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1. Introduction. One of the fundamental formulas of analysis is the

Gram-Schmidt, orthonormalization process. Unfortunately it is also notor-
—

iously computationally unstable. Rice [1] presents some computational tech-

. niques which seem to reduce the numerical error propagation, but he presents

| no analysis explaining why his methods work. This paper attempts to provide
— a heuristic error analysis of the Gram-Schmidt process which will show why

it 1s unstable and why Rice's techniques reduce numerical error.
«-

2. Gram-Schmidt Process. This section will present a basic exposition
—

of the Gram-Schmidt process showing the principal sources of round-off error.

8 Consider a set of linearly independent vectors Ws Wy ce. Wg in Ey

: with an inner-product (*, °).We want to find a set of orthonormal vectors
¢

- V., Vo,» .m0 V.. such that, for each i,V. is a linear combination of
1° 2 N 1

Ww Ws es w.. The Gram-Schmidt process does this in a straight forward
“

manner as follows:

! —————————————————————
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n-1

(1) u =W_ - L (W_,v.) V,
—

(p=1, 2, .... N)

| v, =u /llul
1

where ||z|| = (2, 2) 2
C

| If we define a, = 1/)|u | and ki =o, (Ww ,v.) then (1) becomes,
ha n-1

(2) Vo=a Wo-) kV.
| i=1

L If we denote by the vector g the numerical round-off error in eval-
uating (2) in finite-precision floating-point arithmetic on a computer, then

| (2) becomes,

[ n-1(3) VasoWy )} ki Vit Ep
i=1

If we orthonormality as the measure of the error in a set of computed

L vectors, then we are interested in the magnitues of,

L . In the absence of round-off error Eom = 0 for 1<n<N,1<m<TN
5. Heuristic Error Analysis. Since the objective of this paper is to

L present a heuristic analysis rather than to establish rigorous error bounds,

[ we shall make a number of assumptions about the error terms. The validity
of these assumptions will be supported by numerical experiments.

| In this type of heuristic error analysis some notation for the numerical
size of a quantity is needed. The O(7) notation is too precise a concept
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C for this type of analysis. Dr. George Forsythe has informally proposed

| the notation Y = 6(r) to mean Y = ot, where |8| < K for some unknown con-

. stant K with the general assumption that K < 10°. (The value 10° 1s sub-
ject to change as needed).

- Since we are interested in stable numerical procedures, we assume that

3 le. x <.0l, and it 1s understood that the error analysis will be abandoned
once this limit 1s exceeded. This assumption allows us to do a first order

“ error analysis.

i Consider the general Gram-Schmidt process (1). Since the normalization
of U, 1s the last arithmetic operation performed, previous errors do not

| directly affect (Vs). Thus we may assume. that (V,v)=1+ (rT) where
T 5 gt for a machine with t digits in B radix. Now, 1f all errors

— associated with Vi were of magnitude fT, we would have a numerical process

| as accurate as we could reasonably expect. Since the Gram-Schmidt method
1s not such a process we can assume that e 1s inconsquential 1n comparison

with other errors assoclated with Ve We can thus ignore £0 in a first

order error analysis.

1 Since Eom = Em’ and 1n light of the previous assumption that En 0,
it will be convenient to consider e,, for mn unless specified otherwise.

o Since we are interested in the growth of round-off error we will

3 occasionally assume that em grows with ne Then, for a first order error
| analysis, we may 1gnore £ om terms 1n comparison with e terms when p<n.

