q = G%‘E and find that g > © then the constraints are satisfied
and X solves the problem.

"Otherwise, we substitute (9.4) in (9.3) and obtain
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e

G(kx + R 1Bz) - w = h
or

EFB z+g=w

where we further require’ > (9.5)

z>0 , w>e ztw = 0

7

Thus we find that z,w solve the linear complementarity problem (LCP)

defined by (9.5). This is a fundamental mathematical programming problem

and several algorithms have been developed for finding solutions (e.g. see

LEMKE [ 1968], COTTLE [ 1968], COTTIE and DANTZIG [1968]). The matrix M = BB

is positive semi-definite, and this is one of the cases when, for example,
the principal pivoting method in COTTLE [1968] guarantees termination with
a solution, or with an indication that none exists.

Once z has been found it would be a simple matter to substitute

~

into (9.1), (9.2) and find r,x from

r+AxXx=Db '
-~ (9.6)
T T

A'r = -Gz
In practice, however, 1if we are concerned with the accuracy of our estimate
of x we use the solution of the ICP (9.5) only to determine which elements
of w are exactly zero. These are the W which are non-basic in the
solution of (9.5). (There is certainly at least one such w, , for

otherwise we would have z =0, w >0 , which is the case checked for

-earlier in determining whether or not % solved the problem.)

We now delete from (9.3) those constraints for which v, is basic,

obtaining an Ixn system of equations

~

Gx =

~

[R=x

where 1< £ <p.
If z is the vector z with the corresponding elements deleted, the

remaining step is to solve the system
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r + Ax =D
~T.
A'r + GZ =0 (9.7)
ax =h

where we are now working with original data and can therefore expect a
more accurate solution than could be obtained from (9.6). We can now apply
the methods of §8 to this system of equations.

The standard methods for solving the linear complementarity problem
aiploy the elements of w as the initial set of basic variables, with all
elements of =z initialiy non-basic. In general, it is probable that only

a small propo;tion of the inequalities in the original problem will be
constraining the system, which means that only a small proportion of the Wy
will be non-zero. Hence it might be expected in general that only a small
number of iterations (relative to p ) should be required to bring some of
the zZs into the basis and reach a feasible solution.
In our particular form of the problem, since the matrix M = BTB
has its largest elements on the diagonal, accuracy can be conserved, to
within the limits of the error in forming M , by interchanging rows
whenever a column of M is brought into the basis in such a way that the
diagonal elements of M become diagonal elements of the basis matrix.
This is easily done if the LU decomposition of the basis is calculated
each iteration as in the treatment of the simplex method by BARTELS [1968]
and BARTEIS and GOLUB [ 1969].
Note that B = (GR-]')T can be determined column by column via

repeated back-substitution on the system

The algorithm presented here can be used for any quadratic programming
problem when a positive definite quadratic form is given. Suppose we wish
to determine an x such that
xCx + de = min.
-0 (9.8)
subject to Gf > E

23



~—

r

—

— r— r—

Since C is positive definite, we may write

cC = RTR
where R(NJ]) 1is the Cholesky factor of C . Such a decomposition can
easily be computed. If we now define 'b = - § R"1d (and calculate b

~

from Bb = - # d ) we find that

b - 2b'Rx + X R Rx

2
b - Rxll

‘&b+—£x4—x%x

i}

and consequently if we determine an x such that

subject to Gx > h

then x will satisfy (9.8) as required.

10. Singular systems

If the rank of A is less than n and if column interchanges are

performed to maximize the diagonal elements of R , then

R S
A(r+l) _ R'rxr | (n-r)xr
o | 0
when rank(A) = r . A sequence of Householder transformations may now be
(r+l) so that the elements of become

‘applied on the right of A S(n-r)xr

annihilated. Thus dropping subsc‘E\ts and superscripts, we have
T | o
01'!0

where T 1is an rxr upper triangular matrix. Now
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c— r

T T
o - axly, = lIo - @ 7 274,

= e -Tyll,
where ¢ = Qb and y = ZTx . Since T is of rank r , there is no unique
solution so "that we impose the condition that ”%“2 = min. But ”y”2 = ”x”2

since T is orthogonal and Hy”2 = min. when

Yrep SV = - - - T Yy
Thus

This solution has been given by FADEEV, et, al. [1968] and HANSON and
LAWSON [ 1968]. The problem still remains how to numerically determine

the rank which will be discussed in §12.

11. Singular value decomposition

Let A be a real, mxn matrix (for notational convenience we assume

that m>n ). It is well known (cf. IANCZOS [1951]) that

A = UZV (11.1)
where
m n
and
r 7
%
Z: .@ .
‘o
n .
() }(m=n)xn
| §

The matrix U consists of the orthonormalized eigenvectors of AAT , and
m

the matrix V consists of the orthonormalized eigenvectors of A*A . The

‘
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diagonal elements of T are the non-negative square roots of the eigenvalues

of AiA ; they are called singular values or _principal walues of A . We

assume
01202>oao>0n20 .
Thus if rank(A) =r , 0r+1 = 0r+2 =, ., .= on = 0 . The decomposition
(11.1) is called the_singular value decomposition (SVD).
Let
0
i = (11.2) |
A?

It can be shown that the non-zero eigenvalues of # always occur in *

-

pairs, viz.

xj(ﬁ) =+ GJ.(A) (3 = 1,2,000,r) . (11.3)

12, Applications of the SVD

The singular value decomposition plays an important role in a number
of least square$ problems, and we will illustrate this with some examples.
Throughout this discussion, we use the Euclidean or Frobenius norm of a
matrix, viz.

