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1. Introduction. By an eigenvalue and eigenfunction of Iaplace's

—

operator on a bounded two-dimensional domain G we mean a positive

L number MA and a non-zero function u(x,y) which satisfy

i (1) | Ma(x,y) + M(x,y) = 0 , (x,y) e G
and

L (2) u(x,y) = 0, (x,y) eT

: 3° 3°
i where T is the boundary of G and A = a, + > We enumerate

ox dy

the eigenvalues so that 0 < > < As < Ms <5.
~~ In [1) and [2] a method is described for finding accurate approxi-

mations to these eigenvalues and eigenfunctions together with rigorous
-

bounds on the error in the approximations. The method makes use of

|

L known particular solutions of the differential equation (1) and involves

‘ two main steps. First, a linear combination of the particular solutions

L 1s determined which approximately satisfies the boundary condition (2).

4 Second, the error on the boundary 1s measured and used to compute upper
and lower bounds for a true solution. The pertinent portions of [1] and

i [2] are summarized in Section 2. |

¥ |i Supported by N.S.F. grant GP-8687 and O.N.R. contract NOOOlL4-67-A-0112-0029.
+
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This paper 1s primarily concerned with the first step of this

process. A generalization of the interpolation technique of [1] for

determining a good linear combination 1s described in Section 3. The

basic tool is a Householder-QR algorithm [5]-[6] for computing the

singular values of rectangular matrices.

~ In Section 4 the revised method is illustrated by taking the domain

G to be a rhombus. Such domains are difficult to handle with the
-

| original method. The Weinstein method of intermediate problems has

| . also been applied to rhombical domains by Stadter [3]. We conclude by
comparing Stadter's results with our own.

—

L 2. Summary of [1] and [2]. Introducing polar coordinates (r,0)
and scaled Bessel functions 5,9, (E) we note that for any Vv the

_ functions

_ p,(r,85M) = 5.7, r) cos vo , v=0,1,2... and
(3)

p_,(r,057) = 5.7, (VA r) sin vo | v = 1,2,3 ,...

| are solutions of the differential equation (1). Consequently, finite

— 4 linear combinations of these functions may approximate the desired

. eigenfunctions. These "particular" solutions are chosen because
results of S. Bergman and I.Vekua imply that linear combinations of

Ae them can approximate any eigenf'unction arbitrarily closely and because

i similar particular solutions can, 1n prinicple, be generated for more
general differential equations.



- Any symmetries in the domain G can be used to eliminate terms

| from the linear combination. For example, 1f G 1s symmetric with
respect to both the x and y axes, then the first eigenfunction

| (corresponding to NM ) can be approximated with n terms by
n

i (4) u, (r,0) - Lk 5 SP ACILH MI

| The parameter A, and coefficients care to be determined so thatU

u, 1s close to zero on I .

L The method used in [1] involves choosing n points (r;,6.)
on [' and requiring that u, interpolate zero at these points, that

L 1s

| uy(r,,9,) =0, 1 =1...,n.
. This determines the coefficients to be the solution of A(M)c= 0

L where c = (Cppnenre ) and A(MN) is the n-by-n matrix whose
L 1,J-th element 1is ay, 5M) = Pps o(r;,6, 3M) , 1,3 = 1l;...,n . Non-zero

coefficients are obtained if and only if A(M) is singular, consequently

3 MN, is taken to be a zero of determinant (A(M)).
It 1s convenient to normalize uy, so that

L 2m Oo
(5) | J ui (r,0)r dr d6 = 1

L 0 O
where & is the rauius of the largest circle centered at the origin and

L contained in G . This can be achieved without numerical integration

i because the particular solutions (3) are orthogonal over this circle
and become orthonormal if Sy 1s defined by

i

L



cen [J (VN r)r dr = 1 ,’ [mm] 0]

0

| (6)
: ° 2h )r dr= 1 , v= 1,2: vom I r)r dr = , V= 1,2,...

L 0

The desired normalization (5) of U, can then be achieved by requiring

-
n

2

(7) )) c;=1

Note that the normalization depends upon 6 and M .

L The approximate eigenf'unction u,(r,0) determined in this way 1s

| a solution of the differential equation which 1s zero at n selected
boundary points and hopefully small on the rest of the boundary. To

obtain error bounds, we compute

| (8) e = mx |u/ (r,0)| . Jarea of GL (r,9)el

The first theorem of [2] then implies that there is an eigenvalue A
L in the interval

No
h (9) Tre = "kx S Te :

| The other theorems in [2] bound the error in u, . Thus it is possible
to obtain upper and lower bounds for both the eigenvalues and eigen-

L functions.

