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1. Introduction. One of the fundamental formulas of analysis is the

Gram-Schmidt, orthonormalization process. Unfortunately it is also notor-

iously computationally unstable. Rice [1] presents some computational tech-

—

niques which seem to reduce the numerical error propagation, but he presents

no analysis explaining why his methods work. This paper attempts to provide

—

a heuristic error analysis of the Gram-Schmidt process which will show why

; it is unstable and why Rice's techniques reduce numerical error.
.-
% 2. Gram-Schmidt Process. This section will present a basic exposition
. of the Gram-Schmidt process showing the principal sources of round-off error.
i— Consider a set of linearly independent vectors W. ,Wé e Wﬁ in EN’
ﬁ with an inner-product (*, °). We want to find a set of orthonormal vectors
‘9
(- V., Vo, .m0 V.. such that, for each i, V, is a linear combination of

172 N i
i Wl’ Wé, C e Wi. The Gram-Schmidt process does this in a straight forward
L

manner as follows:

%
. ¥ The authors would like to acknowledge the financial support of the

National Science Foundation while both were at the Department of Computer

Science, Stanford University and the assistance of the Office of Naval
{' Research in the preparation of this report for publication.
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n-1
(1) U =W, - 1;1 (W ,v,) v,

(n=1, 2, .... N)

<
I

n = B
1
where ||7|| = (z, z) 2.

If we define o = l/HUhH and k. = a (W ,V,) then (1) becomes,

n-1

(2) Vo= W - ;L;‘l k., Vs

If we denote by the vector En the numerical round-off error in eval-

uating (2) in finite-precision floating-point arithmetic on a computer, then

(2) becomes,

n-1
(3) Voo Woo- 'Z=:1 kyy Vit

If we orthonormality as the measure of the error in a set of computed

vectors, then we are interested in the magnitues of,

Emn = (Vn,Vm) - anmo

- In the absence of round-off error e = = 0 for 1<n<N,1<m<HN

3 Heuristic Error Analysis. Since the objective of this paper is to
present a heuristic analysis rather than to establish rigorous error bounds,
we shall make a number of assumptions about the error terms. The validity
of these assumptions will be supported by numerical experiments.

In this type of heuristic error analysis some notation for the numerical

size of a quantity is needed. The O(r) notation is too precise a concept
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for this type of analysis. Dr. George Forsythe has informally proposed
the notation Y = 6(r) to mean Y = @r, where |8] < K for some unknown con-
stant K with the general assumption that K < 102. (The value lO2 is sub-
ject to change as needed).

Since we are interested in stable numerical procedures, we assume that
‘Enﬁi <.0l, and it is understood that the error analysis will be abandoned
once this limit is exceeded. This assumption allows us to do a first order
error analysis.

Consider the general Gram-Schmidt process (1). Since the normalization
of Uh is the last arithmetic operation performed, previous errors do not
directly affect UQth)- Thus we may assume. that (Vn,Vn) = 1 + 9(7) where
T ==% Bl_t for a machine with t digits in B radix. Now, if all errors
associated with Vh were of magnitude T, we would have a numerical process
as accurate as we could reasonably expect. Since the Gram-Schmidt method
is not such a process we can assume thatenn is inconsquential in comparison
with other errors associated with Vn' We can thus ignore € in a first
order error analysis.

Since €m = Emn’ and in light of the previous assumption that €n = 0,
it will be convenient to consider_enm for mn unless specified otherwise.

Since we are interested in the growth of round-off error we will
occasionally assume that € JTOWS with n.e Then, for a first order error
analysis, we may ignore epm terms in comparison with €m terms when p<n.

Consider the basic round-off error vector § in (3).  Since n-1 vector
subtractions, n inner-product evaluations, and n multiplications of a vector
by a scalar are required to compute V , it is reasonable to assume\ﬁnﬂ =6(nt).

Expanding V as in (3) we can derive an error propagation formula

3



for the basic Gram-Schmidt method:

e
» (%) em = (Vo V)
. n-1
— = ozn(Wn,Vm) - lZ:l kni(vi’vm) + (gn’vm)
| =a W,V ) - o W,V )(V,V )
— m-1 ?i%
- k .e . - k_.e.
12___:1 ni mi 12ml ni’im
L -
+
(,5V,)
o = _ .
L a (W v )(1 (L-e ) )
m-1 n-1
A - - k .€ . - Z k €.
i g;l niomi i=m+l ni“im
+ (grfvﬁ)
I T (ar)
= - k .e.. = k .e. + 08(nr
&£ nimi L& . nitim
because €m = 0.
-
‘ Since we are interested in errors larger than T, we will often ignore
~— the 6(nr) term in (¥) in the presence of other error terms. Thus (4) will
' often be used in the following form,
- (5) 1 1
m- n-
€ = - k .e . - k .e.
nm g;l ni mi jomyy piim
ep,q = 8(2r).
—
i
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4.  Modified Gram-Schmidt Process. Rice [1] has proposed a simple
modification of the standard Gram-Schmidt process which seems to reduce
severe error propagation, though he presents no analysis to explain the

