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Abstract

A programming language which continues the extension and simplification
of AIGOL 60 in the direction suggested by EULER is defined and described.
Techniques used in an experimental implementation of that language, called
MUTANT 0.5, are briefly summarized. The final section of this report is an
attempt to assess the potential value of the approach to procedural program-
ming language design exemplified by MUTANT 0.5. Implementation and use of the
experimental system have indicated & sufficient number of conceptual and
practical problems to suggest that the general approach is of limited value;
however, a number of specific features were found to be convenient, useful,,
and adaptable to other philosophies of language design.



A. Introduction

In his thesis, McKeeman [McKee 66] describes MUTANT, a "kernel" lan-

guage which he proposes as a nucleus for the design of procedural programming

~ languages. Many features of that language appeared useful for expressing

algorithms of both graph theory and graphical data processing. In addition,
MUTANT suggests possible approaches to the problems of data structuring and
the specification of parallel processing. To gain some experience with such
facilities, an experimental language with semantics similar to those of
MUTANT was designed. Certain semantic concepts were generalized, and others
restricted; also the syntax was substantially altered. In addition, the cur-
rent version of the language does not include all facilities of MUIANT (most
notably, unordered sets and real number arithmetic); it is therefore called
MUTANT 0.5.

A processing system for MUTANT 0.5, consisting of a compiler and an in-
terpreter, was implemented on the IBM System/360; and some experience with
that system has been obtained. The language has been found to allow a concise
and natural expression of many algorithms, but a number of difficulties were
experienced in designing both the language and the interpreter for the system.
Although certain language improvements are obviously needed and efficiency
could be significantly increased by use of more suitable hardware, I agree
with Wirth's conclusion [Wirth 67a] that difficult logical problems underlie
both the design and implementation of such a language. No further develop-
ment or use of the current system is planned. Thus in terms of providing a
useful language and processor, the project was a failure. It was, however, a
valuable exercise in language design; this report is an attempt to analyze,
for the benefit of future work, some of-the strengths and weaknesses of the
MUTANT 0.5 design revealed by both the implementation and the use of the lan-

guage.

A.l1 Organization of the Report
In section B, MUTANT 0.5 is defined in the style of the ALGOL 60 report

[Naur 63]. Syntax is described by productions in Backus-Naur form (BNF);

semantics, by English prose. Some examples of programs in MUTANT 0.5 are then
presented and explained. Section C is a brief summary of the techniques used
in implementing the experimental compiler and interpreter. Use of these prog-

rams is described in section D. Finally, section E is an attempt to charaec-



terize MUTANT-like programming languages, to identify some inherent problems
in their definition and implementation, and to assess their practical utility.
That section is a minor revision of a draft written in September 1967; some of
the positions stated there have since been substantially extended or reformu-
lated as a result of more recent reading, discussion, and research.

Appendices III, IV, and V, although referenced in the text, are not
reproduced in this report. They are compilation listings of the various programs

used in the experimental implementation of MUTANT 0.5.

A.2 Comments on Notation

In this report, two different character and terminal symbol representa-.
tions are used in the description of the syntax of MUTANT 0.5 as well as for
the representation of programs written in the language. One may be considered
the publication representation; the other, a hardware representation reflecting
the available character set. The former is introduced in the belief that it
is somewhat more agreeable and readable. Appendix I establishes the corres-
pondence between these two representations. In addition, a slight variant of
BNF has been adopted for compatability with the output of certain processing
programs: alternate right parts of a production are placed on consecutive lines
without repetition of the corresponding left part. In the remainder of this
report, publication and hardware representations will be freely cross-refer-

enced, usually without explicit comment.,
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B. The MUTANT 0.5 Language

e The syntax and semantics of MUTANT 0.5 are defined below. In general,

! " McKeeman's statement of the principles of language design [McKee 66,

| g pp. T1-73] has been accepted as valid. Conciseness of notation has been
carried somewhat further by adapting the notation of set theory whenever

o possible. The concepts and notation of the language were primarily inspired
by McKeeman's MUTANT [McKee 66]; they also draw directly and indirectly
from ideas found in ALGOL 60 [Naur 63 ], EULER [Wirth 65a], APL [Iver 62],
- and PL/I [IBM 66]. |
- B.1 The MUTANT 0.5 Grammar
The grammar of MUTANT 0.5 is listed, in the hardware character set,
in Appendix II. In addition, -relevant productions of the grammar will be

' - included at appropriate, points in the following discussion of the semantics

;: i of MUTANT 0.5. Such productions are related to Appendix II by the use of

= marginal production numbers. The somewhat artificial appearance of some
productions reflects two constraints placed on the grammar, namely

— (1) the production set must lead to a simple precedence grammar
[Wirth 65a];

- (2) the productions must be chosen to simplify the translation of the
language during the process ofsyntactic analysis.

i For the reasons given by McKeeman [McKee 66, p. 93], it is convenient
to define the syntax of identifiers, strings, and integers external to
the formal grammar of MUTANT 0.5; informally, it may be described by the

. following set of productions.
(identifier) s::= (letter)
- (identifier) (letter)
(identifier) (digit)
— (integer) $i= (digit)
(integer) (digit)
;, (string) ::= (string head) "
(string head) s:="
‘ (string head) (non-quote character)
- (string head) " "
E —



B.2 Semantic Description of MUTANT 0.5

MUTANT 0.5 programs describe the creation and manipulation of values.

In the language, values of three unstructured types (integer, process, and

name) and two structured types (string and list) are available to the
programmer. Values of type integer have the properties of mathematical
integral values. process values are designations of computational processes
(procedures); name values designate special computational processes which,
upon activation, compute the name of a storage cell. string values are
sequences of character values, which correspond to elements of a fixed set
of symbols. In MUTANT 0.5, list values are ordered sequences of structured
or unstructured values of arbitrary length, in which all elements are not
required to be unique in value.

Comment

The'above types were chosen as a minimal set adequate for experi-

mentation. In any 'serious programming language, real number arith-

metic would be essential. McKeeman's type set also appears to be

a valuable addition to programming languages, omitted only because

of limited time and goals.

Since MUTANT 0.5 is a highly involuted language, description of
many constructs requires the use of terms before they are defined. The
reader unfamiliar with MUTANT or a similar language is advised to consider

some of the simpler examples of section B. 3 before continuing.

.B.2.8 Constants

‘syntax
(constant) . ::= (integer)
(string)
(begin) }
(begin) se=.
(declare)l
Semantics

A non-negative integer is denoted by a sequence of decimal digits, and
the value of that integer is the value of the digit sequence interpreted as
a decimal number. Negative integers are syntactically recognized as pri-
maries.

A string is a sequence of characters and is denoted by a sequence,

(64)
(65)
(66)
(70)
(71)



=

delimited by string quotation marks ("), of the graphic symbols corres-

ponding to the character values. In the denotation of a string, two

contiqguous string quotation marks signify a single string quotation character.
The construct " {}" (or " (declare) |} ") denotes the null list,

i.e., a value of type list with no elements.

A constant alwayshas a value.

Examples
0 3 100 32767
"This is a string." " " "Hamlet " " "
{ ]}
B.2.b Declarations
syntax
(declare) se= { S (72)
(declare) (identifier) (73)
(declare) (identifier) ( (v-expression) ) (%)
Semantics

MUTANT 0.5 provides values of several types as well as storage cells
into which such values may be placed. Declarations serve to create cells
and also to provide names for either cells (and their contents) or for
values. At most one declaration appears at the head of a list (B.2.c), and
the scope of the identifiers in that declaration is exactly the corresponding
list.

If the identifier is immediately followed by an expression in
parentheses, that identifier is considered to name the value of that ex-
pression. All such expressions are computed sequentially before com-
putation of-the values of any of-the list elements, and these expressions
are evaluated as if they were written in an immediately containing list.

No explicit assignment to an identifier naming a value is permitted.

If the identifier is not so followed, it names a cell. Values of
any type may be assigned to any cell, and such assignment dynamically
determines the cell structure. Thus the structure of a cell may be undefined,
or atomic, if the cell contains a value of unstructured type, or structured.
If, in the last case, the cell contains a value of type list, that cell
has a composite structure consisting of a sequence of (atomic or structured)
subcells, one for each list element. Similarly, if the cell contains a value
of type string, that cell is structurally a sequence of atomic character cells.

An identifier names the cell or value associated with it by a declaration.
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Every non-reserved identifier not contained in a declaration either
must designate a controlled value (B.2.1) or procedure formal parameter
value (B.2.m) or must occur within the scope of an identifier of the
same name. If an identifier is associated with more than one scope, a
use of that identifier designates the cell or value associated with
it in the smallest possible containing scope. Subcells or subvalues are
designated by a uniform indexing scheme (B.2.f).
Examples
{ $ a b newidentifier
{ $ x y twotothel5th (32768)
{ $ sum (atb) difference (a-b)-
Comment
Named values may alternatively be viewed as the contents of cells
which may be initialized upon scope entry but are "read-only" within
the scope of the naming identifier. The rules of scope and évaluation

of the initializing expression do not admit initialization to recursive

procedure values; a facility similar to Landin's rec [Land 64, 66} is absent.

B.2.¢c Lists

—

-

—

r—-

Svntax
(1ist) t:= (list head) } (67)
(list head) 1= (begin) (g-expression) (68)
(list head) , (g-expression) (69)
(begin) 2= (70)
(declare) | (71)
Semantics

A list is an ordered sequence of general-expressions. In the execution
of a MUTANT 0.5 program, the expressions within the list are computed success-
ively from left to right. A general-expression may conditionally fail to
designate any value. Lists have structured values of type iifﬁj the value
of 4 list is the (possibly empty) sequence of values of those contained
general-expressions yielding values. A declaration does not have a value or
constitute & list element. In general, the number of elements in the list value

cannot be determined a priori. A list always has a value.

