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. ABSTRACT

- Several matrix decompositions which are of some interest in statistical

| calculations are presented. An accurate method for calculating the
— 1 1 1 1

canonical correlation 1s given.
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f 0. Introduction

; “. With the advent of modern digital computers, many of the well

= known hand calculator methods for making statistical calculations

E have been revised. For example, Hotelling [19] proposed a number of

| methods for solving matrix problems. Yet today almost none of these
A S-—

methods are in current use. In this paper, we shall present several

J. well known matrix decompositions and show their relevance to statistical

X calculation. Some of the properties of the numerical algorithms shall

: = be discussed.
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- 1. Cholesky decomposition

: Let A be a real, symmetric, positive definite matrix of order

| n. It is well known that we may factor A so that

FE — A=TRR (1.1)

where R 1s an upper triangular matrix (VQ). The decomposition (1.1)

1s known as the Cholesky decomposition. The calculation of R may be

performed in two ways.

-. a) Complete Cholesky Decomposition Algorithm (CCDA)

Let

1/2
; r = (a ) and r =a r (j=2,.e.,n) .

- Then for 1 =2,..., Nn,

: il
LC 2

ry = (ayy = ry)? ’
k=1

| (1.1)
L. i-1

Fig = (ay; =) TeiTiy) [Ty (3534, ® CT TO)| k=1

-

b) Sequential Cholesky Decomposition Algorithm (SCDA)

- Let

,(1) =a...

-
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] _ (0) (x)
| Tek = (ay ) Tk; = “kj / Tse »  (3>k) ,

(8) _(¥) (1.2)
o (k+1) _ 5 (K) _ ki kj Ce

| kk

Since the Cholesky decomposition 1s unique when Ts >0. cach of

the algorithms produces the same R | gach of these methods require

; 3 6 2n”/6 + O(n) multiplications plus n square roots. The CCDA has the
1 +h
] advantage that 1f the 1= row of the matrix R is being computed,

1 then it is only necessary to have available the fR row of the matrix

| A , and the (i-1l) previously computed rows of R . This is especially

i advantageous when the matrix A 1s so large that 1t 1s necessary to

] store it inauxilliary storage.
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2. Accuracy of the Cholesky decomposition

1 J. Wilkinson [31] has given an error analysis of the SCCA. He

assumes that the error in the basic operations are as follows:

£2(a+b) = a(l+e.) + ble)

i fi(axb) = ab(1+e,) ET < 27"
| £2(a/b) = (8/0) (1+ey)

where a mantissa of t binary digits is used. The notation fl(a bp'Db)

indicates the result of the operation with two floating point numbers

a and b when standard floating point arithmetic is used. Furthermore,

| it 1s assumed that if

x = fL(sqrt a)

then

| ~T

x° = a(l+e) with |e] < 2 x2 1
i

. where

|

- tt, = t - log.(1.06)
1 2 *

When the SCDA 1s used, arithmetic errors are introduced at each

| stage of the calculation. Indeed it is possible that for some positive
definite matrices 1t will be impossible to complete the algorithm because

|
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i of the roundoff error. Wilkinson has given sufficient conditions for

} which it 1s possible to complete the SCDA. In addition, he has shown

that the computed Cholesky decomposition will be exact for some

] perturbed matrix A + E . Let Ieee, indicate the spectral norm,
: and let R be the computed Cholesky factor. d

Theorem 1. (Wilkinson): If A is a positive definite matrix of

; order n > 10 , then provided

A L(A) > 2000/2741 a)
. min - 2)

the Cholesky factor R can be computed without breakdown and the

computed R satisfies the relation

—T—

.

lel, < 2.507 22 1a],

Thus the relative perturbation viz Ella, is but a few units
of the mantissa for the Cholesky factorization. The above result is

independent of the choice of pivots.



- = = -

5 3. Solution of linear equations

Given the Cholesky decomposition, it is a simple matter to solve

| a system of linear equations or to compute the inverse. To solve

| Ax = b , the most convenient procedure 1s to first solve
| T

| Ry=">= (3.1)

| and then solve

Since R is <g and R is ON, this requires a total of n + O(n)

| multiplications. To compute the inverse, compute RT which 1s YJ
and then compute RIRT , taking advantage of the triangular form

| “1 “1 n° >of R and the symmetry of A ~ : this requires s + 0(n")

| multiplications. Thus to invert a positive definite matrix requires2

n° fo + O(n ) multiplications which 1s fewer multiplications than

| multiplying two matrices by the usual algorithm!
Because of the roundoff error, equations (3.1) and (3.2) can be

| replaced by a perturbed system of equations. Thus, in reality we have

L RHR)u = b

| and |

| 6



and this implies that

(A+8A)z = Db

where

6A= FE + 57x R + BR: X 8R+ SRY x 6R .

