
| CS 120

MUTANT 0.5 |

AN EXPER IMENTAL PROGRAMMING -LANGUAGE

BY

E. SATTERTHWAITE

TECHNICAL REPORT NO. CS 120

FEBRUARY 17, 1969

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

| MUTANT O.5, an Experimental Programming Language
—

-

{
|
— E. Satterthwaite

| Computer Science Department

_ | Stanford University
| | February 1969

-

C

The research reported here was supported in part, by a National Science

Foundation Graduate Fellowship and in part by the Atomic Energy Commis-

- sion. Preparation of this report was supported by NSF Grant GP-T7615.

-

|

_

{ '

i

Abstract

A programming language which continues the extension and simplification

of AIGOL 60 in the direction suggested by EULER is defined and described.

Techniques used 1n an experimental implementation of that language, called

MUTANT 0.5, are briefly summarized. The final section of this report is an

attempt to assess the potential value of the approach to procedural program-

_ ming language design exemplified by MUTANT 0.5. Implementation and use of the
experimental system have indicated a sufficient number of conceptual and

practical problems to suggest that the general approach 1s of limited value;

however, a number of specific features were found to be convenient, useful,,

and adaptable to other philosophies of language design.

er

(-

1

oT A. Introduction

- In his thesis, McKeeman [McKee 66] describes MUTANT, a "kernel" lan-

guage which he proposes as a nucleus for the design of procedural programming

_ ~ languages. Many features of that language appeared useful for expressing
algorithms of both graph theory and graphical data processing. In addition,

MUTANT suggests possible approaches to the problems of data structuring and

~ the specification of parallel processing. To gain some experience with such
facilities, an experimental language with semantics similar to those of

= MUTANT was designed. Certain semantic concepts were generalized, and others

restricted; also the syntax was substantially altered. In addition, the cur-

— rent version of the language does not include all facilities of MUTANT (most

notably, unordered sets and real number arithmetic); it 1s therefore called

. MUTANT 0.5.
A processing system for MUTANT 0.5, consisting of a compiler and an 1in-

terpreter, was implemented on the IBM System/360, and some experience with

. that system has been obtained. The language has been found to allow a concise
and natural expression of many algorithms, but a number of difficulties were

experienced in designing both the language and the interpreter for the system.

Although certain language improvements are obviously needed and efficiency

— could be significantly increased by use of more suitable hardware, I agree

with Wirth's conclusion [Wirth 67a] that difficult logical problems underlie

- both the design and implementation of such a language. No further develop-

ment or use of the current system 1s planned. Thus in terms of providing a

| useful language and processor, the project was a failure. It was, however, a

BN valuable exercise 1n language design; this report 1s an attempt to analyze,
for the benefit of future work, some of-the strengths and weaknesses of the

— MUTANT 0.5 design revealed by both the implementation and the use of the lan-

guage.

A.1l Organization of the Report

In section B, MUTANT 0.5 is defined in the style of the AILGOL 60 report

he [Naur 63]. Syntax is described by productions in Backus-Naur form (BNF);
semantics, by English prose. Some examples of programs in MUTANT 0.5 are then

~~ presented and explained. Section C 1s a brief summary of the techniques used

: in implementing the experimental compiler and interpreter. Use of these prog-

- rams 1s described in section D. Finally, section E 1s an attempt to charac- |

L

’

3 terize MUTANT-like programming languages, to identify some inherent problems
in their definition and implementation, and to assess their practical utility.

That section 1s a minor revision of a draft written in September 1967; some of

: the positions stated there have since been substantially extended or reformu-
lated as a result of more recent reading, discussion, and research.

Appendices III, IV, and V, although referenced in the text, are not

: reproduced 1n this report. They are compilation listings of the various programs
used 1n the experimental implementation of MUTANT 0.5.

A.2 Comments on Notation

In this report, two different character and terminal symbol representa-.

tions are used in the description of the syntax of MUTANT 0.5 as well as for

: the representation of programs written in the language. One may be considered
: the publication representation; the other, a hardware representation reflecting

the available character set. The former is introduced in the belief that it

: 1s somewhat more agreeable and readable. Appendix I establishes the corres-
pondence between these two representations. In addition, a slight variant of

BNF has been adopted for compatability with the output of certain processing

programs: alternate right parts of a production are placed on consecutive lines

without repetition of the corresponding left part. In the remainder of this

report, publication and hardware representations will be freely cross-refer-

enced, usually without explicit comment.

A.3 Acknowledgements

| The work reported below 1s based on a CS239 project directed by Professor
WeFo Miller during the fall and spring quarters of academic 19664967. It

: includes additional modifications suggested by €S360 research done during the

summer quarter of 1967. Support was provided 1n part by a National Science

Foundation graduate fellowship and in part by the Atomic Energy Commission.

Preparation of this report was supported by NSF Grant GP-7615.

The definition and implementation of MUTANT 0.5 have drawn heavily from

| ideas presented informally by various faculty members and fellow graduate
| students at Stanford; discussions with Professors W. F. Miller and W. M. McKeeman

and with Mr. W. Hansen were especially helpful. In addition, all aspects of the

project owe much to the teaching and research of Professor N. Wirth, and his

: syntax processing programs and PL360 system were essential tools in the lan-
i guage design and implementation work.

3 l B. The MUTANT 0.5 Language

i hae The syntax and semantics of MUTANT 0.5 are defined below. In general,
McKeemen's statement of the principles of language design [McKee 66,

3 _ pp. 11-73] has been accepted as valid. Conciseness of notation has been
carried somewhat further by adapting the notation of set theory whenever

_ possible. The concepts and notation of the language were primarily inspired
by McKeeman's MUTANT [McKee 66]; they also draw directly and indirectly

| from ideas found in ALGOL 60 [Naur 63], EULER [Wirth 65a], APL [Iver 62],
= and PL/I [IBM 66]. |

i _ B.1 The MUTANT 0.5 Grammar

: The grammar of MUTANT 0.5 1s listed, in the hardware character set,
in Appendix II. In addition, -relevant productions of the grammar will be

T included at appropriate, points in the following discussion of the Semantics
of MUTANT 0.5. Such productions are related to Appendix II by the use of

/ i. marginal production numbers. The somewhat artificial appearance of some

: | productions reflects two constraints placed on the grammar, namely
FE — (1) the production set must lead to a simple precedence grammar

= (Wirth 65a);
— (2) the productions must be chosen to simplify the translation of the

language during the process ofsyntactic analysis.

C For the reasons given by McKeeman [McKee 66, p. 93], it is convenient
i to define the syntax of identifiers, strings, and integers external to

the formal grammar of MUTANT 0.5; informally, it may be described by the

| = following set of productions.
| (identifier) ::= (letter)

— (identifier) (letter)

(identifier) (digit)

 — (integer) r1= (digit)
= (integer) (digit)
3 (string) +:= (string head) "

; (string head) ::="
| (string head) (non-quote character)

FT (string head) ""

1 B.2 Semantic Description of MUTANT 0.5
_ MUTANT 0.5 programs describe the creation and manipulation of values.

» In the language, values of three unstructured types (integer, process, and

] | name) and two structured types (string and list) are avallable to the
- programmer. Values of type integer have the properties of mathematical

: | integral values. process values are designations of computational processes

— (procedures); name values designate special computational processes which,

| upon activation, compute the name of a storage cell. string values are
Ve sequences of character values, which correspond to elements of a fixed set

; of symbols. In MUTANT 0.5, list values are ordered sequences of structured
- or unstructured values of arbitrary length, in which all elements are not

| required to be unique in value.
: | Comment
 — E—

The'above types were chosen as a minimal set adequate for experi-

| mentation. In any 'serious programming language, real number arith-

= metic would be essential. McKeeman's type set also appears to be
| a valuable addition to programming languages, omitted only because

ae of limited time and goals.

| Since MUTANT 0.5 is a highly involuted language, description of

3 _ many constructs requires the use of terms before they are defined. The
reader unfamiliar with MUTANT or a similar language 1s advised to consider

_ some of the simpler examples of section B. 3 before continuing.

B.2.a Constants

| ee ‘syntax
Bu (constant) . ::= (integer) (64)
| _ (string) (65)
| (begin) } (66)

| (begin) 2i= (70)

| (declare) | (71)
Semantics

— A non-negative integer 1s denoted by a sequence of decimal digits, and

the value of that integer 1s the value of the digit sequence interpreted as

ne a decimal number. Negative integers are syntactically recognized as pri-
| maries.

ne A string 1s a sequence of characters and 1s denoted by a sequence,

.

oo delimited by string quotation marks ("), of the graphic symbols corres-

ponding to the character values. In the denotation of a string, two

- contiguous string quotation marks signify a single string quotation character.

: The construct " {}" (or " (declare) |} ") denotes the null list,
i | i.e., a value of type list with no elements.

A constant alwayshas a value.

a Examples
0 3 100 32767

"This is a string." "" "Hamlet" " "

” ()

B.2.b Declarations

syntax

| L (declare) i= {3 (72)
(declare) (identifier) (73)

(declare) (identifier) ((v-expression)) (74)
— Semantics

: MUTANT 0.5 provides values of several types as well as storage cells

— into which such values may be placed. Declarations serve to create cells

and also to provide names for either cells (and their contents) or for

(_ values. At most one declaration appears at the head of a list (B.2.c¢), and

| the scope of the identifiers in that declaration 1s exactly the corresponding

u list.
If the identifier 1s immediately followed by an expression in

parentheses, that identifier is considered to name the value of that ex-

he pression. All such expressions are computed sequentially before com-
putation of-the values of any of-the list elements, and these expressions

— are evaluated as 1f they were written in an immediately containing list.

No explicit assignment to an identifier naming a value 1s permitted.

— If the identifier 1s not so followed, it names a cell. Values of

any type may be assigned to any cell, and such assignment dynamically

' determines the cell structure. Thus the structure of a cell may be undefined,
or atomic, 1f the cell contains a value of unstructured type, or structured.

If, in the last case, the cell contains a value of type list, that cell

= has a composite structure consisting of a sequence of (atomic or structured)

| subcells, one for each list element. Similarly, if the cell contains a value

— of type string, that cell is structurally a sequence of atomic character cells.

| An identifier names the cell or value associated with it by a declaration.
ee

CL

6

Every non-reserved identifier not contained in a declaration either

| — must designate a controlled value (B.2.1) or procedure formal parameter

value (B.2.m) or must occur within the scope of an identifier of the

o same name. If an identifier 1s assoclated with more than one scope, a

use of that identifier designates the cell or value associated with

it in the smallest possible containing scope. Subcells or subvalues are

. designated by a uniform indexing scheme (B.2.f).
Examples

= { $ a b newidentifier |

{ $ x yv twotothel5th (32768)

— { $ sum (a+b) difference (a-b)-

Comment

- Named values may alternatively be viewed as the contents of cells

| which may be initialized upon scope entry but are "read-only" within

the scope of the naming identifier. The rules of scope and evaluation

of the initializing expression do not admit initialization to recursive

g procedure values; a facility similar to Landin's rec [Land 64,66] is absent.

: B.2.c Lists
- Syntax

(list) ::= (list head) } (67)

. (list head) ::= (begin) (g-expression) (68)
(list head) , (g-expression) (69)

(begin) si= (70)

a (declare) | (71)
Semantics

- A list 1s an ordered sequence of general-expressions. In the execution

of a MUTANT 0.5 program, the expressions within the list are computed success-—

- ively from left to right. A general-expression may conditionally fail to

designate any value. Lists have structured values of type list; the value

L of 4 list 1s the (possibly empty) sequence of values of those contained
general-expressions yielding values. A declaration does not have a value or

| constitute & list element. In general, the number of elements in the list value
~ cannot be determined a priori. A list always has a value.