Examples
{1, 2, 3, "abe" ) (L, (2 {(3}1}}



{1-+>x, y-2 >y, 10%a }
{$ab|x=+a, y=+Db, athy aDb }
{$a|{$a|2+a),2+a}

{ atb, a-b, a®b, bfO => a&+b }

B.2.d Simple Primaries

syntax
( s=-primary) ::= (s-primary *) (53)
(s—primary *) ::= (constant) (54)
get (55)
(1ist) (56)
(primary *) (list) (57)
d{ (v-expression) ) (58)
(case head) (v-expression) ) (59)
(for head) } (60)
(while head)' } (61)
(for/while head) } (62)
(s-primary *) [ (v-expression) ] (63)
Semantics

Productions 57 (B.2.m), 59 (B.2.e), and 60-62 (B.2.1) are listed for
completeness but are not discussed in this section.
Every simple primary has a value, which may be of either structured
or unstructured type.
The value of the primary get is of type string and consists of the
next string (according to the MUTANT 0.5 conventions) found in the interpreting
mechanism's sequential input stream when the primary is evaluated, and such
evaluation causes that string to be deleted from the input stream.
Parentheses serve to control the association of operands, and hence the
application of operators, in the conventional way.
Square brackets are used to designate the subscripting of simple pri-
maries. In the application of the subscript operator, the simple primary
and then the subscripting value-expression are evaluated, and the value of
the result is determined by application of the following algorithm:
(1) If the value of the simple primary is of unstructured type, then the
result is not defined.
(2) If the value of the simple primary is of type list, then

(a) 1f the value of the subscripting expression is of type integer



— and that integer is positive and not greater than the number
of elements in the list, then the resulting value is the list
element with that integer as index, where element indices begin
with one and increment by one;
(b) if the value of the subscripting expression is of type list, then
the resulting value is the list of values obtained by successively

applying each element of the subscripting list to the simple

- primary;
, (¢) otherwise, the result is not defined.
—— (3) If the value of the simple primary is of type fffiﬂg’ then
(a) if the value of the subscripting expression is of type integer
. and that integer is positive and not greater than the number
of characters in the string, then that integer is used as an
E index to select a string character, and the resulting value is
- an encoding of that character of type integer;
‘ (b) if the value of the subscripting expression is a list of integers,
- all satisfying the bounds conditions of (a), then the value of
the result is a string consisting of the sequence of characters
— obtained by successively using each integer in the list as a
subscript;
L_ (c) otherwise, the result is not defined.
Examples
g 3 "abe"  get (1, (2 31,17} (a+b)
In the following examples, all those on the same line have identical values.
1 {1, 2 }[1] 1 { 2,1}[2]
- (1, (2312 (2, 3] (1,232 3]
: (1, 2,331 (2, 3}1}] {1, {2 31}}
- "ABC"[1] 193 "(a)"[( 2 } 1M1
"abc"[2 3] e (e’ 3[1)[1]
— Comment
In MUTANT 0.5, lists are considered linear sequences. The operation of
L— subscripting of lists has been extended from selection to the construc-
tion of general sublists. Subscripting has similarly been extended to
provide a substring operation.
—
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B.2.e Case Expressions
syntax
(s—primary) ::= (case head) (v-expression) ) (59)
(case head) ::= (case index) ( (v-expression) ; (75)
(case head) (v-expression) ; (76)
(case index) ::= [ (v-expression) ] (17}
Semantics

A case expression consists of a case index followed by a sequence of
value-expressions. 1In the evaluation of a case expression, the value of the
expression in the case index is determined. If that value is of type integer
and is positive and not greater than the number of expressions in the sequence,
then that integer is used as an index to select an expression for evalu-
ation, and the value of that expression is the value of the case expression.
Otherwise, the result is not defined. A case expression glways has a
value.

Examples

[n] ( 3; 2; 1)

[opcode] ( 0 » acc; accta + acc; ace—a + acc; a + pC)

[ (x=0) + 1 ] ( "x is non-zero"; "x is zero" )

Comment

Case expressions are generalizations of ALGOL 60's conditional

expressions and cmditional statements, which have not been specially

distinguished in MUTANT 0. 5.

B.2.f Cell Designators

syntax
(cell id) . 1i= (cell id *) (46)
(cell id *) ::= (identifier) (&7)
(cell id *) [ (v-expression) ] (48)
(cell id *). (49)
Semantics

MUTANT 0.5 provides named cells in which values may be stored and also
named values which are not associated with storage cells. A cell designator
is used in the formation of either a primary (B.2.h), in which case it desig-
nates a value, or an assignment (B.2.k), in which case it designates a cell

or subcell. As explained in section B.2.b, the structure of a cell is determined
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dynamically by the structure of its contained value; thus the interpretation
of a (sub)ceU designator is dependent upon the concurrent contents of the
cell.

If the cell designator is used in the formation of an assignment,
then the named (sub)cell is determined as follows:

(1) If the designator is not subscripted or dotted, then by the rules
governing the scope of identifiers (B.2.b), that identifier must
name a declared cell and it designates that cell; otherwise, the
result is not defined. '

(2) If the cell designator terminates with a subscript, then the contents
of the cell named by that simpler cell designator obtained by deleting the
rightmost subscript is determined, and the subscripting expression
is evaluated. If the cell contents is not a value of type list or if
the subscripting expression is not of type integer, the result is not
defined. If the value of that integer is positive and not greater
than the number of elements in the list, the designated cell is that
subcell containing the list element selected by use of that integer
as an index.

(3) If the cell designator terminates with a dot, then the value named
by the cell designator obtained by deleting the rightmost dot 1is
determined according to the algorithm of the next paragraph. If that
value is of type name, the computation designated by that value is
activated to determine the designated cell (B.2.g). ‘Otherwise, the
result is not defined.

If the cell designator is used in the formation of a primary, then the
named (sub)value is determined as follows:

(l) If the cell designator is not subscripted or dotted, then

(a) if, by the rules governing the scope of identifiers, the iden-
tifier names a value (B.2.b), a controlled value (B.2.1), or
a procedure formal parameter value (B.E.m), then the value of
the cell designator is the named value;

(b) if, by the rules of scope, the identifier names a cell, then the
value of the cell designator is the concurrent value of the con-
tents of the named cell.

(2) If the cell designator terminates with a subscript, then the value

named by the cell designator obtained by deleting the rightmost
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subscript is determined. The subscripting expression is evaluated
and used as an index operating on the previously obtained value to
produce a resulting new value as described in section B.2.d.

(3) If the cell designator terminates with a dot, then the value named
by the cell designator obtained by deleting the rightmost dot
is determined. If that value is of type name, the computation desig-
nated by that value is activated to determine the designated cell
(B.2.g), and the resulting value is the value contained in that cell.
Otherwise, the result is not defined. '

Thus in the cases in which a cell designator is valid in the formation of

either a primary or an assignment, the value in the first case corresponds

to the contents of the cell named in the second case, but more general

indexing is allowed in the formation of primaries.

Examples
a b[1] a[2][x[3]]
pointer. x[i]* x[2]°[1]

B.2.g References

syntax
(reference) 1:= (reference *)
(reference *) $i= 2 (identifier)
(reference *) [ (v-expression) ]
Semantics

Values of type name, which are computational processes for determining
cell names, are designated by references. Thus every reference has a value
of type name. Upon activation of such a process (B.2.f), the resulting cell

name is determined by analysis, as described in section B.2.f, of the cell

designator obtained by deleting the " in the formulation of the reference.

Examples

1a Lo Lal xry][ 1]

Comment

References provide an explicit method of processing cell names as
values. They are intended primarily for use as "pointers" to complex
data structures and as procedure actual parameters. References are
defined as computational processes rather than actual cell names for

technical reasons; EULER [Wirth 65a] demonstrates an alternative

(50)
(51)
(52)
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approach using cell names. Unlike MUTANT, MUTANT 0.5 requires the

programmer to distinguish between cell name and value.

B.2.h primaries
syntax
(primary) o= (primary *)
(prefix) (primary)
(infix) / (primary)
(primary *) i:= (cell)
(reference)
(s-primary)
(prefix) si=  #
type -

abs

neg

list
put

Semantics
A primary always has a value. The value of a primary without prefix
or infix operators is the value of the corresponding cell designator,
reference, or simple primary.
A prefix operator designates a partial function of one argument; the
value of the corresponding primary is obtained by evaluation of the operand
followed by the application of that function. If the following rules do
not specify the resulting value, then the result is not defined.

(1) If the operator is "#" and the operand is of type list or string, the

result is of type integer and is the number of top level elements in
the list or string.
(2) If the operator is "type", the result is of type integer and is an
encoding of the type of the operand.
(3) Otherwise the operator is applied recursively according to the
following algorithm:
(a) If the type of the operand is not iigg, then the result is
defined if the operator and operand type correspond to one of

the following table entries:

(33)
(34)
(35)
(#3)
(44)
(45)
(36)
(42)
(39)
(ko)
(37)
(38)
(k1)
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Operator Operand Type Result Type
abs integer integer
neg integer integer
1 integer integer
list integer list
put string string

The first three are numeric operators which may be defined.
by the following \~expressions [Land 6h4]:

abs = M. if x 2 0 then x else -x

neg = MNXe =X
Mo if x = 0 then 1 else 0 .

The operator "list" produces a list of elements with unspecified

1

value; .the number of elements is the maximum of the operand value
and 0. The operator "put" is an identity function with the side
effect of writing a carriage return followed by the operand onto
the sequential system output stream.

() If the type of the operand is list, then the result is a value of
type list, the elements of which are the values obtained by
applying the operator to each element (sequentially in the case
of "put") of the list, if all such elements are defined.

(c) Otherwise, the result is not defined.

An infix operator designates a partial function of two arguments as
described in section Be2sis In the application of an infix operator to
a primary, the primary is first evaluated. If the value obtained is not of
type list, the result is not defined. Otherwise, the value of the primary is
obtained as follows:

(1) An initial value is chosen according to the operator from the following

table:
Operator Initial Value
+, =, V 0
®, +, mod, A 1
= #, <, 5, > 2 not defined
base not defined
[ ""or{) *

* The empty string is chosen unless the first list element is a list.
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(2) Beginning with that initial value as an intermediate result, the
operator is applied to the intermediate result and a list element
to produce & new intermediate result.

(3) The resulting value is the value of the intermediate result after
each list element, chosen in sequence, hzs been used as indicated
in (2).

Thus the value of the primary so obtained is an accumulation, relative

to the operator, over the entire list.

Examples

a {a x} {$ v 12tz >y) z[2]
abs x BEITLE" st { 1, {2,2})
In the following examples, all those on the same line have identical values.
#{1,2 3} = 3
#01, (2 3)) 2
-~ {10 1} { o 1, 0)
neg {1, (2,31}) { neg 1, { neg 2, neg 3} }
type 0 = type "O" 0.
+/(1,2, 3} 6
| / { "a", "", "e" } "abe"
| /001, 2), (343} (1,23 k)
Comment

The extension of the definition of prefix operators in MUTANT O.5 is
a slight generalization of Iverson's extension of such operators to
vectors and matrices. Accumulation over a list with respect to an infix

operator corresponds to Iverson's reduction [Iver 62].

