
ALGOL W IMPLEMENTAT ION

BY

H. BAUER

S. BECKER

S. GRAHAM

TECHNICAL REPORT NO. CS 98

MAY 20, 1968

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERS ITY

. Pes24

3)



ALGOL W IMPLEMENTATION*

By

— H. Bauer

5S. Becker

— S. Graham

¥

_ This research 1s supported in part by the National Science Foundation
under grants GP-4053 and GP-68k4k.



. ALGOL W IMPLEMENTATION

_ Table of Contents

- I. 1150) oh oo 15 18 Xo AA

XI. General Organization . . ©. © © © i iis iiiiireeiiiiiesreninne. D

ITT. OVerall Design uv © i i i teri eine re enaee coneenanrerraa.

| A, Principal Design Considerations, . . .. ..*......xx &L

= B. Run-Time Program and Data Segmentation .. .,,...5

C. Pass One . o ° . . o ° © $400 00000080 000000¢000IPGQIEEEIY |

— D. PASS TWO © i i tio ieoontontnrteanoseceeacsoceneeese 8

1. Description of Principles and
or Main TASKS 4 vee veoveoosooesoooesass.s 8

— 2. Parsing Algorithm, , . . . ...*t......xx+ 8
3. Error RECOVEIY t.ivvervnevereveveesees I
L. Register Analysis . . . ..*.......*x.... 11

- 5. Tables # & 8 4 8 0 0 @ PPP 4S QC ETO et ED a eee 13
6. Output t 8 4 8 0 0 0 3 A 0 9a A 0&0 O08 80 G9 4 FOC 8 0 0 13

BE. PASS TRIE © i itiiitieentnennruosesoannenennse 16
 —

IV. Compiler Details ° . . . . . [} [J . LJ 8 0. 00400000060 40000600096000¢000¢04 0 17

_ A. Run-Time Organization ......eeeeececeeeeeenoestT

1. Program and Data Segmentation ,.,,.,17
2. Addressing Conventions . .......ee..., 20

— 3. Block Marks and Procedure Marks ..,, 20

4. Array Indexing Conventions... ...L} 22
5. Base Address Table and Linkageto

_ System Routines . . .viivviievirens, 23
6. Special Constants and Error Codes ., 24
Te Reglster USA0€ ....vvveveeenoeeerees of
8. Record Allocation and Storage

— Reclamation ........ccevvvvueenn.. 27

I EEIoA1

— 1, Table Formats Internal to

PASS ONE . teuvrvevnreenronennnases H
2. The Output String Representing

3. The Table Output of Pass One .......39
L. Introducing Predefined Identifiers.. il



seSE CR

Table of Contents (cont.)

Co PASS TWO toteuvoooionenonoooonnossosennese,. 43
1. Storage Allocation .veeeeveveons.... 43
2. Value Stack ...vvvnoecevosnonnnn.... 45
5. Interpretation Rules ............... 5

| L. Pass Two Tables co soossosascieoaseos 51
2. Output of Pass TWO ..ovvevennensn.... S5ha

D. Pass Three “0 e000 0000 000ca0s00000assacesesss B2
I. Register Allocation,,,.............. 62
2. Block ENtrV...eeeeveceeesesonua...., 65
3. Block EXit iouiieeiveruneonnnenenss. 69
Lh. Procedure Statements and Typed

Procedure Designators .......c....70

2. Procedure ENLIY ,,....00v0evvvnneee. T3
-6. Procedure EXIT ......00c00ccevnoos.. 80

. os Formal Parameters 1n Expressions

and ASSIgnments ..,....eee00000... 81
8. Array Declaration .,.,............... 83
9. Subscripted Variables .......,...... 89

10. Passing Subarrays as Parameters ,,,, 91
11. Arithmetic Conversion ,,............ 94
12. Arithmetic EXpressions ,,........... 97
13. Logical Expressions ,..,............ 108
4, String Expressions,,............... 115
15. Bit EXPressions,,,,....eeeeeoe..... 117
16. Record Designators ,,,............. 118
17. Field Designators vo ccoeascseessss, 119

1 18. Case Statements and CaseEXPresSslonsS «oeeecoovvoosaocaens. 120
19. If Statement, If Expression, and

While Statement ................., 122

| 20. For Statement .....c.ovevevecsnoe., 123
21. Goto Statement .....oeecesocoeosses 127
22. Assignment Statements ............. 130
23. Card Numbers ..ooocceoonsosncessss. L3H

= E. Trace Facilities ~~ .,,,,0.0.0,....,. 136

Appendix I ~~ Example ..ocoeiuiviiinonaennunnonnnnnrnnnnnn.... 138

Appendix HI ~~ Simple Precedence Grammar .......o..ee.eoose....... 14%

11



- Figures

_ 1. Reserved Word Tahles © 0 800006 C0 06000 OCCGCES 00dO0CGCOC OCS 25

2. Identifier TablesS:ccccocccooocsoccocscsossssane 36 |

3. Pass One Output Codes eso cece eeceaceceeseseens 38

L. Example of BLOCKLIST and NAMETABLE -eceecocesas 41

5. Format of NAMETABLE and field contents after

Pass Two © © 0000004800 00CO0O0O0OC JI O00aGa 3800006 4a0ee9 os 52 ff

” 6. Pass Two Output Vocabularyeoscosscocescossosasoanas 56 ff

111



|
= |
=

I. INTRODUCTION

i In writing a compiler of a new language (ALGOL W) for a new machine

(IBM System/360) we were forced to deal with many unforeseen problems

in addition to the problems we expected to encounter. In a few instan-

ces, we gave in to temptation and changed the language; 1n many others

’ we would have liked to have been able to change the machine. This

} report describes the final version of the compiler, Not surprisingly,

_ there are several things that in retrospect we would do differently,

both 1n design of the language and in design of the compiler, We will

— not discuss these after-thoughts here.

The implemented language ALGOL i) is based on the Wirth/Hoare

} proposal 2) for a successor to ALGOL 60. The major differences from

Co that proposal are in string definition and operations and in complex

number representation. Consideration was given to including both paral-

lelism and data file facilities in the language but both ideas were

abandoned because their inclusion would have necessitated substantial

- changes 1n those parts of the compiler that had already been written,

The project was initiated and directed by Professor Niklaus Wirth,

who proposed many of the ideas incorporated in the compiler and suggested

— ways to bring them about. Joseph W. Wells, Jr. and Edwin H. Satterthwaite,

1) Bauer, H.R., Becker, S. and Graham, S.L. ALGOL W Language Descrip-
tion, Report CS 89, Computer Science Department, Stanford University

_ (March 1968).

2) Wirth, Niklaus and Hoare, C.A.R. A Contribution to the Development
of ALGOL. ‘Comm. ACM 9 (June 1966), pp. 413-431.

1



Lo

- Jr. wrote the PL360 System in which the compiler is embedded, the

_ linkages to the compiler, and the loader. Although the authors did

the bulk of the programming for the compiler, valuable contributions

were made by Larry L. Bumgarner, Jean-Paul Rossiensky, Joyce B. Keckler,

Patricia V. Koenig, John Perine, and Elizabeth Fong. We are grateful

also for the many helpful comments and suggestions made by the faculty

and students of the Computer Science Department. Finally, we grate-

’ fully acknowledge the support given us by the National Science Founda-

— tion under grants GP-4053 and GP-684k and the computer time made avail-

able by the Stanford Linear Accelerator Center and the Stanford Computa-

- tion Center.



C

II. GENERAL ORGANIZATION

The compiler 1s divided into three passes,

- Pass One 1s a scanner. It reads the source program, converts the

symbols to internal codes, deletes comments and blanks, converts nu-

— meric constants to internal form, builds a block-structured name-table

and lists the source program.

- Pass Two does a complete syntactic analysis and extensive error

_ checking. It does all static storage allocation. The output of Pass

Two 1s the completed nametable and a binary tree representing those

— parts of the program for which code is to be generated.

Pass Three generates the object program in reentrant machine code.

N The three passes are written in p360%) as separate programs. The

_ passes use a common data area for data shared by them. This area re-

mains in core 1f sufficient room 1s available; otherwise the tree

— output of’ Pass Two 1s written on secondary storage and read segment-

| by-segment by Pass Three.

The discussion 1s divided into two sections. Part III describes

the design. of the three passes. Part IV provides information about

the details of the compiler and 1s devoted primarily to a discussion

— of the run-time organization and the object code generated by the

compiler.

1) Wirth, Niklaus. "PL360, A Programming Language for the 360 Com-
_ puters,” Journalof the ACM 15 (January 1968), pp. 37-Tk.

5



&

-

ITT. OVERALL DESIGN

A. Principal Design Considerations

Following are the main features we wished to incorporate and some

of the ways they were achieved,

- 1. Efficient object code,

All constant arithmetic (e.g. 547) is done at compile time. Global

- variables are accessed (at run-time) with no overhead. The inter-

mediate language specifies nearly optimal use of the registers,

OC resulting in a minimum of temporary saves. Optimization which

involves rearrangement of the source program (for instance,

removing computations from for loops) 1s not done.

2. Code generation only for syntactically and semantically correct

— programs.

A complete syntactic check and a search for all errors detectable

oe at compile time are completed before any code 1s generated. Pass

Three 1s called only if no errors are found.

= 3. Useful tools for numerical computation,

| Complex arithmetic in standard mathematical notation and double-

precision (long) arithmetic are implemented features of the

| language, Facilities to detect overflow and make appropriate

~ recovery are provided, as 1s a set of standard functions of ana-

lysis

4, Fail-safe reliability.

Run-time checks on such things as array subscript bounds, substring

operations and formal procedure parameters prevent loss of control

| (i.e. wild transfers) by the obje~t program.



( ( [ [

nN

O ct IJ ctr U2 02
ga 5 OK « g O
ct OO O (® @)
=e mn oo Q 0
0 ct H . iy
DEB BB[] es . 'e)

MD+ Bb ®
OO 5 KH HH =
H H 0)

B 0 77]
® oOo oo + ct

H 07] He
n HW nn 8 0

p= oO ® ® 0HO ® [7s] a
+ ® wm

® OO wm
0 0 09]

no2® 80 jis
o HE 4

Hom 2
aa o
4 =
O 1:8]

on KSA 5 2
0 uD

5 = pe HRTSSWI «
wo o® cr

oO cf + oO
® KH Re QQ

o ® 8 o
oy tr
cr 0 i)

> ALE.
Hs oo = HH
eT © = 9g
20© Dd

Ho =
»J oO oO

"Bd

oH OB oadD
HR®

O © pm|m mw
HN oo mm QQ

E82.> EE 8
(D OQ

i



’

B. Run-Time Program and Data Segmentation

| Program segments and data segmentm are 'both logically and physi-

cally separate, Program segment8 correspond to the structural unit

"procedure" in ALGOL W. The scope of a data segment is an ALGOL W

block containing declarations. program segments are allocated stat%--

F cally (i.e. once only at compile-time); data segments are created

dynamically (i.e. each time the block is entered at run-time).



| C. Pass One | | ,
. Pass One receives the source program as input in 80 character

| records, Its functions are to -

= SE list the character string and assign it line numbers;

i 2, recognize basic entities of the language and -place them in
an output string with byte (8 bit) codes;

| 3. convert constants to internal form;
L., make a table of identifiers arranged by blocks and containing

| type and simple type information specified in declarations,,
The input 1s scanned until a symbol 1s recognized - i.e. a delimiter,

an identifier, or a literal,, In response to this symbol a code repre=

| senting the symbol 1s placed in the output string. New blocks are
noted, and declared variables are placed in the NAMETABLE which 1s

. organized by blocks, A new block is entered at each begin, at the
beginning of the formal parameter list in a procedure declaration, and

- at each for statement, A BLOCKLIST table containing one entry for
each block in order of entrance points to the entries in the NAMETABLE

i corresponding to the identifiers declared in a given block. 2 table

~ of identifier character strings 1s also filded for use 1n Pass One

and Pass Two.



-

Do Pass Two

- 1. Description of Principles and Main Tasks

L The function of Pass Two is to do a complete syntax check of the

source program, to do a thorough error analysis and generate all com

~ pile-time error messages, to complete the NAMETABLE, to build the

| constant tables, and to convert the program to an intermediate language

} to be used by Pass Three for code generation. The syntax analysis

1 1s done by means of a simple precedence analyzer. The interpretation
rules of the grammar specify the other Pass Two actions.