Examples

— (1, 2, 3, "abe") (1, (2,(3}1}}

-

/

{1-+»x, y-2 > y, 10a }

{$ablx=+a, y+b, athy a-b }

{$a {$a]2ra}, 2a)

(atb, a-b, a®b, bf0 => a+b }

B.2.d Simple Primaries

syntax

(s=-primary) ::= (s-primary *) (53)

(s—-primary *) ::= (constant) (54)

get (55)
(list) (56)

(primary *) (list) (57)

d{ (v-expression)) (58)

(case head) (v-expression)) (59)

(for head)) (60)

(while head)' } (61)

(for/while head) } (62)

(s—primary *)[(v-expression) | (63)

Semantics

Productions 57 (B.2.m),59 (B.2.e), and 60-62 (B.2.1) are listed for

completeness but are not discussed in this section.

Every simple primary has a value, which may be of either structured

or unstructured type.

The value of the primary get1s of type string and consists of the

next string (according to the MUTANT 0.5 conventions) found 1n the interpreting

mechanism's sequential input stream when the primary 1s evaluated, and such

evaluation causes that string to be deleted from the input stream.

Parentheses serve to control the association of operands, and hence the

application of operators, in the conventional way.

Square brackets are used to designate the subscripting of simple pri-

maries. In the application of the subscript operator, the simple primary

and then the subscripting value-expression are evaluated, and the value of

the result 1s determined by application of the following algorithm:

(1) If the value of the simple primary 1s of unstructured type, then the

result 1s not defined.

(2) If the value of the simple primary is of type list, then

(a) 1f the value of the subscripting expression is of type integer

$ — and that integer 1s positive and not greater than the number
3 of elements in the list, then the resulting value 1s the list

_ element with that integer as index, where element indices begin

: | with one and increment by one;
1 (b) if the value of the subscripting expression is of type list, then
- the resulting value is the list of values obtained by successively

| applying each element of the subscripting list to the simple

primary;

; | (¢) otherwise, the result is not defined.
~— (3) If the value of the simple primary 1s of type string, then

: (a) if the value of the subscripting expression is of type integer
g _ and that integer is positive and not greater than the number

| of characters in the string, then that integer is used as an

: | index to select a string character, and the resulting value 1s
” an encoding of that character of type integer;

(b) if the value of the subscripting expression is a list of integers,

= all satisfying the bounds conditions of (a), then the value of

| the result 1s a string consisting of the sequence of characters

— obtained by successively using each integer in the list as a

subscript;

_ (¢) otherwise, the result is not defined.

Examples

| ~ 3 "abe" get {1,{2, 3 1}, 17} (atb)
In the following examples, all those on the same line have identical values.

» (1, 2 3[1] 1 (2,13[2]
(1, { 2,3) 12] (2,3) (1,23231}

= (1,2, 3}(1 (2 3}1) (1,{2 3})
— "ABC" 1] 193 "(A)"[(2 } [1]
n "sbe"[2 3] _ { Ube? }[1I[1]

a In MUTANT 0.5, lists are considered linear sequences. The operation of
| L subscripting of lists has been extended from selection to the construc-

tion of general sublists. Subscripting has similarly been extended to

- provide a substring operation.
-

Ll

9

ll B.2.e Case Expressions

| syntax
— (s—primary) ::= (case head) (v-expression)) (59)

(case head) : := (case index) ((v-expression) ; (75)

- (case head) (v-expression) ; (76)

(case index) ::= [(v-expression) |] (77)
Semantics

- -_—

A case expression consists of a case index followed by a sequence of

value-expressions. In the evaluation of a case expression, the value of the

— expression 1n the case index 1s determined. If that value 1s of type integer

| and 1s positive and not greater than the number of expressions 1n the sequence,

— then that integer 1s used as an index to select an expression for evalu-

ation, and the value of that expression is the value of the case expression.

C Otherwise, the result 1s not defined. A case expression glways has a
value.

| Examples
_ enn ob led

[n] (3; 25 1)

[opcode] (0 + acc; accta + acc; ace—a + acc; a + pc)

= [(x=0)+ 1] ("x is non-zero"; "x is zero")

| Comment

—-— Case expressions are generalizations of AILGOL 60's conditional

: expressions and cmditional statements, which have not been specially

_ distinguished 1n MUTANT 0.5.

: B.2.f Cell Designators

= syntax

| (cell id) i= (cell id ¥) (46)

- (cell id *) s:= (identifier) (47)
(cell id *)[(v-expression)] (48)

- (cell id *). (49)

| Semantics

3! MUTANT 0.5 provides named cells in which values may be stored and also
named values which are not associated with storage cells. A cell designator

bo is used in the formation of either a primary (B.2.h), in which case it desig-

= nates a value, or an assignment (B.2.k), in which case it designates a cell
or subcell. As explained in section B.2.b, the structure of a cell is determined

EL dynamically by the structure of its contained value; thus the interpretation
i | of a (sub)ceU designator 1s dependent upon the concurrent contents of the
— cell.

: : If the cell designator 1s used in the formation of an assignment,
. then the named (sub)cell is determined as follows:

(1) If the designator is not subscripted or dotted, then by the rules

_ governing the scope of identifiers (B.2.b), that identifier must
name a declared cell and it designates that cell; otherwise, the

| | result 1s not defined. |
] (2) If the cell designator terminates with a subscript, then the contents

of the cell named by that simpler cell designator obtained by deleting the

— rightmost subscript 1s determined, and the subscripting expression

1s evaluated. If the cell contents 1s not a value of type list or if

| _ the subscripting expression is not of type integer, the result is not
| defined. If the value of that integer 1s positive and not greater

than the number of elements in the list, the designated cell is that

subcell containing the list element selected by use of that integer

= as an index.

. (3) If the cell designator terminates with a dot, then the value named
= by the cell designator obtained by deleting the rightmost dot 1s

= determined according to the algorithm of the next paragraph. If that

value is of type name, the computation designated by that value is

— activated to determine the designated cell (B.2.g). Otherwise, the
| result 1s not defined.

| _ If the cell designator 1s used in the formation of a primary, then the
] named (sub)value 1s determined as follows:

= (1) If the cell designator is not subscripted or dotted, then
- (a) 1f, by the rules governing the scope of identifiers, the iden-

tifier names a value (B.2.Db), a controlled value (B.2.1), or

= a procedure formal parameter value (B.2.m), then the value of

the cell designator is the named value;

| C (b) if, by the rules of scope, the identifier names a cell, then the

= value of the cell designator 1s the concurrent value of the con-

FL tents of the named cell.
(2) If the cell designator terminates with a subscript, then the value

g named by the cell designator obtained by deleting the rightmost

11

|
- subscript 1s determined. The subscripting expression 1s evaluated

| and used as an index operating on the previously obtained value to
— produce a resulting new value as described in section B.2.d.

(3) If the cell designator terminates with a dot, then the value named

— by the cell designator obtained by deleting the rightmost .dot

1s determined. If that value is of type name, the computation desig-

L nated by that value is activated to determine the designated cell
(B.2.g), and the resulting value 1s the value contained in that cell.

Otherwise, the result 1s not defined.

- Thus in the cases 1n which a cell designator 1s valid in the formation of
| either a primary or an assignment, the value in the first case corresponds

L to the contents of the cell named in the second case, but more general

| indexing 1s allowed in the formation of primaries.
— Examples

a b[1] a[2][x[3]]

L pointer. x[i]e x[2][1]

| B.2.g References
— syntax

(reference) +:= (reference *) (50)

I. (reference *) i= 4 (identifier) (51)
(reference *)[(v-expression)] (52)

L Semantics

Values of type name, which are computational processes for determining

| cell names, are designated by references. Thus every reference has a value
of type name. Upon activation of such a process (B.2.1), the resulting cell

| name 1s determined by analysis, as described in section B.2.f, of the cell
b designator obtained by deleting the®" in the formulation of the reference.

Examples

L La 4b La[xy][1]
Comment

- References provide an explicit method of processing cell names as
| values. They are intended primarily for use as "pointers" to complex

- data structures and as procedure actual parameters. References are
defined as computational processes rather than actual cell names for

| technical reasons; EULER [Wirth 65a] demonstrates an alternative
-

g

: _ approach using cell names. Unlike MUTANT, MUTANT 0.5 requires the
5 programmer to distinguish between cell name and value.

] B.2.h primaries
1 syntax

| — (primary) r= (primary ¥) (33)
(prefix) (primary) (34+)

CL (infix) / (primary) (35)

] (primary *) ::= (cell) (43)

_ (reference) (44)
i (s=-primary) (45)

(prefix) 1i= Of (36)

| type (42)
abs (39)

= neg (ko)
| - (37)

ae list (38)
| put (41)
_ Semantics

| A primary always has a value. The value of a primary without prefix
or infix operators 1s the value of the corresponding cell designator,

- reference, or simple primary.

| A prefix operator designates a partial function of one argument; the

= value of the corresponding primary 1s obtained by evaluation of the operand

followed by the application of that function. If the following rules do

a not specify the resulting value, then the result 1s not defined.

= (1) If the operator is "#" and the operand is of type list or string, the

_ result 1s of type integer and 1s the number of top level elements in

the list or string.

| (2) If the operator is "type", the result 1s of type integer and 1s an
~ encoding of the type of the operand.

| (3) Otherwise the operator is applied recursively according to the

— following algorithm:

(a) If the type of the operand is not list, then the result is

| - defined if the operator and operand type correspond to one of
the following table entries:

13

3 Operator Operand Type Result Type
| . abs integer integer

neg integer integer

integer integer

| — list integer list
| put string string

— The first three are numeric operators which may be defined.

| by the following A~expressions [Land 64]:

_ abs = Me 1f x 2 0 then x else =x
neg = Me. =X

| _ 1 = Ne 1f x = 0 then 1 else 0 .
| The operator "list" produces a list of elements with unspecified

| value; the number of elements is the maximum of the operand value
| - and 0. The operator "put" is an identity function with the side

| effect of writing a carriage return followed by the operand onto

Ha the sequential system output stream. |

| (b) If the type of the operand is list, then the result is a value of

-— type list, the elements of which are the values obtained by

| applying the operator to each element (sequentially in the case

| _ of "put") of the list, if all such elements are defined.
| (c) Otherwise, the result 1s not defined.

8 An infix operator designates a partial function of two arguments as
BN described in section Be2eis In the application of an infix operator to

3 a primary, the primary is first evaluated. If the value obtained 1s not of

| — type list, the result is not defined. Otherwise, the value of the primary is
E obtained as follows:

ne (1) An initial value is chosen according to the operator from the following
table:

; L Operator Initial Value
+, =, V 0

| | ®, +, mod, A 1
us =, #, <, 5, >, 2 not defined

» base not defined
i ""or{) *

* The empty string 1s chosen unless the first list element is a list.

3 - (2) Beginning with that initial value as an intermediate result, the
| operator is applied to the intermediate result and a list element
- to produce & new intermediate result.

| | (3) The resulting value 1s the value of the intermediate result after

| — each list element, chosen in sequence, has been used as indicated

a. Thus the value of the primary so obtained 1s an accumulation, relative

| | to the operator, over the entire list.
_ Examples |

a { a, x} {$v 1 xtz > y)} z[2]

absx BEITLE" adst (1, (2,2))

| ~ In the following examples, all those on the same line have identical values.
B #{(1,23) 3
Be #(1, (2,3) >

u ~ {1,01} (0, 1, 0 }

| — neg { 1, { 2, 3}} { neg 1, { neg 2, neg 3 } }
type 0 = type "0" 0.

LL +/(1,2, 3) 6
| | / { "a", ™", "ec" } "abe"

| / (01,2),(3,4%) (1,2, 3k)
oT Comment

| The extension of the definition of prefix operators in MUTANT O.5 is
— a slight generalization of Iverson's extension of such operators to

| vectors and matrices. Accumulation over a list with respect to an infix

pe operator corresponds to Iverson's reduction [Iver 62].

B.2.i Simple Expressions .