B.2.i Simple Expressions

syntax
(s—expression) ::= (s-expression *)
(s-expression *)::= (primary)
(s—expression *) (infix) (primary)
(infix) 1i= |
+
®
+

(15)
(16)
(17)
(32)
(18)
(19)
(20)
(21)
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mod (22)
= (2k)
# (25)
> (26)
z (27)
< (28)
6 (29)
A (30)
v (31)
‘base (32)

Semantics

Every simple expression has a value. The value of a simple expression
without an infix operator is the value of the corresponding primary.

An infix operator designates a partial function of two arguments; the
value of the corresponding simple expression is obtained by evaluating the
left operand, then evaluating the right operand, and then applying that
function to the operand values. If the rules below do not specify the re-
sulting value, then the result is not defined.

(1) If the operator is "|" and
(a) if both operand values are of type list, then the resulting value
is of type list and is obtained by appending in sequence the list
elements of the right operand to the list value of the left operand;
(b) if both operand values are of type string, then the resulting
value is of type string and is obtained by concatenation of the two
operand values, taken in order.
(2) Otherwise the operator is applied recursively according to the following
algorithm.
(a) If the type of neither operand is list, then the result is defined
if the operator and operand types correspond to one of the following

table entries:

Operator Type of Operands Result Type
+, -, ® integer integer
+, mod integer integer
=, #, >, 2, <, = integer integer
Ay V integer integer

base integer string
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The operators "+", "-"

» and "®" designate the mathematical func-
tions of integral addition, subtraction, and multiplication res-
pectively. The operators "+" and "mod" are not defined if the value
of the right operand is 0. Otherwise, they are defined for integral
operands by the following h-expressions, using real division and
Iverson's floor and ceiling operators [Iver 62]:
N(x,y). if x® 2 0 then | x/y | else [ x/y 1
mod = A(x,y). x - y@(x+y)

The relational operators have integral value 1 if the mathematical

+

relation on the integers is satisfied and value 0 otherwise.
The operators "A" and "V" may be defined for integral operands by
the following h-expressions:

A .= X(x,y). if x = 0 then 0 else if y = 0 then 0 else 1

v = Mx,y). if x # 0 then 1 else if y # 0 then 1 else 0

The operator "base" produces a string, the characters of which

are a sequence of digits constituting a representation of the left

operand to the base specified by the right operand.

(b) If the type of exactly one operand is list, the result is a value

of type list, the elements of which are the values obtained by
sequential application of the operator to the non-list operand

and each element of the list operand (taken in the original order),
if all such elements are defined.-

(¢) If the type of both operands is_list, the result is a value of
type list. The number of elements in that list is the minimum of
the numbers of elements in the operand lists; the resulting list
elements are obtained by sequential application of the operator
to corresponding elements of the operand lists (taken in the
original order), if all such elements are defined.

All infix operators have equal precedence, and the association of operands

is from the left.

Examples
3 a+b c ® abs x a+b-c aA{(bve)
In the following examples, all those on the same line have identical values:
3+ 4 -1 3®2 13 + 2 13 mod 7 6
3>k l-2+1 (3=3)-1 0
"abe" | "def" "abedef™
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(1, 2)("", {2) ) (L, 2 ", {2})

2® {0, 1,2) {0, 2 4) (4, 6,831 -4

(1,2, 3}®{3 2 1) {3, % 3)

i5{pdec?(}a, (83, ¥ J165 3+ (0, 1,2,3 } {((1,2),({4 53, 7)
10, '} ( "ixav, "i7", "15", "F" )

Comment

The extension of infix operators follows Iverson [Iver 62]. It corres-

/ponds to both scalar and vector operation in ordinary vector arithmetic.

B.2.j Segments

syntax
(v-expression *) ::= (segment) (6)
(segment) ::= (s—expression) (12)
(s—expression) _ (s-expression) (13)
(s-expression) _ (s-expression) _ (s-expression)(14)
Semantics

A segment always has a value. The value of a segment without the u »
operator is the value of the corresponding simple expression.

'Otherwise, the value of the first (leftmost) simple expression is called
the initial value; of the second, the limit value; and of the third (if present),
the step value. The value of the segment is obtained by the following pro-
cess:

(1) All of the simple expressions are evaluated in the order of appearance;
if the step value is not explicitly provided, it is taken to be the
integer 1.

(2) If the values so obtained are all of type integer, then the result is
a value of type list. Otherwise, the result is not defined.

(a) If the step value is positive, the elements of the list are all

those integers, ordered in algebraically increasing value,' which

are obtained by adding non-negative integral multiples of the step
value to the initial value and which are not greater than the limit
value.

(b) If the step value is negative, the elements of the list are all
those integers, ordered in algebraically decreasing value, which
are obtained by adding non-negative integral multiples of the step

value and which are not less than the limit value.
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(c) Otherwise, the result is not defined.

Examples
1 n 2" #s-1 {1, 2,3} 0
In the following examples, all those on the same line have identical values.
1_3 1_3_1 {1,23)
2 10 4 2 13 _ k4 {2, 6, 10}
3 _1_negl (3,2,1)
1 0 2 4  teg {1

B.2.k Assignments
Syntax
( v-expression *) ::= (v-expression *) + (cell)

Semantics

Assignments serve to assign values to cells. In the evaluation of an
assignment, the value of the expression to the left of the "s" is obtained,
and then the (sub)cell named by the cell designator is determined as des-
cribed in section B.2.f. If both these'processes produce results which are
defined, the computed value is assigned to the designated (sub)cell. Such
assignment may dynamically change the structure of the cell.

Every assignment has a value, which is the value of the expression

to the left of the arrow.

Examples
0>a [index]{ a+b; a-b ) » p[2][1]
[ 1n 1 »c[3] O+rx >y >z

B.2.1 Iterative Statements

Syntax

(s—primary *) = (for head) }

(while head) }

(for/while head) }
- (for head) = (begin) (for set) (g-expression)
(for set) s=  (for set ¥) :
(for set *) ::= (identifier) € (v-expression)
(while head) ::= (begin) (while cdn) (g-expression)
(while cdn) ::= (while ') :

(8)

(60)
(61)
(62)
(78)
(81)
(82)
(79)
(85)
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(while ') ::= (while) (g-clause) (84)
(while) 1= % (83)
(g-clause) ::= (v-expression) => (4)
(for/while head)::= (begin) (for set) (while cdn) (g-expression) (80)

Semantics
Tterative expressions provide for 'controlled repetitive evaluation of

a general expression, which in each of the various forms of the iterative

expression is called the controlled expression. Such an expression may con-
ditionally fail to have a value. The value of every iterative expression, 1if
defined, is of type EEEEJ the elements of that list are, in order, the suc-
cessive values obtained from those evaluations of the controlled expression
producing values. A declaration may be included in the heading of any iter-
ative expression; the scope of the identifiers in such a declaration is the
iterative expression.

For-iterative expressions specify iteration over a list. The evaluation
of such an expression proceeds as follows:

(1) Any declarations in the heading are processed as described in section
B.2.Db.

(2) The value-expression of the for-set is evaluated. If the resulting value
is not of type list, the result is not defined.

(3) with the identifier of the for-set naming a value of an element of the
list thus obtained, the controlled expression is evaluated. That
identifier is said to designate a controlled value; it is implicitly
declared by its -appearance in the for-set, and its scope is the controlled
expression. The list element values named are successively taken in order
over the entire list value.

(4) The final value of the iterative expression is a list as specified in the
preceding paragraph.

While-iterative expressions specify repeated evaluation of the controlled
expression as long as a specified condition holds. The evaluation of such an
expression proceeds as follows:

(1) Any declarations in the heading are processed as described in section
B.2.Db.

(2) The value-expression of the qualifying clause contained in the while-

condition is evaluated. If the resulting value is not of type integer,



= the result is not defined. If that value is 0, evaluation of the
iterative expression is terminated, and its final value is a list
- as specified above. Otherwise, the controlled expression is evaluated,
; and the step is repeated.
— For/while-iterative expressions specify iteration over a list as
long as a specified condition holds. They are processed as described for
for-iterative expressions with the following exceptions:
- (1) The scope of the identifier designating the controlled value is
extended to include the while-condition. ‘
= (2) Before each evaluation of the controlled expression, the value-expres-
sion of the qualifying clause contained in the while-condition is
~— evaluated. If the resulting value is not of type integer, the result is
not defined. If that value is 0, evaluation of the iterative expression
— is terminated, and its value is the list of values obtained to that point.
Otherwise, processing continues with evaluation of the controlled ex-
L pression.
Examples
{ieln : S+ (i®) » 8}
- { * abs(xl - x2) > delta => : { x2 » x1, £{x1,x2} » x2 } )
{ x € table : * looking => : x[1] = arg => { 0 + looking, x[2]}}
— AU the following examples have identical values.
{xe210 : (x mod 2) =0 => x }
“ {$x| 0+x, (*x10 =>: x4-2 > x )} }[2]
{ x €2 100 2 ¢ * x€10 =>: x}
_ {2, 4, 6,8,10}
Comment
: The for-iterative expression provides the effect of a generalized list
. mapping function. Since the controlled expression may conditionally
fail to have a value, that function can include selection.
B.2.m Procedures
— syntax
(v-expression *) ::= (procedure head) (v-expression) ' (7
(procedure head) ::= (proc head +) | (11)
- (proc head +) ti= ! (9)
(proc head +) (identifier) (10)
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(s-primary) ::= (primary *) (list)
Semantics

A procedure definition is delimited by apostrophes (') and designates
a value of type process.

The computational process designated by a value of type process is
activated by the evaluation of a simple primary consisting of a primary
followed by a list. If the value of such a primary is not of type process,
the result is not defined. Otherwise, the expression in the definition of
the procedure corresponding to the process value is evaluated, subject to
the rules below, and the resulting value is also the value of the simple
primary. The rules governing such evaluation are the following:

(1) The identifiers appearing in the procedure head are associated, in
order, with .the values of the elements of the argument list. If the
number of identifiers exceeds the number of list elements, the values
named by the extra identifiers are not defined.. If the number of list
elements exceeds the number of identifiers, the extra list elements
are disregarded. Such identifiersé&e said to designate procedure
formal parameter values.

(2) In the application of rules of scope in the evaluation of the expres-
sion, the applicable scopes are those at the place of procedure defini-
tion, not procedure activation*

Examples
The following examples define and assign process values:
'| a+ 1l +a '+ incrementl

"alas + 1 > a*' > increment?2

"x v | { xy » sum, sumt+ 2}[2]' + average
The folloﬁing examples indicate the activation of the above process values.
incrementll }
increment21 4x }
average{ atb-c, sum }
Comment

In MUTANT 0.5, a parameter list, which can be empty, must be associated

with every procedure activation.