experimental success of the method. It involves no additional computation,

though the definition is a bit more involved:
(6) uo=W

B

II@j

5T

U’::l - (Uln’vi) Vi (1=1,2, e e e e n_l)

v, =A%

n

or
U‘n n-1 Ul ‘
n "W - i§ (n’vi)vi°

To further illustrate the relationship between this process and the

regular Gram-Schmidt method; (1) could be written in the form of (6) as follows:

n n
i =U‘; USRI

*

Lo ¥ i * *, 4 i
If we define o, = l/H U:ll H, V =« U;, and kni = an(U:'l,vi) = (V;’Vi)

=
(=}

then (6) becomes,



n
-+ ' *
i R S
n n ni 1
v =75
n n

An error analysis of this scheme depends on the following lemma, which

is easily proven by backwards induction on m:

(8)

n-1
*
Vi, = v‘rrll -ign: KniVse

proof: The lemma holds trivially for m=n. Assume it holds for

m=p+l. Then,

n-1
+ *
Vn = \{]P ' Z kniV:L
i=p+l
n-1
_ P - * _
=V lﬁp‘]{; Z k ,V,

This completes the proof of (8).

From (8) we get an error formula for computation:

Enm (Vn’Vm)
n-1 . .
= (V‘E’Vm) - Z kni(vl’vm) + (gn)Vm)
1=m

=o (Bv) - o (V) (V)

n-1

_ k .e. + (g ,v ).
i=my ~ BLAm 7 m

Making the same assumptions regarding (Vm,Vm) that we made before, we get,

6
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(9) Eom = - i=§+l k ieg, + (o).

The improvement of (9) over (4) is obvious.

Having devised an error formula (9) for the modified Gram-Schmidt
process (6) which is similar to that of the regular process (5), it is
appropriate to consider the relation between kni and kﬁi‘ A consideration
of the properties of orthonormal vectors shows that they would be identical
if there were no round-off error. This is an important consideration for
the theoretical properties of the two methods, but does not explain why the

Modified Gram-Schmidt process seems to be better. From (7) it is apparent

that,
i * o«
v = a W - kK V..
n nn — nj j
J_
From this we get,
* i
(10) k, = (V,V,)
i-1
*
= o (V) - anj(vJ V)
J=1
* i--1
o *
= "n k - 2: £
o ni 2 nj-ij

*
It is thus apparent that kni and kni are of similar magnitude until the
error becomes truly severe. Since we are conducting a first-order error
*
analysis with the assumption that|fj4| <.0l, we may assume k , = k . for

ni ni
the purposes of our analysis.
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Recall that for the reqular Gram-Schmidt process we had,

m-1 n-1 (ar)
(4) € = k .e . - k .e. + 6(nr).
nm iz=:l ni“mi 1SHEL ni im

Since we are interested in the conditions under which severe error
propagation occurs, it i1s reasonable to assume that €m increases with n
(since m < n). Then, assuming that the kni are of similar magnitude for

i1 <n and for i < n, we can assume error bounds for the regular Gram-Schmidt

process as follows:

n-1
(11) € = k_.e. + 6(. ) (m<n- 1)
nm i=§n:+l ni~im mym=-1
n-=2
€aon-1 T T g;l ki€n-1,1 + ° (n).

The simularity of this and (9) allows us to use the same error analysis
for both methods, the only difference being for €, n.7°
De Error Propagation Analysis. For the purpose of further analysis

we will assume that |kni < Kn independently of i. We will also define

em = ‘enm‘. The error propagation- formulas then become:
n-1
(12) em S Ky L e (m<n - 1)
n-2
) Kh z;=l €p-1,i Reqular Gram-Schmidt
en,n-l =
8 (nr). Modified Gram-Schmidt
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The following lemma is required for this analysis:

ol i-1 q
(13) 1+ Z b, TT (. + 1) = TT (b. 1).
- i . J . J
1=p J=p J=p
proof: For g <p, 1 + 0 =1. Now by induction on g for p< g:
+1 i-1
+ + = +
1 ), bl 1_‘T (bj 1) 1 1A (J 1)
1= J= J=
i-1
+ 1 + +
1+ b, TT (b 1)
i= J=p
q
bq+l ;[;[ (bJ 1)
q
+ T7 (bJ +1)
J=p
qtl
=TT (b + 1).
J=p
This completes the proof of the lemma.
We can now show that for m < n-1,
(1) e <Ken o ’[T+2(K + 1))
proof: By induction on n for n> mt2:
for n=m+2, (12) gives,
n-1
e <Ke <K < K. + 1).
nmm - n n-l,m — "m2, - n ®m+l m TzL+; )