- syntax
(s—expression) ::= (s—expression *) (15)

Be (s-expression *)::= (primary) (16)
= (s—expression *) (infix) (primary) (17)

- (infix) i= | (32)
+ (18)

| - (19)

| ® (20)

| _ + (21)

15

mod (22)
= (2k)

(25)

> (26)

= (27)

< (28)

6 (29)

A (30)

v (31)

‘base (32)
Semantics

Every simple expression has a value. The value of a simple expression

without an infix operator 1s the value of the corresponding primary.

An 1nfix operator designates a partial function of two arguments; the

value of the corresponding simple expression 1s obtained by evaluating the

left operand, then evaluating the right operand, and then applying that

function to the operand values. If the rules below do not specify the re-

sulting value, then the result is not defined.

(1) If the operator is "|" and

(a) 1f both operand values are of type list, then the resulting value

1s of type list and is obtained by appending in sequence the list

elements of the right operand to the list value of the left operand;

(b) 1f both operand values are of type string, then the resulting

value is of type string and is obtained by concatenation of the two

operand values, taken 1n order.

(2) Otherwise the operator 1s applied recursively according to the following

algorithm.

(a) If the type of neither operand is list, then the result 1s defined

1f the operator and operand types correspond to one of the following

table entries:

Operator Type of Operands Result Type

L +, =, ® integer integer
+, mod integer integer

=, #, >, 2, <, = integer integer

Ny, V integer integer

base integer string

FT 16

3 - The operators "+", "=", and "®" designate the mathematical func-
] tions of integral addition, subtraction, and multiplication res-

! - pectively. The operators "+" and "mod" are not defined if the value
; of the right operand 1s O. Otherwise, they are defined for integral

~- operands by the following h-expressions, using real division and

Iverson's floor and ceiling operators [Iver 62]:

- + = MNx,y). if x®y 2 0 then | x/y |] else [x/y 1

: mod = A(x,¥). x - y®(x+y)

1 _ The relational operators have integral value 1 1f the mathematical
i relation on the integers 1s satisfied and value 0 otherwise.

The operators "A" and "V" may be defined for integral operands by

= the following h-expressions: -

| A = N(x,y). if x = (0 then 0 else if y = 0 then0 else1
 — v. = Mx,y)e if x #0 then 1 else if y # 0 then 1 else 0 |
| The operator "base" produces a string, the characters of which

-— are a sequence of digits constituting a representation of the left

operand to the base specified by the right operand.

_ (b) If the type of exactly one operand 1s list, the result 1s a value

of type list, the elements of which are the values obtained by

| | sequential application of the operator to the non-list operand
- and each element of the list operand (taken in the original order),

1f all such elements are defined.-

= (¢) If the type of both operands islist, the result is a value of
type list. The number of elements in that list is the minimum of

— the numbers of elements in the operand lists; the resulting list

elements are obtained by sequential application of the operator

_ to corresponding elements of the operand lists (taken in the

| original order), 1f all such elements are defined.
| | All infix operators have equal precedence, and the association of operands
| 1s from the left.

Examples

— 3 a+b c ® abs x a+b -c aA(bvVve)
In the following examples, all those on the same line have identical values:

— 3+ 4.1 3®2 13 + 2 13 mod 7 6
| 3>h l-2+1 (3=3)-1 0

"abe" | "def" "abcdef"

LT (1,2) ("", (2)) (1,2, "2", (2})

| 2® (0, 1, 2) (0, 2, 4) (4, 6,813) -k

| (1,2, 3})®(3 2 1} {34 3)
i5{pdse2(}a,(8), L115} + (0, 1,2, 3 3} {((1, 2), (4% 53, 7)

- 10, } ("i111", "17", "15", "F" }
Comment

- The extension of infix operators follows Iverson [Iver 62]. It corres-

| / ponds to both scalar and vector operation in ordinary vector arithmetic.

— B.2.j Segments

1 syntax

L (v—expression *) ::= (segment) (6)
| (segment) ::= (s—expression) (12)

L (s-expression) _ (s-expression) (13)
(s—expression) _ (s-expression) _(s-expression)(1k)

| Semantics
| A segment always has a value. The .vglue of a segment without the wn n

) operator 1s the value of the corresponding simple expression.
. 'Otherwise, the value of the first (leftmost) simple expression 1s called

the initial value; of the second, the limit value; and of the third (if present),

| the step value. The value of the segment 1s obtained by the following pro-
cess:

(1) All of the simple expressions are evaluated in the order of appearance;

1f the step value 1s not explicitly provided, it 1s taken to be the

integer 1.

(2) If the values so obtained are all of type integer, then the result is

a value of type list. Otherwise, the result is not defined.

(a) If the step value is positive, the elements of the list are all

those integers, ordered in algebraically increasing value,' which

are obtained by adding non-negative integral multiples of the step

value to the initial value and which are not greater than the limit

value.

(b) If the step value is negative, the elements of the list are all

those integers, ordered in algebraically decreasing value, which

are obtained by adding non-negative integral multiples of the step

value and which are not less than the limit value.

18

(c) Otherwise, the result 1s not defined.

Examples

1 n 2" #s-1 { 1, 2,3) 0

In the following examples, all those on the same line have identical values.

1 _ 3 1 3 1 { 1, 2,3}

2 10 4 2 13 4 { 2, 6, 10 }

3 1 negl {32,1}

1 0 2 4 heg { }

= B.2.k Assignments

| Syntax

~ (v-expression ¥) ::= (v-expression ¥*) + (cell) (8)
Semantics

~— Assignments serve to assign values to cells. In the evaluation of an

assignment, the value of the expression to the left of the "»" is obtained,

| and then the (sub)cell named by the cell designator is determined as des- |
cribed in section B.2.f. If both these'processes produce results which are

| defined, the computed value 1s assigned to the designated (sub)cell. Such

” assignment may dynamically change the structure of the cell.
Every assignment has a value, which is the value of the expression

= to the left of the arrow.

Examples

— 0 > a [index]{ a+b; a-b) + p[2][1]

d'[1ln 1 » c[3] O+X>y > 2

—

B.2.1 Iterative Statements

Syntax

- (s-primary *) ::= (for head) } (60)
(while head) } (61)

er (for/while head) } (62)

- (for head) ::= (begin) (for set) (g-expression) (78)

Lo (for set) c= (for set ¥) : (81)

(for set *) i= (identifier) € (v—expression) (82)

(while head) ::= (begin) (while cdn) (g-expression) (79)

= (while cdn) ::= (while ') : (85)

—

Ll 1

1 (while ') ::= (while) (g-clause) (84)
(while) t= X (83)

LL ~ (g—clause) ::= (v-expression) => (4)

(for/while head)::= (begin) (for set) (while cdn) (g-expression) (80)

LL _ Semantics

; Iterative expressions provide for 'controlled repetitive evaluation of
a general expression, which in each of the various forms of the iterative

! expression 1s called the controlled expression. Such an expression may Con-

ditionally fail to have a value. The value of every iterative expression, if

defined, 1s of type list; the elements of that list are, in order, the suc-

cessive values obtained from those evaluations of the controlled expression

i ~- producing values. A declaration may be included in the heading of any iter-
ative expression; the scope of the identifiers in such a declaration is the

iterative expression.

For-iterative expressions specify iteration over a list. The evaluation

- of such an expression proceeds as follows:
(1) Any declarations in the heading are processed as described in section

= B.2.b.

(2) The value-expression of the for-set is evaluated. If the resulting value

| | 1s not of type list, the result 1s not defined.
| — (3) With the identifier of the for-set naming a value of an element of the

list thus obtained, the controlled expression 1s evaluated. That

— identifier 1s said to designate a controlled value; 1t 1s implicitly

| declared by its appearance in the for-set, and its scope 1s the controlled

g expression. The list element values named are successively taken in order
| over the entire list value.

(4) The final value of the iterative expression is a list as specified in the

| ~ preceding paragraph.
| While-iterative expressions specify repeated evaluationof the controlled

oo expression as long as a specified condition holds. The evaluation of such an

| expression proceeds as follows:
— (1) Any declarations in the heading are processed as described in section

B.2.b.

| oo (2) The value-expression of the qualifying clause contained in the while-
condition 1s evaluated. If the resulting value 1s not of type integer,

- the result 1s not defined. If that value 1s 0, evaluation of the
| iterative expression 1s terminated, and its final value 1s a list

—— as specified above. Otherwise, the controlled expression is evaluated,

and the step 1s repeated.

- For/while-iterative expressions specify iteration over a list as

: long as a specified condition holds. They are processed as described for
1 for-iterative expressions with the following exceptions:

: ” (1) The scope of the identifier designating the controlled value 1s
i extended to include the while-condition. |

= (2) Before each evaluation of the controlled expression, the value-expres-

| sion of the qualifying clause contained in the while-condition 1s

~~ evaluated. If the resulting value 1s not of type integer, the result 1s

| not defined. If that value 1s 0, evaluation of the iterative expression

i _ 1s terminated, and its value 1s the list of values obtained to that point.
| Otherwise, processing continues with evaluation of the controlled ex-

a pression. |
Examples

| {ieln : s+ (i®) > 8}

{ * abs(x1l - x2) > delta => : { x2 + x1, f{x1,x2} > x2 })

{ x € table : * looking => : x[1] = arg => { 0 + looking, x[2]}}

= AU the following examples have identical values.

(xe€210: (xmod2)=0 => x]

— {$x| 0+x, (* x10 =>: =x4-2 » x} }[2]

B (x €2 1002 * x10 => : x)
| (2, 4, 6,8, 10)
: Comment

| The for-iterative expression provides the effect of a generalized list
~ mapping function. Since the controlled expression may conditionally

oo fail to have a value, that function can include selection.

; B.2.m Procedures
_ syntax

: (v-expression *) ::= (procedure head) (v-expression) ' (7)

| (procedure head) ::= (proc head +)| (11)
2 (proc head +) si= (9)

(proc head +) (identifier) (10)

| - (s-primary) ::= (primary *) (list) (56)
Semantics

: — A procedure definition is delimited by apostrophes (') and designates
a value of type process.

— The computational process designated by a value of type process 1s

activated by the evaluation of a simple primary consisting of a primary

_ followed by a list. If the value of such a primary is not of type process,

the result 1s not defined. Otherwise, the expression 1n the definition of

: the procedure corresponding to the process value 1s evaluated, subject to

] ” the rules below, and the resulting value 1s also the value of the simple
primary. The rules governing such evaluation are the following:

he (1) The identifiers appearing in the procedure head are associated, 1in

: order, with the values of the elements of the argument list. If the

: — number of identifiers exceeds the number of list elements, the values
: named by the extra identifiers are not defined.. If the number of list

: - elements exceeds the number of identifiers, the extra list elements

! are disregarded. Such identifiers&e said to designate procedure
i formal parameter values.

” (2) In the application of rules of scope in the evaluation of the expres-
sion, the applicable scopes are those at the place of procedure defini-

i - tion, not procedure activation*
g Examples

-— The following examples define and assign process values:

| a+ 1 +a '> incrementl

1 — 'a|a*+ 1 + a*'+> increment?
'X vy | { xty + sum, sum+ 2}[2]' + average

| | The following examples indicate the activation of the above process values.
- incrementll }

: increment21 4x)

| ” average{ atb-c, sum}
i Comment
— In MUTANT 0.5,a parameter list, which can be empty, must be associated

with every procedure activation.

oT B.2.n Expressions with Value
Syntax

22

(v-expression) ::= (v-expression *) (5)

(v-expression *) ::= (segment) (6)

(procedure head) (v-expression) ' (7)

(v—expression *) + (cell) (8)
Semantics

A value-expression, if defined, always has a value. It is the least

restricted type of expression with such a property provided in MUTANT 0.5.

B.2.0 General Expressions

syntax |

(g-expression) ::= (v-expression) (2)

(g-clause) (g-expression) (3)

(g-clause) ::= (v-expression) => (4)
Semantics .

A general expression may conditionally fail to designate a value.