2. Parsing Algorithm

= The algorithm for syntactic analysis 1s essentially that used by

Wirth in mer. Some program modifications have been made. First:,
B the look-up to determine whether a string 1s the right part of a pro-

Co duction has been changed to include a check on the length of the string

and the length of the right part, Second, the full precedence matrix

= 1s used rather than the precedence functions. This 1s done 1n order

) to detect errors sooner and to provide better error recovery than 1s

” " possible with functions. Third, the relations found when scanning to

_ | the right looking for& are stacked, Therefore, they can be easily

retrieved when in the process of scanning to the left for <« rather than

- having to be fetched again from the matrix. The matrix is packed four

elements to a byte in order to conserve space. Consequently, a fetch
-

1) Wirth, Niklaus and Weber, Helmut. "EULER: A Generalization of ALGOL
_ and -its Formal Definition: Part I." Comm. ACM9 (January 1966),

pp. 13-23, 25,

8



|

- from the matrix 1s slower than retrieval from a stack, However, every
a time a reduction 1s made, the relation of the new symbol to the symbol

below 1t on the parsing stack must 'be fetched from the matrix and

L stacked. If most of the rules that are applied have right parts of
| length one or two, there is no significant gain in speed by stacking

| the relations since few unnecessary matrix fetches would have to be

L done. However, there 1s a gain in efficiency with longer right parts.
For each syntax rule there 1s a corresponding interpretation rule

L which 1s executed when the reduction is made, For ‘efficiency, Inter-
i pretation rules are written directly in PL360 rather than in some

metalanguage. Associated with the parsing stack is a parallel value

| stack containing information used by the interpretation rules.

| 5. Error Recovery
{ When simple precedence analysis 1s used, there are two situations

L in which a syntactic error can be detected = when a reducible substring

| (i.e. one delimited by < and®) is not the right part of any produc-
| tion and when the top of the parsing stack has no relation ( <, =, » )

i to the incoming symbol. .
In the first situation, the statement in which the error occurred

L . 1s deleted from the program To accomplish this in ALGOL W, the stack
| 1s backed up to <BLOCK BODY> , <BLOCK HEAD> , <CASESEQ HEAD> , or the

- file delimiter and the input string is advanced to end, "ih "begin, or
(

1 the file delimiter. If end is erased from the stack, it becomes the

incoming symbol, otherwise the next symbol on the input string is taken,

If a nonterminal which affects the value of the block number 1s removed



= from the stack, the block number 1s adjusted accordingly,

z Special care 1s taken with begin's, end's and the block number so
that the block numbers conform to those assigned by Pass One, If the

. block structure were to be destroyed, many spurious errors would be

generated, If Pass One had been done by syntactic analysis, these

~ special fix-ups would be unnecessary provided that Pass One and Pass

il Two recovered in the same way.
| If the top of the stack has no relation to the incoming symbol, a

L variety of recovery actions are possible. A symbol can 'be inserted,

. the top of the stack can be deleted, azother symbol can replace the
top of the stack, a reduction of the stack can be forced., or the in-

1 coming symbol can simply be stacked. The action to be taken is deter-
mined by the symbol at the top of the stack. For each symbol in the

L grammar, there 1s an entry 1n table EMIB pointing to a list of recovery
actions in table ERTB.

= In order for a symbol to be inserted, it must have a relation to

8 the incoming symbol and the top of the stack must have a relation to it.
If the inserted symbol 1s 4 the incoming symbol, the input string is

L backed up and the inserted symbol becomes the incoming symbol. Simi-

i larly a symbol replacing the top of the stack must have a relation on
either side,

L An inserted or replacing symbol may generate another error message.
For instance, an undefined identifier is assumed to be integer although

L 1t may be intended as another simple type. If the trace flag is set:,

the error recovery action 1s always printed out unless the incoming

~ symbol was stacked, A flag 1s set so that the same action will not be

C 10



|
- 1 1 1

tried the next time through. (e .g. If the top of the stack is <BLOCK-

§ BODY> and it has no relation to the incoming symbol, a ";" may be in-
serted, "<BLOCKBODY> ; " reduces to <BLOCKBODY> . If the error routine

_ 1s called again before the input string has advanced, it must not

i again insert a ";".)

| bk . Register Analysis
_-

Two register counts are kept for each relevant position in the
f

| stack = a count of the integer registers and a count of the floating
registers up to that point, The simple type of the operation determines

L the ‘active” set of registers. The active count resulting from a binary
| operation Is determined as follows:
—

Suppose the active counts for the two arguments are equal - both
{

8 have value k. Then k registers will be needed to calculate the first
argument. At the end of that calculation, one register will be 1n use,

|

. containing the value of the first argument . That regfster remains 1in

| use during the calculation of the second argument, Since the binary
[S_

operation uses only the register containing the first argument, the

L resulting count is k+l.

Ixsmplekl = active count for i, ke. 2 0)
-

integer d, [Fr soe a + b LN
|
|

bo k. = ky = 0. To compute the sum 1t is necessary to load a regis-

ter with a and add b 1nto the register containing a. Thus
-

Kop = 1 .

—

L 11



- Example 2

integer a, b,c, 43... (ath) = (etd) ...

K ip = Eepg = Lr The result (a+b) occupies one register, This

register holds the value of atb while c¢td 1s computed, using an-

_ other register . Then the register for a+b is subtracted from the

register for ctd, leaving the result in the register previously

occupied by a+b. Thus ,

E(atb) = (cd) = °°

Suppose the active counts for the two arguments are unequal - the

counts are k and k, where k) > k, «Then if the argument using kl
| registers 1s computed first, that result occupies one register leaving

k -1 registers to compute the second argument . Since kl > LY k) > kt,

- hence k, -1 > LN Therefore there are enough registers left to compute

the second argument . Hence max (k, ,k,) 1s the resulting count. (If the

- other argument were computed first, k +1 registers would be necessary.)
| Notice that the above reasoning assumes that the operators are

commutative (or that appropriate reverse operators exist) . Adjust-

- ments must be made for some noncommutative operators, For instance

DIV and REM require a minimum of two registers if the second argument

— has count 0 and three integer registers 1f 1t has a non-zero count,

The resulting count of the number of 'inactive' registers is the

maximum of the counts for the arguments. The counts for an_if expres-

_ sion Or a case expression are the maxima of the counts of the consti-

tuent express ions . Register counts for function calls are set arbi

n tarily to a large number since all registers in use before a function

call are saved,

} 12



5. Tables

Pass Two completes NAMETABLE, assigning hilerarchy numbers, program

segment numbers and addressesfor variables and descriptors, and in-

serting array dimensions, local stack origins and record information.

A bit string 1s inserted for every reference variable, indicating posi-

tionally to which record classes it may refer. A run-time constant

table and a compile-time constant pointer table are constructed for

each program. Information local to Pass Two 1s kept in the interpreta-

tion stack rather than in tables,

6. Qutput=

The output of Pass Two 1s a string called TREE representing the

linearization of a modified structural tree of the program being parsed.

Each nonterminal node has either one or two subtrees.

An n-ary construction 1s represented as a binary tree by making

the n components terminal nodes joined by a binary list operator.

Example

program fragment: F(B, 5, C + D, GOTO X)

where F 1s a procedure, C 1s integer, D 1s real

Tree:

AN

VAN Re where AP, 1s an actual parameter
o | J ’ /\ X list operator and AP) indicates

JR cD the end of the list.



\ Semantic information 1s not included in the tree because it 1s contained

in NAMETABLE.

The order in which the nodes occur in the string 1s shown in the

following diagram:

| 27

5 Nag

& ih 17 I\
ANEERi

L ) 3 5 10 \ 16
“13 22

| 9 | \ 18 19 | 231 2 h ! 11 12 21

y It can be seen that the subtrees of a node precede the node. A

| nonterminal binary node contains a pointer to its left subtree; its
right subtree will directly precede it. Fach binary node has a switch

indicating which of 1ts subtrees 1s to be processed first. (Nodes are

not processed until their subtrees (in most cases srquments) have 'been

processed. The normal mode is to process the left subtree first,

"thereby preserving the order in which the structures occurred in the

source program. The exceptions are binary arithmetic operators and

the assignment operators. For these operators, the subtrees represent

two operands. In order to minimize register usage, the operand using

the larger number of registers 1s compiled first. (Such optimization

14



= 1s permissible according to the language definition, 1) which states

| that:

"If an operator operates on. two operands, then these operands

_ may be evaluated in any order, or even in parallel, with the

exception of the case mentioned in 6.4.2.2."

— Another motivation for using the tree rather than reverse polish

- was the hope that 1t would be a natural way to represent parallelism in

] the language. This use of the tree was investigated but was not fully

_ developed because 1t was decided not to implement the parallel. features

of the language.

— A separate tree 1s generated for each program segment. In theory

the program segments (procedures) could be processed by Pass Three in
(a

any order; in practice they are processed in the order they occur.

-

Wirth, N. and Hoare, C.A.R. “A Contribution to the Development of
ALGOL", Corm. ACM. 9 (June 1966), 413-432,

15



Lo :

- E. Pass Three

~ The essence of Pass Three 1s the algorithm for scanning the lin-

earized trees, beginning at the root node. Theswitch with each binary

operator indicates which branch the scan should follow. The operator

_ nodes are not otherwise examined at this stage; code generation begins

with the first terminal node encountered,

— Pointers to the nonterminal nodes are stacked in STACK as they are

encountered in the scan, STACK also contains a field in which infor-

mation about the first subtree 1s kept while the second subtree 1s com-

C piled. -

For each binary node there are two phases of code generation. Ip

ae the first phase the operator 1s considered together with its first

operand; in the second phase the operator and its second operand are

considered . Hence there are two compilation (output-generation) rules

_ associated with each binary node, Each unary nonterminal node has one

assoclated rule .

-

—

|
-

Co

16



IV COMPILER DETAILS

— A. Run-Time Organization

a 1. Program and Data Segmentation

Since no compiled code is modifiable at run-time, all program

—

segments are re-entrant. Data segments are created at block and pro-

i cedure entry and deleted (by resetting the stack pointer) at block
and procedure exit.

.

|
- Program segments are allocated statically at the low end of avail-

| able core. Data segments are then allocated dynamically, beginning
D -

Just after the program segments and proceeding toward upper core,

| Segments for system routines amd their data are allocated statically
at the high end of available core. Record pages are allocated dyna~

L mically downward beginning immediately before the system routines and

system data. If the data stack and the record pages meet, the run is

he terminated.

PROGRAM

) SEGMENTS

DATA STACK

—

- RECORD PAGES

Po SYSTEM ROUTINES
AND THEIR DATA

AVAILABLE CORE

17



Each block and procedure requires a data segment. When a block

_ occurs as the 'body of a procedure, 1ts data segment 1s merged with the

procedure data segment.

— A diagram of a typical data segment 1s shown below.

Tw
3 IE block/procedure mark 20 bytes
- IEC BE td
| | REFARY
- 12 The static link chain - entries hold the

local 11 bases of all currently accessible data

- display ’ segments. If n 1s the number of the re-

on gister holding the base of this segment:

| oo (13-n) * Lk bytes
DPD-dynamic

parameter *¥ (cf. IV.D.)J)

= descriptors

‘

. PV-parameter ¥ (Occurs only 1f procedure has value,
values result, value/result, or array para-

meters. cf, IV.D.D)
|

local variables

and array descriptors

~ IS stack . For dumping registers and partial results.
— array

elements-

_

*

Occurs only for block which 1s the procedure body of a procedure
with parameters.

18



i

B Each program segment has the following form:

L. ER
N-umber of formal parameters of the

— procedure

- Static formal parameter descriptors

-

Branch table

I.

*Procedure entry code

L Procedure body code
Procedure exit code

—

The static formal parameter descriptors (SFPD's) are one-word

- descriptors, one for each formal parameter, giving all information

needed by the system subroutine CHECK to check the formal-actual para-

= meter correspondence at run-time. This type of checking 1s done at

) compile-time by Pass Two for non-formal procedure calls, but must be

done at run=time for formal procedure calls.

— A branch table exists in the heading of each procedure and cont

tains one branch instruction for each label in the procedure. When a

+ goto statement 1s executed, a branch is made to the appropriate instruc-

| tion 1n the branch table which then branches to the labeled location.

~ The literal table is a table of all literals (contants) used in
. the procedure. During execution, each literal 1s addressed by a dis-

placement relative to the base of the program segment given by RIS.

— 19



Only one copy of each literal 1s given.

- The literal table 1s obtained from Pass Two and is placed into

the program segment at compile-time by Pass Three.

2. Addressing Conventions

- Because of the structure of the addressing mechanism in the IBM

_ System 360 Computer, program segments and the statically allocated

portion of data segments may not exceed 4096 bytes.

— During the execution of a procedure or run-time system subroutine,

R15 1s a pointer to the base of the procedure or system subroutine.

- All branching internal to a procedure 1s accomplished with a displace-

_ ment relative to the base in R15. Branches between procedures are

accomplished by first setting R15 to the base address of the procedure

being branched to and then branching.

Upon entering each procedure and block, a data segment 1s allo-

- cated and a general register 1s assigned to hold the base of that data

segment. All local variables, descriptors, and value and result para-

meters are then addressed relative to the base of the data segment via

the general register. Because the base addresses of all accessible

data segments are held in registers, all accessible variables are

o immediately addressable.

5. Block and Procedure Marks

_ At the base of a data segment, a $-word procedure or block mark

1s created and filled with all administrative data necessary for the

proper usage of reference quantities in the data segment, for the

20



creation of new data segments while this data segment 1s active, and

_ for the deletion of the data segment when its corresponding block or

procedure 1s exited.

— A mark consists of five full-word fields, as shown in the follow-

1ng diagram.
“

-

C ~ REFARY

FP: The free pointer field points to the first free byte' An the data

stack. When a new array or a new data segment 1s allocated,

this pointer indicates 1ts base.

RA: The return address field holds the return address for pro-
cedures. This field 1s not used in block marks but 1s allo-

cated nonetheless for consistency.