—

3. New methods for determining the coefficients. The interpolation

L technique described above 1s a special case of the following general

| method for determining the < 's, Ny and hence u, and e€ . Let m
4
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| points (r;,6,) + i=1...,m, be chosen on the boundary, let n be
-

the number of terms to be used and assume m > n . (In practice, we

| will take n to be 10 or 20 and m two or three times n .) Let
A(h) be the rectangular matrix with elements

\

— .

(10) a, 3) = py (r3,055%). i = l,eee,m, J = 1,...,n
L

| where the vs are determined by any symmetries in the domain. Let

c= (Cr yee,yC yt and let «|| and ||-|| be norms on m -vectors and\“ 1’°°"’"n m n

n -vectors respectively. Compute .

-

1) la(ell,11 min min

| Nc fell,
—

| by an algorithm which also computes the minimizing A and ¢ . let the

~- minimizing AM be the approximate eigenvalue Ny and the minimizing cc

be the coefficients in the approximate eigenfunction .

n

\ u,(r,0) = ) ©3 p, (1,037)
w J=1 J

: The actual value of the minimum 1s not used. In principle, infinitely
|

~— many Ny 's could be found, each giving a local minima and each approxi-

mating an eigenvalue of the original problem. In practice, a rough
-

estimate of an eigenvalue 1s known from other considerations and the

. minimizing search 1s carried'out near the estimate.

| The quotient 1n (11) should not be confused with the Rayleigh

1 quotient occurring in variational methods. The value of our quotient

| 1s hopefully very small and 1s a measure of the error in satisfying the

| 5
-
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L boundary condition. In most variational methods the base functions
| in the linear combination already satisfy the boundary condition, but

not the differential equation, and the value of the Rayleigh quotient

| approximates the eigenvalue itself.
If m =n, we technically have the original interpolation method

C because a minimum equal to zero occurs when A and c¢ are such that

| A(M) is singular and A(M)e = 0. If m>n , the minimum will not
-

be zero except in special circumstances and u, will not be exactly

t zero at the chosen boundary points.
In the experiments to be described in the next section, we have taken

- both Il .1I, and Il, to be Euclidean length, thus obtaining a discrete

i least squares fit to the boundary condition. Tt is known that any
m-by-n matrix A , and in particular our A(MN) , can be factored

]

| into a singular value decomposition yy § vt where U is m-by-m
“.

I
orthogonal, V© is n-by-n orthogonal and § is m-by-n with the form

- a
1

0

L &

{ z = 0 *.

] \
. . . . ] . 0)

n

| 0
—

where 0329%~2>...20, 20. The singular values 0, are the square
C roots of the eigenvalues of ATA and in our case are functions of A .

| It 1s immediate that
lad] lav|

! C -— n
|-

| 6
.
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where v, 1s the last row of vi .
Several algorithms for computing the singular value decomposition

without the loss of accuracy resulting from the use of Ata are proposed

by Golub and Kahan in [4] and by Golub in [5]. The algorithm in [5]

uses Householder transformations to reduce A to a bidiagonal matrix J

and then a variant of the QR algorithm to compute the singular values

L of J . An Algol procedure for the algorithm is given by Businger [6].
The matrix vt and hence our coefficient vector ¢ is a biproduct of

1 the algorithm. The ¢ automatically satisfies (7). To complete the

| process we carry out a one-dimensional minimizing search to find local
minima of a, (M) . The minimizing A are our approximate eigenvalues.

i This method 1s often superior to the original interpolation
approach. The boundary points must still be chosen, but their effect

| on the final approximation and bounds 1s less pronounced. Furthermore,
( the Householder-m algorithm provides a stable, accurate method for

L computing the coefficients, the most critical portion of the process.
| It might appear even more desirable to use a Chebyshev criterion at

| the boundary by taking (a in (11) to be the maximum norm. But now
1 we see no natural choice for I-1I,, . If the maximum norm is also used
| for IR we do not know of an algorithm for computing the minimizing c .

If we take 121], = | c, | , the inner minimization in (11) in effect

1 becomes

(13) min max |a, - y c. a. .| |
L CoyenesC i 1,1 J=2 J 1,J

3

| 1
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{ The resulting coefficients must be renormalized to satisfy (7). We
have not had much experience with this approach. Some preliminary

| | experiments encountered difficulties possibly related to the fact that
AN 1s chosen so that the particular solutions p, (r,05M) do not form

L a Chebyshev system on the boundary. Further investigation is planned.