If it does not contain a qualifying clause, then it has a value, and that

value 1s identical to that of the corresponding value-expression. Otherwise,

the value, 1f any, of the general expression is determined by first evalu-

ating the expression in the leftmost qualifying clause. If that value 1s

not of type integer, the result is not defined. If the value is 0, the

general expression has no value. Otherwise, the value, 1f any, 1s that of

the general expression obtained by deletion of the leftmost qualifying clause.

Examples

y # 0 => x+y predicate{x} => function{x}

X < max => y > min => X+y

Comment

In MUTANT 0.5, an unsatisfied qualifying clause gives rise to no value,

not an undefined value. Thus general expressions can be used in contexts

only in which such a property 1s meaningful, 1.e., in the formation of

list values.

B.2.p Programs

syntax

(program) ::= eof (v-expression) eof (1)
Semantics

A program 1s a value~expression delimited by end-of-file marks. The

value of a program 1s that of the value-expression.

; 23

3 Examples
See section B.3.

i Comment

In MUTANT 0.5, the end-of-file marks are assumed to be supplied by

- the interpreting mechanism and are not normally written.

_ B.3 Examples

Listings produced during the compilation and execution of some sample

MUTANT 0.5 programs are included as Appendix III. In these examples, comments

Bh are delimited by question marks. Selected examples are repeated below, with

commentary, 1n the (more readable) publication character set.

i B.3.1 Factorial Calculation

Program

{ $ factorial |

'n|[2- (n=0)] (1; mw® factorial{n-1})' + factorial,

{nel6: |

put ((n_base 10) |" factorial = "| (factorial{n} base 10))

Output

1 factorial =1

_ 2 factorial = 2

3 factorial = 6 ,

4 factorial = 24

1 ” 5 factorial = 120
6 factorial = 720 :

| ” Comment
| This example corresponds closely to McKeeman's Example 1 [McKee 66, Pe 75]

—_— The following is a similar AILGOL60 program, which assumes a suitable write

statement.

Et _ begin integer nj;

integer procedure factorial(n); value n; integer n;

| factorial := if n=0 then 1 else n ® factorial (n-1);

write(n, " factorial = ", factorial(n))

~ end

| —

1

2U : |

In the MUTANT 0.5 program, the process value (delimited by apostrophes)

| assigned to the cell "factorial" gives the usual recursive definition of
= the factorial function. The parameter "n" i: sed to compute a case index
| for selection of one of two expressions to be evaluated. Thus case expres-

= sions are generalizations of ALGOL 60's conditional expressions and state-
ments. Note that in MUTANT 0.5, the expression "n=O" has integral value

L 1 if the value of n is zero and value 0 otherwise. The expression "lL 6" is
equivalent to the expression "{ 1, 2, 3, 4%, 5, 6 }", and iteration over

3 each element of that list 1s specified. |
{ B.3.2 Extended Factorial Calculation

u Program
{ $ factorial prod |

L {(' n|[2-(n=0)](1; n ® factorial{l]{n-1}) ',
'n | ®/ (Ln) '

| 'n| prod{ 1n}"
} + factorial,

3 "1 |[2 - (f1=1))(T{1);
prod{ L{1 #I+2] } ® prod{ L{#I+2+1 _#L])'~+ prod,

| (iel3:

. { put "", put ("method "| (i base 10)),

| {nel8:put ((n base 10)|" factorial = "|(factorial[i]{n} base 10))
—_

L yo |
} |

L }
Qutput

|

L method 1
l factorial = 1

L 2 factorial = 2

| 8 factorial = 40320

i method 2
1 factorial =1

| oe

bo

j — Comment
u In this example, the value assigned to the cell "factorial" 1s a list
_ of three process values giving possible definitions of the factorial function.

The first 1s the recursive computation of the previous example. The second

i _ 1s an example of Iverson's reduction, in which the multiplication operator
1s used to reduce a vector (list) of the first n positive integers. The

third process applies the auxiliary function "prod" to the same vector.

= "orod" designates a process intended to illustrate one possible hardware
implementation of multiplicative reduction in which, recursively, the'vector

— 1s bisected and reduction applied to each part. Note the use of a list-valued

subscript to select a sublist, which in turn is used as a procedure parameter.

- Be3+3 Further Examples from MUTANT
| Program

a put((+ / ({1,2,3) ®(3,2,1})) base 10)
Bn Output
 — 10

: _ Program
($ perm |

= "x | [2 - (f=)
LT ({x}; .

|/liel_#

| — (t eperm{ x1 _1-1]|x[4+1#x] } : xi i][t)
;

 _) ' > perm,

; | { test e { "a", "ab", "abe", "abcd" } : hut perm{test)

3

| _
| = ab
| ba
- abc

ach

_ bac

bca

: _ cab
cba

: — Comment
These programs for computation of inner product and permutations of

string characters or list elements are MUTANT 0.5 versions of McKeeman's

Examples 2 and 4% [McKee 66, pp. 77-78]; they are presented'mainly for

2 comparison.

B.3.4 A prime Sieve

— Program

: { $ primesieve |

LL ("n|($Lt]|2n->I,

B (L{1] +t, {iel : imodt # 0 ==1} 3 L }[1]
”) 32]

B) |

FT (ne{ 25, 250}:

{ put ("primes in 2 to "|(n base 10)|":"),

i — put (primesieve{n} base 10)
|

p=)

E Output
primes in 2 to 253

| 3
| 5
-
Bu 11
| - 13

17

_ 29
23 |

= primes in 2 to 250:

i — Comment
a This program is an adaption of the sieve of FEratosthenes to the com-

1 _ putation of all prime integers not exceeding a given integer. "primesieve"
g names a process value. In that process, a list of the integers from 2 to

the given value is assigned to the cell named "L". While the length of that

= list 1s non-zero, the first element of the list 1s saved and then the list

1s replaced by a new list consisting of all the former list elements not

= multiples of the first element. Note that the saved value 1s selected as

the value of the controlled expression 1n the while-iterative expression

— by the second subscript "[1]"; thus the value of the entire iterative

expression is a list of the primes so saved. The subscript "[2]" selects

g — that list as the value of, the procedure. Also note the use of the extended

"put" and "base" operators.

— B.3.5 Other Examples

| Also included in Appendix III are programs illustrating the following:

— (1) a slightly different permutation generator;

(2) a set of algorithms adapted from Pohl's graph package [Pohl 67] for

_ computing the reachability matrix and maximal strongly connected sub-

graphs of a graph from 1ts connectivity matrix;

| (3) an integer square root routine based on Newton's method.

28

C. Implementation Techniques

CL An experimental processing system for the language MUTANT O.5 was

developed. It consists of a compiler, which translates MUTANT 0.5 programs

_ to a compact internal string code based upon Polish suffix notation, and
an interpreter, which performs processing as directed by such strings. The

processing system was implemented on the IBM System/360 hardware; it functions

: in the environment provided by the PL360 system [Wirth 67d].In addition, an

existing syntactic analysis program, written in Burroughs B5500 Extended

— AIGOL, was modified for use as an aid in developing the compiler.

C.1l The Syntax Processor (see Appendix IV for listing) |
= The syntax processor 1s an extension of a B5500 Extended ALGOL program
| originally developed-by Professor Niklaus Wirth at Stanford. Blocks Bl and

— B2 were taken from that program without significant modification. Block Bl

| establishes the precedence matrix as described by Wirth and Weber [Wirth 65a],
- using partial word operations for storage efficiency. Block B2 establishes |

the precedence functions using Wirth's algorithm [Wirth 65b].

- Additional pre- and post-processing was added to produce punched tables

in the PL360 syntax suitable for direct insertion into the compiler source

- deck. This processing includes:
(1) classification and sorting (according to the IBM EBCDIC collating

| sequence) of the terminal symbols of the syntax,

= (2) assigning internal codes to the symbols,

(3) encoding and sorting the productions of the grammar,

. (4) formatting the required tables.

A B.500 ALGOL program was chosen for modification because of the relatively

_ powerful format capabilities provided.

Those cards at the beginning of the compiler (Appendix V) lacking "CMP"

LC in the sequence field were produced by the syntax processing program.
(Strictly, they are translations from such cards produced for a previous

4 version of PL360, translated by a conversion program). The availability of
this syntax processing program greatly facilitated modification of the syntax |
of MUTANT 0.5 as the system developed.

1

C.1l.1 Symbol Recognition Tables

_ The following tables produced by the syntax processor are used by the

-

- compller procedure INSYMBOL in recognizing the terminal symbols of the

language:
— CCODES a translation table which maps' characters occurring in the
| input stream into either their internal symbol codes or

— entries into other tables.

| BREAK a table of partitioning indices classifying characters, by

a their translation codes, as
(1) single character terminal symbols,

L (2) characters possibly forming character pair terminal
symbols, or

(3) characters initiating identifiers, numbers, strings,

= or comments.

| PATRTAB , a sorted table of special character pairs forming terminal

- symbols.
RSVD a table of entry indices into the reserved word table.

L RSVWD a table of reserved words, ordered by length and, within
each length group, alphabetically.

= C.1l.2 Parsing Tables
| The following tables produced by the syntax processor are used by the

— compllers syntactic analysis routine 1n parsing input strings:

F, G tables of precedence functions for the symbols of the vocab-

— ulary.

| PLIM a table of entry indices into the table RIGHTPART according

_ to the leftmost symbol of the production right part.
RIGIDPART a table of production right parts, exclusive of leftmost

| symbol, ordered by the (omitted) leftmost symbol.
= LEFTPART a table of corresponding production left parts.

RULE a permutation vector giving the original interpretation rule

- number for each of the (reordered) productions.

C.2 The Compiler (see Appendix ¥ for listing)

| The compiler is a syntax directed, one-pass translator using the prin-

ciples of semantic analysis controlled by a simple 'precedence syntactic
— analysis. The general organization of such tranglators described by Wirth

| [Wirth 65a,67e, Shaw66] has been adopted. In addition to the "value

- stack", information about previously scanned symbols 1s collected in an

-

; 30

identifier table and a separate (nested) table used in the processing of

1 case expressions.
‘The compiler is written in PL360 [Wirth 67c 1 Since analysis 1s table

i driven, the syntax processor was designed to produce tables which could be
efficiently scanned (see section C.l).In particular, binary search ‘is used

for the table of special character pairs, while entries into the tables

of reserved words and production right parts are controlled by key trans-

i formations on the identifier length and leftmost symbol of the right part

respectively [Iver 62]. The table of declared identifiers is organized to

i reflect the block structure of the language [Shaw 66].

1 C.3 The Interpreter (see Appendix VI for listing)

: The interpreter 1s a program simulating a machine for processing the
Polish suffix string-code produced by the compiler from MUTANT 0.5 source

programs. It 1s basically similar to well-described proposals for EULER

machines [Wirth 65a, Weber 67]. In particular, it incorporates:

(1) the traditional ALGOL 60 stack organization and addressing structure .

[Rand 64],

: (2) organization of composite data structures based on descriptor logic
similar to that of the Burroughs B5500, and

(3) data-directed interpretation of operators.

Data storage for the interpreter 1s organized into a push-down stack and a

free storage area. Composite data structures are implemented as collections

; of cells, defined by a descriptor scheme, 1n the free storage area. In the

| interpretation of a 'Polish suffix string, syllables of that string are sequen-
tially scanned. Action specified by most such syllables falls into one of the

| following-classes:
i (1) branching within the program string, possibly with analysis and

| modification of the top stack elements;
(2) fetching of values to the top of the stack, either from the program

string or, under the direction of existing stack entries, from free

storage;

| (3) replacing a number -of the top stack elements by a function of those

elements, including constructing from them a camposite data structure

| in free storage and placing a new descriptor in the stack;
| (4) storing a stack value into a composite data structure as directed by

other stack entries.