Using Theorem 1 and Wilkinson's bounds for solving triangular systems

[30, pg 99], it can be shown that

loll, 5
Tar S sme (3.3)

2

| when The conditions of Theorem 1 are satisfied.
|
- The bound given by (3.3) is quite gross but it does indicate that

solving equations using the Cholesky decomposition leads to a relatively

“

small perturbation in the original data. Note also that we can determine

I a bound on the_residual vector r = Db - x. Since (A+6A)z = b
x = 6Az and thus

C

3/2 ~-t

lzll, < sn /2; Hiall,,
L

3 Of course, 1f the norm of the residual vector is small it 1s not true
an accurate solution has been determined since

-1

| X = Z =A r
7
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and hence

-1

| It 1s possible to bound the norm of the relative error providing an
L ES NT

upper bound for the condition number Kk. (a) = [lal] lla I is known,

] Since % - X = -A"8Az , a short manipulation shows that when
-1 | | |

; foallla, < 1, :
L

| where p = 18a] /llall, . This bound is independent of the method used.
|

-
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2 4. Conditioning of matrices

Since the bound (3.4) is dependent upon the 'condition number, it

- 1s frequently desirable to replace the original system of equations

Ax = b by a new system

DADw = Dp

where D 1s a diagonal matrix with non-zero diagonal elements. Let

3 2 be the set of all n X n diagonal matrices with non-zero diagonal

i elements. We wish to choose 9 so that

4 k (Bad) < «(pAD) for all Def

A symmetric matrix is said to have Property A if there exists a permuta-

tion matrix II such that

Als

| nian = Ey)| S TAN

| where Ae and. Boel and p+g=n. All tri-diagonal matrices
have Property A.

9 Ld

Let Ded and {D},, = 1//a,. .. Forsythe and Straus [10] haveil

shown that for matrices that possess Property A, 0) = D . More

generally, for all positive definite matricesA , van der Sluis [29]

has shown that

k(Bad) < nc(Dad) . (4.1)

]



3 Therefore in the absence of other information, it would appear that

i it is best to precondition the matrix A so that all the diagonal

| elements are equal, e.g. the covariance matrix should be replaced by
p the correlation matrix.

| The problem of preconditioning symmetric positive definite

| matrices arise in the other statistical contexts (cf. [12]).

10
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3 . 5. Iterative refinement

- Once an approximate solution to Ax = b has been obtained, it
| is frequently possible to improve the accuracy of the approximate

) solution. Let Xx be an approximate solution, and let r = b - AX
] Then if X = x +6, [J satisfies the equation

: - =x. (5.1)

Equation (5.1) can be solved approximately once the Cholesky decomposition

| of A is known; indeed, it requires but + O(n) multiplications

| to solve for the correction [4] . Of course, it is not possible to solve

3 precisely for 0 so that the process may be repeated. Thus for
(©) given, the algorithm proceeds as follows:

| - 1) compute me =D - ax) ;
i 2) solve as) = ®) ;
| 3) compute (+1) = x6) + (1) \
C The process continues until

BS 15 (+1)«9
RE

a predetermined constant or some other criterion 1s satisfied. The

above algorithm is known as iterative refinement and has been extensively

discussed in the literature (cf. [ 24, 321).

There are three sources of error in the process: (1) computation

of the residual vector £8), (2) solutionof the system of equations

11
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i ) for the correction vector g () 5, and (3) addition of the correction

: vector to the approximation x (K) . It is absolutely necessary to

| compute the. components of the residual vector using double precision\ ] inner products and then to round to single precision accuracy. The
| convergence of the iterative refinement process has been discussed in

: detail by Moler [2h]. Generally speaking, for 2 large class of matrices

| | for k > k, all components of £5) are the correctly rounded single
| precision approximations to the components of X . There are exceptions

to this, however, (ecf,[21]). Experimentally, it has been observed,

in most instances, that if Js (©) lx | <2 where

i hell, = mex ly,
— 1<i<n

| L then ky 2 [t/p] . We shall return to the subject of iterative refine-
ment when we discuss the solution of linear least squares problem.

