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1. Introduction. By an eigenvalue and eigenfunction of Iaplace's

operator on a bounded two-dimensional domain G we mean a positive

number A and a non-zero function u(x,y) which satisfy

(l) . Au(x)y) + >\'u(X;Y) =0, (X,y) e G

and

(2) u(x,y) = 0, (xy) el
> 2

where I' is the boundary of G and A = — + 5 We enumerate
ox dy

the eigenvalues so that 0 < >\l < >\2 < >~.5 < .

In [1] and (2] a method is described for finding accurate approxi-
mations to these eigenvalues and eigenfunctions together with rigorous
bounds on the error in the approximations. The method makes use of
known particular solutions of the differential equation (1) and involves
two main steps. First, a linear combination of the particular solutions
is determined which approximately satisfies the boundary condition (2).
Second, the error on the boundary is measured and used to compute upper
and lower bounds for a true solution. The pertinent portions of [1] and

[2] are summarized in Section 2.
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This paper is primarily concerned with the first step of this
process. A generalization of the interpolation technique of [1] for
determining a good linear combination is described in Section 3. The
basic tool is a Householder-QR algorithm [5]-[6] for computing the

singular values of rectangular matrices.

In Section 4 the revised method is illustrated by taking the domain

G to be a rhombus. Such domains are difficult to handle with the
original method. The Weinstein method of intermediate problems has
also been applied to rhombical domains by Stadter [3]. We conclude by

comparing Stadter's results with our own.

2. Summary of [1] and [2]. 1Introducing polar coordinates (r,0)

and scaled Bessel functions stv(g) we note that for any v the

functions

pv(r,O;h) = SVJV(/i r) cos v , v=0,1,2,. .. and
(3)

p_,(r,050) = stv(‘/k r) sin v0 | v = 1,2,3 ,...

are solutions of the differential equation (1). Consequently, finite
linear combinations of these functions may approximate the desired
eigenfunctions. These "farticular" solutions are chosen because
results of S. Bergman and I.Vekua imply that linear combinations of
them can approximate any eigenf'unction arbitrarily closely and because
similar particular solutions can, in prinicple, be generated for more

general differential equations.
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Any symmetries in the domain G can be used to eliminate terms
from the linear combination. For example, if G is symmetric with
respect to both the x and y axes, then the first eigenfunction
(corresponding to %'l ) can be approximated with n terms by

n
(1) u,(r,0) = ) e:Pps_p(Fs05hy)
J=1
The parameter K* and coefficients c. are to be determined so that
U
u, is close to zero on T .

The method used in [1] involves choosing n points (ri’gi)
on [' and requiring that u, interpolate zero at these points, that
is

u*(ri,Qi) =0, 1i=1...,0n

This determines the coefficients to be the solution of A(M)c =0

where c = (cl,...,cn)T and A(M) is the n-by-n matrix whose

i, j-th element is a.l,j(%-) = Pp; 2(r:.L,Oi;?») , 1,3 = 1;...,n . Non-zero
coefficients are obtained if and only if A(M) is singular, consequently
A, is taken to be a zero of determinant (A(N)).

It is convenient to normalize u, SO that

en 6 5
(5) [T W, (r,0)r dr 46 = 1
0 0

where & 1is the rauius of the largest circle centered at the origin and
contained in G . This can be achieved without numerical integration
because the particular solutions (3) are orthogonal over this circle

and become orthonormal if 5y is defined by
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5
D .enJ‘Ji(fkr)rdr=1,

(6) 0

2 6 2
s, . ™ J‘Jv (VN r)r dr = 1 , v= 1,2,...
0

The desired normalization (5) of uy, can then be achieved by requiring
n

(1) )} c§=1
j=1

Note that the normalization depends upon 6 and M .

The approximate eigenf'unction u*(r,O) determined in this way is
a solution of the differential equation which is zero at n gselected
boundary points and hopefully small on the rest of the boundary. To

obtain error bounds, we compute

(8) € = |u,(r,0)| . Jarea of G

max
(r,0)el
The first theorem of [2] then implies that there is an eigenvalue kk

in the interval

A }\ A,
(9) re S ™ S T

The other theorems in [2] bound the error in u, . Thus it is possible
to obtain upper and lower bounds for both the eigenvalues and eigen-

functions.