31

The interpreter is written in PL360 [Wirth 67ec]. Its general organ-

ization resembles the EULER interpreter written for the Burroughs B5500

= by Wirth and McKeeman [Wirth 65a]. A machine cell (System/360 double word)

containing a list or string value actually contains a descriptor, which

.. includes a type code and the base address and length of a contiguous block

of machine cells that contain the values of the list elements or string

“ characters. A compacting garbage collection scheme originally proposed by

Weber [Wirth 65a] is used, so that available free storage always consists

L of a single contiguous area. Data-directed recursive application of 'certain
operators is controlled by the interpreter procedures MAP, MAPLEFT, MAPRIGHT,

| and MAPBOTH. |

-

-

a ~

—

—

—

-

_

.

oT D. Use of the MUTANT 0.5 Processor,

— D.1 Language Restrictions

The following restrictions are imposed upon programs to be processed by

a the experimental system:
| (1) The hardware character set (Appendix I) 1s used; thus the reserved

: words of that character set cannot be used as identifiers, and spaces
= are significant in delimiting adjacent reserved words or identifiers.

(2) No limit is imposed on the length of identifiers, but only the .first

— eight characters are used in distinguishing them.

| (3)No single string constant can consist of more than 256 characters.

— (4) Arithmetic operations are defined by the IBM System/360 hardware. In
particular, addition, subtraction, and multiplication are actually the

_ corresponding operations 1n the ring of integers modulo 232 (with approp-
riate interpretation of negative numbers).

In addition, certain valid MUTANT 0.5 programs can cause overflow of compiler

. tables or object code instruction fields (see D.3).

— D.2 Operating Instructions

| The MUTANT O.> compller and interpreter must be compiled and the object

_ programs placed in the PL360 system library by the use of SYSTUP [Wirth 674].
Li. 3y8teus to date, these programs have been named MUTANT 1 and MUTANT 2

respectively. The compiled MUTANT 0.5 program is written by the compiler onto

= logical device 8, which must be appropriately defined, and is read by the
interpreter initialization process. The following deck set-up (within a PL360

— batch)is then required:
%$MUTANT 1

- (MUTANT 0.5 source program)

| ¢MUTANT 2
_ (data, if any)

FEC

C D.3 Compilation Listing
| The source program 1s listed as it 1s compiled. The hexadecimal num-

L bers printed to the left of each line indicate the number of bytes of object

program produced prior to analysis of that line. Under the RASP spooling

8 system, the printed time 1s primarily a measure of the time required to load

L

oTee————

| | 33

—

: the compiler or interpreter.

The following messages correspond to errors detected by the compiler.

~ A vertical bar 1s printed beneath the character being scanned at the point

| of error recognition, and compilation is terminated. A possible error

— recovery technique has been described by Wirth [Wirth 6Te].

| SYNTAX A syntax error (according to the grammar of

L Appendix II) was detected.

PROG OVFL A program assembly area in the compiler overflowed.

| BRANCHADDR OVFL The relative address generated for an implicit
fo

branch overflowed the allocated instruction field.

CASE TABLE OVFL An internal table used in processing case expressions

= ~ overflowed.

UNDCL ID An undeclared identifier was used.

— IMPROPER ID An identifier associated only with a value (named

a value, procedure parameter value, or controlled

— value) was used 1n a context (assignmerit or reference

formation) in which an identifier associated with

a cell 1s required.
bar

-

-

|—_

—

L

“

cz__

Cb

= 34

ee

E. Reflections on Language Design

}

o The present MUTANT 0.5 system would benefit 'substantially from further
development. There are a number of rough edges in the language definition

1 and several known errors 1n the design of the interpreter. Some of the more
unpleasant features of the language reflect oversights or poor decisions 1n

the system design, and no conceptual problems arise in their elimination.

= Some examples are cited in section E.3.e. Other rough edges are related to
| fundamental questions about the design and use of MUTANT-like languages;

— some progress 1n resolving these questions should be made before further

‘ detailed implementation work 1s justifiable. The remainder of this section

» 1s an attempt to characterize such languages, to consider their potential
: as practical programming tools, and to discuss some specific issues raised

g by the definition and implementation of MUTANT 0.5.

{ E.1 MUTANT-like Programming Languages

= In the past few years, several languages which attempt to extend and :

simplify ALGOL 60 [Naur 63] have been designed and experimentally implemented

L at Stanford. The two most directly of interest, 1n addition to MUTANT 0.5,
are Wirth and Weber's EULER [Wirth 65a] and McKeeman's MUTANT [McKee 66];

| the following remarks should also be applicable in part to similar lan-
guages, such as LISP 2 [Abra66] and the AED family [Ross 66], being

developed elsewhere. To a first approximation, theselanguages may be

= considered ALGOL 60 extended to allow various types of list (ordered set)
manipulation. In particular, such languages include the following features:

— (1) Programs consist of conditionally selected sequences of imperatives.

] (2) Named variables are provided in the context of a block and declaration
C structure.

| (3) An assignment operator is provided.

_ (4) structured values may be created and manipulated dynamically, and the
format of these structures need not be defined prior to program execu-

. tion.
(5) Definitions of certain operators are extended to be dependent upon

dynamic analysis of the operands.

-

g For purposes of this analysis, problems currently amenable to computer

L

to

—- 35

a attack fall into the following three broad catagories:
(1) Problems in which the natural data structures are simple, fixed, and

ha reasonably well reflected in the storage'organization and operation

set of existing machines. Many problems of classical numerical analysis

— fall in this catagory. In many cases, efficient use of the machine

| hardware 1s essential.

- (2) Problems in which the natural data structures are complex but pre-

| determined and well-defined. Processing requirements may or may not

LC be easily satisfied by machine facilities. Much of systems programming
and business data processing belongs in this catagory. Again a premium

Is often placed on efficiency.
= (3) Problems in which the natural data structures are complex and cannot

be predefined. Examples are found in such areas as artificial intel-

- ligence, general symbol manipulation, and graphical data processing.

Lo In most cases, a moderate amount of avoidable system overhead 1s

| . acceptable 1f it significantly increases flexibility and ease of |
| programming 1n the system.

Experience with MUTANT 0.5 indicates that algorithms for solving

problems in the first and third catagories can be naturally expressed 1n

| a MUTANT-like language. Since the structure of values is arbitrary in such
~ a language, a uniform scheme (e.g., indexing) must be used to name sub-

structures. Algorithms 1n the second class, however, can usually be ex-

— pressed more clearly in the notation advocated by Wirth [Wirth 66a,67al

in connection with record classes, a notation which demands static spec-

- ification of possible data structures.

oo Experience also suggests that a simple translator-interpreter mech-

g anism for a MUTANT-like language 1s unable to achieve the high efficiency
required 1n applications in the first two areas. Translator recognition of,

and optimization for, simple cases 1s, in fact, precluded by the lack of

~ a descriptive declaration facility in EULER and MUTANT. Such a declaration
structure, possibly including the record concept, could be used to advan-

- tage only by a considerably more sophisticated translator; even then, 1t 1s
not clear that a great deal of efficiency can be gained without sacrifice

_ of all dynamic features. Thus it appears that, with current machine designs,

| MUTANT-11ike languages are of potential practical value in the third problem

_ area above and that they may be fairly evaluated in the context of such

EB 26

“ problems.

E.3 Language Design :

= Presented below are some of the 1ssues which were found to be critical

: in the design and use of the MUTANT 0.5 system. Some of these became clear

— only after much of the system had been implemented, and no claim 1s made
that many optimal, or even good, solutions were found.

E.3.a Assignment of Structured Values

: In MUTANT-like languages, declarations serve to name cells but'not

- to define their structure . Instead, structured values may be created in
| an arbitrary way by computation, and such values may be assigned to any
— named (sub)cell; at the time of assignment, that cell assumes the structure

of the assigned value. Thus the structures of cells must be dynamic. The

. principal objections to such a scheme have been discussed by Wirth [Wirth

67a, 6Tbl. Briefly, they are the following:

L (1) Restructuring of cells 1s highly implicit, generally expensive 1n
interpretation, and deceptively'simple in appearance to the programmer. |

| Known storage allocation and referencing methods for implementation
. are not efficient enough, especially in the first two of the problem

areas above.

“ (2) Subcells (subvalues) must be referenced by a fixed and uniform

| naming scheme (such as indexing) with little mnemonic value.'

C (3) The compiler has very limited information for selecting code, type-
: checking, etes

. Wirth [Wirth 67a,6Tb] proposes to avoid these problems by assigning
to each named cell a structure, possibly complex, fixed at the point of

declaration. He claims that "for practical purposes this turns out to be

~ hardly a restriction at all" [Wirth 67a,p. 3]. The claim is reasonable
| for programs arising 1n the first two problem areas above, but it is
~ questionable as a general assertion. Among evidence to the contrary are the

following points:

((1) Programs from the third problem area inherently deal with dynamic,
complex, and interacting data structures. The information content

. of such structures can indeed be represented within a set of static

data structures, but often this requires considerable bookkeeping

3g effort on the part of the problem programmer and makes the resulting
\

-

37

program difficult to write, to document, and to modify or extend

without drastic revision.

(2) Experience with MUTANT 0.5 indicates that some of the most useful

and convenient features of the language generate or depend on

dynamically structured values. Notable examples are the iterative

expression and the Iverson interpretation of certain operators.

It 1s tempting to conclude that a desirable solution 1s to allow the

programmer to specify that a cell must have structures from some subset

of the set of structures of all values computable within the system. In

particular, 1f the specified subset contains exactly one element, the

translator 1s expected to check and optimize appropriately. There 1s some

merit in such a scheme; however, experience suggests that the effort required

to produce and adequately test such a translator using currently known tech-

niques 1s usually very great, even for languages much "simpler" than MUTANT

0.5. In addition, the optimization gained has often been rather disappointing.

E.3.b The Name-Value Problem

A familiar problem in the design of programming languages 1s dis-

tinguishing the denotation of the name of a cell and the name of the con-

tents of that cell (or more generally, the name of an expression and its

value). EULER and MUTANT 0.5 (but not MUTANT) resolve this problem by

allowing (and normally requiring) the programmer to make the distinction.

Thus in MUTANT 0.5, "a" denotes the value contained in the cell a, while

"a" is the name of (address of, pointer to, etc.) the cell itself. A
concession to tradition 1s made 1n assignment; Although this 1s an opera-

tion between a value and a cell, MUTANT 0.5 allows, €e¢g.,

b+ 3 +a

in place of

assign (b+3, 4a) or b + 3+ 4a
Allowing the programmer to explicitly manipulate cell names creates

some subtle but fundamental problems in MUTANT-like languages:

(1) The role of block structure and the interpretation of declarations)

1s unclear, as 1llustrated by the following example:

{$a|]($b|4db>a}, 0+a) :

If the second assignment 1s considered valid, then the cellb must

remain accessible after it can no longer be directly named; in

| B

: particular, the machine storage assigned to b cannot be reallocated
after exit from the block (list) to which b, is local. On the other

hand, 1f the second assignment 1s considered invalid, detection of

such assignments within the block and procedure structure of MUTANT-

like languages becomes a surprisingly subtle problem, and no satis-
| factory solution was discovered. 'The difficulty of the problem 1is

| indicated by the following example:
] ($xyp |

'a| {sb |Lo >a, x+y, 0>x)}" +p, |

p(x},($c lOo>y)

A quite similar problem arises in the assignment of values of

type process, as indicated in the following:

($0

| {$a 10+a, 'x |lx+a' +p),
| PC 3}

| (2) Names which are meaningful at the point of creation may become

meaningless at the point of use due to the dynamic structuring of

| cells, as shown in the example below:

($ab|{1, 2,3) +a, 2a[1] +b, 0 +a, 1 + b*)
Such situations cannot be detected easily by an interpretation mech-

| anism using machine addresses or equivalents as the representation

of values of type MIAMEWNT 0.5 effectively treats such values as
parameterless procedures which return a machine address upon activa-

| tion. This solution also defers evaluation of subscripts, sometimes

| with undesirable results. A better scheme 1s to construct a similar
| procedure after evaluation of all subscripts, but such a solution

can be quite expensive.

| E.3.c The Copy problem

In MUTANT(0.5, the traditional notion of assignment of values to

cells has been retained. This decision has fundamental implications for

| the design of an interpreting mechanism implemented using a conventional

| digital computer. In such machines, cells have simple fixed structures,

- and values are generally not accessible except as contents of such

) cells. As a result, the structured cells (values) of MUTANT-1like lan-
= guages must be implemented as collections of maehine cells (values).