}

For n > m*2 by induction on n:

n
e < K e,
ntl,m — "ntl 15 im
ii i-1
b SO K,e TT(k, + 1))
n+l' “mt+l,m s 1 m+l ,m jemt2 J
<K e n i-1
= "n+l m+l,m (1 + Z K, TT (%, +1))
=2 j=mte Y
n
<
S Kl Gl 1T (B +1)
1=m+2

which completes the proof. The final step used the lemma with
p=m+2 and qg=n.
This completes the error analysis for the modified Gram-Schmidt process.
In summary,
n-1

T (& +1) . e(nr).

i=m+2

(15) °n nf—Kn
This is maximized for a given n by m = 1. This is verified by computa-
tional results. Table 2 presents the €m for a modified Gram-Schmidt pro-
cedure with kni= -9« The results are in good agreement with (15). Indeed,
it appears that the error bounds for €ym 2T achieved by the €’ This

reflects the fact that the above proof can also be used to show the follow-

ing:

10



(16)

with,

(17)

Defining Kn = -kni independently of i,

n-1
€m Kn(';m+1,m ( i=1r_nlji'2 (Ki + 1))
n-1
=K ( TT (. +1)) ° e(nr).
; i=m+2

For an analysis of the regular Gram-Schmidt procedure we replace (lll)

n-1

am € O+ D) e (T (5 +10)

n

<e ﬂ L, °
- m+1,m {=m+2 1

where we define Li = Ki + 1. With this we can prove that for m 2 2,

2m-2 m+l
< - o
mtl,m — €2,1 i'=|3 (& + 1)

proof: By induction on m > 2.

For m = 2, from (11) €5 o < K:,’ €1 < (K3 + 1) €1

For m > 2,

m-2 m
< (e + 1-1 (K, + 1l)e .)
=¥ (Cpm 121 jetb2 9 i+l,1

11
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= ™ = — = &= — & — rMrr&>§Mm>&%&@>@™ "% >

i=2 j=i+2 J j= 2,1
m-2 m
<Ly 22 4 1 4 Y, 2B 17 L
i=2 i=3 j 62,1
m m+l
<[25+1+(2m3-1)]e21‘]-".]'1,
i=3  *
+1
m-2 o
<2 egl'];[(Ki + 1).

This completes the proof.

Combining (14) and (18) completes the error analysis for the regular

Gram-Schmidt process:

n-1

(18) S I-:Tm+2(Ki + 1))

n
eg,l ﬂ (Ki + 1) form=1

1=3
<
o, ~ n
- 2" e TT (K. + 1) for m > 2.
2,1 i=5 1

It is clear that e, Will be maximized for a given n when m=n-l. This

is also verified by experiment. Tgpie 1 presents ¢_ for k _ - _g
nm ni ~7°

It also appears that the error bounds for €y 2T nearly achieved by the

actual € nm® The above proof can be used to prove equality when the €m are

replaced by the e =~ if the approximation K, = K. + 1 is allowed.

) From the

12
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closeness of the results in Table 1 it appears that is not too bad an
approximation when Ki = 9. This result bears the same relationship to (18)
as (16) does to (15) for the Modified Gram-Schmidt procedure.

The superiority of the Modified Gram-Schmidt procedure over the regular
process is also verified by comparing Tables 1 and 2.

6.  Method of the Linear Corrector. Formula (5) is a, verygood
approximate representation of the error for the regular Gram-Schmidt pro-
cess. But, if we know in advance what the error is going to be, we
should be able to eliminate it. For this purpose we formulate the regular
Gram-Schmidt process with linear correctors d .. We shall then use (5)

to determine optimum values for dni'

n-1

(19) Vp = oWy T 3;L (kni * dni)vi'