3. New methods for determining the coefficients. The interpolation

technique described above is a special case of the following general

and € . Let m

method for determining the;ﬁ' 's, Ay, and hence U,
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c = (cl,...,cn)T and let

points(ri,Oi), i=1...,m, be chosen on the boundary, let n be
the number of terms to be used and assume m > n . (In practice, we

will take n to be 10 or 20 and m two or three times n .) Let

A(h) be the rectangular matrix with elements
(10) ai,j(x) = Pu(ri)oﬁ_;}"),i = 1ye.eomy, j = 1,...,n
J

where the Vj are determined by any symmetries in the domain. [et

Llhl and I-ln be norms on m -vectors and
n -vectors respectively. Compute
() la®ell,,
11 min min ~“—ﬂ————
N oc Sln
by an algorithm which also computes the minimizing A and ¢ . Let the

minimizing M be the approximate eigenvalue K* and the minimizing c
be the coefficients in the approximate eigenfunction .

n
u,(r,0) = }: ¢ pv.(r,G;K)
J=1 J

The actual value of the minimum is not used. In principle, infinitely

.many K* 's could be found, each giving a local minima and each approxi-

mating an eigenvalue of the original problem. 1In practice, a rough
estimate of an eigenvalue is known from other considerations and the
minimizing search is carried'out near the estimate.

The quotient in (11) should not be confused with the Rayleigh
quotient occurring in variational methods. The value of our quotient

is hopefully very small and is a measure of the error in satisfying the
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boundary condition. In most variational methods the base functions
in the linear combination already satisfy the boundary condition, but
not the differential equation, and the value of the Rayleigh quotient
approximates the eigenvalue itself.

If m=n, we technically have the original interpolation method
because a minimum equal to zero occurs when A and c are such that
A(M) is singular and A(A)e = 0 . If m>n , the minimum will not
be zero except in special circumstances and u, will not be exactly
zero at the chosen boundary points.

In the experiments to be described in the next section, we have taken

both |H|m and .“n to be Euclidean length, thus obtaining a discrete
least squares fit to the boundary condition. It is known that any
m-by-n matrix A , and in particular our A(N) , can be factored

into a singular value decomposition y g vT where U is m-by-m

T . . .
orthogonal, V© is n-by-n orthogonal and £ is m-by-n with the form

1
0
%
T = 0 .
. . . . . . cn
0
where %_2 %2> B q1> 0 . The singular values o, are the square

roots of the eigenvalues of A?A and in our case are functions of A .

It is immediate that

i llav
(12) mJ(.:n—l'[C:n = 0, = m
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where v, is the last row of VT .

Several algorithms for computing the singular value decomposition
without the loss of accuracy resulting from the use of A?A are proposed
by Golub and Kahan in [4] and by Golub in [5]. The algorithm in [5]
uses Householder transformations to reduce A to a bidiagonal matrix J
and then a variant of the QR algorithm to compute the singular values
of J . An Algol procedure for the algorithm is given by Businger [6].

. T ' o . .
The matrix V and hence our coefficient vector ¢ 1is a biproduct of

' the algorithm. The ¢ automatically satisfies (7). To complete the

process we carry out a one-dimensional minimizing search to find local
minima of cn(X) . The minimizing A are our approximate eigenvalues.
This method is often superior to the original interpolation
approach. The boundary points must still be chosen, but their effect
on the final approximation and bounds is less pronounced. Furthermore,
the Householder-m algorithm provides a stable, accurate method for
computing the coefficients, the most critical portion of the process.

It might appear even more desirable to use a Chebyshev criterion at

the boundary by taking l'Hm in (11) to be the maximum norm. But now

we see no natural choice for ”'”n . If the maximum norm is also used
for n.”n we do not knaw of an algorithm for computing the minimizing c
If we take ”E“n =|c

l|, the inner minimization in (11) in effect

becomes

(13) min max |a,
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The resulting coefficients must be renormalized to satisfy (7). We
have not had much experience with this approach. Some preliminary
experiments encountered difficulties possibly related to the fact that
N 1s chosen so that the particular solutions pv(r,O;K) do not form

a Chebyshev system on the boundary. Further investigation is planned.