Furthermore, since structure 1s dynamic in such languages, these col-

| — lections must include descriptive information sufficient to identify the
structure.

In interpreting the assignment of such structured values (possibly

contained in named cells).to named cells, the question arises of 'how much

of this collection must of logical necessity be copied upon assignment. |

| ~ For example, the interpretation mechanism must compute 3, not 0, as the
value of the following expression:

| - ($ab1(1,(2 3)) a, al2] +b, 0 b2],al2][2] J(4]
| The answer 1s that, 1f by any name and process, the contents of a machine
— cell can be changed, there must be at most one name (which may, however,

be the value of the contents of any number of cells) through which that

— machine cell or its contents can be referenced. Such names are'created by

| explicit or implicit assignment to a structured cell. Implicit assign-

ments in MUTANT-like languages include use of a value as a procedure

: BN actual parameter as well as the implicit assignments within an iterative
expression. |

In the implementation of interpreters of MUTANT-like languages,

] assuring such uniqueness proves to be very expensive 1n terms of efficiency.

j — Such implementations to date have used an interpreter based upon a push-
| down stack,manipulated by program operators,and a free storage area of

| — machine cells, from which structured cells are created. Uniqueness of refer-
: ence to machine cells can be guaranteed by unconditionally copying com-—

_ pletely every structured value as 1t (or a descriptor of it) 1s fetched to
and stored from the stack. Copying 1s itself expensive; moreover, each

: copying reduces the (finite) number of machine cells 1n free storage available:
Eventually, free storage must be restructured ("garbage collected"), and a

| second substantial expense 1s incurred. Implementations to date have, in

: — fact, attempted to avoid some of this copying. In Wirth and McKeeman's B5500
implementation of EULER [Wirth 65a], for example, values are copied only

. upon fetch-into the stack; as a result, in that EULER implementation,

— 40

- expressions such as
a «b «rc

and p(a «c) |
| are semantically disallowed if(and only if) c is found to contain a

Se structured value at the time of interpretation. An alternate approach is

to adopt a scheme of including marking information with (sub)structures

— and deferring copying until it 1s logically demanded. In this investiga-

tion, no such scheme was discovered which seemed sufficiently attractive

_ (see below). |
In view of the expense of copying, 1t 1s important to note that in

mostcases such action 1s neither anticipated nor desired by the programmer.

= Furthermore, 1n many cases, difficult or impossible to detect during the

| translation process, omission of such copying will not change any of the

— final values produced (or, even more frequently, any of the output strings

written). Given the high cost of copying and associated storage management

_ in avallable machines, this observation 1s probably the basis of the most
fundamental objection to the practical use of MUTANT-like languages. A num-—

_ ber of partial solutions to the copy problem are considered below.

(1) In EULER and MUTANT 0.5 programs, it is possible to create a value of

type name. This facility creates certain logical problems (see above),

= but 1t 1s valuable in allowing the programmer to create references to

| a named cell (and hence the contained value). In certain situations
— (not necessarily obvious to the programmer), it will be more efficient

to access a value with complex structure indirectly via a reference than

— it will be to copy the value. Such indirect reference is particularly

natural and appropriate 1n connection with procedure parameters. It has

- several drawbacks:

(a) Each value to be indirectly referenced must first be assigned to

| to some named cell.
= (b) Efficiency 1s critically dependent upon the programmer$ careful

| (implementation dependent) choice of reference or value 1n each
- situation.

: (c) The programmer must be exactly aware at all times of the level of
- indirectness being used.

| (2) In SLIP [Weiz63], a list-processing language of quite different design,

L

7 |

- - a superficially similar problem was encountered and solved by the use

oo of a reference counting scheme. A count of the number of valid names

referencing each relevant collection of'machine cells 1s encoded 1n

that collection and dynamically adjusted. A brief examination failed

—_ to discover a reasonably efficient adaptation suitable for MUTANT-like

languages, but further investigation might be profitable., Briefly the

I difficulty seems to be that the encodings of such counts which can

| be efficiently maintained are not the encodings efficiently usable in

_ avoiding copying. |
(3) It is possible to interpret the notion of value in a manner consistent

. with any particular scheme of internal representation and strategy of

TT copying that is convenient for implementation. In particular, if a

| cell contains a structured value in the MUTANT (.5 sense, it is attractive

Sl to instead consider the value of the cell to be a description of that

] structured cell and its subcells. In certain situations (such as array

: — procedure parameters called by name in AIGCL60) such an interpretation
1s consistent with the spirit of the language and represents an efficient

| _ } implementation trick. In general, however, there are several valid ob-
| jections to such an interpretation:

| (a) It 1s an ad hoc expedient and tends to make the semantics of a

| a. language dependent upon the implementation facilities which happen

| to be available.
2a (b) It further confuses the distinction between the name of a cell and

of its value.

| — (c) As most naturally implemented, an embarassing lack of consistency
arises in the meaning of the language. In particular, 1t 1s more

_ convenient and efficient to reference unstructured values directly

but structured values indirectly.

(4) Analysis of programs in various languages with an assignment operator

- suggests that a significant fraction of all cells are declared and used

1 to preserve intermediate results and avoid repeated calculation of the

: — same value. Such cells are created for the purpose of naming values; the
| fact that these cells (as opposed to the contained values) are structured

_ 1s of no interest or use to the programmer, for he never assigns to a

| subcell. This suggests that the language should provide a facility for

_ naming computed values without requiring assignment to a logically

| —

42

. distinguished cell. Such a facility exists for simple constant values

— in present languages.

MUTANT 0.5 recognizes that previously computed values may be

L used as such intermediate values and thus may effectively be 'constants

throughout the scope of a declared name. A construct 1s provided to

2 initialize at the point of declaration the value denoted by a name to
a constant (which may be computed from the values denoted by names

non-local to the corresponding block). Such values will be called locally

-- constant. Since all procedure parameters in MUTANT 0.5 are effectively
called by value, it 1s easy for the translator to check that such names

- are never used in the (implicit or explicit) formation of cell names.

: The important fact 1s that such naming does not create a name by

L which the contents of a machine cell can be changed. Thus in the com-

position of the designated value, any subvalue which is a constant,

L either by denotation or by being locally constant in a containing block,
need not be copied. The idea can be extended somewhat further than 1is

| done in MUTANT 0.5.If a value contained in a named cell 1s used in the
~ computation of a locally constant value, then there are various sets

of sufficient conditions, verifiable by the translator, that insure that

- the contained value cannot be changed within the scope of the name of

the local constant. If these conditions are satisfied, it 1s again not

. necessary to copy the contained value in formation of the local constant.

The effectiveness of this solution 1s critically dependent upon the

L programmer's style. Programmers experienced with LISP 1.5 [MeCar 62] find
1t relatively easy to make effective use of local constants; in fact, such

use 1s very similar to one use of LISP h-expressions. There 1s also a

- trade-off of run-time efficiency versus compiler speed; 1n particular,
code generation based on a very sophisticated set of sufficient conditions

C for local constancy 1s probably incompatible with one-pass translation.
| Experience with the MUTANT 0.) interpreter suggests that the most promising

- approach to the copy problem 1s a finer distinction among the various uses of

the traditional assignment operator and a syntactic structure which dis |

L tinguishes among such uses. The provision of ":=", "=", and "=~" for assign-
ment, "initialization by value", and "initialization by reference", respec-

4 tively, in CPL [Buxt 66] reflects exactly such a distinction. Landin's let |

_

| -— ss-x -

= and where constructs [land 66] are also used in CPL and are attractive
syntactic devices for designating local constants.

E.3.d Extended Operator Definitions

| In MUTANT and MUTANT (0.5, definitions of operators have been extended
= in the sense of Iverson [Iver 62] whenever possible. Such extension leads

] | to at least three difficulties:
— (1) For the results of a given computation to be well defined, the exact

order of the evaluation of operands aswell as the application of

- operators must be specified. This 1s due to the involution of assign-

ment as well asthe possibility of procedures with side effects. Dif-

. ficulties are not limited to pathological cases; using the extended
assignment operator of MUTANT, McKeeman [McKee 66] illustrates a useful

| application of
= {a,b} (0b, a} '
: Specification of either complete evaluation of both operands in a

L specified order followed by operator application (as 1n MUTANT 0,5)
| or any of various levels of conceptual parallelism 1s likely to lead

— to gross inefficiencies in some implementations. McKeeman [McKee 67]
: has suggested a partial solution based upon the distinction between

_ types set (unordered) and list (ordered).
| (2) The meanings of operators intended to act upon structured values
1 generally cannot be extended without the loss of such ® me'ani.ng. For

example, the value of

| (1,2,4} =1{1, 3,43

— will be 0 or { 1, 0, 1 } depending upon the interpretation of the ex-
2 tended equality operator: In the first case, the extended meanings of
— equality operators will be very different from those of the other rela-

tional operators; in the second case, comparisons of structured values

5 must be explicitly programmed (as in MUTANT 0.5) or require another
| equality operator. Extension of the subscripting and assignment operators

. present special difficulties:
| (a) There are two common interpretations of subscript notation. In one,

| such notation 1s considered simply a naming device. In the other,
- the subscript brackets are considered to denote an operator which

. maps a value (or cell name) and anumerical value into a subvalue

\

a 44

g (or subcell name). From this viewpoint, there 1s a natural gen-
eralization of the subscript operator: a value subscripted by an

= ordered set (list) yields an ordered'set of values obtained by

applying each 'element of the set as a subscript, e.g.,

ae al (2,{3,4)) 1 = asub (2,{3,4)} = (af2],{al3],a[l]}]) .
j Such an interpretation allows a very powerful and elegant method

_ of constructing new ordered sets from a collection of elements and

has been adopted by MUTANT and MUTANT 0.5. Note, however, that the

| extension is not quite Iverson's; the subscripted value 'must be

| - structured but must be treated formally as unstructured. Further-
: more, 1f cell names are allowed to be subscripted by sets (as in

 — MUTANT), the result must be a collection of (sub)eell names, and

B one 1s led to an extended interpretation of assignment. If such

— subscripting is not allowed (as in MUTANT 0.5), string manipulation

i 1s quite awkward and an asymmetry 1s introduced in the language.
_ (b) There is a fairly obvious similar extension of the assignment

| | operator. It 1s again, however, not quite the Iverson extension
| used elsewhere in MUTANT 0.5, for one would prefer
= (1, (2, 3}))+{ab} =(1+a (2,3}>b]
Bu instead of

LT (1,(2,3}})+>(aDb) =({1+a (2+b,3+b}} .

= In addition, sequencing 1s critically important in assignment;

pe by one possible definition,

- (a, p}+>{b,a} = {a+b, bra] ’
_ which 1s usually not the desired interpretation.

| (3) Some data types are not either clearly structured or clearly unstructured.

The primary examples in MUTANT 6.5 are strings. It is desirable, for

| N example, to be able to access substrings by the subscript notation for
| structured values; on the other hand, when used as operands to, e.g., the

= putoperator, it is convenient to consider them unstructured. A heir-
| archyof structure can be introduced, but probably at the cost of some

- loss of uniformity, and hence simplicity, 1n the interpretation mech-

| anism.

= E.3.e Miscellaneous Problems

A number of decisions made in the design and implementation of MUTANT 0.5

L

45

. were later found to be mistakes, but these mistakes do not reflect fun-

_ damental problems 1n the design of MUTANT-like languages. some of these
are listed below:

(1) Choice of CharacterSet

- In the design of MUTANT (0.5, it was decided to choose as concise a
notation as possible and to reflect the usage of set theory as well

— as conventional algebra. When desired special symbols were not
available in the IBM EBCDIC character set, they were usually represented

“ by pairs of special characters rather than by word delimiters'or
| reserved words. The elegance of this approach 1s debatable; however,

: it 1s clear that readability suffers severely, especially 1n the
hardware representation.