2,1/2
HAH = (Zlaij | )
A) Let un be the set of all nxn orthogonal matrices. For an arbitrary

nxn real matrix A , determine Qe such that
o < okl for any Xeu,.
It has been shown by FAN and HOFFMAN [1955] that if

T
A =IﬁNT s then Q = W
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B) An important generalization of problem A occurs in factor analysis.

For arbitrary nxn real matrices A and B , determine Qeun such that
la-Bql| < ||A-BX|| for ‘any XeU .

It has been shown by GREEN [1952] and by SCHONEMANN [1966] that if

BTA=UZVT , then Q = WT

¢) Let mr(nkr)l be the set of all mxn matrices of rank k . Assume
9

()

(k < r) such that
s 11 -

Determine B
(k)
la-Bll < lla-x|| for a11 Xem,

Tt has been shown by ECKART and YOUNG [1936] that if

A = UZ'-VT , then B = UQkVT (12.1)
where -
" O
0'2 .
Q = O ' | (12.2)
%
O
: §
Bfote that
-l = nll = (2, 4L+ DT (12.5)

D) An nxm matrix X is said to be the pseudo-inverse of an mxn

matrix A if X satisfies the following four properties:



— o r——

r-

— 00— 1

i) AXA =A,
ii) XAX =X,
1) (ax)?

iv) (XA)T =xA

=

We denote the pseudo-inverse by A+ . We wish to determine A+ numerically.
It can be shown (cf. PENROSE [ 1955]) that A+ can always be determined and

is unique. It is easy to verify that

A+ = VAU (12.4)
where .
1
E O
B L
9
A = ) ,
0 Tl
g
r

9

nxn

In recent years there have been a number of algorithms proposed for
computing the pseudo-inverse of a matrix. These algorithms usually depend
upon a knowledge of the rank of the matrix or upon some suitable chosen
parameter. fbr example in the latter case, if one uses (12.4) to compute
the pseudo-inverse, then after one has computed the singular value
decomposition numerically it is necessary to determine which of the singular
vélues are zero by testing against some tolerance.

Alternatively, suppose we know that the given matrix A can be

represented as
A = B+58B
where ©®B is a matrix of perturbations and

e8| < n
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Now, we wish to construct a matrix B such that

lla-B]l < n
and
rank (%) = minimum .
This can be accomplished with the aid of the solution to problem (C). Lot
e
_ T
Bk = UQkV

where Qk is defined as in (12.2). Then using (12.3),

B=8
P
if -
2 2 2y1/2
Y + a + oo +
( ptl pHe cn) S
an.d
2 2 2,1/2
q
(P+0p+l+...+cn) > 1
Since rank($) = p by construction,

~y
B - vt
P
at +
Thus, we take B 35 our approximation to A .

- E) Let A be a given matrix, and b be a known vector. Determine %

so that amongst all~x for which ”P-Af”2= min , H?_ch: min. It is easy

to verify that

~

X =A+b

13. Calculation of the SVD

It was shown by GOLUB and KAHAN[1965] that it is possible to construct

a sequence of orthogonal matrices
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— = — B = = = B/ = = [

)
k=1

{Q(k) } n-1
k=1

via Householder transformation so that

p(n)p(n-1)  5(1),0(1)4(2) Q) o g - g

and J is an mXn bi-diagonal matrix of the form

The singular values of J are the same as those of A .

3 ] (m-n)xn .

Thus if the

singular value decomposition of

J
then

A
so that

U

e

PRIy Qr

PX ’ V=

GOLUB[1968] has given an algorithm for computing the SVD of J ; the

algorithm is based on the highly'effective QR algorithm of FRANCIS [1961,1962]

for computing the eigenvalues.

It is not necessary to compute the complete SVD when a vector~b is

given.

note, this has

Since X = V2+UTb , it is only necessary to compute V,Z and b ;
a

strong "flavor of principal component analysis. An ALGOL"

procedure for the SVD has beeen given by GOLUB and REINSCH[1969].
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1k, Quadratic constraints

We wish to determine % so that
“b-A§“2 = min.
when
H%Hg =Q

Such problems occur in a number of situations, e.g. in the numerical solution
of integral equations of the first kind (cf. PHILLIPS [1962]), and in the
solution of non-linear least squares problems (cf. MARQUARDT [1963]).

Using Lagrange multipliers, we are led to the equation
EATA-A*I)& - 2Ty

where the real constant A¥ is determined as the smallest root of
oF-vla@ataaz)@ AT = 0 . (14.1)

Using the decomposition A = UZVT and ¢ = UTb , equation (14.1) becomes

2 T -
-T2 (57 A1) e = 0

A combination of bisection and Newton iteration may be used to determine )% .

. . 2
It is easily shown that x¥ < 9 i, (cf. FORSYTHE and GOLUB[1965]).

It is also pOSSible to determine A¥ as a solution to an eigenvalue

- problem using a technique given by FORSYTHE and GOLUB [1965]. Consider the

identity

X Y
det = det(X) det (w-zx'ly)
VAN

—

which is valid for any partitioned matrix with X and W square and

det(X) # 0 . Thus (14.1) is equivalent to the determinantal equation

IF wlaa1)® T
det ! ~ =0

i b A - o
L ~
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Now there exists a vector p and a number g such that
(ATA-)\I)QP + Aqu =6 | bAp + agq =0

A simple elimination shows that A¥ -must satisfy the determinantal equation
ctet[(ATA-u)2 _ a7 ATEETA] =0 , (14.2)

It is possible to transform (14.2) into a 2nx2n ordinary eigenvalue
problem.

Once \¥ is determined, the solution X can be computed from the

SVD of A . Thus,

% = V(z-aksh)le .
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