12



6. Partial Correlation

| Again let A be a positive definite matrix and we partition the
L

matrix 1n the following form:

i | Aq AoA= a Ta
21 | “22

where Aq is p Xp, Asp is gxg , and Al, = Any . Suppose

| the SCDA 1s used but the algorithm is stopped after p steps, Then

i L.A rR] E 5 0 0 |
i Ayqy Arn S O Ww

T

| here Ry 1s the Cholesky factor of A so that RIB, oo Aly .
Equating matrix blocks, we see |

oT

[ Ayo > RS
( JT |

[ Thus

w= Ax AER) Ao

A A ATA

I = “22 7 21711712

i 2



(n+l) |

J The matrix W ‘is denoted by ay in (1.2).
Consider the covariance matrix

| L111
i y= y ). where 2, is p X p
: 21& 02 /

| The partial covariance matrix

J MEE HI Ni)
: 22-1 22 21711 12

when the first p variables are held fixed, and the regression function

1s defined by

| (2) 5 TF 0 (0)| K 2&1 R

pe y are the corresponding vectors of expected values.
(p+1) |

1 Thus 1f we apply the first p steps of the SCDA, SF corresponds

: to the partial covariance when the first p variables are eliminated.

] le can eliminate the effect of the first (p+tl) variables by simply

performing one more step of the SCDA. It 1s a simple matter to compute

3 - 'Y -1 T ~1
: the regression function since PA corresponds to S R. .

1k
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Tf. Least squares

: Let A be a given m XN real matrix of rank r and b a

-. given vector. We wish to determine A such that

“ m 3 )(b. - a,.Xx.)" = min .L . i=1 1d d
_

or using matrix notation

“-

| lo-Axll,, = min . (7.1)
-

Lo If m > n and r <n, then there is no unique solution. Under these

| conditions, we require amongst those vectors X which satisfy (7.1)
|
- | ; that

2, = min .

For r=n, 2 satisfies the normal equations

L

T

AAR = Ap (7.2)

Unfortunately, the matrix Ala 1s frequently 1ll-conditioned and
—

influenced greatly by roundoff errors. The following example illustrates

§ this well. Suppose
I

i 15



1 1 11

e 0 0 0

A = 0 ¢ 0 O

0 0 ¢ O

0 0 0 ¢

which 1s clearly of rank 4. Then

2
1+¢ 1 1 1

| T 1 14° 1 1
| ATA=

| 1 1 1+€ 1

1 1 1 14e°

| | T 2 2 2 2
and the eigenvalues of AA are W4e”, €7, €¢5 €&° . Assume that the

m

elements of A'A are'computed using double precision arithmetic, and

! Co [rtthen rounded to single precision accuracy. Now if € < /2

1 1 1 1

T 1 1 1 1
fL(A™A) = 5

1 1 1 1

1 1 1 1

a matrix of rank one, and consequently, no matter how accurate the linear

equation solver it will be impossible to solve the normal equations (7.2).

Longley [23] has given examples in which the solution of the normal

. equations leads to almost no digits of accuracy of the least squares problem.
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8 8. A matrix decomposition

| | Now I | = ( T y1/2 so that I ] = I I when Q 1s an=u Lo LX QQ ~N Lo
X orthogonal matrix, viz, 0T0 = I . Thus

B lo-axll, = lle-qaxll ,

where ¢ = Qb and Q is an orthogonal matrix. We choose Q so that

QA = R = (£) (8.1)\ 0 /1(m-n) x n

y where R is an upper triangular matrix. Let

“ = b4

nn

then
w

2 ] ] 2
- o-tlly = Cegorygxymryy ory x)

_ _ _ 2
_ tole, TropXs orp)

2

+ 4 c, "TX )
2 2 2 y

+ “n+l + Chto + ‘mn .