Co DL: The dynamic link field contains the base of the data segment
which was the most recently allocated data segment before the

| ) current one. When the current data segment 1s deleted at an

- exit from the corresponding block or procedure, the stack

pointer 1s reset to the contents of DL. By tracing backward

~- through the chain of dynamic links, one may obtain the bases

of all data segments which have been allocated and not yet

-— deleted. These correspond to all blocks or procedures which

have been entered and not yet exited.

- REFVAR: The upper two bytes of the field REFVAR contain the number

of reference variables local to this block. (Reference

_ value/result parameters are treated as local variables.)

Allreference variables and reference value/result parameters

21



\

are grouped together so that the garbage collector may pro-

_ cess them. The lower two bytes of the field REFVAR point

to the first reference variable or value/result parameter,

relative to the base of the data segment. If no reference

- variables are declared in the block, the REFVAR field 1s |
Zero.

REFARY : The upper two bytes of the field REFARY contain the number of

3 reference arrays declared in the block. The lower two bytes
i. point to the first reference array descriptor, relative to

: the base of the data segment. All reference array descriptors

- are contiguous 1n the data segment. From the array dimension

contained in the first byte of each reference array descriptor,

L the garbage collector 1s able to locate all reference array

descriptors and hence all the elements in all reference arrays.

| If no reference arrays are declared in the block, the REFARY
field 1s zero.

= k. Array Indexing Conventions

Co A data segment corresponding to a blockin which arrays are de-

clared contains an array descriptor for each array. The descriptor

= specifies the upper and lower bounds of the indices of the array, and

| ) a pointer to the first array element. The size of the descriptor is
“

dependent only upon the number of dimensions of the array; therefore

Lo | the portion of the data segment used by the descriptor is allocated by

Pass Two, At run-time, the bounds are stored into the descriptor,

— the total number of bytes required for the array elements 1s calculated,

{ storage 1s allocated in the data stack, and a pointer to the first
—

| array element 1s placed into the descriptor.

3g When an array element 1s referenced, the descriptor 1s used to

calculate the actual’address of the array element.

— 22



g
| >. Base Address Table and, Linkageto System Routines

\
| During the execution of a program, a table giving the base ad-

| dresses of all the user’s program segments and the base addresses of
all run-time system routines resides at a fixed displacement from Rl.

. The displacement for each segment base is known at compile-time,

i] allowing the compilation of instructions to load R15 with a segment
base before branching to that segment,

| i The standard calling sequence from a user procedure to another
procedure or system routine 1s

L ) L 15, d; (14)
| BALR 15, 1

L L 15, do (14)

3 where 4 1s the displacement of the entry in the base address table
giving the base address of the called procedure or system routine and

L 4, 1s the displacement of the entry giving the base address of the

] calling procedure.
| | Because of addressibility problems, the above code sequence 1s

i modified when calling certain system routines, The first load instruc-
tion above may be preceded by

|

L MVI runtime flag, byte

i and the second load instruction may be preceded by a halfword of in-
Pormation. The relative origin withintle system routine is then established

L using the value of the run-time flag or the halfword of data.

| The instruction BAIR 15,1 1s replaced by BAIR 15,0 for some sys-

: tern routines so that the routines mayuse thelr parameters more effectively,



|

6. Special Constants and Error Code

~ Certain special constants needed at run-time, as well as some run-

time error check code, are placed at specified locations based off Rlk.

The inclusion of the constants makes it unnecessary to insert these

_ constants 1n the literal tables thus saving room in the program segment.

g The precise locations relative to Rl4 of the constants and various

— run-time entry points into the error checking code are known at compile-

| time so that the proper addresses may be compiled.
-

Constants

| -

~ SEVEN 7 used to make an address fall on a

| DUBLMASK  #FFFFFFF8 double word boundary

= THREE 3) used to make an address fall on a

SINGLMASK #FFFFFFFC single word boundary
|—

ALLGNES  #FFFFFFFF used in bit-not operations

_ NULLREF ~~ #OOFFO000 the mill reference

ALLPCERR C 0,LIM used for data allocation; return

_ BCR <, b to point of call (BAL 4,ALLOCERR)

if LIM= (beginning of record pages)
has not been reached

IR 1, 4

_ LA 0, 5(0) error condition
ARRAYERR BCR <, 1 used for run time array bounds

checking

MATINERR L 15, base of ERROR error routine prints location of

| error = Rl. RO 1s parameter to
—

error routine, giving the type of

error so that appropriate termina-

= tion messages may be given.

24



|

BCR 15, 15

| UBLBERR BCR <, 1 used 1n array declarations to be
IA 0, 13(0) sure that upper bound> lower bound.

| BC 15, MAINERR =~ Error condition.
|

i 7. Register Usage
| At run-time the following uses are made of registers:

L RO and Rl are used by the system as save and link registers for

| system subroutines. They are otherwise available for local use.
R2 - R6 and FO - F6 are used in evaluating arithmetic expressions.

d RT - R13 hold the run-time display pointers to all data segments

| which at any gilven time are accessible to the block being exe-
| cuted.

{

| R13 always holds the base of the data segment of the main

program block.
!

C R7 - Iheare allocated statically downwards from Rle.

| word "statically" 1s emphasized since data segments are created
L

dynamically and the size of the data stack 1s limited only by the

I physical size of available memory. Any two or more parallel
blocks (or procedures) will have the same display register point-

L Ing to their data segments, since only one of those data segments

may exist at any one time.
C

It should be remembered that the data segments for a procedure
|

L and 1ts outermost block (if there 1s one) are merged into one data

{ segment.

In the following diagram the numbers represent data segment base

L 25



|
registers. Each begin is assumed to be followed by one or more decla-

L rations.

procedure P

. 12 begin
11 begin

| end
end

. procedure Q

i 12 begin
procedure P

] - 11 begin
end

5 11 begin
10 begin L:

end

- end
end

i 2 wegin
11 begin

10 begin

procedure S

| 9 begin

. end

end

L end

end

{ end

i Those registers not 1n use as display registers are available for
arithemetic evaluation, For example, at label L in the preceding dia-

- 26

|



L
] | gram, R10 - R13 are 1n use as display registers, andRZ - RYare avail-

. able for arithmetic evaluation.

i R14 always points to an area in memory which contains:
1. the base address table,

_ 2. special constants,
- 3. error codes, and

i Lk, local data for system subroutines.

i ) R1> always holds the base of the program segment currently being
executed.

| At particular points in the execution of a program when it is
( known that none of the arithmetic evaluation registers are in use

~ (such as at procedure entry and exit, block entry and exit, and in a

i procedure call), they may be used by the run-time administration.

g 8. Record Allocation and Storage Reclamation

| Space for records 1s allocated by pages beginning at the end of
S core working downward. Size of the pages 1s a parameter of the run-

time routines. As each page is allocated, the pages are formatted so

- that each record on the page 1s pointed to by a previous record or by

| the FRC (see below). Each page 1s dedicated to one record class.

Table RCT 1s prepared by Pass Three and loaded along with the

compiled program. It contains a 16 byte entry for each record class

1 declared and 1s indexed by record class number. No record class 0
exists. This allows RCT(0)to be used for a free record page chain.

C RCT contains the following information about each record class:

- 27



RCT (0

(0) FREC FRPC - FREE RECORD PAGE
) CHAIN

| . | RCN - RECORD CLASS
| NUMBER

’ FRC ~ FREE RECORD
| CHAIN

p —_— PC - PAGE CHAIN
_ FRC RL - RECORD LZNGTH

16 *ReN + 4 |pg] IN BYTES

FRC, FRPC, and PC are initialized to 0, The last entry in the table is1 a

| set to #FFFFFFFF when fewer than 15 record classes exist.

| FRC is the origin of the Free Record Chain for the given record
class.

- FRC nl , | | where n is the record
(a . class number and each
(al, list element is a record
(ol ,
I
—

al,[|

28



FRPC 1s the origin of the free record page chain. Each page on

the chain 1s a page whose origin address Es greater than at least one

of the pages in use. This chain always releases as many pages as

possible to free storage so that free storage may be used by either

data segments or record pages as needed. A record page which was

allocated and later released may then be used for data segments.

L

| A new referenue to a record class is always obtained from the

| | FRC corresponding to that class. If the upper byte of FRC is 0, the
: garbage collector 1s called, If the garbage collector cannot free

; enough storage for a new reference, execution 1s terminated.

Storage reclamation (1.e. garbage collection) consists of three

_ phases: marking used records, collecting unused records, returning

‘unused pages. For each call of the garbage collector all record classes

are searched and the FRC of each record class 1s updated.

Records are marked 1n two steps. First, each reference variable

and each reference array element 1s tested; for each non-null refer-

ence, the first bit of the record referenced is set to 1. The first

byte ~ of each record is not allocated for fields and 1s available.

29



When a record 1s marked which had not been previously marked, a

- check 1s made of the NR field corresponding to the record class. If

this field 1s zero, nothing more. needs to be done. If this field is

non-zero, each reference field of the record must be checked. The

reference fields are checked starting with the last reference field

and ending with the first reference field. Each reference field in

turn 1s treated recursively as a reference variable. The last reference

- field has been processed when the marking bit of the record 1s encoun-

tered. This test restricts the number of record classes to at most 127.

Since-the reference fields of a record are checked when the re-

cord 1s marked, a backward chain must be kept so that the path may be

- retraced and all reference fields of each record inspected. This

chain consists only of the three low order bytes of the reference. The

high order byte remains unchanged. Before proceeding to inspect the

fields of a new record B designated by a field of record A, the address

of the record inspected previous to A replaces the reference field in

_ A designating the new record. If the record A had been designated by

. a simple reference variable or a reference array element, zero re-

" places the reference field in A.

e.g. record sample (reference (sample) one, two)

reference (sample) R;

—

Let A, B, C, D be symbolic names for record addresses of class

‘ sample and letN be the nullreference. Suppose Example 1 represents

the situation when the garbage collector begins. Reference R 1s in-

} spected and points to record A of class n (i.e., sample). Record A is

30



ou | |

marked (first bit on). The last reference field of A (two(A)) is checked

first. Two(A) points to a previously marked record, namely A. Then

one (A) 1s tested and points to record B which 1s still unmarked. A

~ zero 1s placed in the 24 bit address field of the reference. Record

B 1s marked. Two (B) points to the record C which is unmarked. The

” address of A replaces the address of C in two(B). The process 1s re-

_ peated until record D 1s marked and its fields tested. Example 2 re-

} presents this state. A return is made up the chain until each field of

— each record involved 1s checked and until the zero field in record A 1s

encountered and changed, At this point, the result is similar to

= Example 1 except the first bit of records A, B, C and D 1s on.

Lo All references in a block are scanned before following the dynamic

| links to a previous data segment., When the dynamic link is zero, the

h— process 1s completed.

Phase (ne of the garbage collection is completed by looking at

each record. The second bit of each record is used to protect records

which have been created but not yet assigned to a reference location

J or used 1n some other manner. Therefore, each record must be scanned

— to inquire if this bit 1s on; if so, the record is marked and its

reference fields scanned as previously described.

. In Phase Two, any record whose first bit 1s not | 1S out on the

_ free list for its record class. Phase Three is integrated with Phase

Iwo. If any record page has no used records, it 1s returned to the

free record page chain. Furthermore, if the page adjoins the free

3]



re

space for data segments, the page is returned instead to the free space

- for data segments. In this case, the free record chain is checked

for record pages adjoining the free space for data segments. Those

= found are removed from the FRPC and given to the free space.

After all the storage reclamation 1s complete, the garbage collec-

tar must supply a record of the class desired. If no free record of

- the class desired exists, a new page is allocated for this record

- class and placed on the class's page chain. If no space for a new page

~ is available, execution is terminated.

— Example 1

i JER SN I I) EN I FYBN
sloln | 0 af cc
{rrrr

clofo| ~ Jal »
I EEEE

foo ~ Jof Nw

Example 2

| ENT Algofon] 0 [on] a
~~ vr

BIB dn D [nf A
I I I A

cleofoo| w |n| 8
| {fr rr 1 000

pl8foo] w Jo] w

32



B. Pass One

The output of the compiler's first pass is

= 1) a listing of the source program with each line numbered

beginning at 1,

2) a character string representing in detail the original

. source code,

. 3) a nametable, having an entry for each identifier, arranged

by blocks,

L) a blocklist table which indexes the nametable by blocks,

5) a table listing the record classes to which the declared re-

ferences are bound.

Other tables are passed on by Pass One but have significance only

~ in producing trace output in Pass Two.

Pass One makes decisions as to the size of the tables based on

the size of the core available, The algorithm used 1is

— CB = commonbase

LC = last core location available

_ cs = common size

! : cs = LC - CB;

If cs > = #30000 then CS := #18000 else CS := CS DIV 2;

NAMETABLE := CB + NT@RIGIN;

- IDDLISTBASE := ((cs DIV3 + CB + NTPRIGIN) DIV 8) *8;

REFRECBASE := IDLISTBASE + ((Cs DIV24) DIV8) *8;

IDDIRBASE := 2 * REFRECBASE - IDLISTBASE;

INPOINT := IDDIRBASE +3 * ((CS DIV 24) DIV8) *8;

PASSTWOOUTPUTBASE := (ADDRESS oF END oF Pass oNE OUTPUT) DIV8 * 8;

If the Pass Two output area 1s not at least twice as long as the Pass

One output area, a flag 1s set so that Pass Two output will be on tape.