L
4, Experiments witha rhombus. The least squares method described

| .above was tested by taking G to be a rhombus with sides of length qf
and obtuse interior angle PB for various values of B . This region

L was chosen for several reasons. First, the corners in the region

3 have a direct effect on the accuracy of the method. Second, the rhombus
has been used by Stadter to illustrate the method of intermediate

L problems and we wish to compare the two methods. Third, we wish to
extend Stadter's tabulations to include eigenvalues of all symmetry

L classes.
Since we are not interested in just the rhombus itself, we have

= avoided using any of its special properties. It is possible to use

i our computer program to bound the eigenvalues and eigenf'unctions of
any other star-shaped symmetric domain by "just changing one card".

_ Unless PB 1s a submultiple of 180°, some high order derivatives
of the eigenf'unctions will be unbounded near the corners of this domain.

. However, the particular solutions and hence our approximating eigen-

| functions have bounded derivatives of all orders. Consequently, we can
expect slow convergence of the approximations and will have to take

(

L many terms 1n the linear combinations to get reasonable accuracy.

- 8
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In {1) an IL -shaped domain with one reentrant corner was studied using

| N particular solutions of fractional order to match the boundary condition
| N and derivative singularities at the corner. Upper and lower bounds

| which agreed to better than eight significant figures were obtained

- rather easily. We avoided such an approach with the rhombus because it

becomes too special when more than one "bad" corner 1s involved and because

| - we were 1nterested in the effect of the singularities on convergence.
- Upper and lower bounds for the first five eigenvalues of six

Bu different rhombuses are given 1n Table 1. (The approximation Ay may

- be easily recomputed from the table using A, = a - d/a where a
and d are respectively the average and half the difference of the given

o upper and lower bounds.) The first five eigenvalues of the corresponding

| i square, that is B = 90° , are 2, 5,5 8 and 10 .
| If the rhombus 1s oriented as in Figure 1, then the first five

| -. eigenfunctions have the following qualitative properties. With respect

| to the x -axis, uy r Up and uy, are symmetric, Uz and u, are

= antisymmetric. With respect to the y -axis, uy Uz ’ and u,
1 are symmetric, U, and u, are antisymmetric. Only wu) has curved

| | nodal lines; they are sketched in the figure and they approach the lines

| _ y = + X as PB approaches 90° . The nodal lines of Uy , Uz and Us
EK are the y -axis, the x -axis and both axes, respectively, Because of

- the symmetries, the particular solutions used from (3) were those involving

| only even cosines for uy and Uy odd cosines for Uy odd sines for

uy and even sines for ug

9
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| For all the values tabulated, 40 boundary points and 20 terms in the
series were used. The number of boundary points and their distribution

. did not have a marked effect on the accuracy, although it was found
helpful to space the points more closely together near the corners.

3 As B varies, the effect of the corners upon accuracy can be seen
immediately from the values of € given in Table 2. In general, as the

~~ angle at a corner increases, the severity of the singularity also

| increases (see [7]) and consequently the accuracy for a fixed number of
terms will decrease. This is observed for k = 1, 3 and 4 where ¢

| increases as f 1ncreases. In these three cases, the second derivatives

| of u, are unbounded near the obtuse corner.
For k = 2 , the nodal line bisects the obtuse angle and hence all

| the angles are effectively acute. The second derivatives are now bounded
but the third derivatives are unbounded. The largest angle 1is 180°-g ,

L which'decreases as B increases. The net effect is significantly greater

accuracy for k = 2 than for k = 1, 3 or 4 and decreasing ee with

L increasing B .
. For k = 35 , the nodal lines bisect both angles and all angles are

effectively less than 60°. The third derivatives are bounded while the

| fourth derivatives are not. The accuracy is greater than even k = 2 ,
but its dependence upon B is complicated, apparently by the presence

L of two comparable angles.

| A special situation occurs with B =120° and k = 2 or 5 . The
eigenfunctions u,, and u, are then also eigenf'unctions of equilateral

i and 30-60-90" triangles respectively. It can be shown that such eigen-
functions are analytic. We can actually obtain several decimal places

_ of accuracy with only a few terms.