17



: Thus lo-Ax|l is minimized when

| ro ® vr Ad yr
1171 Tie Tor or Tn TG

: Tao 5 +... oF Tony = Cs

1 : A
: r XxX =cC

nn n n

i.e. 2 = C where

c = (eqsc,,. ves) ’

and

| lo-aQ115 = 2. +5 + 2 qRR FT Cpe T Cp Toeen (8.2)

Then

j T ~ ~. »
RR = (R:0)L(R:0) = BR

: : (8.3)
= (QA) (QA) = A™A ,

; and thus oa 1s simply the Cholesky decomposition of ala
There are a number of ways to achieve the decomposition (8.1);

e.g., one could apply a sequence of plane rotations to annihilate the

elements below the diagonal of A . a very effective method to realize

the decomposition (8.1) 1s via Householder transformations. A matrix

P 1s said to be a Householder transformation if

| 18



{ P=1T -2u , wy= 1.

i Note that 1) P = pr and 2) ppl = 1 « Puy’ _ oun + bu uu’ = I SO
] that P is a symmetric, orthogonal transformation.

i tet AY) = a and let al?) NE Al) he defined as

| follows:

2 (+1) — pk) , (¥) | (k=1,2, . ces)

| (1) (0) (0) (®)7 (x) (x)
1 where P = 1 = ew Ww y Ww Ww = 1 , The matrix P is

(k+l) _ (kt) (k+1)
chosen so that Url,k © Ft,k Too FA 0S O . Thus after k
transformations

(2) (2) (2)
| “11 %12. | © fy

(3) (3)
© fon

0 . ° . .

(k+l) (k+1) (k+1)

(k+1)
SE V k+l, k+l

\ 0 ° ° °

(k+1) (k+1)

The details of the computation are given in [5] and [13].



Clearly,

| Te om (n+l)

< and

- -
0 =p(mpln-1) pL)

although one need not compute Q explicitly. The number of multiplica-

_-— tions required to produce R 1s roughly nf - 3 whereas approximately
2

o multiplications are required to form the normal equations (7.2).
-

-

\

-

|

20
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Lo

oo 9. Statistical calculations

oS In many statistical calculations, it is necessary to compute certain

auxiliary information associated with ala. These can readily be obtained

| from the orthogonal decomposition. Thus

det (ATA) = (r,, Xr, Xx X 1 )?
11° "22 Cr nn’

o Since

ata = 8%, I) wT

C The inverse of ® can be readily obtained since K is an upper triangular

matrix. It is possible to calculate (ata) directly from ®. fet

- Ty -1

Then from the relationship

]
Rx=%"

( and by noting that ® ys = x, , it is possible to computex ,x _.,

OR i The number of operations are roughly the same as in the first~~,

— method but more accurate bounds may be established for this method

provided all inner products are accumulated to double precision.
.

| In some applications, the original set of observations are augmented
|

C by an additional set of observations. In this case, it is not necessary

to begin the calculation from the beginning again if the method of ortho-

= gonalization 1s used. Let R»¢, correspond to the original data after it

| has been reduced by orthogonal transformations and let AyD, correspond to
4

the additional observations. Then the up-dated least squares solution can

be obtained directly from

21



A = (£) , b= )
This follows immediately from the fact that the product of two orthogonal

transformations 1s an orthogonal transformation.

The above observation has another implication. One of the arguments

| frequently advanced for using normal equations is that only n(n+l)/2

] memory locations are required. By partitioning the matrix A by rows,
however, then similarly only n{n+l)/2 locations are needed when the method

| of orthogonalization 1s used.

In certain statistical applications, 1t 1s desirable to remove a row

of the matrix A after the least squares solution has been obtained. rThig

can be done 1n a very simple manner. (Consider the matrix

5)| A eee and d 8 .lo 1B

where a 1s the row of A which one wishes to remove, B 1s the corresponding

element of b, and i = /~-1l. Note that

STs = i - oo = ata ~ oa
Let

I COS: sing

0
“1,n+1 B . ”

sin 8 0 -Cc0os 0 _

L 5 (1) = S , and 5 (2) = ARTY

22



. We choose cos 6 so that (s(2)y = (0. Thus
| n+l,l }
L

(2) | 2 2
S = -18773 1 11. ~ 9%

.

i sy. 1 TY
1,J oO 2 J = 230yeee,n

11 7%

i . =

| (s(8) (oy 7y5 = ayryy| ntl, ———————"" j= 2,3,...,n .
| ’d 5 >
- \/[r --~11 1

|
- Note no complex arithmetic 1s really necessary.