L Consider the basic round-off error vector § in (3). Since n-1 vector
subtractions, n inner-product evaluations, and n multiplications of a vector

. by a scalar are required to compute Vo it 1s reasonable to assume El = 08(nt).
| Expanding v, as in (3) we can derive an error propagation formula
-

5



F for the basic Gram-Schmidt method:

(4) “am (VV)
Bn n-1

3 =a (WV) = oa (WV (VV)

- kK .e . - k .e,

] | L ni~mi 5Zl ni'im
| —

FL =a, (U,V) = (le) )

| — } } Knifmi ~ ) “ni®im
i=1 i=m+l

— + (EV)

| = - k .e_. - k .e._ + 0(nr

& ni-mi CR im

: because Eon = 0.

| Since we are interested 1n errors larger than 7, we will often ignore

~~ the 8(nr) term in (4) in the presence of other error terms. Thus (4) will

often be used in the following form,

” (5) m=1 n-1
= com = L Knifm "4 Knifin
: i=1 i=m+1

| €0,1 = oar).
—
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. .

( hb. Modified Gram-Schmidt Process. Rice [1] has proposed a simple

modification of the standard Gram-Schmidt process which seems to reduce

1 severe error propagation, though he presents no analysis to explain the
experimental success of the method. It involves no additional computation,

“ though the definition 1s a bit more involved:

(6) * =
- n n

JE ag i

| i mi us - (U,V) A (i=1,2,. . . . n-1)

| v= 0/07
or

-

Tv,
: n CWT & ( no V3 0;
“

To further illustrate the relationship between this process and the
—

regular Gram-Schmidt method; (1) could be written in the form of (6) as follows:

(-

uv o=w
n n

— £5 =U - (W, V, OV,
n n n” 11

. = Rv= u/ll ul

. .% i * * *, 4 i
L If we define oy = 1/| UL I, Vy =a UG, and k, =o (U,V,) = (v5,V,)

then (6) becomes,
-

|

-



a *

L (7) ve =a W
i+ | *

| in CRn n ni i

V = ve.
[ n n

An error analysis of this scheme depends on the following lemma, which

L 1s easily proven by backwards induction on m:
n-1

| 8 _ - *(8) a v, p) Kni¥ye
i=m

[ proof: The lemma holds trivially for m=n. Assume 1t holds for
m=p+l. Then,

L n-1 |
+ *

Va B v 1 3 5niVy
| i=p+l9 * n-1

UNE 45 GEE We

[ PP i=pFl “ni'in-1

_ po *
= Vi YF wv.

[ 1=p ni 1
This completes the proof of (8).

From (8) we get an error formula for computation: |

“am (Vy Vy)

L ~ To
= (VV) - L kL (Vv) + (ev)

~% ‘n’'m - 9% ( nV) (Vp Vip)

5 ke + (8,7).
| i=m+l

[ Making the same assumptions regarding (VV) that we made before, we get,
6



n-1 *

| (9) “am © C . » Knifim + 8 (nr).i=m+l

[ The improvement of (9) over (4) is obvious.
Having devised an error formula (9) for the modified Gram-Schmidt

L process (6) which is similar to that of the regular process (5), it is

appropriate to consider the relation between kK 3 and k¥.. A consideration-

of the properties of orthonormal vectors shows that they would be identical
f

u 1f there were no round-off error. This 1s an important consideration for
the theoretical properties of the two methods, put does not explain why the

L Modified Gram-Schmidt process seems to be better. From (7) it is apparent

| that,| : i-1
* *

v = a W - ). kK Vee

| From this we get,
% :

| (10) k= (V,V,)ni n’ i

“

{ » 1-1 x
= - AV. V.L o (W_5V,) Yk (VS ’ i)

J=1

| * | i--1 *
_

nok os Enis’
o Jj=1

| n *

It 1s thus apparent that Ki and k i are of similar magnitude until the

i error becomes truly severe. Since we are conducting a first-order error
*

analysis with the assumption that £5 - | <.01, we may assume k , =k , forni ni

L the purposes of our analysis.