4, Experiments with a rhombus. The least squares method described

.above was tested by taking G to be a rhombus with sides of length fx

and obtuse interior angle B for various values of B . This region
was chosen for several reasons. First, the corners in the region

have a direct effect on the accuracy of the method. Second, the rhombus
has been used by Stadter to illustrate the method of intermediate
problems and we wish to compare the two methods. Third, we wish to
extend Stadter's tabulations to include eigenvalues of all symmetry
classes.

Since we are not interested in just the rhombus itself, we have
avoided using any of its special properties. It is possible to use
our computer program to bound the eigenvalues and eigenf'unctions of
any other star-shaped symmetric domain by "just changing one card".

_ Unless B is a submultiple of 1800, some high order derivatives
of the eigenf'unctions will be unbounded near the corners of this domain.
However, the particular solutions and hence our approximating eigen-
functions have bounded derivatives of all orders. Consequently, we can

expect slow convergence of the approximations and will have to take

many terms in the linear combinations to get reasonable accuracy.



In {1} an L -shaped domain with one reentrant corner was studied using
particular solutions of fractional order to match the boundary condition
and derivative singularities at the corner. Upper and lower bounds
which agreed to better than eight significant figures were obtained
rather easily. We avoided such an approach with the rhombus because it
becomes too special when more than one "bad" corner is involved and because
we were interested in the effect of the singularities on convergence.

Upper and lower bounds for the first five eigenvalues of six
different rhombuses are given in Table 1. (The approximation K* may
be easily recomputed from the table using K* = a -1f73 where a
and d are respectively the average and half the difference of the given
upper and lower bounds.) The first five eigenvalues of the corresponding

o]

square, that is p=90 , are 2, 5,5, 8 and 10

If the rhombus is oriented as in Figure 1, then the first five
eigenfunctions have the following qualitative properties. With respect

to the x -axis, ul r Uy and v, are symmetric, u3 and u5 are

antisymmetric. With respect to the y -axis, u u3 , and u

1’ 4

are symmetric, U, and u5 are antisymmetric. Only u), has curved
nodal lines; they are sketched in the figure and they approach the lines

y =+ x as B approaches 90O . The nodal lines of Uy u3 and u5

are the y -axis, the x -axis and both axes, respectively, Because of
the symmetries, the particular solutions used from (3) were those involving

only even cosines for ul and.114 , odd cosines for Uy odd sines for

u3 and even sines for u5
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For all the values tabulated, 40 boundary points and 20 terms in the
series were used. The number of boundary points and their distribution
did not have a marked effect on the accuracy, although it was found
helpful to space the points more closely together near the corners.

As B varies, the effect of the corners upon accuracy can be seen
immediately from the values of € given in Table 2. In general, as the
angle at a corner increases, the severity of the singularity also
increases (see [7]) and consequently the accuracy for a fixed number of
terms will decrease. This is observed for k = 1, 3 and 4 where ¢
increases as B increases. In these three cases, the second derivatives
of u, are unbounded near the obtuse corner.

For k = 2 , the nodal line bisects the obtuse angle and hence all
the angles are effectively acute. The second derivatives are now bounded
but the third derivatives are unbounded. The largest angle is 1800-3,
which'decreases as B increases. The net effect is significantly greater
accuracy for k = 2 than for k = 1, 3 or 4 and decreasing ¢ with
increasing B .

For k =5 , the nodal lines bisect both angles and all angles are
effectively less than 600. The third derivatives are bounded while the
fourth derivatives are not. The accuracy is greater than even k = 2 ,
but its dependence upon B is complicated, apparently by the presence
of two comparable angles.

A special situation occurs with B =120° and k = 2 or 5 . The
eigenfunctions u2 and u5 are then also eigenf'unctions of equilateral
and 50-60-9OUAtriangles respectively. It can be shown that such eigen-
functions are analytic. We can actually obtain several decimal places

of accuracy with only a few terms.

10
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The canputations were done on an IBM 360/67 using long form arithmetic
(roughly 16 significant decimal digits). Each 40-by-20 case took about
20 seconds. Some 20-by-10 cases were also tried; they each took 2 or 3
seconds. A Fortran version of the Algol procedure in [6] was used for
the singular value decompositions. The one-dimensional minimizations

were done using repeated quadratic interpolation.