The process 1s continued as follows:

LC

| = k | n+l
L A |

2. +1 = - = - - ; COS 0 . - - - 813 e
i yn Ck ~ v sin 6, kSRE SR

| | .
{ 3 1 *

| sin 6 '.
k cos 6, n+l

'g LL

( Then
L (k+1) _ (x)

S - Zy ne b J k - 1,25e¢40,4n [4

L 5



| and cos 8. is determined so that (g(k+1) = 0. e
E K he, n+l Thus roughly 3n
= multiplications and divisions and n square roots are required to form

B the new FR.

| Suppose 1t 1s desirable to add an additional variable so that the

EB matrix A 1s augmented by a vector g (say). The first n columns of &

8 are unchanged. Now one computes

) From h one can compute p(ntl) and apply it to pt?) p(1) b.
| It 1s also possible to drop one of the variables in a simple fashion

- after R has been computed. For example, suppose we wish to drop variable 1,

Cc then

~ f12 ) Tin

Yoo
-

R = y

“nn
nx (n—1)

a

By using plane rotations, similar to those given by (9.1), it is possible
-

to reduce R to the triangular form again.

-

C

-

i

: 2)
—_
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: 10. Gram=Schmidt orthogonalization

| | In section 8, it was shown that it is possible to write

| QA = R . (10.1)

o The matrix Q 1s constructed as a product of Householder transformation.

| | From (10.1), we see that
| \

B A = QR = PS
—

where pp = I S:NN . Each row of S and each column of P is uniquely
| |

determined up to a scalar factor of modulus one. In order to avoid computing

square roots, we modify the algorithms so that S 1s an upper traingular
-

| matrix with ones on the diagonal. Thus pip = D, a diagonal matrix. The
— calculation of P and S may be calculated in two ways.

_ a) Classical Gram-Schmidt Algorithm (CGSA)

The elements of S are computed one column at a time. Let
—_

|

and assume

pl p. = 6,.d 1<1,j< k-1AMR ij7i =

-

At step k, we compute

T

Sik TR AY 0 1Sigkl

h__ k-1 5
Be "TE CuBr % = lBgllp

-

25
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=

= b) Modified Gram-Schmidt Algorithm (MGSA)

; oo Here the elements of S are computed one row at a time. We define

ae (x) k (x
A = (py Poseees pos alt), cers al®))

— | and assume

a T. T (k) _ C

- At step k, we take p, = (k) and compute

BE EY: CT (x) (etl) (x) _ _ _
N 4 = lpglls “kt = Prd [4 20 TETSpy Bx

In both procedures, Spe = 1. The two procedures in the absence of

— roundoff errors, produce the same decomposition. However, they have

completely different numerical properties when n> 2. If A is at all

"1ll-conditioned", then using the CGSA, the computed columns of P will

3 soon lose their orthogonality. Consequently, one should never use the

CGSA without reorthogonalization, which greatly increases the amount of

— computation. Reorthogonalization is never needed when using the MGSA. A

lo careful roundoff analysis is given by Bjorck in [2]. Rice [27] has shown

experimentally that the MGSA produces excellent results.

The M3SA has the advantages that it is relatively easy to program,
“

| and experimentally (cf. [20]), it seems to be slightly more accurate than
| 2

the Householder procedure. However, 1t requires roughly = operations
which 1s slightly more than that necessary to the Householder procedure.

he
Furthermore, it 1s not as simple as the Householder procedure to add

| observations.
|

26
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: 11. Sensitivity of the solution

We consider first the inherent sensitivity of the solution of the

. least squaresproblem. For this purpose it is convenient to introduce the

- condition number K(A) of a non-square matrix A . This is defined by

| K(A) = a,/o, A max|| A 1|/| hd ll > OC, = mini|A 2|,./| x is
Fo x0 x#0

so that os and o- are the greatest and the least eigenvalues of A A.
-

| From its definition it is clear that K(A) is invariant with respect to

{

aN unitary transformations. If R is defined as in (8.1) then

y

1 0, (R) = 0,(8) , 0 _(R) = 0, (a) , k(®) = (a),

Bn while
Be

B -1

E 0, (®) = || Xl, and o(®) = 1/||¥ 1, .
C

The commonest method of solving least squares problems 1s via the normal

- equation

C AAx =A"Db (11.1)

| The matrix ala 1s square and we-have

k(ATA) = K°(a) .
|

1
—-This means that if A has a condition number of the order of oc then

LC
Ala has a condition number of order ot and it will not be possible

: usingt -digit arithmetic to solve (11.1). The method of orthogonal
.

transformations replaces the least squares problem by the solution of

| 27
-



2

the equations R x = I and kK(R)-x (A). It would therefore seem to have

substantial advantages since we avoid working with a matrix with condition

number K°(a).