(2) Deletion Operator

~ The value of a MUTANT 0.5 program at any point 1s generally a very

| ‘large list structure, the structure of which reflects the history of
~ interpretation up to that point in considerable detail. Such lists

consume a large amount of storage and often are of no practical use.

~ A sequencing operator, similar to the comma but deleting the last
value canputed for an element of the list being constructed, would

9 be very useful, particularly when an expression is evaluated for its
effect rather than its value.

§ (3) Extended Case Expressions
‘McKeeman [McKee 66] has demonstrated an elegant application of a

list-valued case index in his MUTANT compiler. Such indices are

= prohibited in MUTANT 0. only because of an oversight in the design
of the interpreter.

E.4 Methodology

_ Implementation of MUTANT 0.5 has followed the example of EULER and
MUTANT; 1t 1s based upon a straight-forward compiler producing Polish

postfix operator strings and a stack-oriented interpreter of such strings.

L For experimental purposes, such a system seems entirely adequate. Weber
[Weber 67] has demonstrated the suitability of presently available hard-

ware for implementing proven compilation and interpretation algorithms in

microcode, and presumably results with specially designed hardware would be

4

_

r _—mnm— 8-8 H e— _—_—-—-—-—_ _ _ _-— - _ -—-— _ _ - - - rm _ -_-_ 0-_m————

46

= even better than what he'reports,. In addition, it should be noted that

with sufficiently powerful operators the additional overhead of inter-

— pretation 1s relatively small; for example, the MUTANT 0.5 interpreter

makes quite efficient use of the System/30 general registers in vector

- manipulation when such manipulation 1s expressed 1n Iverson's notation,

and this efficiency 1s possible without an optimizing compiler.

_ The grammar of MUTANT 0.5 was chosen to be a simple precedence grammar
because of familiarity with the techniques involved and availability of

suitable syntax processing programs. Other well understood formalisms,
—

summarized by Feldman and Gries [Feld67], could have been used equally

well, with some trade-offs among speed, space, and generality. In general,

— 1t was found that, with the available machinery, modifications to the

MUTANT 0.5 grammar or compiler were fairly trivial to make. On the other

- hand, many unfortunate features of the interpreter could not be changed

without substantial rewriting; further investigation of the related prob-

1 lems of formal semantics and machine description seems more appropriate
than continued work oriented entirely toward syntactic questions.

2

—

|
—

-

|

-

-

L-

i

| F. References

— Abra 66 Abrehems, P., et al., The LISP 2 programming language and
system, AFIPS Conf. Proc. 29_ (Fall 1966), pp. 661-676.

Buxt 66 Buxton, J. We, Gray, J. C., and Park, D., CPL elementary

programming manual, The University Mathematical Laboratory,

= Cambridge (January 1966).

— Feld 67 Feldman, J. A., and Gries, D., Translator writing systems,

| Technical Report (869, Computer Science Department,
| Stanford (June 1967).

IBM 66 IBM Systems Reference Library, PL/I: Language specifications,

Co IBM Form C28-65T71.

Iver 62 Iverson, K., A programming language, Wiley (1902).

Land 64 Landin, P. J., The mechanical evaluation of expressions,

— Comput. Je 6 (January 1964), pp. 308-320.

Land 66 landin, P. J., The next 700 programming languages, Comm. ACM9
. (March 1966), pp. 157-166.

- McCar 62 McCarthy, J., et al., LISP l.5 programmer's manual, Computation
Laboratory, MIT (1962).

— McKee 66 McKeeman, W.- M., An approach to computer language design, Tech-
nical Report (S48, Computer Science Department, Stanford

-- (August 1966)..

McKee 67 McKeeman, W. M., private discussion (Spring 1967).

Naur 63 Naur, P., et al., Revised report on the algorithmic language

a AIGQL 60, Comm. ACM,6 (January 1963), pp. 1-17.

| Pohl 67 Pohl, I., Graph package, GSG Memo 43, Graphics Study Group,

— SIAC, Stanford (June 1967).

— -

L8

} Rand 64 Randell, B., and Russell, L. J., ALGOL 60_implementation,
s Academic Press, 1964,

Ross 66 Ross, D. T., AED bibliography, Mem. MAC-M-278-2, Project

- MAC, MIT (September 1966).

_ Shaw 66 Shaw, A. C., Lecture notes on a course in systems programming,
Technical Report ($52, Computer Science Department; Stanford

(December 1966).
-

Weber 67 Weber, H., A microprogrammed implementation of EULER on IBM

L System/360 model 30, Comm. ACM 10 (September 1%T7), pp. 549-558.

Weiz 63 Weizenbaum, J., Symmetric list processor, Comm. ACM6

- (September 1963), pp. 524-5uk. - -

| Wirth 65a Wirth; N., and Weber, H., EULER: A generalization of AIGOL, and
its formal definition, Technical Report (820, Computer Science

Department, Stanford (April 1965) (also, in part, Comm. ACM9

= (January and February 1966), pp. 13-25, 89-99).

g Wirth 65b Wirth, N., Find precedence functions, Algorithm 265, Comm. ACM 8
(October 1965), pp. 604-605.

L Wirth 66a Wirth, N., and Hoare, C. A. R., A contribution to the development
| of ALGOL, Comm. ACM 9 (June 1966), pp. 413-432,

Wirth 67a Wirth, N., On certain basic concepts of programming languages,

. Technical Report C865, Computer Science Department, Stanford
(May 1967).

L Wirth éTo Wirth, N., ALGOL project memo 55 (internal memo), Computer Science
Department, Stanford (1967).

L Wirth 6Te Wirth, N., A programming language for the 360 computers, Technical
B Report C853 (revised), Computer Science Department, Stanford
- (June 1967).

| Wirth 67d Wirth, N. (editor), The PL360 system, Technical Report CS68,
Computer Science Department, Stanford (June 1967).

!

ee

b9

'

-

: Appendix I

oo Publication / Machine Character Set Mapping
— '

Publication Machine Character Publication Machine Character

- Characte? Set set (EBCDIC) Character Set Set (EBCDIC)

_ a (no equivalent) ® *
coe Cu + DIV

. A (no equivalent) mod MOD
A A base BASE

~ Z Z # | —
| 0 0 > GT

~ es -. 2 GTE

9 9 < LT

i. " " s LTE

(< A AND

. } > V OR
((/ /

|)) 2 >

” [(_ 4

= $ $

| |

— , , => =>

get GET

— * # ; ;
€ E.

| list LIST *
- abs ABS cof

neg NEG - (comment bracket) 1

- type TYPE
- + ;

L 50

; ESYNPRCC

—~ 1 <PROG> $3= } KV=EXPR>
2 <G-EXPR> 2 3= <V-EXPR>

3 <Q-CLAUSE> <G-EXPR>

4 <Q-CLAUSE> 33= <KVY=EXPR> =>
5 <V-EXPR> $:= KV-EXPR*>

6 <V-EXPR*> ::= <SEGMENT>

7 <PROC HD> <V-EXPR>

- 8 KV-EXPR%*> => <KCELLD>
9 <PROC HO +> HEE

, 10 PROC HO+> (IDENT)

: 11 <PROC HO > .o =<PROC HO+> |
~ 12 <SEGMENT> «3 =<S—-EXPR>

13 <S=EXPR> _ <S—EXPRD>

: 14 <S~EXPR> _ <S~EXPR> _ <S=EXPR>
15 <S-E XPRD> 23= <S—-EXPR*>

~~ 16 <S-EXPR*> :2= <PRIM> oo
17 <S—-EXPR*> <INFIX> <PRIM>

' 18 <INFIX> vez +

19

~ 20 *]
21 DIV }

22 MOO

_ 23 BASE
24 =

25 ~=

26 GT

I. 27 GTE
28 LT

29 LTE

30 AND

han 31 OR
32 |

33 <PRIM> $= <PRIM*>
34 <PREFIX> <PRIM>

= 35 <I NFIX>/<PRIM>

36 <PREFIX> 3:= #
37 =

— 38 LIST
39 ABS

4c NEG

41 PUT

- 42 TYPE

43 <PRIM*> 23= <CELL>

: 44 <REF>

45 <S-PRIM>

— 46 <CELL> 23x <CELL®

47 KCELL*> ::= (IDENT)

48 <CELL*>{_ <V-EXPR> _)

| 49 <CELL*™> 4
~ 50 <REF> ::= <REF*>

51 <REF*> s:= a (IDENT)
52 <REF*> (_ <V-EXPR> _)

w 53 <S-PRIM> $2= <S-PRIM*>
54 <S-PRIM*> 22= <CONSTANT>

55 GET

56 <L | ST>

57 <PRIM®> <(LIST>

58 { <V-EXPR> 1)

L 51

59 KCASE HD> <V-EXPR>)

LC 60 <FCR H O >>
61 <WHILEH O >>

| 62 < F/ WHD>>

¢ 63 <S-PRIM"*>{(_<V-EXPR>_)
L 64 CCONSTANT> ::= (INTEGER)

65 (STRING)
66 <BEGIN> >

; 67 <LIST> s:i= LIST HO> >
— 68 <LIST HOD 22= <BEGIN> <G—-EXPR>.

69 < L I S THD>¢+ <G-EXPR>

{ 70 <BEGIN> te8
71 <BEG IND e. . = <DECLARE>|

— 72 <BECLARE> $3=-< §

73 <DECLARE> (IDENT)

: 74 <DECLARE>{IDENT) (CV~-EXPRD>)

. 75 <CASE HO> 2:2=<CASEIDX> (<KV-EXPR> 3
76 < C AS E HD> KV-EXPR>;

77 <CASETI 0OX> ti= {_ <KV-EXPR> _)
18 <FOR HD> $2232 <BEGIN>. <FORSET>LG-EXPR>

_ 79 WHILE HD> ::= <BEGIN> <WHILE CDN><G-EXPR>
8C <kF/n HDD $= <BEGIN><CFOR SET> <WHILE CON=> <G-EXPR>

81 <FOR SET> 3:=<FCR SET*> 2

az <FOR SE T*)> 22= (IDENT) & <KV-EXPR>

— 83 <WHILE> $3=

84 <WHILE?'D> $3=<WHILED> <Q-CLAUSE>
ab <WHILE CDN> =z2:= <WHILE>

|
ae

|

—

1

-

- 52

PRECEDENCEFUNCTIONS

— I <PROG> 1 1
2 <G=EXPR> 3 2

| 3 <Q-CLAUSED 2 3

| 4 <V=EXPR> 5 4

hae 5 <V-EXPR%) 4 5 59 = 14 7
6 <PROC HO +> 9 5 60 LI ST 14]

: 7 <PROC HDD 4 5 61 ABS 14 7

_ . a <SEGMENT> 7 5 42 NEG 14 7
9 <S—=EXPR> 7 5 63 PUT 14 7

| IC <S—EXPR%)> a 6 64 TYPE 14 7
11 <INF IX> 6 a 65 d_ 4 1")

- 12 CPR I MD 10 6 66 _) 14 5
13 <PREFIX> 6 7 67 % 13 12

14 <PRIM*> 10 7 68 a 9 7

! 15 <CELL> 12 7 49 CET 13 1
— 16 <CELL*> 12 8 700 4 13

17 <REF> 12 7 71) 13 5

; 18 <REF*> 12 7 72 > 13 2
19© <S-PRIM> 12 7 73 {INTEGER) 13 7

—~ 20 <S-PRIM*> 12 7 74 (STRING) 13 7

21 <CONSTANT> 13] 75 ’ 2 2

22 <KLIST> 13 10 76 <£ 14 11

_ 23 «LIST HO> 2 11 77% 10 l4
24 <BEG IN> 2 11 76 14 5

25 <DECLARE> 9 11 79 3 14 1

\ 26 <CASE HD> 4 7 a0 & 4 13
i. 27 <CASE IDX> 13 7 81 . 14 3

28 <FOR HD> 2 7

| 29 <WHILEHO> 2 7 ELAPSELJ IME IS 0C:06:00
30 <F/wW HD> 2 7

“ . 31 <FOR SET> 2 2

32 <FOR SET*>. 1 3

33 <WHILED> 3 3,

34 <WHILE®'> 1 3

~— 35 <WHILE CDN> 2 2

36 | 4 5

37 => 14 5

L 38 10 5
39 => 7 6

| 40 { IDENT) 13 9
41 14 9

- 42 _ 5 7
43 + 14 9

44 = 14 9

- 45 8 14 9
- 46 CIV 14 9

47 MGD 14 9

: 48 EASE 14 9
49 = 14 9

— 50 == 14 9

51 GT 14 9

| 52 CTE 14 9
Ci 53 LT 14 9
~~ 54 LTE 14 9

55 AND 14 9

56 (RK A4 9

_ 57 6 6
58 # 14 7

-

|b 53
br TMUTANT 1

: ?