B.2.n Expressions with Value

Syntax

(56)
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(v-expression) ::= (v-expression *) (5)
(v-expression *) ::= (segment) (6)
(procedure head) (v-expression) ' (7)
(v-expression ¥*) + (cell) (8)

Semantics

A value-expression, if defined, always has a value. It is the least

restricted type of expression with such a property provided in MUTANT 0.5.

B.2.0 General Expressions

syntax
(g-expression) ::= (v-expression) (2)
(g-clause) (g-expression) (3)
(gq-clause) ::= (v-expression) => (%)
Semantics

A general expression may conditionally fail to designate a value.
If it does not contain a qualifying clause, then it has a value, and that
value 1is identical to that of the corresponding value-expression. Otherwise,
the value, if any, of the general expression is determined by first evalu-
ating the expression in the leftmost qualifying clause. If that value is
not of type integer, the result is not defined. If the value is 0, the
general expression has no value. Otherwise, the value, if any, is that of
the general expression obtained by deletion of the leftmost qualifying clause.
Examples

y # 0 => x+y predicate{x} => function{x}

X < max => y > min => x+y

Comment

In MUTANT 0.5, an unsatisfied qualifying clause gives rise to no value,

not an undefined value. Thus general expressions can be used in contexts

only in which such a property is meaningful, i.e., in the formation of

list values.

B.2.p Programs

syntax
(program) ::= eof (v-expressian) eof (1)
Semantics

A program is a value-expression delimited by end-of-file marks. The

value of a program is that of the value-expression.
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Examples

See section B.3.
Comment
In MUTANT 0.5, the end-of-file marks are assumed to be supplied by

the interpreting mechanism and are not normally written.

_ B.3 Examples

Listings produced during the compilation and execution of some sample
MUTANT 0.5 programs are included as Appendix III. In these examples, comments
are delimited by question marks. Selected examples are repeated below, with

commentary, in the (more readable) publication character set.

B.3.1 Factorial Calculation
Program
{ $ factorial
'n|[2- (n=0)] ( 1; n'® factorial{n-1} ) ' + factorial,

{nelé6:
put ( (n_base 10) | " factorial =" | (factorial{n} base 10) )
- }
3
Qutput
1 factorial =
_ 2 factorial =2
3 factorial = 6 ,
4 factorial = 24
N 5 factorial = 120
6 factorial = 720
= Comment

This example corresponds closely to McKeeman's Example 1 [McKee 66, p. 75].
— The following is a similar ALGOL 60 program, which assumes a suitable write
Statement.

begin integer n;

integer procedure factorial(n); value n; integer n;

factorial := iﬁ n=0 then 1 else n® factorial(n-1);

for n := 1 step 1 until 6 do

write( n, " factorial =", factorial(n) )

end
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In the MUTANT 0.5 program, the Rroééss value (delimited by apostrophes)
assigned to the cell "factorial" gives the usual recursive definition of
the factorial function. The parameter "n" ;< .sed to compute a case index
for selection of one of two expressions to be evaluated. Thus case expres-—
sions are generalizations of AILGOL 60's conditional expressions and state-
ments. Note that in MUTANT 0.5, the expression "n=0" has integral value

1 if the value of n is zero and value 0 otherwise. The expression "1;6" is
equivalent to the expression "{ 1, 2, 3, 4, 5, 6 }", and iteration over

each element of that list is specified.

B.3.2 Extended Factorial Calculation

Program
{ § factorial prod |
(' n|[2-(n=0)]( 1; n ® factorial[1l]{n-1} ) ',
'n|®/ (1n) ',
' n | prod{ ln}'
} » factorial,
'L |[2 - (#1=1)] ( 1[1];
prod{ L1 #I+2] } ® prod{ L{#L+2+1 #L])'=~ prod,
{iel13: -
{ put " ", put ("method "| (i base 10)),
{nel8:
put ( (n base 10)|" factorial = "|(factorial[i]{n} base 10)

}
Qutput

method 1

1 factorial

Il Il
N -

2 factorial

8 factorial = 40320

method 2

1 factorial =1

an e
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Comment

In this example, the value assigned to the cell "factorial"™ is a list
of three process values giving possible definitions of the factorial function.
The first is the recursive computation of the previous example. The second
is an example of Iverson's reduction, in which the multiplication operator
is used to reduce a vector (list) of the first n positive integers. The
third process applies the auxiliary function "prod" to the same vector.
"orod" designates a process intended to illustrate one possible hardware
implementation of multiplicative reduction in which, recursively, the'vector
is bisected and reduction applied to each part. Note the use of a list-valued

subscript to select a sublist, which in turn is used as a procedure parameter.

B.3.3 Further Examples from MUTANT
Program
put( ( + / ({1,2,3) ®{3,2,1} ) ) base 10 )

Qutput
10

Program =
{ $ perm |
'x | [2 - (#x=1)]
( {x};
[/{iel _#x:
{ t eperm{ 1 _i-1]|x{i+1 _#x] } : =x[i i} |t )
J
) ' »> perm,
{ test e { "a", "ab", "abc", "abed" } : Dbut perm{test)

output

ab

ba

abc
acb
bac
bca
cab

cba
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— Comment
These programs for computation of inner product and permutations of
string characters or list elements are MUTANT 0.5 versions of McKeeman's

Examples 2 and 4 [McKee 66, pp. T7-78]; they are presented'mainly for
comparison.

B.3.4 A prime Sieve

— Program
{ $ primesieve
- ('n|{$Lt]2n>I,
{ * #LA0 => :
: {L{1] »t,{ i€l : imodt # 0 =1} 3 L }[1]
- ) 2]
) |

{ne{ 25, 250}:
{ put ("primes in 2 to "|(n base 10)|":"),

— put (primesieve{n} base 10)
}
— }
}
o Output
primes in 2 to 25:
. 2
- 3
5
- T
11
— 13
17
— 19
23 .

primes in 2 to 250:°
2
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Comment

This program is an adaption of the sieve of Eratosthenes to the com-
putation of all prime integers not exceeding a given integer. "primesieve"
names a process value. In that process, a list of the integers from 2 to
the given value is assigned to the cell named "L". While the length of that
list is non-zero, the first element of the list is saved and then the list
is replaced by a new list consisting of all the former list elements not
multiples of the first element. Note that the saved value is selected as
the value of the controlled expression in the while-iterative expression
by the second subscript "[1]"; thus the value of the entire iterative
expression is a list of the primes so saved. The subscript "[2]" selects
that list as the value of, the procedure. Also note the use of the extended

"put" and "base" operators.

B.3.5 Other Examples

Also included in Appendix III are programs illustrating the following:
(1) a slightly different permutation generator;
(2) a set of algorithms adapted from Pohl's graph package [Pohl 67] for
computing the reachability matrix and maximal strongly connected sub-
graphs of a graph from its connectivity matrix;

(3) an integer square root routine based on Newton's method.
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C. Implementation Techniques

An experimental processing system for the language MUTANT 0.5 was
developed. It consists of a compiler, which translates MUTANT 0.5 programs
to a compact internal string code based upon Polish suffix notation, and
an interpreter, which performs processing as directed by such strings. The
processing system was implemented on the IBM System/360 hardware; it functions
in the environment provided by the PL360 system [Wirth 67d}. In addition, an
existing syntactic analysis program, written in Burroughs B5500 Extended

ALGOL, was modified for use as an aid in developing the compiler.

C.1 The Syntax Processor (see Appendix IV for listing)

The syntax processor is an extension of a B5500 Extended ALGOL program
originally developed-by Professor Niklaus Wirth at Stanford. Blocks Bl and
B2 were taken from that program without significant modification. Block Bl
establishes the precedence matrix as described by Wirth and Weber [Wirth 65a],
using partial word operations for storage efficiency. Block B2 establishes
the precedence functions using Wirth's algorithm [Wirth 65bJ.

Additional pre- and post-processing was added to produce punched tables
in the PL360 syntax suitable for direct insertion into the compiler source
deck. This processing includes:

(1) classification and sorting (according to the IBM EBCDIC collating
sequence) of the terminal symbols of the syntax,
(2) assigning internal codes to the symbols,
(3) encoding and sorting the productions of the grammar,
(4) formatting the required tables.
A BJ500 ALGOL program was chosen for modification because of the relatively
powerful format capabilities provided..

Those cards at the beginning of the compiler (Appendix V) lacking "CMP"
in the sequence field were produced by the syntax processing program.
(Strictly, they are translations from such cards produced for a previous
version of PL360, translated by a conversion program). The availability of
this syntax processing program greatly facilitated modification of the syntax

of MUTANT 0.5 as the system developed.

C.1.1 Symbol Recognition Tables

The following tables produced by the syntax processor are used by the
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compiler procedure INSYMBOL in recognizing the terminal symbdls of the

language: ’

CCOEES a translation table which maps' characters occurring in the
input stream into either their internal symbol codes or
entries into other tables.

BREAK a table of partitioning indices classifying characters, by
their translation codes, as

(1) single character terminal symbols,

(2) characters possibly forming character pair terminal
symbols, or

(3) characters initiating identifiers, numbers, strings,
or comments,

PATRTAB , a sorted table of special character pairs forming terminal
symbols.

RSVD atable of entry indices into the reserved word table.

RSVWD a table of reserved words, ordered by length and, within

each length group, alphabetically.

C.1l.2 Parsing Tables

The following tables produced by the syntax processor are used by the

compiler% syntactic analysis routine in parsing input strings:

F, G tables of precedence functions for the symbols of the vocab-
ulary.

PLIM a table of entry indices into the table RIGHTPART according
to the leftmost symbol of the production right part.

RIGIDPART a table of production right parts, exclusive of leftmost
symbol, ordered by the (omitted) leftmost symbol.

LEFTPART a table of corresponding production left parts.

RULE a permutation vector giving the original interpretation rule

number for each of the (reordered) productions.

C.2 The Compiler (see Appendix ¥ for listing)

The compiler is a syntax directed, one-pass translator using the prin-
ciples of semantic analysis controlled by a simple 'precedence syntactic
analysis. The general organization of such translators described by Wirth
[Wirth 65a,67e, Shaw 66] has been adopted. In addition to the "value

stack", information about previously scanned symbols is collected in an
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identifier table and a separate (nested) table used in the processing of
case expressions.