We now show that this last remark 1s an oversimplification. Tg this

end, we compare the solution of the original system (A b) with that of a

perturbed system. It is convenient to assume that

op = lal; = 2 ll, =1;

this 1s not 1n any sense a restriction since we can make 14, and || b I

of order unity merely by scaling by an appropriate power of two. we pow

have

I 1
kA) - k(®) =| ® Il, - lfo

- Consider the perturbed system

| arinee) lH, lel, - 1s

| where ¢ 1s to be arbitrarily small. The solution xX of the perturbed
system satisfies the equation

(A + €E) (A + ¢E) x = (A + €E) (b + ee) (11.2)

_ If Xx is the exact solution of the original system and Q is the exact
| orthogonal transformation corresponding to A we have
| R R + ¢F Tf

| QA= les] -, Q(A + gE) = NI Qe = [|
0 eG g

1 28



| and

| — r=b-A% |, Aly = 6.

- Equation (11.2) therefore becomes

_ (A + E) (a + gE) = (at > cE) (A Xx + r + se)

» giving

| B+ ep| | R + eF| _ ®+eF| T R f 7
LL EEE EEE evsesese] X = sec ence I) X + ¢ Me + ek r .

| eG eG |” © £6 \ Lo” lel) ~

Neglecting ¢ where advantageous

| T = To 4 T T 2- BR +eF)(® +eF) x= (R + eF) % + e(® + eF)L + eExr + 0(e")

| _ lay a -1
- x=(RK +eF) "REX +e® +eF)f+

2 + e (B- ®) Er + 0(e°)

= % a G eR iS + e (RF %) "Er + 0(e°)

giving |

L - A 1 . 1 1,2 2
| x= % lp < ell ®TUNFIN Xl, + el® gl,+ el® 15 IED, + oe)

o 2 2

L < ex(A)||X, + gk(A) + ek (All, + 0(e°)

_ We observe that the bounds include a term ek®(a)||g,. It is easy to
: “verify by means of a 3 X 2 matrix A that this bound is realistic and
|

that an error of this order of magnitude does indeed result from almost

any such perturbation E of A . We conclude that although the use of

the orthogonal transformation avoids some of the 111 effects inherent in
_

29



_— the use of the normal equations the value of K (A) 1s still relevant

; to some extent.

: When the equations are compatible zl = 0 and the term inKk" (A)

| disappears. In the non-singular linear equation case r 1s always null

and hence it is always (A) rather than «>(8) which 1s relevant. Since

- the sensity of the solution depends on the condition number, in the

B absence of other information, one should normalize each column of A so

o that 1ts length 1s one in accordance with (4.1).

|
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- 12. Iterative refinement for least squares problems

| The iterative refinement method may also be used for improving the

| solution to linear least squares problems.

. Let

-

so that

L

oAlp = ate ata x=06 .

When a = 1, the vector p is simply the residual vector r . Thus

all A 1d b
Ce RO ’ (12.1)

| at] o x e
or

One of the standard methods for solving linear equations may now be

I used to solve (12.1). However, this is quite wasteful of memory space

i since the dimension of the system to be solved 1s (m + n).
We may simplify this problem somewhat by noting with the aid of

| (8.3) that

| Jal A

L a | 21] 0 2 |. wwT -— -— []
ATT Lal [Let o |-%%

| Ja |J/u Ja

i oL



E We are now 1n a position to use the iterative refinement method for

: = solving linear equations.

4 Thus one might proceed as follows:

: 0 | CL
! 1) Solve for ¢ ) using one of the orthogonalization procedures outlined
oT in section 8 or 10. ¥ must be saved but it is not necessary to retain Q.

= Then

0 1 0)

+

= 2) The vector ME 1) 1s determined from the relationship

3 (541) (8) | os)

- where

B (s) (s) _ (s)Eo O&O = - =

| Bo g By h . (12.2)

FL This calculation is simplified by solving

B L 28) = (8s)

The vector-h(®) must be' calculated using double precision accuracy and
Lo

then rounding to single precision.

3) Terminate the iteration when 180 18) is less than a prescribed
~o Ao

number.