Recall that for the regular Gram-Schmidt process we had,

C

m—1 n-1 (ar){ (4) e = = ke. =- 3) Kk +  8(nr).| nm L ni mi iS ni im

i Since we are interested in the conditions under which severe error
propagation occurs, 1t 1s reasonable to assume that e increases with n

- (since m < n). Then, assuming that the k . are of similar magnitude for

| 1 <n and for 1 < n, we can assume error bounds for the regular Gram-Schmidt
—

process as follows:

| n-1= + -(11) “nm p) Knifim 8 (ep, m1) (m <n 1)
i=m+l

5 (n)£ = - k .E _ . + (5) Nj.
( n,n-1 r= ni n-l,i1

The simularity of this and (9) allows us to use the same error analysis

— for both methods, the only difference being for &, n.7°

i 5. Error Propagation Analysis. For the purpose of further analysis
we will assume that k ,| < K, independently of i. We will also define

{

L em = le nl The error propagation- formulas then become:

(12) em = KX m<n-1nm nS Cin ( n )

— 7. K |

. n 1=1 ©np-1. Regular Gram-Schmidt
<

“n,n-1 -—

3 (nr). Modified Gram-Schmidt

Y 8
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| | | The following lemma 1s required for this analysis:
Ne

| q i-1 q

| (13) 1 + y b. TT ((b, + 1) = TT (b.. + 1).| = 1 - J ; J
— 1=p J=P J=P

3 proof: Forg <p, 1 +0 =1. Now by induction on gq for p< q:

L +1 i-1 q1 + h bi TT (bo, + 1) = ba+l 1h] (b, + 1)
1=p J=p J=p

“ 3 i-1+ 1 + b.+b+), bp TT (y+
1=p J=p

“

7 (b, . 1)= Db b. 1

| q+l I jo
T (ob, +1)+ b, +| TT (3

— J=P

qtl

. = TT (bg + 1).
J=Pp

L This completes the proof of the lemma.

. We can now show that for m < n-1, |

3 n-1 - |
(14) Com SEep (TT (K+ 1).

: A=mt+2

L proof: By induction on n for n> mite:

L for n=m+2, (12) gives,

e <Ke <K <Ke _, (kK, + 1).
nm n n-l,m m+2, n m+l’m jemtn +

L



| For n >» mt2 by induction on n:
a.

| 3{ t

BB e < K e
FE + — + in
ne n+l,m ntl a) im

Hh <K  .(e + K.e TT. + 1))— “n+ + + :

| — < K e ~ a
EB = %ot®mHl,m (1+ YK TT (XK, +1)
B i= jemte J
-

n

Bn < += S Ker Cmii,m 11 (By £1)
- 1=m+2

| 1 which completes the proof. The final step used the lemma with
p=mt+2 and qg=n.

- This completes the error analysis for the modified Gram-Schmidt process.

= In summary,

E n-1
- (15) e <K TT (kK. +1) . oar).
- nm-n ._ on i

| - This is maximized for a given n by m = 1. This 1s verified by computa-

B tional results. Table 2 presents the €m for a modified Gram-Schmidt pro-

— cedure with ki = -9. The results are in good agreement with (15). Indeed,

1t appears that the error bounds for € om Te achieved by the - This

reflects the fact that the above proof can also be used to show the follow-

C ing:

10
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| | (16) Defining K = -k . independently of i,

[ n-1e. =Ke ( TT
nm n-m+l,m somo (K; + 1))

=X ( TT (xk +1)) ° efor).

| | 1=m+2
( For an analysis of the regular Gram-Schmidt procedure we replace (14)

L with,

L n-1
e. < (Kk 4,1)e ( TT (x, +1))

1<e | L. °

i - m+l,m jembp

i where we define L, = K, + 1. With this we can prove that for m > 2,

| me m+l< + 1).

| (17) emtl,m = 2 p01 11 (K, 1)

L proof: By induction on m > 2.