Once again, ignoring errors of normalization and allowing m > n for
€m produces an error formula:

n-1

€ = (vn,vm)

o _
am (kni dni) (Vi’vm) dnm

i=

i#m

n-1
= - + - .
g; (kni dni) € im dnm

ifm

To determine dnl’ane’ ceeyd

n,n-1 so that €1 = = 0 would

l - €n2 @ e @ @ en,n-l_
require the solution of a system of n-1 linear equations in n-1 unknowns at

each step of the Gram-Schmidt process. This is not a practical method. If,

15
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on the other hand, we assume that this method will eliminate instability,

we may take |dni|< < lkni" and then consider the systenm,

n-1
€ = = Z k.e -d .
nm &1 ni in nm
ifm
Setting € = 0 gives,
m-=1 n-1
(20) a =- Z: k .e . - E: K .e., .
nm & ni mi o] ni im

This assumption gives an efficient form for dmm'It remains for experi-
mental results to show if the assumption is valid. From computational results
like Table 3, it appears to be so. The only appreciable additional computa-
tions are for the € If these are being calculated anyway, then the method
is a definite saving. However, it is less clear that the calculation of
€ m purely for the use of this method is efficient.

Observe also that if there is no round-off error then all dni = 0 and
we have the regular Gram-Schmidt process. Fven when this condition does not
hold the linear corrector will not take anout of the plane' since d g is a

scalar like k ..
ni
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The exposition of the method of the linear corrector is in terms of

kni' But kni cannot be used in a computational algorithm because it involves

s which is 'not available until the normalization of Uﬁ is performed. How—
ever, the method of the linear corrector can easily be formulated in a
manner which is applicable for a computational algorithm. 1no pasic defini-

tion of the Gram-Schmidt process with linear corrector 1is,

n-1
U, = W, - igl [(W,sV;) +D ;v
v, =u/| U, |

Since kni =, (Wﬁ’vi)’ we get Dni = dni/an' From this and (20) we

get,

Dni = d’n:i./Otn

n-1
= (- 125;1 kni eni)/an

i#m

n-1
- g;l (kni/ an)eni

i#m
n-1

- - (W ,V. )e P
].Z‘:’l n° 1’ -ni

ifm

This formula can easily be made into a computational algorithm.

]

Since the Modified Gram-Schmidt process is more efficient than the
¢
reqgular method, the possibility of using a linear corrector with the modified

method arises. Proceeding as before:

n-1
¥* * *
(21) Vo= oW - Z (kyy + 975
i=1
15
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An error analysis like (9) gives,

n-1
* * *
€ = - § (k.. +d .)e, -4 .
nm j=ml ni ni im nm

If we proceed as we did for (20) we get,

* n-l *
dm = Z ki €im®
i=m+l
N . * .
This is a simple form, except that kni cannot be evaluated until after
*
dnm has been determined (since i > m+l). However (10) gave us the result,

*

ki =kt e(Kijeij)'

Since we have already assumed stability when we required.ldnm|< <|ka,

we can once again assume \eijlf_.OI and define,

* n-1
(22) d = - kK .c. -«
nm i=m+ ni im

*
However, this requires that we evaluate kni as well as kni and € 0

It is doubtful that it represents a saving.

T Iteration. Often none of the above methods wilk produce
sufficiently accurate results. This often happens when @ and kni are
large. This is the result of the (gn,vm) term, which cannot be eliminated.
In this case, the best procedure is to repeat the Gram-Schmidt process
using the inaccurate Vh as the new Wﬁ. Let Vﬁ be the result of this

second pass. Then, for the reqular Gram-Schmidt method:

16



L

r — r— ==&/ &= ——— &=/ =B/ &=/ &= — B2 &==&Z &= &=/

n-1
q =V -ig (V_ )V, )V,

¥, = /1T,

If the error in the Vn is'not too great then V; will approximate Vn

and knm = € Since the error in the V£ vectors is proportional to the
Eﬁm' which is of the same magnitude of the first pass errors, this iteration
represents a 'second-order' method.

Iteration can be used with any modification of the Gram-Schmidt tech-
nique.

8. Numerical Experiments. In order to compare the three computation
variations of the Gram-Schmidt process considered in this paper, and in
particular to test (15) and (18) , numerical experiments were conducted on
an IBM 360/67 computer using long-precision arithmetic (14 hexadecimal digits).
An example was constructed with kni = -Kn= -9 for n=1, 2, ««., 10. The
results of this experiment are presented in Tables 1, 2, and 3. Table 1
presents €m for the regular Gram-Schmidt process. Compare these results

with (18). For m> 2 (18) becomes,

m-2
= l
€pn = 2 e 1 11' (Kl + 1)
i=3
= 2 10l g
2,
since (Ki + 1) = 10.