‘The compiler is written in PL360 [Wirth 67¢ . Since analysis is table
driven, the syntax processor was designed to produce tables which could be
efficiently scanned (see section C.l). In particular, binary search ‘is used
for the table of special character pairs, while entries into the tables
of reserved words and production right parts are controlled by key trans-
formations on the identifier length and leftmost symbol of the right part
respectively [Iver 62]. The table of declared identifiers is organized to

reflect the block structure of the language [Shaw 66].

C.3 The Interpreter (see Appendix VI for listing)

The interpreter is a program simulating a machine for processing the
Polish suffix string-code produced by the compiler from MUTANT 0.5 source
programs. It is basically similar to well-described proposals for EULER
machines [Wirth 65a, Weber 67]. In particular, it incorporates:

(1) the traditional ALGOL 60 stack organization and addressing structure
[Rand 64],

(2) organization of composite data structures based on descriptor logic
similar to that of the Burroughs B5500, and

(3) data-directed interpretation of operators.

Data storage for the interpreter is organized into a push-down stack and a
free storage area. Composite data structures are implemented as collections

of cells, defined by a descriptor scheme, in the free storage area. In the
interpretation of a 'Polish suffix string, syllables of that string are sequen-
tially scanned. Action specified by most such syllables falls into one of the
following-classes:

(1) branching within the program string, possibly with analysis and
modification of the top stack elements;

(2) fetching of values to the top of the stack, either from the program
string or, under the direction of existing stack entries, from free
storage;

(3) replacing a number of the top stack elements by a function of those
elements, including constructing from them a composite data structure
in free storage and placing a new descriptor in the stack;

(4) storing a stack value into a composite data structure as directed by

other stack entries.
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The interpreter is written in PL360 [Wirth 67c]. Its general organ-
ization resembles the EULER interpreter written for the Burroughs B5500
by Wirth and McKeeman [Wirth 65a]. A machine cell (System/360 double word)
containing a list or string value actually contains a descriptor, which
includes a type code and the base address and length of a contiguous block
of machine cells that contain the values of the list elements or string
characters. A compacting garbage collection scheme originally proposed by
Weber [Wirth 65a) is used, so that available free storage always consists
of a single contiguous area. Data-directed recursive application of 'certain
operators is controlled by the interpreter procedures MAP, MAPIEFT, MAPRIGHT,
and MAPBOTH. '
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D. Use of the MUTANT 0.5 Processor,

D.l1 Language Restrictions

The following restrictions are imposed upon programs to be processed by
the experimental system:

(1) The hardware character set (Appendix I) is used; thus the reserved
words of that character set cannot be used as identifiers, and spaces
are significant in delimiting adjacent reserved words or identifiers.

(2) No limit is imposed on the length of identifiers, but only the .first
eight characters are used in distinguishing them.

(3) No single string constant can consist of more than 256 characters.

(4) Arithmetic operations are defined by the IBM System/360 hardware. In
particular, addition, subtraction, and multiplication are actually the
corresponding operations in the ring of integers modulo 232 (with approp-
riate interpretation of negative numbers).

In addition, certain valid MUTANT 0.5 programs can cause overflow of compiler

tables or object code instruction fields (see D.3).

D.2 Operating Instructions

The MEQME 0.5 compiler and interpreter must be compiled and the object
programs placed in the PL360 system library by the use of SYSTUP [Wirth 67d].
11 8ySteas to date, these programs have been named MUTANT 1 and MUTANT 2
respectively. The compiled MUTANT 0.5 program is written by the compiler onto
logical device 8, which must be appropriately defined, and is read by the
interpreter initialization process. The following deck set-up (within a PL360

batch) is then required:

$MUTANT 1

(MUTANT 0.5 source program)
¢MUTANT 2

(data, 1if any)
SEF

D.3 Compilation Listing

The source program is listed as it is compiled. The hexadecimal num-
bers printed to the left of each line indicate the number of bytes of object
program produced prior to analysis of that line. Under the RASP spooling

system, the printed time is primarily a measure of the time required to load
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the compiler or interpreter.

The following messages correspond to errors'detected by the compiler.

A vertical bar is printed beneath the character being scanned at the point

of error recognition,

and compilation is terminated. A possible error

recovery technique has been described by Wirth [Wirth 67c].

SYNTAX

PROG OVFL
BRANCHADDR OVFL

CASE TABLE OVFL

UNDCL ID
IMPROPER ID

A syntax error (according to the grammar of

Appendix II) was detected.

A program assembly area in the compiler overflowed.
The relative address generated for an implicit
branch overflowed the allocated instruction field.

An internal table used in processing case expressions
overflowed.

An undeclared identifier was used.

An identifier associated only with a value (named
value, procedure parameter value, or controlled
value) was used in a context (assignmerit or reference
formation) in which an identifier associated with

a cell is required.
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E. Reflections on Language Design

The present MUTANT 0.5 system would benefit 'substantially from further
development. There are a number of rough edges in the language definition
and several known errors in the design of the interpreter. Some of the more
unpleasant features of the language reflect oversights or poor decisions in
the system design, and no conceptual problems arise in their elimination.
Some examples are cited in section E.3.e. Other rough edges are related to
fundamental questions about the design and use of MUTANT-like languages;
some progress in resolving these questions should be made before further
detailed implementation work is justifiable. The remainder of this section
is an attempt to characterize such languages, to consider their potential
as practical programming tools, and to discuss some specific issues raised

by the definition and implementation of MUTANT 0.5.

E.l MUTANT-like Programming Languages

In the past few years, several languages which attempt to extend and
simplify ALGOL 60 [Naur63] have been designed and experimentally implemented
at Stanford. The two most directly of interest, in addition to MUTANT 0.5,
are Wirth and Weber's EULER [Wirth65a] and McKeeman's MUTANT [McKee 66];
the following remarks should also be applicable in part to similar lan-
guages, such as LISP 2 [Abra66] and the AED family [Ross 66], being
developed elsewhere. To a first approximation, theselanguages may be
considered ALGOL 60 extended to allow various types of list (ordered set)
manipulation. 1In particular, such languages include the following features:

(1) Programs consist of conditionally selected sequences of imperatives.

(2) Named variables are provided in the context of a block and declaration
structure.

(3) An assignment operator is provided.

(4) Structured values may be created and manipulated dynamically, and the
format of these structures need not be defined prior to program execu-
tion.

(5) Definitions of certain operators are extended to be dependent upon

dynamic analysis of the operands.

E.2 Practical Applications

For purposes of this analysis, problems currently amenable to computer
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attack fall into the following three broad catagories:

(1) Problems in which the natural data structures are simple, fixed, and
reasonably well reflected in the storage'organization and operation
set of existing machines. Many problems of classical numerical analysis
fall in this catagory. In many cases, efficient use of the machine
hardware is essential.

(2) Problems in which the natural data structures are complex but pre-
determined and well-defined. Processing requirements may or may not
be easily satisfied by machine facilities. Much of systems programming
and business data processing belongs in this catagory. Again a premium
Is often placed on efficiency.

(3) Problems in which the natural data structures are complex and cannot
be predefined. Examples are found in such areas as artificial intel-
ligence, general symbol manipulation, and graphical data processing.
In most cases, a moderate amount of avoidable system overhead is
acceptable if it significantly increases flexibility and ease of
programming in the system.

Experience with MUTANT 0.5 indicates that algorithms for solving
problems in the first and third catagories can be naturally expressed in
a MUTANT-like language. Since the structure of values is arbitrary in such
a language, a uniform scheme (e.g., indexing) must be used to name sub-
structures. Algorithms in the second class, however, can usually be ex-
pressed more clearly in the notation advocated by Wirth [Wirth66a,67a]
in connection with record classes, a notation which demands static spec-
ification of possible data structures.

Experience also suggests that a simple translator-interpreter mech-
anism for a MUTANT-like language is unable to achieve the high efficiency
required in applications in the first two areas. Translator recognition of,
and optimization for, simple cases is, in fact, precluded by the lack of
a descriptive declaration facility in EULER and MUTANT. Such a declaration
structure, possibly including the record concept, could be used to advan-
tage only by a considerably more sophisticated translator; even then, it 1is
not clear that a great deal of efficiency can be gained without sacrifice
of all dynamic features. Thus it appears that, with current machine designs,
MUTANT-1like languages are of potential practical value in the third problem

area above and that they may be fairly evaluated in the context of such
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problems.

E.3 Language Design .

Presented below are some of the issues which were found to be critical
in the design and use of the MUTANT 0.5 system. Some of these became clear
only after much of the system had been implemented, and no claim is made

that many optimal, or even good, solutions were found.

E.3.a Assignment of Structured Values

In MUTANT-like languages, declarations serve to name cells but'not
to define their structure . Instead, structured values may be created in
an arbitrary way by computation, and such values may be assigned to any
named (sub)cell; at the time of assignment, that cell assumes the structure
of the assigned value. Thus the structures of cells must be dynamic. The
principal objections to such a scheme have been discussed by Wirth [Wirth
67a, 6Tbl. Briefly, they are the following:

(1) Restructuring of cells is highly implicit, generally expensive in
interpretation, and deceptively'simple in appearance to the programmer.
Known storage allocation and referencing methods for implementation
are not efficient enough, especlally in the first two of the problem
areas above.

(2) Subcells (subvalues) must be referenced by a fixed and uniform
naming scheme (such as indexing) with little mnemonic value.'