Note that the computed residual vector 1s an approximation to the

residual vector when the exact solution X is known. This may differ

from the residual vector computed from the approximate solution to the

Ce



| least squares problem.
|

q A variant of the above procedure has been analyzed by Bjorck [3],

and he has also given an ALGOL procedure. This has proved to be a very

i. effective method for obtaining highly accurate solutions to linear least

: squares problems. Bjorck and Golub [4] have described a similar iterative

refinement method for solving least squares problems with linear constraints.

-
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15. Singular Systems

If the rank of A 1s less than n and 1f column interchanges are

. performed to maximize the diagonal elements of R, then
1

R S

| (r+) rXy (n-r)xr
A =

] 0 0
when rank (A) =r. A sequence of Householder transformations may now

| (r+1)be applied on the right of A so that the elements of 5 nor) Xr

| become annihilated. Thus dropping subscripts and superscripts, we have
3 T] 0

| where T is an rXr upper triangular matrix. Now

_ T T

| where ¢ = Qb and y = 71x . Since T is of rank r, there is no unique

| solution so that we impose the condition that || I, = min. But
: ly lo = lll, since T is orthogonal and|| y IPs = min. when

L Yp41 = Vpap = 000 = Vy = 0

| Thus
1 |

| XxX = T 0 Qb .~ 0 0 ~

| o



n This solution has been given by Fadeev, gt. al. [7] and Hanson and

Lawson [18]. The problem still remains how to numerically determine

— the rank which will be discussed in section 15.

L

C

C

L

-

}
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| 14. Singular value decomposition

.— Let A be a real, m xn matrix (for notational convenience we assume

that m 2 n). It is well known (cf. [22])that
-

_ T
A= nV (14.1)

(e

] where
_ T _

] Ui
and

| Gy» cee,

= € i| 0 (m - n)x n .

| The matrix U consists of the orthonormalized eigenvectors of AAT, and the
matrix V consists of the orthonormalized eigenvectors of ATA. Tne

| diagonal elements of § are the non-negative square roots of the eigen-
values of Ata, they are called singular values or principal values of A.

| We assume

| Thus if rank (A) = r, 041 = Op = ere = Gc, =O. The decomposition (14.1)
is called the singular value decomposition (SVD).

Let

i 0,
A = at 0 . (14.2)

| It can be shown [22] that the non-zero eigenvalues of x always occur 1n

| + palrs, viz

L 8



i Aj (R) = + 95 (A) = 1,250e0,r). (14.3)

|

L

L.

|

|
I.
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E 15. Applications of the SVD

| The singular value decomposition plays an important role in a number

EB of least squares problems, and we will illustrate this with some examples.

B Throughout this discussion, we use the Euclidean or Frobenius norm of a
\

; matrix, viz.

B _ 2,2

lal = (Tlag,1®)
B

y A) Let u, be the set of all n xn orthogonal matrices. For an arbitrary

| n xn real matrix A, determine Qe such that
L

| la - all < lla - X| for any Xeu
y

u It has been shown by Fan and Hoffman [8] that if

A = uv, then Q = UVT .

B) An important generalization of problem A occurs in factor analysis.

| For arbitrary n Xn real matrices A and B, determine Qe such that
uv .

In -2a < la - B| for any Xeu, .

It has been shown by Green [1l7]and by SchOnemann[28] that if

| BTA = UgV', then Q = UV .
|

C (kC) Let ( ) be the set of all m x n matrices of rank k. Assume
‘ J

| (r) (k)
L AM on . Determine BEM, n (k £ r) such that

| |A - B| < ||A - X|| for all Xe (k) .2 Tonyn

| 38
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3 It has been shown by Eckart and Young[6] that if

] _—, T
A = UV’, then B = u,v (15.1)

where

: oq = . EE (15.2)

{ Note that | |

la -B =llz- al = (ogy + --0 +02). (15.3)

D) An n x m matrix X 1s said to be the psuedo-inverse of an m X n

] matrix A 1f X satisfies the following four properties:

i) AXA = A, | — oo

ii) XAX =X,

| iii) (ax)T = ax,

| + +

We denote the psuedo-inverse by A . We wish to determine A numerically.