33



a

1. Table Formats Internal to Pass One

Four main tables direct the work of Pass One. Two are intialized

- at entrance. They are the table RESERVED of the EBCDIC representations

of the delimiters or reserved symbols and the table CODE containing

= an entry corresponding to each reserved symbol. Two other tables are

partially initialized at entry to Pass One and added to during its exe-

i cution. They are the identifier directory IDDIR which has the EBCDIC
_ representation of each identifier, and IPLIST which indexes IDDIR.

The table RESERVED 1s divided into segments which accomodate the

~ ALGOL W symbols grouped (alphabetically) by length. Hence RESERVED]

contains all the symbols of length 1 such as :, =, (. RESERVED?

- contains all symbols of length 2 such as do, go, if. This arrangement
. continues through RESERVEDY containing -procedure, reference, (pce

a match 1s found in the RESERVED table, a 2-byte entry corresponding

~ to the reserved symbol 1s found in CODE. For example in Figure 3, the

corresponding CODE entry forif is hexadecimal 6401.

- In most cases, the first byte of the CODE entry represents the

_ one-byte output code for the ALGOL W symbol, This code corresponds to

the symbol number of the ALGOL W symbol in the syntactic productions

— of Pass Two. The exception to this rule occurs with the RESERVED

entries representing the simple types such as integer, real, icgical.

~ These symbols are represented in the output string by the same charac-

| ter. Instead, the first byte of the CODE entry gives the simple type

number (see Figure 1). In the example of if, 64 is its output string

representation.

24



” The second byte of %he CODE entry 1s used as an index to a case

statement. The hexadecimal value 01 means no special processing takes

place. Such 1s the case in the example cf1f, Any other value means

— that some special note must be made of this symbol such as tc enter

declaration mode or to declare a control variable. These special situ-

- ations are described ir the following pages.

tT IDDIR 1s a character array of all identifiers predefined or occur-
ring in the program being compiled. The list 1s arranged so that 1f

. only the identifiers SQRT, A, TILDA appeared, the IDDIR table would

| appear as SQRTATILDA and the irdex to he table would have a value

equal to the number of characters relevant - 1n this case, 10,

_ IDLIST indexes IDDIR by an array of full words with one entry

corresponding to each identifier. The first half word of' each entry

“— is the length of the identifier minus 1. The second half of the Rp

entry 1s a pointer to the first character of the identifier. Hence,

i in Figure 4 , the entry (b ) (5) corresponds to TILDA with the length

g specification of 4 and pointer value of 5. Also in Figure 2, note that

] IDLIST INDEX 1s a pointer to IDLIST =8.

Figure 1

a Reserved Word Tables -

RESERVED (in £BCDIC) CODE (in hexadecimal)

- RESERVED1 ( + CODEL 5506 4F01 5005

| RESERVED? Dg IF CODE2 6301 6401

RESERVED9 PROCEDURE CODE9 8515

35 | |



- Figure2
Identifier Tables .

) IDDIR : SQRTATILDA IDDIRINDEX = 10

| IDLIST (3) (0) ~ IDLISTINDEX = 8

- (0) (4)

(4) (5)

; 2. The Output String Representing anALGOL WProgram

The characters of the output string representing an ALGOL W source

_ program are the numbers which correspond to the syntactic elements in

Pass Two. For most cases, there 1s a one-one correspondence between

— the ALGOL W symbols and their codes. As an example, Figure 3% shows

that do 1s represented by hexadecimal 93. Some codes represent two

| ALGOL W symbols. These are exponentiation, '*¥*', and assignment, ':=',

and the bound pair colons, '::'., The following list itemizes the

other special situations requiring modification of the normal corre-

— spondence between ALGOL W symbols and string representation.

_ 1. The reserved words and reserved word palrs,_integer, real,

long real, complex, long complex, logical and bits receive

the code for <simple type.

2. Each identifier 1s replaced by a 3 byte code. The firs%

byte is a code for <identifier>. The following twc bytes

contain the unique identifier number, (Starting from 0).

In Figure 4, the identifier number of A would be 1.

3, Each number 1s represented by a 1 byte code for <number>.

followed 'by a 1 byte indication of the type of the number,

followed by the number.

36



:

4, Each bit sequence (e.g., #ra1ec (1n hexadecimal)), results

in a 1 byte code representing <bit sequence, followed by

the4 byte literal,

5. A comma appearing in the identifier list of a declaration or

in the record class specification of a reference declaration

receives the code designated SPECCOMMA.

6. In a reference declaration, the left parenthesis preceding

| the record class specification 1s omitted from the output

string .

7. In. a string declaration, if the length is specified explicit-

ly, the entire length specification, (number), 1s omitted

from the output string,

8. Each new card 1s indicated in the output string by a 3 byte

| code. The firs% byte specifies’new card’and the following

2 bytes give the card number.

9. The reserved word comment and all characters up to and 1n-

cluding the next semicolon are omitted from the output string.

10, An identifier following the reserved symbol end 1s omitted

from the output string.

11. A period (.) following the reserved word end is recognized
as the end of program.

57



-

_ Figure 3

Output Ccdes

” ; 70 ABS 8D RECORD 75
( 6A AND 86 RESULT 73

~ ) 67 DIV 8

: 99 END 6F  FROCEDURE 71

= 90 FOR 9R REFERENCE 68

+ TE REM 85

_ Ce TF SHL 88 SPECCOLON 6D

* Th SHR 89 SPFCCOMMA 9A

/ 8% ASSIGNMENT 9A
, 69 CASE 7R

| < 8F ELSE TA END OF FILE 92
= > 91 FILE 5C EXPONENT! 88

| 76 GOTO 9+ LINE MARK FE
- # 8E LONG 8¢

on 81 NULL 82 NUMBER T7

_ — 87 STEP qC IDENT [FIER 65

THEN 79 STRING SEQ 81

1 DO 93 TRUE 8A BITS SEQ 8E
| TF 78 SIMPLETYFE 0D

IS 7D ARRAY 6E

= OF 7C BEGIN G17
OR 80 FALSE 8B

“ SHORT oF

UNTIL 9D

VALUE 72

WHILE OE

.

38



3. The {Table _Output of Pass One

L Three tables are part of the necessary output of Pass One:

| NAMETABLE, BLOCKLIST (which indexes NAMETABIE), and RCCLIST,

L The BLOCKLIST table has a one-word entry for each block in the

| program 1n the order encountered. (Each program has a predefined
) outer block numbered 0 containing predefined symbols such as WRITE and

| SQRT.) This full-word entry is divided into two half-word fields. The

| secondfield points to the first ‘byteof the entries in NAMETABLE
corresponding to identifiers declared in the block. The first field

| 1s equal to 12 times the number of ldentifiers declared inthe block
(i.e., the length of the NAMETABLE entry for the block). If noidenti-

C fiers are declared, both fields are zero. In Figure 4, the first

BLOCKLIST entry points to WRITE and encompasses both WRITE and SQRT

— which are predefined. The second BLOCKLIST entry points to i, and

encompasses 1,j declaredin the outer block of the program. The third

B entry corresponds to the control variable i.

The entrance and exit to blocks are defined by the following

rules.

a) Each 'begin signifies the entrance to a block and the corre-

sponding endsignifies the close of the block,

b) Each statement following a <for clause> is surrounded by a

block 1n which the control variable 1s implicitly declared.
L

¢) Each procedure body is surrounded by a block in which its

. formal parameters, 1f any, are declared.
In the NAMETABLE all identifiers declared 1n a block are grouped

together, Therefore the permanent entries 1n the NAMETABLE cannot ‘be

made until the block closes. If viewed ‘oy blocks, the identifiers in

39

|



the NAMETABLE are listed in order of the closing of the blocks. In

3 Figure 4, the control variable block closes before the outer bleck and,
hence, appears in the NAMETABLE first.

| }

|

The layout and field contents of NAMETABLE are shown in Figure 5.

Pass One puts 1n only that information required by Pass Two to check
-

the semantic correctness of the program Many fields are filled by

«

eg Pass Two. The information entered during Pass One consists of the

following attributes appropriate to the variable.

L

IDNO — The number assignedto the identifier.

i - This number 1s equal to the number of
the IDLIST entry.

| SIMPLETYPE
“

TYPE

i TYPEINFO = block number of the formal parameters of
a procedure. Simple type of the argu-

i ment of a standard function.
a) Value-result

i for formal parameter
1, 1f value

| 2. 1f result
-

3, 1f value-result

b) Record class number

L for record class identifiers, the
record class number

L for record fields, the record class
number.

\

L SIMIYPEINFO - a) for string, length -1
b) for a reference, a pointer to the

8g RCCLIST.

L 40

-



~ Figured

Example of BLOCKLIST and NAMETABLE
-

4 BLOCKLIST : NAMETABLE
18 | C entry for MAIN

1 2h | 30 entry for WRITE
c | 24 entry for SQRT

qi Ay entry for i
L entry for 1

entry for J

{ entry for L

begim integer ;

J t= 0;

for i :=1. do J:= 3 + 1;

L: end.
.

Each entry of RCCLIST is a half-word which gives the IDNO of a record

to Which the reference is bound. A zero entry signifies the end of
C

the group. The NAMETABLE entry for a reference variable contains a

3 pointer to the first entry of RCCLIET for that variable,

! bk. Introducing Predefined Identifiers
To introduce 1n the compiler new psedefined identifiers such as

standard functions or standard procedures, a series of changes must 'be

4 made in Pass One.

1. The EBCDIC code of the identifier and its length must be

L added to array IDLISTFIL..

| bl



2. Two half-word entries corresponding to the identifier must be

g added to IDDIRFILL. The first helf-word is the (number of
characters -1) in the identifier. The second half-word is

1 the (sun of the preceding pairs of entries +1),
3, IDDIRINDEX must be initialized.

i L.  IDLISTINDEX must be initialized to be equal to the (sum of
| the last pair of IDDIRFILL en*ries +1).
|

a. 5. A 12 byte entry (3 integers) must be added to NAMETFILL-as
described in the description of the NAMETABLE entries

i (cf. IV.C.5),
For example the entry for ROUND 1s:

| (#0) (occooeun] (#0701=) 3- type of stahdard type of
parameter function procedure

6. BLFILL must be changed to be initialized to (#aaaa000C)

where aaaa 1s the hexadecimal representation of the (number

L of integers =3) declared for NAMETFILL)* Lk.

| T.  SYMBOLINDEX must 'be initialized to the (number of integers

- declared for NAMETFILL) ¥ L.

| ) 8. In the initialization section of the algorithm, the initiali-

— zation o:f IDDIR, IDLIST, and NAMETABLE must be corrected to

represent the length changsas,

|
C

|
|
—-

L2

L



|

\
1. Storage Allocation

i All static storage allocation for variables and constants 1s

| done by Pass Two. For this purpose a number of counters and link
tables are necessary,

| BNC contains the current block number (cf. IV.B).BN contains
the highest block number assigned so far (necessary in order to set

| BNC when a new block is entered). BLOCKLIST2 contains static links
for blocks. These are necessary to restore BNC to the current block,

: Program segment numbers are assigned by Pass Two. Each proce-
dure constitutes a separate program segment and 1s assigned a unique

number. SNC contains the current segment number; SN contains the

| largest segment number already assigned, SNLIST contains static

| links for program segments.

: The hierarchy number representsthe level of nesting of data and

| in actuality 1s the number of the base register used to access the
} data segment. HN contains the current data hierarchy number.

i DRELAD contains the address of the first free byte relative to
the beginning of the current data segment. DRELSAVE 1s a stack used

| to save values of DRELAD while parsing actual parameter lists.
| DRELPOINT contains a pointer to DRELSAVE. While a record class de-

claration 1s being parsed, RELAD contains the current address relative

| to the beginning of the record class Layout,
All addresses of variables, array descriptors, and other data are

indicated in NAMETABLE. An address consistsof the hierarchy number



-

(base register number) plus the address relative to the beginning of

the data segment (displacement). Reference variables are grouped to-

gether at the head of the data segment; other variables occur in the

order in which they are declared in a block. A location 1s allocated

for each control identifier as well,

Fields of records are given addresses relative to the origin of

the record. Field addresses are first assigned to reference fields,

) then to logical and string fields, then to other fields. The first
_ byte of the record or the two high-order bits of the first reference

(1f there 1s one) are reserved for the garbage collector.

The length in bytes of any record in a record class 1s indicated

in the NAMETABLE entry for the record class. The length is always a

multiple of 8.

Labels are given an address relative to the beginning of the pro-

gram segment 1n which they occur. The location is used for indirect

transfers.

The dimension of an array 1s inserted in NAMETABLE when the first

array designator or the declaration 1s encountered (whichever occurs

first). This information is subsequently used to compute the length

of the descriptor (and to check the number of dimensions each time

that array identifier occurs).

Storage 1s allocated in the program segment of a procedure for

descriptors of 1ts formal parameters, Descriptors of actual name para-

meters are assigned addresses relative to the beginning of the data

segment of the procedure. Space 1s allocated in the data segment for

values of the actual value and result parameters, since they are

treated like local variables while control 1s within the procedure

Lh



body. Value and result parameters of simple type "reference'! follow

all others so as to be adjacent to the local reference variables.

The first free location following the variables in each data seg-

_ ment 1s the origin of the local stack (temporary storage) for the data

segment. Its address 1s indicated in NAMETABLE for the outermost data

= segment of a procedure and in the associated begin output node otherwise.