_ < + 1l)e

L

For m > 2,

| m—1
“n+l, m < Kl X mi

i 1m]
m-2 m

<K (e + 1-1 (K. + 1)e, 4- mt - +

& m+1 Mem=1 L J=1+2 J i+l,i

I 11



y!
mn-2 m

<

L Shana +L TTL ey)i=]l J=i+2 ?

m-2 m . i+1
1-2

I + Y (TT1) 2 7 1)«
i=2  j=i+2 J j=3 2,1

| M2 m
<1 . [oD 1-2
Shy [B77 +1+ 302701 7 4

[ 1=2 i=3 "J 2,1
m-3 m-3 wk]< l2 + 1 + (2 - ~

I [ ( De, TT 1;i=3%

| +1m-2 n
L <2 “ee TT x. + 1).2,1 1, 1

i=%

I This completes the proof.

| Combining (14) and (18) completes the error analysis for the regular

| Gram-Schmidt process:
n-1

(18) e, <K e ( TT (x, +— + : 1))L Hn noml,m i=mt+o

| n© TT (x, + 1) form=11 i
i=3%

< |

I ~m—2 0
a z e TT (K.+ 1) form > 2.2,1 . i

I i=3%
It 1s clear that e , Will be maximized for a given n when m=n-l. This

| is also verified by experiment. Tgple 1 presents ¢ for k  —nm ni = 79
It also appears that the error bounds for yy 3TE nearly achieved by the

actua J The above proof can be used to prove equality when the em are

| replaced by the e if the approximation K, = K. t 1 is allowed. prom the
12



[ closeness of the results in Table 1 1t appears that is not too bad an
approximation when K. = 9. This result bears the same relationship to (18)

g as (16) does to (15) for the Modified Gram-Schmidt procedure.

. The superiority of the Modified Gram-Schmidt procedure over the regular
process 1s also verified by comparing Tables 1 and 2.

[ 6. Method of the Linear Corrector. Formula(5) is a, very good
approximate representation of the error for the regular Gram-Schmidt pro-

L cess. But, 1f we know in advance what the error 1s going to be, we

| should be able to eliminate it. For this purpose we formulate the regular
Gram-Schmidt process with linear correctors de We shall then use (5)

[ to determine optimum values for d..

i n-1(19) Vy = own L (kg * SOLE
i=1

_
Once again, ignoring errors of normalization and allowing m > n for

. € om produces an error formula:

i n-1= — ] + . . -e . = (V,V) = - L (kni + 4) (VV) - a
ifm

f

L

v )= (k., +d.)e.=-4 .

8 2, nd ni im nm
1fm

L
To determine d 129.57 ceesdy nal so that nl = €.0 5+ ooB €n,n-1" 0 would

( require the solution of a system of n-1 linear equations 1n n-1 unknowns at |
L

each step of the Gram-Schmidt process. This 1s not a practical method. If,

-
15



Ne

: on the other hand, we assume that this method will eliminate instability,
|

_ we may take ld; | << kil» and then consider the system,

n-1

- = a - .© nm } kaiSin Smi=1

| i#m

Setting 6m 0 gives,

m—1 n-1

(20) ad =- ) k.e.- 9 ke.
- no i= yop Brim

- This assumption gives an efficient form for d_. It remains for experi-
nm

mental results to show 1f the assumption is valid. From computational results
}

~ like Table 5, it appears to be so. The only appreciable additional computa-

| tions are for the € om" If these are being calculated anyway, then the method

1s a definite saving. However, it is less clear that the calculation of

L € om purely for the use of this method 1s efficient.

Observe also that i1f there is no round-off error then all d = 0 and

— we have the regular Gram-Schmidt process. Even when this condition does not

hold the linear corrector will not take Vv, lout of the plane' since 4 , is ani
-

| scalar like k ..
ni

’

L 14



| The exposition of the method of the linear corrector 1s in terms of
Koi But kK 3 cannot be used 1n a computational algorithm because it involves

I » which 1s 'not available until the normalization of u, 1s performed. How—
ever, the method of the linear corrector can easily be formulated in a

I manner which 1s applicable for a computational algorithm. Tne pasic defini-

I tion of the Gram-Schmidt process with linear corrector 1is,
n-1

U =W -n n )} [(W,V;) + Dp; 10
[ 1=1

I Vv, =u/| u IE

[ Since k . = an, (Ws. ), we get Dj = a i/a From this and (20) we
get,

I Phi = dsl,
n-1

I i ens) / op
i#m

I n-1
= = k_. .L ( ni/ a Je

I im
i = = (W_,V.)e_..