(3) The compiler has very limited information for selecting code, type-
checking, etes
Wirth [Wirth 67a,67b] proposes to avoid these problems by assigning

to each named cell a structure, possibly complex, fixed at the point of
declaration. He claims that "for practical purposes this turns out to be
hardly a restriction at all" [Wirth 67a,pn 3]. The claim is reasonable
for programs arising in the first two problem areas above, put it is
questionable as a general assertion. Among evidence to the contrary are the
following points:

(1) Programs from the third problem area inherently deal with dynamic,
complex, and interacting data structures. The information content
of such structures can indeed be represented within a set of static
data structures, but often this requires considerable bookkeeping

effort on the part of the problem programmer and makes the resulting
\
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program difficult to write, to document, and to modify or extend
without drastic revision.
(2) Experience with MUTANT 0.5 indicates that some of the most useful
and convenient features of the language generate or depend on
dynamically structured values. Notable examples are the iterative
expression and the Iverson interpretation of certain operators.
It is tempting to conclude that a desirable solution is to allow the
programmer to specify that a cell must have structures from some subset
of the set of structures of all values computable within the system. In
particular, if the specified subset contains exactly one element, the
translator is expected to check and optimize appropriately. There is some
merit in such a scheme; however, experience suggests that the effort required
to produce and adequately test such a translator using currently known tech-
niques is usually very great, even for languages much "simpler" than MUTANT

0.5. In addition, the optimization gained has often been rather disappointing.

E.3.b The Name-Value Problem

A familiar problem in the design of programming languages is dis-
tinguishing the denotation of the name of a cell and the name of the con-
tents of that cell (or more generally, the name of an expression and its
value). EULER and MUTANT 0.5 (but not MUTANT) resolve this problem by
allowing (and normally requiring) the programmer to make the distinction.
Thus in MUTANT 0.5, "a" denotes the value contained in the cell a, while
"Ya" is the neme of (address of, pointer to, etc.) the cell itself. A
concession to tradition is made in assignment; Although this is an opera-
tion between a value and a cell, MUTANT 0.5 allows, €sge,

b+ 3 +a
in place of
assign ( v+3, 4a ) or b + 3>4a

Allowing the programmer to explicitly manipulate cell names creates

some subtle but fundamental problems in MUTANT-like languages:
(1) The role of block structure and the interpretation of declarations
is unclear, as illustrated by the following example:
{($al($b|[2db>a}, 0+a )
If the second assignment is considered valid, then the cell b must

remain accessible after it can no longer be directly named; in
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particular, the machine storage assigned to b cannot be reallocated
after exit from the block (list) to which b,is local. On the other
hand, if the second assignment is considered invalid, detection of
such assignments within the block and procedure structure of MUTANT-
like languages becomes aosurprisingly subtle problem, and no satis-
factory solution was discovered.'The difficulty of the problem is
indicated by the following example:
($xyp|
'a| (b | Lo >ar, x> ¥y, O+>x}' »>p,
p{dx), {($ ctOo>y)
}
A quite similar problem arises in the assignment of values of

type process, as indicated in the following:
($p|

{$a]l0+a, 'x |x+a'*+p]},
pC 3}
}
Names which are meaningful at the point of creation may become
meaningless at the point of use due to the dynamic structuring of
cells, as shown in the example below:
{$ab|{1, 2,3} »a, a1l +b, 0+ a3, 1 b}
Such situations cannot be detected easily by an interpretation mech-
anism using machine addresses or equivalents as the representation
of values of type MIGHENT 0.5 effectively treats such values as
parameterless procedures which return a machine address upon activa-
tion. This solution also defers evaluation of subscripts, sometimes
with undesirable results. A better scheme is to construct a similar
procedure after evaluation of all subscripts, but such a solution

can be quite expensive.

E.3.c The Copy problem

In MUTANT 0.5, the traditional notion of assignment of values to

cells has been retained. This decision has fundamental implications for

the design of an interpreting mechanism implemented using a conventional

digital computer. In such machines, cells have simple fixed structures,
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- and values are generally not accessible except as contents of such
cells. As a result, the structured cells (v&hu&) of MUTANT-like lan-

= guages must be implemented as collections of maehine cells (values).
Furthermore, since structure is dynamic in such languages, these col-

— lections must include descriptive information sufficient to identify the
structure.

In interpreting the assignment of such structured values (possibly
contained in named eells) to named cells, the question arises of'how much
of this collection must of logical necessity be copied upon assignhent.

N For example, the interpretation mechanism must compute 3, not 0, as the
value of the following expression:

- ($ad1(1,(2 3)}}~>a, a[2] b, 0+ b[2], a[2][2] }[4]

The answer is that, if by any name and process, the contents of a machine

— cell can be changed, there must be at most one name (which may, however,
be the value of the contents of any number of cells) through which that

— machine cell or its contents can be referenced. Such names are'created by
explicit or implicit assignment to a structured cell. Implicit assign-
ments in MUTANT-like languages include use of a value as a procedure

N actual parameter as well as the implicit assignments within an iterative
expression. .

- In the implementation of interpreters of MUTANT-like languages,
assuring such uniqueness proves to be very expensive in terms of efficiency.

— Such implementations to date have used an interpreter based upon a push-
down stack,manipulated by program operators,and a free storage area of

— machine cells, from which structured cells are created. Uniqueness of refer-
ence to machine cells can be guaranteed by unconditionally copying com-

o pletely every structured value as it (or a descriptor of it) is fetched to
and stored from the stack. Copying is itself expensive; moreover, each
copying reduces the (finite) number of machine cells in free storage available:

T Eventually, free storage must be restructured ("garbage collected"), and a
second substantial expense is incurred. Implementations to date have, in

- fact, attempted to avoid some of this copying. In Wirth and McKeeman's B5500
implementation of EULER [Wirth 65a)], for example, values are copied only

- upon fetch-into the stack; as a result, in that EULER implementation,
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expressions such as

a b e«c
and p( aec)
are semantically disallowed if (amd only if) c is found to contain a
structured value at the time of interpretation. An alternate approach is
to adopt a scheme of including marking information with (sub)structures
and deferring copying until it is logically demanded. In this investiga-
tion, no such scheme was discovered which seemed sufficiently attractive
(see below). ,

In view of the expense of copying, it is important to note that in
mostcases such action is neither anticipated nor desired by the programmer.
Furthermore, in many cases, difficult or impossible to detect during the
translation process, omission of such copying will not change any of the
final values produced (or, even more frequently, any of the output strings
written). Given the high cost of copying and associated storage management
in available machines, this observation is probably the basis of the most
fundamental objection to the practical use of MUTANT-like languages. A num-
ber of partial solutions to the copy problem are considered below.

(1) In EULER and MUTANT 0.5 programs, it is possible to create a value of
type name. This facility creates certain logical problems (see above),
but it is valuable in allowing the programmer to create references to
a named cell (and hence the contained value). In certain situations
(not necessarily obvious to the programmer), it will be more efficient
to access a value with complex structure indirectly via a reference than
it will be to copy the value. Such indirect reference is particularly
natural and appropriate in connection with procedure parameters. It has
several drawbacks:

(a) Each value to be indirectly referenced must first be assigned to
to some named cell.

(b) Efficiency is critically dependent upon the programmer$ careful
(implementation dependent) choice of reference or value in each
situation.

(c) The programmer must be exactly aware at all times of the level of
indirectness being used.

(2) In SLIP [Weiz63], a list-processing language of quite different design,
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a superficially similar problem was encountered and solved by the use
of a reference counting scheme. A count of the number of valid names
referencing each relevant collection of'machine cells is encoded in
that collection and dynamically adjusted. A brief examination failed
— ' to discover a reasonably efficient adaptation suitable for MUTANT-like

languages, but further investigation might be profitable., Briefly the
- difficulty seems to be that the encodings of such counts which can

be efficiently maintained are not the encodings efficiently usable in

avoiding copying. ‘

(3) It is possible to interpret the notion of value in a manner consistent

with any particular scheme of internal representation and strategy of

= copying that is convenient for implementation. In particular, if a
cell contains a structured value in the MUTANT 0.5 sense, it is attractive
- to instead consider the value of the cell to be a description of that
. structured cell and its subcells. In certain situations (such as array
: — procedure parameters called by name in AIGOL 60) such an interpretation
is consistent with the spirit of the language and represents an efficient
_ implementation trick. In general, however, there are several valid ob-
jections to such an interpretation:
(a) It is an ad hoc expedient and tends to make the semantics of a
- language dependent upon the implementation facilities which happen
to be available.
= (b) It further confuses the distinction between the name of a cell and
of its value.
— (c) As most naturally implemented, an embarasfing lack of consistency
arises in the meaning of the language. In particular, it is more
o convenient and efficient to reference unstructured values directly
but structured values indirectly.
(4) Analysis of programs in various languages with an assignment operator
- suggests that a significant fraction of all cells are declared and used
to preserve intermediate results and avoid repeated calculation of the
E — same value. Such cells are created for the purpose of naming values; the
| fact that these cells (as opposed to the contained values) are structured
- is of no interest or use to the programmer, for he never assigns to a
subcell. This suggests that the language should provide a facility for
_ naming computed values without requiring assignment to a logically
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. distinguished cell. Such a facility exists for simple constant values
in present languages. ’

MUTANT 0.5 recognizes that previously computed values may be
used as such intermediate values and thus may effectively be 'constants
throughout the scope of a declared name. A construct is provided to
initialize at the point of declaration the value denoted by a name to
a constant (which may be computed from the values denoted by names
non-local to the corresponding block). Such values will be called locally
constant. Since all procedure parameters in MUTANT 0.5 are effectively
called by value, it is easy for the translator to check that such names
are never used in the (implicit or explicit) formation of cell names.

The important fact is that such naming does not create a name by
which the contents of a machine cell can be changed. Thus in the com-
position of the designated value, any subvalue which is a constant,
either by dénotation or by being locally constant in a containing block,
need not be copied. The idea can be extended somewhat further than is
done in MUTANT 0.5. If a value contained in a named cell is used in the
computation of a locally constant value, then there are various sets
of sufficient conditions, verifiable by the translator, that insure that
the contained value cannot be changed within the scope of the name of
the local constant. If these conditions are satisfied, it is again not
necessary to copy the contained value in formation of the local constant.

The effectiveness of this solution is critically dependent upon the
programmer's style. Programmers experienced with LISP 1.5 [McCar 62] find
it relatively easy to make effective use of local constants; in fact, such
use 1s very similar to one use of LISP h-expressions. There is also a
trade-off of run-time efficiency versus compiler speed; in particular,
code generation based on a very sophisticated set of sufficient conditions
for local constancy is probably incompatible with one-pass translation.

Experience with the MUTANT (.5 interpreter suggests that the most promising
approach to the copy problem is a finer distinction among the various uses of
the traditional assignment operator and a syntactic structure which dis-

tinguishes among such uses. The provision of ":=",

"=", and "+" for assign-
ment, "initialization by value", and "initialization by reference", respec-

tively, in CPL [Buxt 66] reflects exactly such a distinction. Landin's let



=

r-r—— - r— r— r— r—— r

-

——

r—

43

and where constructs [Land 66] are also used in CPL and are attractive
syntactic devices for designating local constants.

.

E.3.d Extended Operator Definitions
In MUTANT and MUTANT 0.5, definitions of operators have been extended
in the sense of Iverson [Iver 62] whenever possible. Such extension leads

to at least three difficulties:

(1) For the results of a given computation to be well defined, the exact
order of the evaluation of operands aswell asthe application of
operators must be specified. This is due to the involution of assign-
ment as well asthe possibility of procedures with side effects. Dif-
ficulties are not limited to pathological cases; using the extended
assignment operator of MUTANT, McKeeman [McKee 66] illustrates a useful
application of

{a,b} (v, a)} .
Specification of either camplete evaluation of both operands in a
specified order followed by operator application (as in MUTANT O.S)
or any of various levels of conceptual parallelism is likely to lead
to gross inefficiencies in some implementations. McKeeman [McKee 67]
has suggested a partial solution based upon the distinction between
types set (unordered) and list (ordered).