- +

It can be shown [26] that A can always be determined and is unique. It

| 1s easy to verify that

A+ = VAUY (15.4)

59



= where

2 A= °o |

» 0 o)

| 0 i i |

In recent years there have been a number of algorithms proposed for

computing the pseudo-inverse of a matrix. These algorithms usually depend

3 upon a knowledge of the rank of the matrix or upon some suitable chosen
parameter. For example in the latter case, if one uses (15.4) to compute

L the pseudo-inverse, then after one has computed the singular value decom-

| position numerically 1t 1s necessary to determine which of the singular

| values are zero by testing against some tolerance.

1 Alternatively, suppose we know that the given matrix A can be

| represented as
A= B + OB

where ¢B 1s a matrix of perturbations and

- |e8]| <7
“ Now, we wish to construct a matrix B such that

i la - Bl <n

| and rank (B) = minimum.

40



This can be accomplished with the aid of the solution to problem (C). Let

_ T
B, = wv

where Q is defined as in (15.2).

Then using (15.3),

B =B
P

if

1

2 2 2\2 <

| (0041A

and |

L 1 |
2 2 22

+ +... + |(0, Op+1 o.) > Te
L )

Since rank (B) = p by: construction,
{

B= wm Ur.

| P
- "+ +

Thus, we take B as our approximation to A .

. E) Let A be a given matrix, and b be a known vector. patermine % so
| that amongst all xX for which |b. - Ax || _ min, | X | = min. It 1s easy

to verify that

y x = A .

41



a 16. Calculation of the SVD.

g In [14]it was shown by Golub and Kahan that it is possible to con-

| struct a sequence of orthogonal matrices

2 k=1,  k=1
|
E - via Householder transformation so that

| (n),(n-1) 1 1) (2) -

| = and J is an m xn bi-diagonal matrix of the form

04 1
1 PL 0.0

~ a
> By . 0

i _ :

Pr-1
- o

Il —

Lo | (m-n)xn . |

| The singular values of J are the same as those of A. Thus if the singular
.

value decomposition of

~ J= xsy’

g then

| TT
C A = FXZY™Q

8 so that

U = PX, V = QT .
-

i In [16], an algorithm is given for computing the SVD of J; the algorithm
is based on the highly effective algorithm of Francis [ll] for computing

i the eigenvalues. 42



- It is not necessary to compute the complete SVD when a vector Db is

given. Since x = VZ ub, it is only necessary to compute V,T and Uo;

B note, this has a strong flavor of principal component analysis. An AIGOL

: procedure for the SVD will soon be published by Golub and Reinsch and a

| complex FORTRAN procedure for the sVvD by Businger and Golub.

-

|
|
“

L

L

-

|
.

f
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_ 17. Canonical correlations

4 | It 1s well-known (cf. [1]) that in order to solve for canonical

; | correlations,, it is necessary to solve the matrix equation

Bn 212 2 , 213 © 2ae = L7eZo © 8 0 os 8 ( 7 1)

= where 299 1s a p Xx p positive definite matrix and z, is a q x q positive
EB definite matrix. The eigenvalues of (17.1) correspond to the canonical
n-

correlations. Since Ly; 1s positive definite we have

|

T., = rir, .
| ii i'i
|

- ashort manipulation shows we may rewrite (17.1) as

0 Q

| qa 0 : 4 >
u 1 A

i | -1 |

5 where Q = I; HPA (17.2)

L ~ 13 ~~ or

i Thus by (14.2) and (14.3) ye see that the canonical correlations, \.; 5pe| J

the singular values of Q.

|
8 Suppose we have two sets of data x y and Y . We assume thatD n xq

the mean of each variable 1s zero. Then

|

- - T, T, < T
c > 0) |

| L » XX, Ty, « TY, Tp, 0 OX Y( )
L

hh



:

_ Using the Householder algorithm described in section 8 or the Gram-Schmidt
= algorithm described in section 10, we may write

| I

u X= QR, QQ=1,R™ ’
T

| Y="FS, PP=1, sd.

Hence by (17.2)

! a - -
n 2 =R TRY pss 1

T

= QP. (17.3)
—

Therefore the canonical correlations are the singular values of Q'P. Note

ph 2 T '

| o;@< als nae ll, i,t.
A short calculation shows that &.= plu -1@.= Ru, and B.,= 8 "Vv, where u, and Vv, are

i. the 1 columns of U and V, respectively. This method of characterizing the

| canonical correlations has been observed previously (cf. [25] ). An
L .

algorithm using these techniques will soon be published by Bjorck and Golub.

|
-

-

\

-
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