. 10
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The canputations were done on an IBM 360/67 using long form \rithmetic

3 (roughly 16 significant decimal digits). Each 40-by-20 case took about
20 seconds. Some 20-by-10 cases were also tried; they each took 2 or 3

- seconds. A Fortran version of the Algol procedure in [6] was used for
| the singular value decompositions. The one-dimensional minimizations

were done using repeated quadratic interpolation.

i

| 5." Comparison with the method of intermediate problems. The method
of intermediate problems, introduced-by A. Weinstein and extended by

L N. Aronszajn, 1s the basis for several techniques for computing bounds
for the eigenvalues of certain semibounded, self-adjoint operators on

L Hilbert space. As the survey articles [8] and [9] indicate, the method

. has both a rich theoretical background and important applications to many
problems in physics and engineering. One of the techniques, the so-called

1 B*B method of N. Bazley and D. Fox, has been used by Stadter [3] to
bound the eigenvalues of laplace's operator on a rhombus.

L Stadter chooses to consider only eigenfunctions which are symmetric

| with respect to both axes, although he could easily handle others.
Consequently, his MN , Ny , MS I Ns N 5 Ne yee.

L He-tabulates results corresponding to our B = 105° , 120° yeas 165° :
Hence our tables overlap in the following four places:

L Our bounds Difference Stadter's bounds Difference
L A, (105°) 2.1138 2.1150 .0012 2.1137 2.1163 .0016

r, (120°) 2.5192 2.5261 .0069 2.5210 2.5307 . 0097

L n, (1057) 8.0043 8.0133 .0090 7.9960 8.0286 .0326

i A, (120°) 8.4751 8.5100 .0349 8.4807 8.5365 .0558

i 11



1 We see that the accuracies of the two methods are comparable for this

| | particular problem. Our bounds are somewhat tighter, but Stadter's
— parameter which roughly corresponds to our n was only 15, versus

our 20. With ourn also set to 15 , we obtain accuracies very

a similar to Stadter's.
It 1s also interesting to note that the center of Stadter's intervals

3 are close to the upper ends of our intervals. This, combined with the

| — fact that our Ny 's are probably much more accurate approximations than
the bounds indicate, leads us to suspect that Stadter's lower bounds

E may be much closer to the actual eigenvalues than his upper bounds.

1H Our method also produces approximate eigenfunctions and bounds on
their accuracy. The method of intermediate problems does not do this.

ge In a sense, this domain leads to a very easy test of the method of
= intermediate problems because-a rhombus can be mapped onto a square by a

simple affine coordinate transformation. The resulting eigenvalue problem

iN on the square provides a very natural application of the method. However,
3 with other domains for which the transformation 1s more complicated, or

i. unknown, the application becomes more difficult or impossible. For example,
g we do not see how to apply the method to the L-shaped domain in [1]. On
= the other hand, our method has the advantage that it can be applied

iN directly to any other domain.Apparently the accuracy of both methods
3 -1s affected by singularities at the corners.
1s It should be pointed out that, although the theoretical basis of

1 our method is quite general [2], it has so far been applied only to the

:
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i "fixed, homogeneous vibrating membrane" problem (1)-(2). The method of
intermediate problems has been successfully applied to a number of other

L differential equation eigenvalue problems.
In summary, for the specific problem of laplace's operator on a

- rhombus the two methods give comparable results. For Iaplace's operator
i on other domains, especially if eigenf'unctions are also desired, our

method 1s to be preferred because it can be applied with no change.

L For certain other types of eigenvalue problems involving other operators,

3 the method of intermediate problems may be applicable where ours 1s not.
{
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sp 95° 100° 105° 110° 115° 120°

| k 2.01218 2.04947 2.11389 2.20923 2.34135 2.51921

- 1 2.01248 2,04992 2.11kok 2.21134 2.34527 2.52606
) 4.90375 4.86522 4.88407  L.96317 5.10907 5.33333

4.90403 4.86550 4.88424  L.96325 5.10916 5.33334

— : 5.15659 5.38023 5.68125 6.07504 6.58418 7.24150
| 5.15750 5.38324 5.68840 6.08970 6.61170 7.29028

— , 7.9906 7.98392 8.00k39 8.079kk 8.23001 8.47510
| 7 . ..... 1.98866 8.01321 8.09402 8.25296 8.50997

- 10.0574 10.2334 10.5372 10. 986k 11.6080  12.lhLL
J 10.0578 10.2337 10.5375 10. 9866 11.6086  12.4LL5

— Table 1

: Bounds for eigenvalues of rhombus
-

8 95° 100° 105° 110° 115° 120°
| k

~ 1 O71 . 107 2U6 0 5 834 1.36
2 .028 .027 .017 ° 400Y <.001

| 3 .088 279 . 627 1.21 2.09 3.36

_ h .117 .296 0 55 . 900 Pd 2.05

5 .018 .009 . 006. .008 021 <.001

Table 2

L Values of c.10°
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