This aspect of the formula is readily verified by examining any row or

column of Table 1. It is apparent that the actual errors nearly obtain the

17



error bounds for enm' This suggests that the replacement of Ki by Ki + 1
- does not adversely affect the accuracy of this heuristic error analysis.
Observe that the largest error is elO,9 = -2.9 -10'5. This element is the one
-~ expected to have the largest error. Had this calculation been done in
regular precision arithmetic (6 hexidecimal digits) there would have been
- extreme instability after V7.
- Table 2 presents the € m for the Modified Gram-Schmidt process applied
to the same problem. Error formula (15) is verified here, as is clear from
o the columns of Table 2. As expected, the largest error is €10,1 = -h.089~10'7.
% l A Compare this value with the corresponding value for the regular Gram-Schmidt
. process, ch} 1= -h.096‘10-7. The similarity demonstrates how the modified
; process prevents error propagation along the rows but not down the first
column.
: — : Table 3 presents €m for the method of the linear corrector. The
largest error is elO,B = 1.6.10-14, which is all that could be expected
v - from 14 digit-accurate computations.
_. Additional computations showed the method of the linear corrector to
be comparable with the method of Householder transformations when both were
— applied to the Hilbert matrix of order 6.
- We suggest that the-basic utility of this paper is in presenting a
- method of orthonormalization which is comparable in accuracy with more soph-
isticated techniques and yet is both easy to understand and to program.
L
- LJohn R. Rice, "Experiments on Gram-Schmidt Orthonormalization," Math.
. Comp., v. 20, 1966, pp. 325-328.
_ 18
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-3.2000E-15
-4.1100E-14

-2.7807E-14

-4,0960E-13 —2.82393-1 3-6.2449E~-13

-u’. 096L’E-1 2
=4.0963E-1 1
=L ,0962E-10
-4 ,0962E-09
=L ,0962E-08
-4.09623-07

-2,8244E-11
-2.8243E-09
-2.8243E-08
-2,8243E-07

"6 . 2“‘?0E“1 2
-6.2L72E~-11
~6.2472E-10
~6.2472E~09
-6.2472E-08
-6.2472E~-07

Table 1

-1.1843E-11
~1.1844E-10
-1 .1844E-09
"'1 . 1 8’4’4‘E-08
-1 .1844E-07
-1.1844E-06

-2,2510E-10

-2.2510E-0
-2.2510E-0

-2.2510E-07
~2.2510E-06

-u.zvg E-09
-402? 9E-08 -8-1 261 E"OB

-4 ,2769E-07 -8.1261E-07 =~1.5440E-06

-4.2769X-06 =8.1261E=06 -1.5440E-05 -2.9335E-05

eij for Regular Warn-Schmidt Process with kni = -9,
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Table 2

-3.2000E-15

~4.0894E~12 4.7133E-13 U4.1301E-14 1.9582E-15

-4.,0894E-11 L4.7177BE-12 4.1196E-13 1.4656E-14 8.6018E-15

-4.0893E-10 4.7179E-11 4.1183E-12 1.4688E-13 8.4567E-14 3.4853E-15

-4.0893E-09 L4.7179B-10 4.1188E-11 1.4721E-12 8.4267E-13 2.7187E-14 1.4537E-15

~4.0893E-08 4.7179E-09 4.1187E-10 1.4726E-11 8.4282E-12 2.7896E-13 1.4204E-14 6.3004-E-16

~4.0893E-07 4.71798B-08 %#.1187E-09 1.4726E-10 8.4286E-11 2.7851E-12 1.3676E=13 1.9133E-15 3.3014E-15

eij for Modified Cram Schmidt Process with kni = -9.
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Table 3

-3.2000E-15

-1.3200E-14 6.1939E-16

-1.1500E-1 4 -1.4794E-15 3.5223E=16 \
-1.0200E-14 -2,2280E-15 1.9980E-15 =3.8554E-16

-9.6000E-15 =4,6356E=16 6.6069E~15 1.4187E-16 1.1436E-14

-3.8000E-153.5273B~-15 3.9285%15 3.9224E-15 1.0684E-14 6,3989E-15

-2,7000E-15 3.9701E-15 U4.3554E-15 7.2906E-15 6.2020E-15 8,9330E-16 =2.1698E-15

-5.0000E-15 2.2657E-15 6.0209E-15 1.3287B-14 1.3287E-14 2.1319E-15 =-6.8681E-15 7.4650E-15
~6.3000E-15 -8.4736E-16 4.7397E=15 1.5569E-15 1.5569E=-14 3,0827E-15 =7.5095E-15 6.0888E-15 =2.4260E-15

e1j for Regular Gram-Schmidt Process with Linear Corrector, kn1 = -9,