I - ££ ®» 1i"'ni |
ifm

[ This formula can easily be made into a computational algorithm.

L Since the Modified Gram-Schmidt process 1s more efficient than theq ¢
regular method, the possibility of using a linear corrector with the modified

I method arises. Proceeding as before: |
n-1 |

* * *

| (21) Vo = ofp - 2. (kps + dps Vs |i=1

L 15



L An error analysis like (9) gives,
L n-1

* * *

nm . ni ni’ “im nm

| 1=m+1
—

| If we proceed as we did for (20) we get,
~~

* n-l *

| dm = 2 Kni €im’LL i=m+l

] ] ] * 1

[ This 1s a simple form, except that kos cannot be evaluated until after
¥*

[ dm has been determined (since 12> m+l). However (10) gave us the result,
*

| ko =k, + 8 (K, y654)

| Since we have already assumed stability when we required 1a I< Jk |

we can once again assume les 5] < .01 and define,

* 5(22) d = = K .€.
i nm j=miT pioim

*

[ However, this requires that we evaluate k_, as well as k , and e |ni ni nm

It 1s doubtful that it represents a saving.

- Te. Iteration. Often none of the above methods wilk produce
[ sufficiently accurate results. This often happens when a and Lo are

large. This 1s the result of the (8,7) term, which cannot be eliminated.

L In this case, the best procedure 1s to repeat the Gram-Schmidt process

[ using the inaccurate v as the new Wo. Let v be the result of this
second pass. Then, for the regular Gram-Schmidt method:

16



L | _ i _4, = V_ - (Vv SV. )V..

[ n  .= n° i’'1

I v, =u Aull

I If the error in the vo 1s'not too great then iA will approximate Vy
and Kom T €or Since the error in the Vi vectors 1s proportional to the

I k_ which 1s of the same magnitude of the first pass errors, this iteration

I represents a 'second-order' method.
Iteration can be used with any modification of the Gram-Schmidt tech-

I nique.
8. Numerical Experiments. In order to compare the three computation

[ variations of the Gram-Schmidt process considered in this paper, and in

I particular to test (15) and (18), numerical experiments were conducted on
an IBM 360/67 computer using long-precision arithmetic (14% hexadecimal digits).

I An example was constructed with k . = -K=-9 for n=l, 2, ..., 10. The
results of this experiment are presented in Tables 1, 2, and 3. Table 1

I presents € om for the regular Gram-Schmidt process. Compare these results

I with (18). For m> 2 (18) becomes,
m-2 -

=o K. 1

| fm = ° 2,1 mK + )i=3%

I ET I2,

since (K, + 1) = 10.

[ This aspect of the formula 1s readily verified by examining any row Or
column of Table 1. It is apparent that the actual errors nearly obtain the

17



ST error bounds for 8m This suggests that the replacement of K, by K, + 1

i does not adversely affect the accuracy of this heuristic error analysis.

x : Observe that the largest error 1s €10,9 = -2.9 107. This element is the one
| — | expected to have the largest error. Had this calculation been done in

regular precision arithmetic (6 hexidecimal digits) there would have been

| extreme instability after Vo
] _ Table 2 presents the € nq for the Modified Gram-Schmidt process applied

to the same problem. Error formula (15) is verified here, as is clear from

= the columns of Table 2. As expected, the largest error is €10,1 = -4,089-10"
5 | Compare this value with the corresponding value for the regular Gram-Schmidt |

process, 6101 = _1.096°107 The similarity demonstrates how the modified
. process prevents error propagation along the rows but not down the first
B oo column.