L 2. Value Stack

The value or interpretation stack consists of 8-byte elements.

This stack works in parallel with the parsing stack.

BN |

L V1 v2 V3 vi V5

. The standard uses for the fields are described below, although

the actual uses vary with the construction being parsed.

V1 Simple type information

Val Type

V22 Simple type

- V3 Integer register count

V4 Floating register count

V5 Output pointer

When an identifier 1s looked up 1n NAMETABLE, a pointer to NAMETABLE

is inserted in V1, V2 is filled, and V3 andV4 are set to zero. When

a node 1s put in the output array TREE, the tree pointer is put in V5.

3. Interpretation Rules

Associated with each syntax rule 1s a body of code, the interpre-

tation rule, which performs the semantic actions appropriate to the

45



-

syntactic construction, The interpretation rules are contained in

procedures EXECUTElL, MECUTEZ2, and EXECUTE3 and are accessed via a

case stebement indexed by the rule number. (Three procedures rather

than one are necessary because of the addressing structure of PL360.)

The interpretation rules use the value stack for working storage,

Semantic actions and value stack layouts for major constructions of

- the language follow:

_ 1. Simple variable declaration
a. Layout 1s standard

b. Each identifier 1s located in NAMETABLE, checked for multi-

ple declaration, and allocated storage, No output is gener-

ated,

—

2. Array declaration

a. Layout

~ V1 pointer to NAMETABLE entry of first identifier

ve current block number of block containing declaration

- V3 number of identifiers

v4 dimension :

- V5 output pointer

b. The identifiers are counted, the simple types of the bound

pair expressions are checked, the bound pairs are counted,

storage 1s allocated for the descriptors, the array dimen-

sion 1s inserted in NAMETABLE for all the identifiers, and

} output 1s generated for the structure.

3. Procedure declaration

a.l Layout of procedure head

V1 simple type information (if typed procedure)

V2l type (i.e. code for procedure)

vez simple type (if typed procedure)

v3 & v4 current DREIAD of procedure head (mark, descrip-

tors, etc.)

V5 output pointer

46



a.2 Layout of procedure body

V1 simple type information of expression (if typed

procedure)

ve 0 -

v3 & v4  DRELAD of procedure body

V5 output pointer

hn b. The counters and pointers are stacked, storage 1s allocated

for the descriptors of the formal parameters, record class

— masks are constructed for reference parameters (cf. IV.C.4),

the relative origin of the label transfer table 1s computed,

_ the simple types (for a typed procedure) are compared, the

output for the procedure and the literal table aregenerated,

the counters and pointers are restored, and the output 1is

(optionally) listed.

4. Record class declaration

a. Layout

V1 pointer to NAMETABLE for current field

ve current RELAD

v3 & v4 not used

V5 pointer to NAMETABLE entry of record class identi-

fier

b. The identifiers are located 1n NAMETABLE and checked for

multiple declaration, storage 1s allocated for the record

class identifier, relative addresses are assigned to the

fields and the number of fields 1s inserted in the NAMETABLE

entry for the record class.

5. Substring designator

a. Layout 1s standard

b. The simple types of the simple variable, the index expression,

and the length are checked, the length 1s checked against the

length of the simple variable, and output 1s generated for

the structure.

47



6. Field designator

a. Layout 1s standard

b. The simple type of the reference 1s checked, a check is made

that the reference expression can point to a record of the

- record class containing the field, and output is generated

for the structure.

) 7. Array designator |
tH a. Layout (replaced by standard layout after structure 1s parsed),,

= V1 pointer to NAMETABLE

vel number of *'s

- vez number of subscripts remaining, #FF if dimension

unknown

V3,V44,V5 standard

b. The subscripts are counted (in NAMETABLE) 1f dimension 1s not

already known; otherwise the number of subscripts 1s checked

against the dimension The simple type of each subscript

1s checked, register counts are computed, and output 1s gener-

ated for the structure,

8. Function designator and Procedure statement

a. Layout (replaced by standard layout afterstructureis parsed),

V1 simple type information (1f typed procedure)

vel contains #FF if too many actual parameters, number |

of parameters yet to come otherwise, |
vee simple type (if typed procedure)

v3& v4 pointer to NAMETABLE entry of current formal para-

meter 1f it is actual procedure, C if it is formal

procedure

V5 output pointer

b. If the procedure 1s not formal the number of parameters and

their types are checked, output for the structure is gener-

ated.

48



} 9. If expression

| a. Layout 1s standard

= b, Simple types of then expression and else expression are
checked for type compatibility, type conversion 1s indi-

— cated if necessary, simple type of expression in if clause

1s checked, output 1s generated.

10. Case expression

a. Layout

- V1 simple type information

v21 number of cases

. va2 simple type

V3,V4,V5 standard

b. Simple type of expression in case clause is checked, cases

B are counted and simple types are checked for compatibility,
register counts are adjusted, output 1s generated.

11. argumentl [=, >=, <, <=, >, and, or, +, -, *¥, /, shr, shl, div,
rem, **] argument?

a. Layout 1s standard

b. Simple types of arguments are checked, type conversion 1S

indicated where necessary, register counts are adjusted,

orderof compilation is indicated, and output is generated.

) 12, [ =, =» long, short, abs] argumentl
’ a. Layout 1s standard

o b. Simple type of argument is checked, output is generated.

13. Record designator

a. Layout (replaced by standard layout after structure 1s parsed).

V1 pointer to NAMETABLE entry for current field

v21 number of fields

va2 record class number

V3,V4,V5 standard

b. The number of fields is checked, the simple type of each field

1s checked, conversion 1s indicated 1f necessary, register

counts are adjusted, and output 1s generated.

49



14,  Blockbody

a. Layout

V1 not used

ve 0 if no declarations, #F if enclosing block of pro-

cedure body (with declarations), #FF otherwise

v3 & v4  DRELAD of surrounding 'block

Vo output pointer

b. At begin BN, BNC, and HN are stepped, V2 and DRELAD are

— set, storage 1s allocated for reference variables, and record

i} class masks are constructed (cf. IV.B.4). At end, DRELAD

and HN are restored. Output is generated for structure.

15 . Label definition

- a. Layout 1s standard

b. Storage 1s allocated for transfer, SNC and HN are inserted

in NAMETABLE, output is generated.

16. Assignment statement

a. Layout 1s standard

b. Simple types are checked for compatibility, register counts

are adjusted, order of compilation is indicated, output is

} generated,

17. Case statement

] a. Layout 1s same as for case expression.
) b. Cases are counted, output 1s generated.

18. For statement

a. Layout 1s standard

| b. Simple types of expressions are checked, storage 1s allocated

for control identifier, output 1s generated.

) 19, While statement
a. Layout 1s standard

= b. Simple type of expression in while clause 1s checked, output

1s generated.

50



L. Pass Two Tables

= Pass Two completes NAMETABLE and creates literal tables.

The information entered in NAMETABLE consists of those of the

following fields appropriate to the variable, For field contents and

- table format, see Figure J.

Hl 1. IDLOCL

2. IDLOC2

3. SIMIYPEINFOQO

a. for a record class identifier, the record length 1s in-

serted

b. for a reference, the pointer to RCCLIST (a list of record

classes to which the reference may point) 1s replaced

by a 16 bit mask in which each bit position represents

a record class and 1s a 1 1f the reference may point to

records of that class.

4. TYPEINFO

a. for a label, the hierarchy number 1s inserted

= b. for an array, the dimension 1s inserted

- Cc. for a record class identifier, the number of fields 1s

. inserted.

| 5. TYPE
LO.

a. for a formal value/result parameter, the TYPE code is

replaced by the code plus 16.

Two tables to handle literals are constructed for each program

= segment. The literal table contains all literals (numbers, literal

strings and bit sequences) occurring in the program segment. At run-

time 1t 1s located before the program segment code. The literal pointer

51



table 1s used by Pass Three and contains the simple type, the length

“ (Lf the literal 1s a string), and a pointer to the literal table for

: each literal. The integer 1 and the logical values occur in every

i

- literal table. Pass Two uses the stack CONSPOINTERSTACK to save the :
b

pointers to these tables when a nested program segment 1s parsed.
L_

N Figureb
FORMAT OF NAMETABLE AND FIELD CONTENTS AFTER PASS TWO

— 12 bytes/entry

\

- IDIjoC IDLOC2
hierarchy prog seg

- SIMTYIEINFO TYPINFO dimen

| ee o_o love | Teel number

TYPE SIMPLETYPE No

FIELD KIND OF ENTRY CONTENTS

IDLOCL simple variable hierarchy number

label program segment number

) array hierarchy number

procedure origin of local stack

record class identifier hierarchy number

record field hierarchy number

control identifier hierarchy number

standard function simtypeinfo of argument

formal parameter hierarchy number

_ IDLOC2 simple variable relative address
label relative address

array relative address of des

scriptor

52



TT EI,

“

FIELD KIND OF ENTRY CONTENTS

“ record class identifier relative address

record field address relative to ori-

| - gin of record
= control identifier relative address

formal parameter relative address of de-
C scriptor or value/result

y hierarchy procedure hierarchy number

i} Prog seg procedure program segment number
S IMTYPEINFO string length -1

) reference record class mask

= record class identifier record length

TYPEINFO label hierarchy number

Bh procedure (not formal) block number of formal
parameters

dimen array dimension

rcclnumber record class identifier record class number

vr record class identifier number of fields

formal parameter 1 1f value, 2 1f result,
3if value/result

standard procedure vr for parameters

TYPE simple variable 0

label 1

array 2

| ) procedure 3

record class 4

record field 5

control identifier 6

standard function (

“ standard procedure 9

formal name parameter 16+ TYPE number

- SIMPLE TYPE integer 1
real 2

long real 3

} complex 4

93



“

FIELD KIND OF ENTRY CONTENTS

C long complex 5

logical 6

string ” 7

bits 8

reference 9

NOTE: The SIMIYPEINFO entry for a reference variable and the

. TYPE entry for a formal value/result parameter are
changed from their contents at the end of Pass One.

The tables PRTB, MIB, and MATRIX: are used by the syntactic ana-

lyzer and are initialized upon entry to Pass Two. MATRIX contains the

| simple precedence relations of the ALGOL W (simple precedence) grammar
(cf. Appendix 2). The array is packed two bits per entry. PRTB con-

L tains the productions of the simple precedence grammar grouped SO

that all productions having the same leftmost symbol of the right part

are together. The format for a production is the following

production: I, vo= R. R_ ... R 1"tT TL Te n <n<5

representation in PRTB (one byte per entry):

. n-1

— Ry

Ry,

R
n

L

production number

The sympol #FF indicates the end of a production group, MTB is
an index to PRTB. The entry for a given symbol indicates the beginning

54



3

of the group of productions of which that symbol 1s the leftmost symbol

~ of the right part.

METATABLE contains the EBCDIC representation of the symbols of the

simple precedence grammar and 1s used for printing out the parsing

stack. OPTABL contains the EBCDIC representation of the Pass Two

| output nodes and 1s used for printing out the tree. Both tables are

initialized upon entry to Pass Two

5. Output of Pass Two

Each element of the output string TREE consists of a four-byte

word with the following format:

| oe | cow | rom
SWITCH

SWITCH is on (1) if the right subtree is to be compiled first and off

(0) 1f the left subtree 1s taken first. Conversionof arithmetic type

may be indicated in the source program implicitly, by mixed-type ex-

. pressions, or explicitly, by the operators long or short. In either

case, the simple type to which the expression 1s to be converted 1s

indicated in CONV. For a terminal node POINTER points to NAMETABLE

or the literal pointer table; for a nonterminal it points to the last

node of the first subtree.

5ka



|

Example

program fragment and tree — previous example (cf. III.D.6)

output substring:

SWITCH OP CONV POINTER

FUNCID points to table entry for F

| VARID points to table entry for B
EE

a NUMBER points to table entry for 5 AEE
| VARID points to table entry for C

- VARID points to table entry for D

HEE

. Oo -an | '
LABELID pointer to table entry for X

orm 1 .

A separate tree 1s generated for each program segment, with output

pointers relative to that tree, The output for each program segment 1s

of the following form:

| | | pointer to end of tree AN
| erococ | pointer to NAMETABLE

. (tree for procedure body)

PCL pointer to PROCDC

Origin of literal table

Length of literal pointer table

Literal pointer table

Length of literal table
Literal table

55



|
{ |

|

hue |

Figure 6

OUTPUT VOCABULARY

o I. Binary Operators

conversion :
. 1first

OP1 bits pointer to | argument
tree

switch

Where OPl can be one of the following binary operators;

OPERATOR CODE REMARKS

I 1

2

/ 4

¥*¥ 5 exponentiation

I s= § logical assignment

_ A = 7 arithmetic assignment

S = 8 string assignment — conversion field contains
string length

R = 9 reference assignment = no conversion

STEPUNT IL 12

DIV 13
: REM 14

< 15°

< 16

> 17 conversion bits indicate length for string

y 18 comparison
= 19

y 20

L = 2 22 multiple assignment

A= 2 2%

S += 2 oly

R i= 2 25

56



=

| a nversion _.oP2 | at * | pointer to|; first argumentL its

(left branch always processed first)

(conversion field may contain-string length for string arguments)

OPERATOR CODE REMARKS

AP) 29 Indicates end of actual parameter list. Con-
version bits indicate conversion of result

of function call.