= 0000 $ FACTORIAL CALCULATION = SECTION Be3sl 2 |

8 0000 < FACTORIAL|
[| 000 1 * N T (_ 2-(N=0)_){1;N*FACTORIALS N-1 >)' => FACTORIAL

0032 <N & 1.6:

Bn 003 D PUT((N BASE 10)|*®™ FACTORIAL = * | (FACTORIALS N > BASE 10:
EL 0060 >

0061 >

B END CF COMPILATION .
ne

ECAPSEC TIME IS (@0:00:49

- LMUTANT 2

] FACTORIAL = 1 .

=u 2 FACTORIAL = 2
ne. 3 FACTORIAL = 6

4 FACTORIAL = 24

B 5 FACTORIAL = 120
Bu 6 FACTORIAL = 720

ELAPSED TIME IS 0C:00:36

.

-

bo LC

54

TMUTANT 1

— 0000 ? EXTENDED FACTORIAL CALCULATION = SECTION 8.3.2 ?

000C <$ FACTORIAL PROD|

0002 <* N J(_ 2=€N=0) _) { 1 ss N*FACTORIAL(_1_J)< N-1 >),

Co 0033 *N| =/¢(1_N} *¢ ,
0043 * N | PROD< 1_N >» ©
0053 >=> FACTORIAL,
0059 *L | (_ 2-(#L=1) _)

- 0067 { LI_1_) 3 PROD L{_ L1_#L DIV 2 _)D>*PRODS L(_#LD | V2¢1_#L _) >)
COA4 -> PROD,. |
OOA9

| OOA9 < | & 1_3:
- 0004 C PUT "®, PUTH{("METHCD “|(IBASE10)),

OOCA < N &1_8 3

00DS PUTU(I(NBASE 10) I" FACTORIAL =*]{FACTORIAL(_I_IK N>BASE10))
OOFC >

— 00FOD >
0100 >

0101 >

“~ ENDCF COMPILATION

ELAPSED TIME IS 00:00:4C

| FMUTANT 2

Co MEER Oka - |
2 FACTORIAL = 2

~~ 3 FACTORIAL = ©
4 FACTORIAL= 24

5 FACTORIAL= 120

: 6 FACTORIAL = 720
or

7 FACTORIAL =504C

| 8 FACTORIAL = 40320

METHOC 2
1 FACTORIAL = |

2 FACTORIAL = 2

3 FACTORIAL = 6

~— 4 FACTORIAL = 24

5 FACTORIAL = 120

: 6 FACTORIAL = 720
7 FACTORIAL = 504C

“— a FACTORIAL = 40320

METHOC 3

__ 1 FACTORIAL = 1
2 FACTORIAL = 2

3 FACTORIAL = 6

4 FACTURIAL = 24

«. 5 FACTORIAL = 120
| 6 FACTORIAL = 72C

| 7 FAC JOR [AL= 5040
| 8 FACTORIAL = 40320

—

ELAPSED TIME IS 00:00:43

-

=

- 55
| SMUTANT 1

- 0000 ? INNER PROOUCT= SECTION Be3e3(A) ?
0000 PUT ((#/0 < 14293 >¥< 34241 >)) BASE 10)

| END Q F COMPILATION
LS

ELAPSED TIME IS 060300:35

| TMUTANT 2
—

10

| ELAPSEC TIME IS 00:00:37
-

—

—

:

j-

_

—

—

{

(i

L

56
TMUTANT 1

0000 ? PERMUTATION GENERATOR= SECTIONB.3.3(B) ?

000C < $ PERM |

000 1 * x }(_ 2-(#x=1) _)
0013 {t < X > 3

001A {/< 1 & 1_#X :
0029 < J GPERMSX{_ 1_I-1 _)iX{_ I+1_#X _) > = x{_ I_1 _}IT >
006 1 >

0064) * => PERM,

0076 CTESTEC A” "AB", WARC™, "ABCD" >:P U TPERMC TE ST>>
009A >

ENDOCFCUMPILATION

ELAPSEC TIME 1S C0:00:36.

~ MUTANT 2

| A |
L AS

BA

ABC

| ACB
- BAC

BCA

{ CAB
CBA

— ABCD

ABDC

ACBD

ACDB

— ACBC
ADCB

BACD

. BADC |
BCAD

B8CDA

BCAC

— BOCA

CABO

CADS

CBAC ,
— CBDA

CCAB

CCBA ;

_ DABC
CACB

DBAC

CBCA

_ DCAB
CCBA

ELAPSED TIME IS 08:00:43

—

-

o

57

| LMUTANT 1

- 0000 ? PRIMESIEVE SAMPLEPROGRAM = SECTIONBe3eh 2?

0000 C $PRIMESIEVE

0000 { N |< $ LT} 2_N => L,
| 0014 < . HL ~= - =>:
i 001E < LI_1_) =D>Te<I16&L:I MAD Ta=0=> I > => L >{_1_)

004 B >

004C >_2_) *
0053) |

= 0054 < NG&KZ28 250 >:
0C64 < PUT (PRIMES IN 2 TO ®|{(N BASE 1L10)|%:"),

| 0082 P U T(PRIMESIEVEC N > BASE 10)
- O08E >

008F >

0090 p

- ENDGFCOMPILATION

ELAPSED TIMEIS 60:00:40 |

—

L TMUTANT 2
PRIMESIN2TO25:

Cd yi

. 3
5

7

: 11 97

Ce 13 101

17. 103

19 107

23 109

— PRIMESIN ‘2 TO 25C: - 113

2 127

| 3 1315 13

— 7 139
11 149

13 151

- 17 157 |

19 163

23] 167
| 173 °
— 0531 179

37 181

41 191

43 193

| 47 197

53 199

ry 59 211

i 61 223
67 227

: 71 229
13 233

- 79 239

83 241

| 89

| ELAPSED TIME 1S 00:01:09

|

: -
% 58
i TMUTANT 1

LL 0000 ? PERMUTATION GENERATOR ?

= ooocC < $§ PERM |
3 000 1 * x | (_ 2=(#X=1) _)
ot 0013 { < X > 3

 — 001A 1/7 IT & 1_#X 3

: 0029 < T & PERMC X{_ 1-I-1 _)| X{_ I+1_#x _) >:
FL 0052 <CX{_ TI > | 71
- ocsa >
FT OOS5F > }' => PERM,
g 0074 C TEST &< 1_1y 1.2» 1_ 3, 1_4 > :
2 C09C < P &PERMC TEST > sPUT{]/(P BASE 10)) >
ne 00AB > >

[ENDGHF COMPILATION

a. ELAPSEC J IMEISC0:00:36

ae TMUTANT 2

§ | 1
E 12

i 123
| 132
Eo 213

LE 231

3 312

1 321
3 1234
| 1243
3 1324
E 1342

Fo 1423

Fo 1432
| 2134
| 2 143

2. 2314
8 2341

! 2413
Lo 2431)
 — 3124

g 3142

FE 3214
: | 3241
; 3412

: 3421
- 4123
; L 4132
; 4213
3 4231

= 4312
EL 4321

= ELAPSEC TIME 1S0C:00:44

a.

Lo

1 59
4 TMUTANT 1

ue | 0000 ? GRAPH MANIPULATION ROUTINES?
0000 C $ REACHVEC

| 0000 (* ¢c 1 |

A. 0004 <$ PR R BB N (#C)|
i 0008 (1_N)~=I => BB, C(_I_) =->Ry LIST N =>PR,
g 0030 < o #/(PR=(R=DPR))~=N => 3

0047 << J& 1_N :BBI_J_)A N DPRI_J_)=>
_ 0062 <0 =>BB{_J_)e R OR Cl_J_}->DR>>
! 007F >» R >(_5_))
s 0080 DISPLAYMATRIX
j 0080 {* C TITLE |<KPUT "ww,p UU TTITLE,

ue. 009A < I &1_#C :P UTUI/Z(CI_I_)B AS E2))>>")
00BL REACHMATR I X MAXSC SUBGRAPH T

: OOBE Cc (€ €19190909090>9 <09190919050>y <09191¢0,0:0>,
OOEA €090909l9ly0>9 <0919090491+0>y <1:090490,+041> >) I

J. 0115 * ¢c I <1 & 1_#C : REACHVECK'Cy I > 3 ’ => REACHMATRIX,
i 013E "RIC 1 &1_#R:3< J & L1_#R RI_I_DVI_J_IDANDRI_J_IL_I_) > >?

0179 => MAXSC SUBGRAPH,
O17E DISPLAYMATRIXCCHy"C MATRIX” >

| — 0191 OISPLAYMATRIXC REACHMATRIXK C>¢"R MATRIX” Dy

OlAA DISPLAYMATRIX< MAXSCSUBGRAPHS REACHMATRIXK C >>¢ "MSC MATRIX”>

LL END CF CUMPILATION

i ELAPSEC TIME 1S 0C300:42

Eo

XMUTANT 2

! C MATRIX

1 100C0

EL _ 010100 .
011000

000110

EL 010010
- 10000 1

R MATRIX

= 1101.10
lL — 010110 ’

| 011110
=u 010110 -

010110

 ~— 110111

MSC MATRIX

| 10000¢C
| 010110

00100¢

= 010110
— 010110

| C000C 1

= ELAPSEC TIME IS 0C:00:48

y - TMUTANT 1
F 0000 < $ SQRT
EL ooocC (* N]J<$ X ERR |
 . 0006 (N DIV 2 => X)#N#*2-> ERR,
- 001F C «. ERR GT(ABSU XX - N)=> ERR } =>: (X + (NDIV X)) DIV 2 =:

0048 x >(_3_) 1")

Lo 0053 PRIMESIEVE
0053 (*N | <s$L T |] 2.N->1L,

= 0067 Ko #L-~=0 => : |
L 0071 CLI_I_) => Ty << IT ELI MOD T ~=0=>T1)>>=>LD>0_1_)>
| — 009F >_2_)*) |

00A7 PUT* PRIMES AND INTEGERIZED SQUARE ROOTS",
- 0002 < I & PRIMESIEVESC 250 >:

| 00EOQ PUT ((1-BASE 10) |» "]{ SQRTC I > BASE 10)) > >

1 END GF COMPILATION

Cw ELAPSEO TIME IS 00:00:39

= TMUTANT 2

pb PRIMES ANG INTEGERIZED SQUARE ROOTS
3 2 1

Bn 3 1
FL 5 2
: 7 2

» 11 3 149 12°
a 13 3 151 12
ue 17 4 157 12

19 4 163 12

a 23 4 167 12
- 29 5 173 13

— 31 5 179 13

] 37 6 181 13
= 41 6 191 13
- 43 6 193 13

bp 47 6 197 14
53 7 199, 14

F 59 7 211 14
ue 61 7 223 14

67 8 227 15

| 71 8 229 15
73 8 233- 15

ne- 79 8 239 15

83 9 241 15

= 89 9
B 97 9 ELAPSED TIME IS 0C201:17
 — 101 10
y 103 10

107 10

» 1C9 10
~~ 113 1C

127 11

- 131 11

137 11
139 11

1 —

-