5.' Comparison with the method of intermediate problems. The method

of intermediate problems, introduced-by A. Weinstein and extended by
N. Aronszajn, is the basis for several techniques for computing bounds
for the eigenvalues of certain semibounded, self-adjoint operators on
Hilbert space. As the survey articles [8] and [9] indicate, the method
has both a rich theoretical background and important applications to many
problems in physics and engineering. One of the techniques, the so-called
B*B method of N. Bazley and D. Fox, has been used by Stadter [3] to
bound the eigenvalues of laplace's operator on a rhombus.

Stadter chooses to consider only eigenfunctions which are symmetric
with respect to both axes, although he could easily handle others.
Consequently, his %1 , Ka , K3 » e e Kl’ Ah s K6 ,

He-tabulates results corresponding to our B = lO§3, 1200,...,165o

Hence our tables overlap in the following four places:

Our bounds Difference Stadter's bounds Difference
Kl(lOSO) 2.1138 2.1150 .0012 2.1137 2.1163 .0016
hl(120°) 2.5192 2.5261 .0069 2.5210 2.5307 . 0097
hu(105°) 8.0043 8.0133 .0090 7.9960 8.0286 .0326
kh(12o°) 8.4751 8.5100 .0349 8.4807 8.5365 .0558
11
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We see that the accuracies of the two methods are comparable for this
particular problem. Our bounds are somewhat tighter, but Stadter's
parameter which roughly corresponds to our n was only 15, versus
our 20. With our n also set to 15 , we obtain accuracies very
similar to Stadter's.

It is also interesting to note that the center of Stadter's intervals
are close to the upper ends of our intervals. This, combined with the
fact that our K* 's are probably much more accurate approximations than
the bounds indicate, leads us to suspect that Stadter's lower bounds
may be much closer to the actual eigenvalues than his upper bounds.

Our method also produces approximate eigenfunctions and bounds on
their accuracy. The method of intermediate problems does not do this.

In a sense, this domain leads to a very easy test of the method of
intermediate problems because-a rhombus can be mapped onto a square by a
simple affine coordinate transformation. The resulting eigenvalue problem
on the square provides a very natural application of the method. However,
with other domains for which the transformation is more complicated, or
unknown, the application becomes more difficult or impossible. For example,
we do not see how to apply the method to the L-shaped domain in [1]. On
the other hand, our method has the advantage that it can be applied
directly to any other domain.Apparently the accuracy of both methods
-is affected by singularities at the corners.

It should be pointed out that, although the theoretical basis of

our method is quite general [2], it has so far been applied only to the

12
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"fixed, homogeneous vibrating membrane" problem (1)-(2). The method of
intermediate problems has been successfully applied to a number of other
differential equation eigenvalue problems.

In summary, for the specific problem of Iaplace's operator on a
rhombus the two methods give comparable results. For Iaplace's operator
on other domains, especially if eigenf'unctions are also desired, our
method is to be preferred because it can be applied with no change.

For certain other types of eigenvalue problems involving other operators,

the method of intermediate problems may be applicable where ours is not.
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2.01218
2,01248

4.90375
4.90403

5.15659
5.15750

T7.99206
T o wases

10.0574
10.0578

9

.028
.088
117

.018

100°

2.04gl7
2.04992

4.86522
4.86550

5.38023
5.38324

7.98392
7.98866

10.233L
10.2337

105°

2.11389
2.11494

4. 88407
4.88424

5.68125
5.68840

8.00439
8.01321

10. 5372
10.5375

Table 1

110°

2.20923
2.2113h

L.96317
L. 96325

6.0750k
6.08970

8.079k4k
8.09402

10. 9864
10. 9866

115°

2.34135
2.34527

5.10907
5.10916

6.58418
6.61170

8.23001
8.25296

11.6080
11.6086

Bounds for eigenvalues of rhombus

100
.107
.027

279
.296

. 009

105
246
.017
.627

0 5%

.006.

Table 2

Values of

16

110

045

1.21
. 900
.008

e-lO3

120°

2.51921
2.52606

5.33333
5.33334

7.24150
7.29028

8.47510
8.50997

12, hhhh
12,4445

120
1.36
<.001
3.36
2.05

<.001



Figure 1

Nodal lines of uu , B = 105o
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