INDX 30 Indicates subscripting operation. Conversion
bits can occur only with last such operator

and 1ndicate that resulting array element
must be converted.

REFX 31 Indicates computation of field (lst arg.) of

_ record reference (2nd arg.).

IFEXP 2 Indicates that label should be issued for end
of 1f exp. and unconditional jump patched.

Conversion bits indicate that resulting ex-
pression must be converted,

PCL 39 Indicates end of procedure declaration.

SUBSTRING 40

(l | OP3 | pointer to first argument
tree (no conversion)
switch

OPERATOR CODE REMARKS

SHL 35 left shift

SHR 36 right shift

S57



[ OPL | | pointer to first argument |
(no conversion: left branch always processed first)

OPERATOR CODE REMARKS ~

BB bY indicates end of declarations, beginning of
blockbody.

END 38

I 41

Hl AP, 42 for actual parameters
+ R, L3 for record designators

| AR, 44 for array declarations

d AR) 45 indicates end of array declaration
R) 46 indicates end of record designator

| LAGER 47 indicates @R of logical arguments
BIT@R 48 indicates ¢R of bit sequences

| LPGAND 49 indicates AND of logical arguments
BITAND 50 indicates AND of bit sequences

ITERST 51 indicates generation of transfer to iteration

= test (for WHILE st and simple F@R st)

| ITERSTZ2 52 indicates generation of transfer to iteration
test (for PPR st with FPR list)

FPRLIST 53

| FR CL 54 links control assignment and STEPUNTIL
ENDF@RLIST 55

UJIFEXP 56 indicates unconditional jump in IF exp

UJ 57 indicates issue jump to end af case list or
IF st. (to be patched)

CL 58 indicates label should be issued for end of

CASE st and jump addresses patched

IFST 59 indicates label should be issued for end of

IF statements and jump addresses patched

os 60 array bounds COLON

IS 61

’ 63 indicates N@gP (statement separator)
WHILEOP 64

WHELEST 65
IFJ 66 indicates issue jump on condition false to

end of IF exp. or IF st.

58



II. Unary Operators

0 conversion |£2 bits |

Where OP5 can be one of:

3 UMINUS 67 unary minus
ABS 68 absolute value

OP6 |

| Where OP6 can be one of:

| OPERATOR CODE REMARKS
: Lge = T1 negation of logical value
] BIT — 72 negation of bit sequence

A 73

| gE 74
GPITS 75

76 label COLON

STACKADDR 77 argument is local stack origin for implicit
. subroutine (statement parameter)

.

ARD(79) source card !number
| unary operator for

: : ——— BEGIN, PROCDC, ARRAYDC,
© JcASE(80)( Simple | ","

| type number of cases
(if expr. |

59



|

—

III. Terminal Nodes

 EGIN(83) | block no. local stack origin |;

block no. and local staek origin

occur only 1f begins data seg-
ment

RSE integer value(85)

NUMBER conversion

(86) Ea to constant table
X1 CONVELSION ,hinter to NAMETABLE

bits

Where X1 can be:

- TERMINAL CODE REMARKS

ID 87

LABELID 88 no conversion

| ARRAY ID 89 no conversion

FUNCID 90 no conversion 1f proper procedure

RCCLID 91 no conversion

L FIRLDID 2 no conversion

CONID 93

N PROCDC 95 no conversion (procedure declaration)
RCCLDC 96 no conversion (record class declaration)

sea(9n)| program segment number
indicates program segment

occuring in outer segment.

60



| X2 [conte to constant table
Where X2 can be: }

TERMINAL CODE REMARKS

BIT 98

STRING 99

TRUE 100

- FALSE 101

EN
here X3 can be:

TERMINAL CODE REMARKS

IF 111

WHILE 102

NULL 103 indicates undefined reference

NULLST 104 indicates empty statement

ARRAYDC 105 array declaration

AR¥ 106 indicates dummy array subscript

| Xh conversion pointer to;NAMETABLEbits |

Where X4 can be:

TERMINAL CODE REMARKS

STFUNC ID 107
STPROCLD 108

61



- TOR RE TT —— EE.

C

D. Pass Three

-

1. Register Allocaticn

= Code generation for arithmetic operations involves the knowledge of

] which registers are occupied and where each partial result 1s held,
\ Temporary storage must be provided for dumping partial results from
1 registers into main memory when either too few registers are available

- or a subroutine call 1s made. An even-odd pair of general regis-

ters 1s required for integer multiplication and division.

| All the floating registers are available for arithmetic, Some of

the general registers are reserved for special purposes, The compiler

variable CLN always contains the number of the lowest-numbered base

register in the current program segment. All lower-numbered general.

- registers are available for arithmetic with the exception of RO and Rl,

and R2 in iterative statements.

The compller uses two half-word arrays R and F to indicate which

N registers are occupied, To each general register which is free corre-

. gpondsa flag equal to 0 in the array R.A non-zero flag indicates

the register 1s occupied, The array F serves the same function for

the floating registers.

Partial results are located by referring to ILSTACK. Fach current

C partial result, whether value or address, has an entry in LSTACK.

These entries have the following formats:

on8 12 16 31

62



:

01 16 20 51

In (1), N, is zero except for one case: a complex value is in the

floating registers Nl and Ny. N, 1s the number of either a general

} or floating register, and bits 16-31 are interpreted as a base with

N displacement address.

} In general, a procedure call involves dumping all partial results,

” Also, one or more partial results will be moved from registers to main

| memory when ashortage of registers occurs. Each quantity dumped must
have its LSTACK entry changed to indicate the new location. Thus

L pointers to the LSTACK entries indicating registers are required.
These pointers are 1n two arrays, FSTACK for general registers and

FSTACK for floating registers. Fach RSTACK entry consists of only the

| displacement field, for indexing LSTACK. Each FSTACK entry has this
| index and two other bits of information: pit 0 is on for type real

~ and off for type complex, and bit 1 is on only if the quantity is not

: long. Complex values are never split between a register and a memory

call; either both real and imaginary parts are in registers or both

| —are 1n memory.
A procedure call requiring the saving of registers causes the

necessary store instructions to be generated, all corresponding LSTACK

entries referenced via RSTACK and FSTACK to be updated, and RSTACK

and FSTACK to 'be emptied. During Pass Three R2 always points to the

next available word in RSTACK and Rk similarly for FSTACK. The pro-

63



cedures DUMPALLGENREG and DUMPALLFLREG carry out these functions.

When one or two registers are needed @or partial results and

are not avallablie; one or two registers 'holding the currently oldest

= partial results are stored, This involves updating at most two LSTACK

| entries, The relevant RSTACK or FSTACK element(s) are eliminated,

| and all elements above are moved down. The currently oldest partial

- results in registers are thus always referenced via the bottom entries

of RSTACK and FSTACK, The procedures DUMPGENREG, DUMPFLREG, and

- DUMPFRFLREG generate the store instruction(s) and do the necessary up-

| dating, N

When a register or pair of registers 1s needed, the appropriate

_ register request routine is called and is one of the following:

GENREG, PRGENREG, FLREG, or PRFLREG. This routine scans the R or F

array to find, if possible; the required single register or pair., If

necessary, it will call the appropriate save procedure as described

above., Having determined or created the requested register(s), the

“ procedure will flag the appropriate element(s) of R or F, set up

the LSTACK entry at the top of the stack, and create the appropriate

RSTACK or FSTACK entry, A register release 1s performed by either

RELEASE or ZRELEASE.

In certain cases of inputs to binary operations, an adjustment

must be made in the top pointer value of either RSTACK or FSTACK.

Consider the situation below just before code 1s to be generated for

an add operation,,

Gl



_

| RSTACK LSTACK
-_

= ADDR
. 11 [wn

i
t

-

It 1s only necessary to generate one ADD instruction to add the con-

~ tents of memory location ADDR to register N. Afterwards, the situa-

| i tion must be the following.

RSTACK LSTACK

1w|

The pointer at the top of RSTACK must be decremented to point to the

= new top of LSTACK, Whenever this is necessary, procedure ADJSTACKS

1s called.

Procedure ASSEMBLE, though used in many parts of Pass Three, was

_ designed primarily with arithmetic instruction generation in mind, It

] accepts as inputs registers holding two LSTACK-format entries, one of

them also holding the second half-byte of the instruction code in

bits 4-7. The third input contains the type, From these the routine

can determine the first half-byte of the instruction code and build

. each field of the instruction.

2. Block Entry

\ There are four purposes of block-entry code: First, the data

” stack pointer, a system cell called MP, must be updated. At any given

65



-

|

time, MP contains the base address of the most recently created data

segment.

Secondly, space must be allocated in the data stack for the data

segment to be created.

Thirdly, the block mark must be built and placed at the base of

the data segment.

: Finally, the local display must be set to reflect the accessibi-

lity of all variables which can be referenced within the block.

— The total amount of storage to be allocated for the data segment

1s not known when Pass Three encounters a block. Pass Two calculates

the static amount of storage required for the block mark, local display,

3 and local variables and array descriptors. This information is given to

Pass Three. However, during compilation of the block body., registers

. with partial results may need to be dumped due to procedure calls, etc.,

and the amount of storage required for this purpose, called the local

stack, 1s not known until the block 1s compiled. Hence at the end of

_ compilation of the block the instruction which specifies the total

amount of data storage required for the data segment 1s fixed up; and at

execution time the total amount of data storage needed 1s correctly given.

Since the display registers are allocated statically downwards

from R13, the base register to be used for the data in the block being

entered 1s nutn'bered one less than for the enclosing block. The display

for the block 1s then identical with the display for the enclosing

block with the addition of the display entry for this block.

The code for block entry 1s given below: n 1s the number of the

register which will be the base of the data segment for this block.

66



Lk

IR 2,n+1 R2 = base of data segment of enclosing
block

L 6,FP(2) R6 = free pointer in enclosing data
| segment

- A 6,=T = base of new data segment

N 6,X' FFFFFFF8? set data segment on a double word
boundary

—

LA 0,length(,6) length is the total amount of static
3 storage needed for this data seg-

ment = fixed up at block exit,
— RO = new FP

BAL 4 ,ALL.OCERR see discussion of error code (Sec. IV.A.6)

“. LA 3,X see discussion below

LA h,Y see discussion below

STM =~ 0,4,0(6) RO = FP

Rl = not used in block mark

R2 = dynamic link

R3 = REFVAR

Ri = REFARY

ST 6, MP update stack pointer

LR n,6 R6 = Rn = base of this data segment

- STM n,12, 20 €,6) store local display (if n=12, then
ST 12, 20(,6))

” In the instructions

LA b,Y

= X 1s the relative address of the first reference variable declared in

the block, and Y 1s the relative address of the base of the first

reference array descriptor declared in the block.

. After all code producing declarations (e.g. array declarations)

have been processed, MVI instructions are used to insert the number of

= reference variables and number of reference arrays 1n their appropriate

67



0 3

od S } . 3 g
> H e) = 3 ~ a3 = BE oO “0

5 gp § § 5 8 g 8&8
. 3 3 a. & = - o ® >5 o ~ a J c+ on J & =+ I= a= o ~ = FE 8] : 2 > H S E pL 0)t= D AN x ” ” : -) SIR = ® 5 : P 5 < 3 >: = g n >< o an O\ 8 He rd ©" & gb : :| 5 ° — lo) MA o HNO jo a ne a 0 :i») fd = j . :: : i” sn 7) =

- > po TH = ® a :es A y 5 @® td “ 0 E 0 : -2, : : 3 2 es 0 fs sS le) j== 75 = Hoe = = 5 © 5 3 :; 2 DE 8 PZ iS! O 0 & OON , / Ho aR = & ® = :oo a =] ct BoE 3 - ; ;2 = e bh +S t= o iL ow x x5 > RA Si = x O & oO Ww Qo C o; 2 HQ = A = 3 < :+ ct oe 0 ct 5 ) :3 3 @ QO Ho ® 5 :+ 0) D 5208 c :: @ to 0S id ® aHey |W o -
oo 57 3 : S- 5+ ep on . ~ : hitn Q = 3 : :7 oO be E :’ 5 ch 79] oOZ SE :0 o > o ;2 3 6 Ng A 7- J jb N :2 8 o - ) :7 & 3 ; g00 © :co + + i; A ;He 0) a ][eo] = o := @ 2) 5m = 3 g ;

ks A @ =® ® :
: mn o, aHo 0: 0he] a



|

Blocks without declarations have the fcllowing tree:

N
END

. carn’ atone

B The pointer field p in the node BEGIN 1s the amount of data storage

required for the block, with the exclusion ¢f the lonal stack, except

- for the outermost 'block of a procedure whose data segment 1s merged

=~ with the procedure data segment. In this case, the p-field in the

node BEGIN is 0 and the amount of storage reguired for the combined

} procedure-block data segment is given in the NAMETABLE entry for the

“ procedure,

The second byte in the node BEGIN is a pointer (by 1's) to the

or BL.OCKL.IST table. Hence, the NAMETABLE entries for the variables and

arrays declared in the block can be scanned., and the count and start-

- ing addresses of the reference variables and array-s can 'be obtained
for the incluglon in the blcck mark.