(2) The meanings of operators intended to act upon structured values
generally cannot be extended without the loss of such ® me'ani.ng. For
example, the value of

{1, 2, 4} =1{(1, 3,43
will be 0 or { 1, 0, 1} depending upon the interpretation of the ex-
tended equality operator: In the first case, the extended meanings of
equality operators will be very different from those of the other rela-
tional operators; in the second case, comparisons of structured values
must be explicitly programmed (as in MUTANT 0.5) or require another
equality operator. Extension of the subscripting and assignment operators
present special difficulties:
(a) There are two common interpretations of subscript notation. In one,
such notation is considered simply a naming device. In the other,
the subscript brackets are considered to denote an operator which

maps avalue (or cell name) and anumerical value into a subvalue
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(or subcell name). From this viewpoint, there is a natural gen-
eralization of the subscript operator: a value subscripted by an
ordered set (list) yields an ordered'set of values obtained by
applying each 'element of the set as a subscript, e.qg.,

al {2,(3,4)) 1 = e s (2,(3,4)) = (af2],{a[3],8[4]})
Such an interpretation allows a very powerful and elegant method
of constructing new ordered sets from a collection of elements and
has been adopted by MUTANT and MUTANT 0.5. Note, however, that the
extension is not quite Iverson's; the subscripted value 'must be
structured but must be treated formally as unstructured. Further-
more, if cell names are allowed to be subscripted by sets (as in
MUTANT), the result must be a collection of (sub)eell names, and
one is led to an extended interpretation of assignment. If such
subscripting is not allowed (as in MUTANT 0.5), string manipulation
is quite awkward and an asymmetry is introduced in the language.

(v) There is a fairly obvious similar extension of the assignment

operator. It is again, however, not quite the Iverson extension
used elsewhere in MUTANT (.5, for one would prefer

{1, {(2,3}))+(a, b} ={1-+a,{2,3}>b)}
tnstead of |

{3, (2,3})})>{a, Db} ={1+a, {2+b,3+b]}}
In addition, sequencing is critically important in assignment;
by one possible definition,

(s, b} +>{b,a} = {a+Db,b+a} )
which is usually not the desired interpretation.

(3) Some data types are not either clearly structured or clearly unstructured.
The primary examples in MUTANT 6.5 are strings. It is desirable, for
example, to be able to access substrings by the subscript notation for
structured values; on the other hand, when used as operands to, e.g., the
put operator, it is convenient to consider them unstructured. A heir-
archy of structure can be introduced, but probably at the cost of some
loss of uniformity, and hence simplicity, in the interpretation mech-
anism.

E.3.e Miscellaneous Problems

A number of decisions made in the design and implementation of MUTANT 0.5
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later found to be mistakes, but these mistakes do not reflect fun-

damental problems in the design of MUTANT-like l'anguages. Some of these

are listed below:

(1)

Choice of Character Set

In the design of MUTANT 0.5, it was decided to choose as concise a
notation as possible and to reflect the usage of set theory as well

as conventional algebra. When desired special symbols were not

available in the IBM EBCDIC character set, they were usually represented
by pairs of special characters rather than by word delimiters'or
reserved words. The elegance of this approach is debatable; however,

it is clear that readability suffers severely, especially in the

hardware representation.

(2) Deletion Operator

The value of a MUTANT 0.5 program at any point is generally a very
‘large list structure, the structure of which reflects the history of
interpretation up to that point in considerable detail. Such lists
consume a large amount of storage and often are of no practical use.
A sequencing operator, similar to the comme but deleting the last
value canputed for an element of the list being constructed, would
be very useful, particularly when an expression is evaluated for its

effect rather than its value.

(3) Extended Case Expressions

‘McKeeman [McKee 66] has demonstrated an elegant application of a
list-valued case index in his MUTART compiler. Such indices are
prohibited in MUTANT (.5 only because of an oversight in the design

of the interpreter.

E.4 Methodology

Implementation of MUTANT 0.5has followed the example of EUIER and

MUTANT; it is based upon a straight-forward compiler producing Polish
postfix operator strings and a stack-oriented interpreter of such strings.

For

experimental purposes, such a system seems entirely adequate. Weber

[Weber 67] has demonstrated the suitability of presently available hard-
ware for implementing proven compilation and interpretation algorithms in
microcode, and presumably results with specially designed hardware would be
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even better than what he'reports,. In addition, it should be noted that
with sufficiently powerful operators the additional overhead of inter-
pretation is relatively small; for example, the MUTANT 0.5 interpreter
makes quite efficient use of the System/30 general registers in vector
manipulation when such manipulation is expressed in Iverson's notation,
and this efficiency is possible without an optimizing compiler.

The grammar of MUTANT 0.5 was chosen to be a simple precedence grammar
because of familiarity with the techniques involved and availability of
suitable syntax processing programs. Other well understood formalisms,
summarized by Feldman and Gries [Feld67], could have been used equally
well, with some trade-offs among speed, space, and generality. In general,
it was found that, with the available machinery, modifications to the
MUTANT 0.5 grammar or compiler were fairly trivial to make. (n the other
hand, many unfortunate features of the interpreter could not be changed
without substantial rewriting; further investigation of the related prob-
lems of formal semantics and machine description seems more appropriate
than continued work oriented entirely toward syntactic questions.
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Appendix I
Publication / Machine Character Set Mapping

’

Publication Machine Character Publication Machine Character
Character Set Set (EBCDIC) Character Set Set (EBCDIC)
a (no equivalent) ® *
cos + DIV
z (no equivalent) mod MOD
A A base BASE
z z # —+

0 > GT
2 GTE
9 9 < LT
" " s LTE
{ < A AND
} > v OR
( ( / /
) - ) L ®
[ (_ 4
] _) * ->
$ $
| | ' .
’ ) = =>
get GET
# g ; ;
| 1 € (X
list LIST *
abs ABS eof ',
neg NEG - (comment bracket) ?
put PUT
type TYPE
+ +
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<PROG> 33= ! KV=EXPR>
<G-EXPR> 3 3= KV-EXPR>
<Q-CLAUSE> <G-EXPR>
<Q-CLAUSE> 33= KV-EXPR> =>
<V-EXPR> 23= KV-EXPR*>
<V—EXPR*> 3= <SEGMENT>

<PROC HD> <V-EXPR>

<V-EXPR*> -=> <KCELL>
<PROC HO+> 2= 0

<PROC HO+> (IDENT)

<PROC HO> .o =<PROC HO+> |
<SEGMENT> «3 =<S=EXPRD>
<S-EXPR> _ <S—EXPR>
<S—-EXPR> _ <S—EXPR>
<S-E XPR> 3= {S—EXPR*)>

<S—-EXPR*> t:= KPRIM>

<S—EXPR*> <INFIX> <PRIM>

<INFIX> te=E t

*
D1V
MOO
BASE

GT
GTE
LT
LTE
AND
OR
. |
<PRIM> $3= <PRIM*>
<PREFIX> <PRIM>
< I NFIX>/<PRIM>
<PREFIX> 3= #

LIST
ABS
NEG
PUT
’ TYPE
<PRIM*> $3= <CELL>
<REF>
<S-PRIM>
t= <CELL®
t= (IDENT)
<CELL*>{_ <KV-EXPR>
<CELL*> 4 ’
= <REF*>
= a (IDENT)
<REF*> {
<S-PRIM> 2= <S-PRIM*>
<S-PRIM*> 2:= <CONSTANT>
GET
<L | ST>
<PRIM*> <KLIST>
{ <V-EXPR> )

<CELL> :
<CELL*> :

<REF> HE
<REF*> -
<V-E XPR>

— -

)

)

<S-EXPRD>
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59
60
61
62
63
64
65
66
67

68

69
70
71

72
73
74
75
76
77
78
79
8C

a2
83
84
ab

CCONSTANT> 3=

<LIST>
<LIST HO>

=

<BEGIN>
<BEGIN>
<BECLARE>

'Y
s o - A LTI Y

<CASE HO>

M
.
]

<CASEI OX>
<FOR HD>
<WHILE HD>
<F/w HD>
<FORSET>
<FOR SE T*>
<WHILE>
<WHILE?®*>
<WHILE CON>

66 88 24 00 80 e0 20 e o0
e 36 02 S0 48 o8 S0 W0
Wolmowownnn W
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<CASE HD> <V=-EXPR> )

<FCRH O >>
<WHILEH O >>
< F/ WHD>>

<S-PRIM*>{(_<V-EXPR> _)

(INTEGER)
(STRING)
<BEGIN> >
<LIST HO> >

<BEGIN> <G—-EXPR>.

L I S THD> » <G-EXPR>

<
. = <DECLARE> |

< $

<DECLARE> {(IDENT)
<DECLARE>{IDENT) { <V-EXPR>
<CASEIDX> ( <KV-EXPR> 3

< C A S E HD> KV-EXPR>;

. <V=EXPR> )

<BEGIN>. <FORSET><LG-EXPR>

<BEGIN> <WHILE

<BEGIN><FOR SET> <WHILE CON> <G-EXPR>

.KFGR SET*> 3
(IDENT) &

CDN> <G-EXPR>

<V-EXPR>

<WHILE> <Q-CLAUSE>

<WHILE >3

)
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PRECEDENCEFUNCT IONS

1 <PROG> 1

2 <G=EXPR> 3

3 <Q-CLAUSED> 2

4 <V-EXPR> 5

5 <KV-EXPR%D> 4

6 <PROC HO+> 9

7 <PROC HD> 4
. a <SEGMENT> 7

9 <S—=EXPR> 7
1C  <S—EXPR*> a
11  <INF IX> 6
12 <PR I M> 10
13 <PREFIX> 6
14 <PRIMX®> 10
15 <CELL> 12
16 <CeELL*> 12
17 <REF> 12
18 <REF*> 12
19+ <S-PRIM> 12
20 <S-PRIM*> 12
21 <CONSTANT> 13
22 KLIST> 13
23 <LIST HO> 2
24 <BEG IN> 2
25 <DECLARE> 9
26 <CASE HD> 4
27 <CASE IDX> 13
28 <FOR HD> 2
29 <WHILE HO> 2
30 <F/W HD> 2
31 <FOR SET> 2
32 <FORSET*>: 1
33  <WHILED> 3
34 <WHILE®'> 1
35 <WHILE CDND> 2
36 ! 4
37 => 14
38 10
39 => 7
40 ( IDENT ) 13
41 14
42 - 5
43 + 14
44 - 14
45 8 14
46 Clv 14
47 [ 261§ 14
48 EASE 14
49 = 14
50 == 14
51 €T 14
52 CGTE 14
53 LT 14
54 LTE 14
55 AND 14
56 (R A4
57 6
58 # 14

=
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59 =

60 LI ST
61 ABS
42 NEG
63 PUT
64 TYPE
65 A_
66 )

D
O
V s om ™ P o}
m
-

73  {INTEGER)
74  (STRING)

~
(- o]
o €N s we i A e

ELAPSEL J IME 1S 0G:06:00

14
14
14
14

14

14
13

13

13
13
13
13

14
10
14
14

14

= — —
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—
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SMUTANT 1
?
0000 $ FACTORIAL CALCULATION = SECTION 8e.3.1 ?
0000 < FACTORIAL |
000 1 " N T {_ 2-(N=0)_){1;N*FACTORIALE N-1 > )' =>FACTORIAL
0032 <N & 1_6 ¢
003D PUT((N BASE 10)| "™ FACTORIAL = * | (FACTORIALS N > BASE 10: )
0060 >
0061 >
END GF COMPILATION .