— : Table 35 presents €m for the method of the linear corrector. The

] largest error 1s €10,5 = 1.6.07, which 1s all that could be expected
oo from 1% digit-accurate computations.
a Additional computations showed the method of the linear corrector to
| be comparable with the method of Householder transformations when both were

— applied to the Hilbert matrix of order 6.

- We suggest that the-basic utility of this paper 1s 1n presenting a

TT | method of orthonormalization which 1s comparable in accuracy with more soph-

. isticated techniques and yet 1s both easy to understand and to program.

~ L John R. Rice, "Experiments on Gram-Schmidt Orthonormalization,” Math.
Se Comp., v. 20, 1966, pp. 325-328.
28 18
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Table 1

-3.2000E=15
~4,1100E-14 -2.7807E~-14
-4,0960E~-13 —2.82393-1 3 -6.2449E=13
-4 ,0964E=-12 ~2,8247E«12 =6.2470E=-12 -1.1843E-11

-4.0963E-11 -2.8244E-11 -6.2u72E-11 ~1.1844E-10 -2.2510E=10

~4.,0962E=10 =2,8243E-10 -6.2472E=-10 =1.1844E-09 ~2-2310E-02 mt -2769E-00-4,0962E-09 -2.8243E-09 -6.2472E~09 ~1.1844E-08 -2.2510E-08 -4.2769E-08 -8.1261E-08
-l},0962E-08 -2.82L43E-08 =6.2472E~08 ~1.1844E-07 ~2.2510E=07 =4.2769E=07 =8.1261E=07 -1.5440E-06

= —4.02623-07 -2.8243E-07 -6.2472E-07 =1.18U4E~06 -2.2510E-06 -4.2769X-06 =8.1261E<06 =1.5440E-05 ~2.9335E=05

®1j for Regular Warn-Schmidt Process with ko, = —9.



Table 2

-3.2000E=-15
-44.,1200E-14 5,1106E-15
-4.0900E-13 4.7628E-14 3,8241E-15
-4.,0894E~12 4.7133E-13 U4.1301E-14 1.9582E-15
-4.0894E-11 L4.7177E-12 4.11G6E-13 1.4656E-14 8.6018E=-15
-4.0893E~10 L4.7179E-11 4.1183E-12 1.4688E-13 8.4567E-14 3.4853E-15
-4.0893E-09 4.7179B-10 4.1188E-11 1.4721E-12 8.4267E-13 2.7187E-14 1.4537E-15
-4.0893E-08 L4.7179EB-09 4.1187E-10 1.4726E~-11 8.4282E-12 2.7896E-13 1.4204E-14 6.3004-E-16
-4,0893E-07 U4.7179E-08 %.1187E-09 1.4726E-10 B8.4286E-11 2.7851E=12 1.3676E-13 1.9133E-15 3.3014E-15

€4 for Modified Cram Schmidt Process with = —9.



Table 3

-1.3200E-14 6.1939E-16
-1.1500E=1 4 =-1.4794E=15 3.5223E-16
-1.0200E-14 -2,2280E-15 1.9980E-15 ~3.8554E-16

-3.8000E-153.5273E-15 3.9285%15 3.9224E-15 1.0684E-14 6,3989E-15
-2.7000E-15 3.9701E-15 L4.3554E-15 7.2906E-15 6.2020E-15 8.9330E-16 -2.1698E-15
-5.0000E=-15 2.2657E-15 6.0209E-15 1.3287B-14 1.3287E-14 2.1319E-15 -6.8681E-15 7.4650E-15
~6.3000E~15 -8.4736E~16 4.7397E-15 1.5569E-15 1.5569E-14 3,0827B-15 =7.5095E~15 6.0888E-15 =2.4260E-15

nO
H

€44 for Regular Gram-Schmidt Process with Linear Corrector, Kk , = -9.