. The node CARD n is explained in a following section {zf.IV.D.23).

The purpose of the code emitted for block exit is to reset MP to

the base of the data segment for the block tc which control is being

returned .

_ The tree output of Pass Two for block exit is the same part of the

tree used for block enbtry. It is encountered again after all state-

ments in. the block have been processed. Compound statement exit and

69



block exit are distinguishable, as 'before, by the presence or absence

of the tree node BB.

Code emitted for a block exit 1s as follows: n 1s the number of

the register which holds the base of the data segment corresponding to

the block being exited.

LL L 1,DL{,n) Rl = dynamic link (field mark block)
| = base of data segment of block re-

turning to

» ST 1,MP Reset data pointer stack

4. Procedure Statements and Typed Procedure Designators

| The tree output for procedure statement and function designator

= parameters (n > 0) 1s as follows:

/N
- AP, tree for

/ \ parameter #n
4 tree for

/ parameter # n-1
AP,

- tree for
parameter # 1

FUNCID(t)
|_—

The pointer fieldt of FUNCID is a pointer to the NAMETABLE.
_

70



I

The tree for a proper procedure without parameters 1is:

- J FUNCID(t)

The tree for a typed procedure without parameters looks just like

an identifier except that the terminal node is FUNCID(t) instead of ID(t).

The code generated for a proper or typed procedure call, with or

- without parameters, is as follows where m is the number of the regis-

ter which holds the base of the data segment corresponding to the

block in which the called procedure was declared:

LR >, R5 = base of data segment from which
display will be updated in pro-

~ cedure entry (after parameters
are established)

L 15, base of procedure

BAIR 1, 15

L 15, base of current

procedure

B SETDIS

SAPD!s

f. .D.- Subroutines (c IV.D.5)

. SETDIS IM n, 12, 20(2) Reset the display =
| R2 = dynamic link loaded at procedure

exit

= base of current data segment

n 1s the number of the general register holding the base of the

data segment for the current block. If n=1%, the IM instruction is

cmitted .

71



Fe
Lo

Callof a Formal Procedure

The following code 1s emitted for the call of a formal procedure:

IM 4,5,DPD Rit = address of subroutine (cf. IV.D.5)

LA 0, number of actual

parameters
|

L 15, CHECK

3 BALR 1, 15
— L 15, base of current

procedure

_ B SETDIS

SAPD'S

Subroutines

SETDIS IM n, 12, 20(2)

The CHECK routine checks actual-formal correspondence, since this

checking cannot be done at compile-time, Actual parameter descriptors

are obtainable via Rl (the 2nd-4th byte of each SAPD). Formal para-

meter descriptors are in the head of the called procedure (SFPD'S).

Et contains the address of the subroutine which will call the procedure;

therefore there 1s an instruction in the subroutine of the form

L 4, base of called procedure .

The CHECK routine locates this instruction (via R4), executes it

and then checks actual-formal correspondence.

The CHECK routine saves Rt and R5, and ends with

BCR 15, Lk ;

72



5. Procedure Entry

The tree produced 'by- Pass Two for procedure entry is:

PCL

a\
PROCDC(t)

The purposes of procedure entry code are almost those of block

) entry code, and for this reason the codes will be quite similar.

The additional requirements of procedure entry are those of set-

ting up dynamic formal parameter descriptors, evaluating value para-

meters, and the more complicated manner of setting up the display.

At procedure call (ef. IV.D.4), R5 holds the base of the data

segment surrounding the deciaration of the called procedure. This

data environment is precisely that which should be valid while the

procedure 1s 'being executed. *Therefore the display of this surround-

ing 'block plus the display entry for the called procedure constitute

the display while executing the procedure.

73



! Procedure entry code 1s as follows: Bn will hold the base of the

data segment to be created.

L 2,MP base of calling data segment

L 6,FP( ,2) R6 = base of new data segment

LA 0,length( , 6) add in required storage. RO = new FP.

BAL 4 ,ALLOCERR check to see that allocation is valid

i LA 5X (Note 1) {cf.IV.A.6)
= LA b,x

| STM O,4,0(6) store procedure markST 6,MP update stack pointer

| [sarp +.DPD operations |
LM n+l,12, 20 (5) (Note 2) update the display

LR Nn, 6
Ek

STM n,12, 20 (6) (Note 3)

| DPD # PV operations

Note i: X is the relative address of the first reference value/

regult parameter; or if there are no value/result parameters, X

1s the relative address of the first reference variable local to

the block whose data segment 1s merged with this procedure's data

segment ; or 1f there are no reference value /result parameters and

no local reference variables or no block, then X is 0.

Y 1s the relative address of the first reference array de-

scriptor in the block whose data segment 1s merged with the pro-

cedures data segment If there are no reference arrays or no

block, then ¥ is C.

MVI instructions are used to place the number of reference

vaiue/result parameters and local reference variables, and the



rm EE amansy

number of local reference arrays:, into the fields REFVAR and REFARY,

respectively, in the procedure mark.

| Note 2: This instruction is omitted if n = 12.

If n = 11, the instruction becomes L 12, 20 (,5)

Note 3: If n = 12, then th is instruction becomes ST 12, 20 (,6)

N Notice that 6 < n < 12.

SAPD's — Static Actual Parameter Descriptors and Subroutines

The calls of procedures without parameters have no SAPD's or sub-

routines corresponding to them, and the reloading of R15 to the base

of the current program segment is immediately followed by the resetting

of the display at procedure call {zf. IV.D.k}.

For procedures with parameters,? each parameter has associated with

it one SAPD of 8 bytes. According to different forms of actual para-

meters, different SAPD's are established. In general, an actual para-

meter is represented by a subroutine, and the SAPD gives the address

of that subroutine, If the parameter is an identifier, the SAPD con-

tains the address of the identifier. Note that addresses of subrou-

tines are given relative to the instruction

L 15, base of current program segment

- immediately following the instruction BAIR 1,15 1n procedure

© call,

) The Pg bits in the SAPD define the character of the actual para-

meter . 2 specifies whether a subroutine exists or not:

75



P=1 : s@ccessto parameter involves a subroutine call

P=0 ¢ no subroutine call

Q specifies whether the parameter may occur in the left part of an

assignment statement:

Q=P ¢ assignment is possitie

G#P : assignment not possible

The type information field of three bytes is used only by the CHECK

) routine when a formal procedure is called.

- PQ |

{dentifier I address of id
.

constant; expression Il type address of subr.
or statement ZA 3, subr(l data base

TIT address of subr
rocedure - =

P A 3, sum (1)

subscripted variable IV address of subr.
or field designator IA 3, subr(l

. | v | Copy of DED |formal parameter po —
| P IM 3.%,DPD (xn

The implicit subroutines corresponding to parameter types IT

g (expressions and stabements) and IV create data segments of hierarchy

| level one less than at the point of procedure call. The format of

. these data segments is like those created by blocks except that for

implicit subroutines, there are no local variables.

76



Implicit subroutines corresponding toconstantsarcasfollows:

L 15, base of segment

in which ccnstant

_ table lies

L 2 ,MP set R2 for return

LA 3, address of
= constant (15)

BCR 15,1 this subroutine branched to via Rl

Lo

} Implicit subroutines corresponding to proper procedures and all typed

— procedures are as follows:

L L, base of called procedure

L 5,=F'(X-CIN+1)*¥4' (5) where
| X = hierarchy # of called
— procedure

CLN = current hierarchy

number

= BCR 15,15

- The purpose of this subroutine is to set RS correctly. Recall that RS

will be used as the base to update the display in the entry code of

= the called procedure . RS cannot be set correctly at the point of men-

) tion of the formal name parameter corresponding tc the procedure for

which this subroutine is set up in certain recursive procedure call

- situations .

Notice that the subroutines given above do not set up a data seg-

= ment of their own.

All string routines (i.e. string procedures and implicit sub-

routines returning the results of string procedures) are exited with

the address of the resulting string in R3. For some string routines

I



the string itself may 'be in the data segment of the string routine.

When the routine is exited, the data segment is released, and the reo-

sulting string may thus be destroyed if another data segment is allo-

cated before the string (whose address is in R3) is used.

This situation arises for typed procedures cf types other than

a string, but the manner of compiling expressions of these types insures

N that the result of the typed procedure will Se used (i.e, citherplaced

in a register, added to an accumulating sum, compared, etc. before

any new data segment could be created.

This is not the case for strings.

Hence, to 1nsure that the string which 1s the result of a string

Co routine 1s not lost, the string must be moved to a data segment which

cannot possibly be 'released, until the string is used. In the case

under discussion, the string must be moved into the local stack of the

data segment at the point of call of the string routine.

In the description of the DPD's (to be discussed presently), the

C address and data base fields are absolute ccre addresses. The data

base field is the base of the data segment of the block in which the

— procedure call occurs . This field is used as the base from which to

ipdate the dispiay when executing implicit subroutines cr procedures
o

corres pond ing to the mention ¢f the corresponding formal parameters.

_ The byte ST 1s the simple type of the actual parameter (0 for

proper procedures aud statements) and is used for type conversion for

va lue/re sult parame ters , Kecall that all name parameters must match

aexget ly 1n type .

implicit subroutines which 'have wvalues are so constructed. that the



address of the result 1s returned.

SAPD+ DPD Operations

SAPD ¢ Static Actual Parameter Descriptor

DPD : Dynamic Parameter Descriptor

The SAPD = DPD operation consists of eneveluation of the static addresses

given in eech SAFDat procedure call, and the transmission of the type infor-

mation about the actual parameter including the *wo-bit code (PQ).

- If the actual parameter 1s a formal parameter? the DPD must be copied.

Each DPD 1s eight bytes wide and there is a l-1 correspondence between

~ SAPD and DFD. The possible formats for the DPD's are given in the

section discussing the SAPD's.

The code for producing the DPD's 1s as follows:

) Let a = address of DPD to be created (using R6 as base = see, pro-
cedure entry code)

“ b = address of SAPD (using Rl— see procedure call code)

LR L,2 dynamic link = data base for DPD

EX 0, b+: executes instruction in SAPD. For all
types except V, this loads R3 with

address of procedure orf implicit sub-
routine.

for type V, (actual parameter is formal
parameter), this loads DPD of formal

_ parameter into R3 and Rk.

STM 3,4,49 store DPD

gc a{l),b establish PQ bits

MVC  ath(1l),b+3 establish ST field

79



DPD * PV Operations
-

As stated in the report, each value parameter ‘is evaluated and its

. value is stored in the procedure's data segment, Any further occurrence

of the parameter uses the parameter value (PV).

-

Since, by definition, arrays are always passed by name, the DPD

1s used to obtain the address of the actual descriptor, which 1s thexn

copied into the data segment of the procedure. The DPD may or may not

“ require a subroutine call to obtain the address of the descriptor,

- depending on whether or not a sub-array 1s being passed. Any further

= occurrence of the array parameter uses the copied descriptor, the

parameter velue (PV), to compute the addresses of the array elements.
C Z

| 6. Procedure Exit ;
“

Because of the tree scanning mechanism in Pass Three of the com-

piler, typed procedures with parameters and typed procedures without

parameters are detected as requiring a procedure call at different

— places in Pass Three. For this reason, the mode of returning the

result 1s different, |

Por typed procedures with parameters, the result of the procedure

1s returned in a register, depending on the type, as follows:

integer R3
-

real FO

Long real FOP

= complex FO-F2

long complex FO1-F23

C bits R3%

reference R3

logical R% (address of result)

string . R% (address of result)

80



ee

-

For typed procedures without parameters (which include implicit

i. subroutines which return values), the address of the result 1s returned

| in R3. .
-

The addresses of the actual parameters corresponding to result

3 parameters are evaluated and a validity check 1s made to be sure that
” the actual parameter can be stored into. The type of the result is

L convertedif necessary and the result 1s stored.

” The code emitted for procedure exit 1s as follows:

IM 1,2,RA(n) Rl = return address

_ - R2 = dynamic link
ST 2 ,MP

BCR 15,1

N Notice that upon return, the display is updated from R2, set
correctly here 1n procedure exit.

f. Formal Parameters 1n Expressions and Assignments

Reference to a formal n&e parameter requires testing whether a

subroutine call 1s necessary, or whether the descriptor (DPD) already

’ contains the absolute address of a variable. Furthermore, a validity

- test 1s performed 1f an assignment 1s to be made to the formal para-

- © meter.

81



f

-

The code emitted for a formal parameter 1n an expression 1s:

™ DPD(n),X'02° test P-bit

Y BC 1,X branch if P=l, i.e. must call subr.

- L 3,DPD(n) “no subroutine, R3 = address of id

BC 15,7

_ x L 5,DPD+4 (n) R5 = data base = base to update dis-
play inside subroutine or procedure

3 L 15,DPD R15 = base cf subr. or procedure

~ BCR 15,15

L 15, base of current

| program segment
L_—

IM n,12, 20 (2) reset display

| <Z
- .

At Z,R3 has the address of the formal parameter, and its value

1s easily obtained. .

o . Value parameters are referred to only once as shown abeve, in the

f DPD = PV operations. If the type of the value parameter is arithmetic,
{
(-

a call to a system routine which converts the actual parameter if

| necessary and stores the result in the formal value location 1s placed

at the label Z. Tf the type is non-arithmetic no conversion is

possible and an instruction to store the value is placedat Z. If the

¥ape is string, instructions to insure that non-significant characters

of the formal parameter are set to blank are inserted before the store

instruction.