ECAPSEC TIME IS QQ:00:49

IMUTANT 2 '

| FACTORIAL = 1 .
2 FACTORIAL = 2

3 FACTORIAL = 6

4 FACTORIAL = 24

5 FACTORIAL = 120

6 FACTORIAL = 720

ELAPSED T TIMEISO0G:00:3¢



—

TMUTANT 1
0000

0002
0033
0043
0053
0059
0067
COA4
OOA9
OOA9
0004
OOCA
00D5
OOFC
00FD
0100
0101 >

?
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EXTENDED FACTORIAL CALCULATION = SECTION 8.3.2 ?
0oocC <$ FACTORIAL PROD |
<* N [(_ 2-¢N=0) _) ( 1 3 N*FACTORIAL(_1_)I< N-1 > ) *,

*N| =/¢

1N} ¢,

* N | PROD< 1_N >
>=> FACTORIAL,

r2=(#L=1) _)

LI W R O
€ L(_1_) s PRODS L{_ L_#L DIV 2 _)D>*PRODS L(_ #L D | V2¢l_#L _)>)
-> PROD,. '
<1 &1_3:
C PUT "®, PUT("METHGOD "|(IBASE10) ),
< N&1_8 3
PUTU(I(NBASE 10) |®*FACTORIAL ="J(FACTORIAL(_I_)KS N>BASE10) )
> |
>
>

ENDCF COMPILATION

ELAPSED TIME IS 00:00:4C

IMUTANT 2
qEEggIO%IAL =1

2 FACTORIAL = 2

3 FACTOGRIAL = 6

4 FACTORIAL = 24

5 FACTORIAL = 120
6 FACTORIAL = 720
7 FACTORIAL =504C
8 FACTORIAL = 40320
METHOC 2

1 FACTORIAL = 1

2 FACTORIAL = 2

3 FACTORIAL = 6

4 FACTORIAL 24

5 FACTORIAL = 120
6 FACTORIAL 720

7 FACTORIAL = 504C

a FACTORIAL 40320
METHOC 3

1 FACTORIAL =1

2 FACTORIAL = 2

3 FACTORIAL = 6

4 FACTURIAL = 24

5 FACTORIAL = 120

6 FACTORIAL = T72C

7FAC JOR [AL= 5040
8 FACTORIAL = 40320

ELAPSED TIME IS

00:00:43
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SMUTANT 1
0000 ? INNER PROOUCT = SECTION Be3e3(A) ?
0000 . PUT ( ( #/70 < 19293 >*< 35241 > ) ) BASE 10 )

END Q F COMPILATION

ELAPSED TIME IS 00300:35

TMUTANT 2
10
ELAPSEC TIME IS 00:00:37
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TMUTANT 1
0000 ? PERMUTATION GENERATOR = SECTIONB.3.3(B) ?
oooc < $ PERM |
000 1 o L 2-UaX=1) )
0013 t < X > _
001aA 1/ 1 & 1_#X ¢
0029 < J GPERMSX(_ 1_I-1 _)ixXt(_ I+1_#x _) > = x{_ I_1 )T >
006 1 >
0064 ) * => PERM,
0076 STESTE&E< A", "AB%", “ABC™,"ABCO">:P U TPERMKTEST>>
009A >

ENDCFCUGMPILATION

ELAPSEC TIME 1S C0:00:36 .

IMUTANT 2

A

A8
BA
ABC
ACB
8AC
BCA
CAB
CBA
ABCD
ABOC
ACBD
ACDB
ACBC
ADCB
BACD
BADC
BCAD
8CDA
8CAC
BOCA
CABD
CADS8
CHAC )
CB8DA
CCAB
CCBA -
DABC
CACB
DBAC
CeCA
DCAB
DCBA

ELAPSED TIME IS 0C:00:43



IMUTANT 1

€000
0000
0000
0014
001E
004 B
004C
0053
0054
0C64
0082
008E
008F
0090

>

?
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PRIME SIEVE SAMPLEPROGRAM - SECTIONBe3.4 ?
C $ PRIMESIEVE

{* N

) |
<N&
<

>

ENDCFCOMPILATION

I<$L T 2.N=>1Ly
€ o #L = - 3> 3

< LI_1.) =D>Te<lE&LT MQD Tw=( =>

>t_2.) !¢

< 28, 250 > s
PUT (PRIMES IN 2 TO ®™|{N BASE
P U T(PRIMESIEVEC N > BASE 10)

ELAPSED TIME 1S 00300:40

IMUTANT 2

PRIMESIN2T O25:

2
3
5
I
11
13
17
19
23

PRIMES IN

2
3
5
I
11
13
17

‘2 TO 25€Cze -

97
101
103 '
107
109
113
127
131
137
139
149
151
157
163
167
173 -
179
181
191
193
197
199
211
223
227
229
233
239
241

ELAPSED TIME 1S00:01:09

10)1%z"),

I

>

=> L >(_1))
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IMUTANT 1
0000 ? PERMUTATION GENERATOR ?
oooc < § PERM |
000 1 * x 1l 2=(#X=1) )
0013 { < X > 3
001A /€ T & 1_#X :
0029 < T & PERMC X{_ 1-I-1 _) | X(_ I+1_#Xx _) >:
0052 <CX{_I > | 1
ocsse >
QO05F > ) => PERM,
0074 C TEST &< 1_1y 1_2y 1_3¢ 1_4 > :
Go9cC < P &§PERMS TEST > sPUT{}|/(P BASE 10) ) >
00AB > >

ENDCF COMPILATION

ELAPSEC J IMEISCO:00:39

IMUTANT 2

1

12
21
123
132
213
231
312
321
1234
1243
1324
1342
1423
1432
2134
2 143
2314
2341
2413
2431
3124
3l42
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

ELAPSECTIME 1S0C300:44
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LMUTANT 1
0000 ? GRAPH MANIPULATION ROUTINES ?
0000 C $ REACHVEC
0000 (*c I |
0004 <$ PR R BB N {(#C) ]
0008 { 1_N)~=I => BBy C(_I_) ->Ry LIST N =->PR,
0030 < o +/IPR=(R=DPR})~=N =>
0047 _ CJE& 1_N :BBI_J_)A N DPRI_J_)=>
0062 "< 0 =>BB{_J_)ey R OR Cl_Jd_}=->R>>
007F 29 R >(_5_) )
0080 DISPLAYMATRIX
0080 {(* C TITLEIKPUT "%, p U TTITLE,
009A < I & 1_#C 2P UTHIZ(CI(_I_IB ASE2))>")
ooBL REACHMATR T X MAXSC SUBGRAPHT
OOBE Cc ( € €14140909050>y <09190914090>y <O09plel9090.0>,
OOEA €0¢90909lels0>y <0919y0y0s140>y <15050,0,4041> > ) T
0115 ® ¢ I <1 & 1_#C : REACHVECK'Cy I >3 ’'=> REACHMATRIX,
013E 'RIKC 1 GL_M#R < J & L1_#R RI_I_DVI_J_IANDRI_JIINI_I_) > > ¢
0179 => MAXSCSUBGRAPH,
017E DISPLAYMATRIXCCy"C MATRI X" D>y
0191 OISPLAYMATRIXC REACHMATRIXK C>¢"R MATRIX” >y
01AA DISPLAYMATRIX<K MAXSCSUBGRAPHS REACHMATRIXK C > >y "MSC MATRIX” >

END CF CUMPILATION

ELAPSEC TIME 1S 0C:00:42

XMUTANT 2

C MATRIX
1 100C0
010100
011000
000110
010010
10000 1

R MATRIX
1101.10

010110 ’
011110

010110 -

010110

110111

MSC MATRIX
10000¢C
010110
00100¢C
010110
010110
¢gooc 1

ELAPSEC TIME IS 0C:00:48
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TMUTANT 1
0000 < $ SORT
ooocC {* NI<$ X ERR |
0006 ( N DIV 2 => X )*N*2-> ERR,
001F C « ERR GT(ABSL XX - N }=> ERR )y =>: { X + (NDIV X)) DIV 2 =:
0048 X >(_3_)1')
0053 PRIMESIEVE
0053 {(* N | <sL T ] 2_.N->1,
0067 e #L-=0 => : )
0071 CLI_1I.) => Ty K I &L:IMAD T »=0 =>1I>-=>L>_1_)>
O09F >_2_) ) |
00A7 PUT® PRIMES AND INTEGERIZED SQUARE ROOTS",
0002 € I & PRIMESIEVEL 250 >
OCEO PUT ({1 BASE 10 )|= #]{ SQRTC I > BASE 10 )) > >
END GF COMPILATION

ELAPSEQO TIME IS 00:00:39

TMUTANT 2

PRIMES ANG INTEGERIZED SQUARE ROOTS
2 1
3 1
5 2
7 2
11 3 149 12 -
13 3 151 12
17 4 157 12
19 4 163 12
23 4 167 12
29 5 173 13
31 5 179 13
37 6 181 13
41 6 191 13
43 6 193 13
47 6 197 14
53 7 199, 14
59 1 211 14
61 7 223 14
67 8 227 15
71 8 229 15
73 8 233- 15
79 8 239 15
83 9 241 15
89 9
97 9 ELAPSED TIME IS GC:01:17
101 10
103 10
107 10
1G9 10

113 1C

127 11

131 11

137 11

139 11