For a formal name parameter occurring on the left of an assign-

ment statement, the code 1s as before except for the first instric-

tion, which 1s replaced by:

82



T™ DPD(n),X'03" test P and Q bits

BC B,Y branch 1f PQ bits not mixed, 1.e. can
store into

BAL 1,MATNERR - branch to error routine, Rl = loca-
. tion of error

Result parameters are referred to only once in this manner in pro-
— o

cedure exit.

8. Array Declaration

Corresponding to the array declaration of n dimensions

— <simpl 2 33 - too Seimple type> array X (£5 tt mgs 4g @3 My Lostp q)

in the head-of a block, an array descriptor of length 12n+8 bytes is

built in the data segment of the block.

SIMPLE NUMBEROF BYTES

TYPE PER ARRAY ELEMENT

1. integer 4

2. real 4

5. long real 8

I, complex 8

= 5. long complex 16

6. logical 1

7. string declared string length

8. bits 4

9. reference 4

_ The size of the descriptor depends only upon the number of di-

mensions of the array and hence the storage for the descriptor 1s

= allocated statically. The storage for the array elements themselves

must; of course, be allocated dynamically. The descriptor has the

83



i following format:

I,
>]a

.

A
a,

><] ET
5 .

| oA

| where ® = is the base address of the array elements
| A = 1s as given in the table above and is the number of
| bytes per array element

ts ~ the lower bound of the i*® dimension
i he = the upper bound of the i*® dimension
- A = (yy. _ = 1 +1) Xx & .i (yg i-1 ) i-1 1=1,2,..0,n

|
| We require that Bes 10,1, ooo pg fit into 15 bits so that the more

| convenient multiply halfword (MH) instruction may be used for the

multiplication. Note that no such restriction is required for A
whi ch represents the total number of bytes required for the array.

The value of A, 1=1,2, . **,n 1s the number of bytes required for

the first 1 dimensions of the array. The restriction that A

i?

J=0,...,n-1 fit into 15 bits results in the restriction that A fit
oo n-1

into I> bits, for if any By 320... n-2 does not fit into 15 bits,

then An will not fit into 15 bits. Therefore, the value of A
n-1

eh



u

must be less than or equal to 32767, + Observe that for a l-dimensional
“ array, this restriction 1s automatically satisfied,

The following table gives the maximum number of elements for the

first n-1 dimensions of an array of the indicated simple type,

maximum number of elements

simple type of array in first n-1 dimensions

logical 32767

integer, real, bits,

reference 8191

long real, complex 4095

long complex 2047

where gq 1s the

declared string
length

For storage of the array itself upon block entry, An bytes are re-

quested and the free pointer (FP) of the data segment in which the

descriptor resides becomes the base of the array, after which FP 1s

incremented by a

In Algol notation: ay = FP

FP ¢= FP + A
n

In the case of reference arrays, the upper byte of the first word of

the descriptor, the r-field, gives the number of dimensions so that

the garbage collector can find the next reference array descriptor.

85



Cp
—

The tree format for the array declaration <simple type> array X1, X2,

co., Xm (£, EN A EE EE 1) is as follows:

AR)

/ \, J

J EE
y

/ 4 / \,

/ / \,
AR, 1 1

/
Z H

CARD n 0 0

ARRAYDC m p

The pointer field p in ARRAYDC is a pointer to the NAMETABLE entry for

Xl; m is the number of identifiers. The nodes L and oN can be sub-

trees for any integer arithmetic expression.

All. left subtrees are processed first. The descriptor 1s built

into the descriptor location of the last identifier, in this case Xm,

and finally at AR) the completely built descriptor 1s copied into the

descriptor locations for the other arrays. As each descriptor 1s

copied, storage for that array 1s allocated and the base address 1s

placed in the 4, field of the descriptor,

86



(SN

Example: anteger a vy X,Y(0::10,A: :A+B)

L 2,=F'0O' lower bound of first dimension

ST 2,45
LA 2,4 number of bytes per array element

ST 2,8,
L 2,=F'10" upper bound of first dimension

dimension

S 2,4,
BAL 1,UBLBERR see error code discussion in section IV.A.6

LA 2,1(2) (ko ~ ho + 1)
” - + ASLL 2,2 (kg Ls 1) Xx 0

- ST 2,8,
- SLA 2,16 check if b, ean fit into a halfword

L 2,A lower bound of second dimension

= ST 2,8 --
A.

L 2,A

- A 2,B upper bound of second dimension

ST 2,514 Second" dimension

Co S 2,4,
BAL 1,UBLBERR

MH 2,{8, + 2)
- 1

ST 2,0, J
_ L O,FP free pointer

A O, THREE see discussion of special constants

| . based off R14 (cf. IV.A.6) re base of| array to ward
— N O,SINGLMASK see discussion of special constants boundary *

ST Ore, store base Y in descriptor Y

" A 058, RO = new FP = ‘base of next array
BAL L4,ALL@CERR see error code discussion

g Mve X(29),Y move descriptor (30 bytes) from Y to X
ST Oya store base X in descriptor X

A 0,8, RO = new FP
_

BAL. k4 ,ALLGCERR

ST O,FP store new free pointer

. *

For arrays of type logical and string, the free pointer is not adjusted.

For arrays of type long real and long complex, the free pointer 1s ad-
justed to a double word boundary. For all other types, the free pointer

1s adjusted to a word boundary. &7



: At each node "::', the lower bound is placed in the descriptor when

the left sub-tree has 'been processed. After the right gup-tree has

been processed, the upper bound is placed in tue descripuor,

A - - RE .+1 (1, Ly Fl) Xx a, 1200000 ym

1s calculated, and B41 is placed into the degcriptor. For 1=0;..,,0=3,

a test 1s performed to assure that Bin will fit into a 'half-word, For

i=0, the multiplication by 29 1s performed bv a shift for all types

5 except <string>, since 4 will be a power of two for these types, Arrays
are stored by columns. At the completion of the execution of this code,

{ -

{ the descriptors in the stack would loch like the following, assuming

| A=%, B= (all numbers in base 10).
—F

| |

he °

| ie
L
- L

| 0

| | 10| Lh

5

[&
220 |

i EY
In |
0

10

Lh

5

7
220

220 bytes
for ¥

220 bytes
for X

88



9. Subscripted Variables

- Consider the following reference to a subscripted variable from

an array A of n dimensions:

| A (X45 X15 Xs oees Xo

} where Ks may be any integer arithmetic: expression In tree form, the

| above construction 1s represented as:

An-2

C INDX

/ \ The address « of the array

| INDX Xx, element 1s given by

0 a= ay + By (X.-f,) xB,
ARRAYID(A) = i i i

where the left sub-trees are always processed first. The pointer field

. of the node ARRAYID is a pointer to the NAMETABLE.

- Each node Xs may be a subtree for an arithmetic expression. The|

indices are evaluated in order from X, to £1

After the value of XK, has been computed, 1t 1s checked against—

L and. Hy (the upper and lower bounds for the 1 dimension) . If

. either bounds test fails, the run is terminated with an appropriate

error message , If the bounds tests are successful, the lower bound 1s

.

subtracted from the subscript and this quantity is multiplied by the

| current By and added into the accumulating address.
L

89



| As an example, consider a reference Y(3,T-27} to an array de-

oT clared integer array Y(0:210, A::A+B}, where T=32, A-3, B=lh,

The address of the array element is given by

o = a, + (3-0) x 4 + (5-3; x Uh = a, + 10C

where oy is the base of array and is obtainable from the first word of

3 the descriptor. (See descriptor given in section on array declarations.)

The following code 1s generated for this array reference:

- L 3, , R2 will be accumulating address register
L By=F13" firs% subscript

C “sky
LA  0,0(3) sets RO to type of error if bounds check

fails (see discussionof error checking
code [section IV.A.6})

BAL 1 ,ARRAYERR (cf. IV.A.6)

S 3544
BC <,MAINERR (ef. 1-V.A.6)

T  - JA)

. SLL 3,2 (X, Ly) X 8,
AR 2,3 add in%o accumulating register

S 3, =F 27! second subscript

- BAL, 1,ARRAYERR

ZL
BC <,MAINERR

MH 3, (O42)
AR 2,3

At this point, R2 has the address of Y(3,T-27) .

90



10. Passing Sub-Arrays as Parameters

} The user may pass any generalized row or column, i.e. any sub-

array of dimension 1l;2,...,n-1 ofan n-dimensional array as a parameter

to a procedure. Since all array parameters are passed by name, all

that 1s needed 1s to copy certain parts or all of the array descriptor.

Atthis point, the reader should familiarize himself with the de-

- tails concerning the building and format of array descriptors, and the

) calculation of the address of an array element when the element 1s re-

ferenced,

According to %he syntax, an asterisk (¥) is placed in those posi-

tions of the actual sub-array parameter to indicate which dimensions

~ are to be included in the formal array.

In those positions in which * occurs in the source code, the

Pass Two tree output is the node AR¥ For example, the tree corre-

sponding to the actual parameter

A(*,4)

1S

AN
ZN L
/ a

ARRAYID(A)

indicating that the firs% dimension of the two-dimensional array Ais

to be unspecified and that the fourth column corresponds to the one-

dimensional formal array.

Ol



It should be recalled that an array descriptor consists of a

| series Of triples (8,54.,m.1, where L and Hy are the lower and upper
bounds of the i dimension, 5, = (hy 17251) X aq (except for 4), and
that the first entry inthe descriptor is op, the absolute address of the first

array element Therefore, to compose the sub-array descriptor, rules

must be given on how to build the triples 18,54, m. and how to calcu-

late ¥y- These rules are as follows:

If Xs 1s the 1h index, then for each position with

x, = ¥ ¢ copy the descriptor triple (8,4, 0}

L Xs 4 * : omit the descriptor triple

| To calculate Xs the absolute address of the first formal array
element:

i n-1
Fp = & F 2 (23-44) x 4.

E if X = %

where a, = i i| L if Xi # *
- As an example of the use of these rules, consider the following

array declaration and the layout of the array elements in core:

92



a

i logical array A(0::1,0::2,0::3)

a, | ——>1 000 0
A, 1 100 1

Ly 0 010 2

Ho 1 | 110 3
A 2 020 4

L 0 120 5

py 2 001 6

— A, 6 101 7

L, 0 / 011 8ho 3 111 9

021 PO| total number of bytes in array | 121 11- — not used in subarray calcula~ | 103 Ttions or descriptors |

102 13

| 012 14

| 112 15
022 16

A(*,1,2) 122 17
_ 003 18

L 10% 19
_ © 13 20

! | 113% 21
2% 22

” 12% 23
| |

. A(1,%,3) A(1,2,%) A(*,%,1) | A(%,1,%)

2 6 1 1
C

0 0 0 0

- Co | > 6
0 0

L



]

|
C

The calculation of the addresses of sub-array elements 1s the

same as for ordinary array elements.

The implicit subroutine corresponding to an actual sub-array para-

meter builds the sub-array descriptor in the local stack of its data

segment and returns the address of this descriptor. pyring the

y DPD + PV operations, this descriptor is copied into the procedure's

— data segment,

" 110 Arithmetic Conversion

Type conversion 1n ALGOL W is implicit in a number ofcases.

- However; real to integer, or complex or long complex to real or integer
must be specified by transfer functions,

L. Integer to real or long real

. A quantity of type integer 1s converted to long real by means of

a subroutine. The linkage code is:
I

LA 1,X'rii?

L 15, base of segment 57

BAIR 0,15

| ) L 15, current segment base

The quantity placed in register 1 is a parameter to the conversion

| routine. 1 specifies the register which contains the quantity to be

converted and r specifies the destination floating point register,

Therefore, the same conversion routine 1s called for integer to real

conversion as for integer to long real conversion. Tjikewise, the same

routine 1s used to obtain the real part in conversion from integer to

complex and long complex, The imaginary part is attained by the in-

ol



struction

SDR rns ro,

The routine to do the conversion stores the absolute value of register

i in the lower half of a double word whose upper half is #L.E000000.,

This quantity 1s loaded into register r to which zero 1s added to nor-

_ malize the number. Register r is negated if register i contained a

= negative number. The execute instruction is used to mainpulate

— register i and register r.

II. Real tolong real, complex or long complex

A quantity of type real 1s converted to long real by two methods.

- a) If the value V 1s not in a floating-point register, the

sequence of instructions used to load V into register r 1is

-

SDR SE ry

b) If the value is in register r, the sequence of instructions

used to convert V 1s

| STE r , TEMP

SDR r,r

or LE r ,TEMP

A quantity of type real is converted to complex by subtracting

the second of the pair of floating-point registers from 1tself.. If

the conversion is to long complex, the real value is first converted

to long real. and then the subtract register instruction 1s emitted.

95



|

) III. Conversion from long real

- No instructions are used to convert to real. A conversion to

either complex or long complex 18 done by subtracting the register

o representing the impginary part from itself.

IV. Conversion from complex

A complex value 1s converted to long complex by applying the rules

for converting from real to long real to both the real and imaginary

- parts of the complex value.

— Vv. Conversion from long complex

9 No instructions are emitted to convert long complex values to
complex values.

e—

The indication for conversion 1s made 1n Pass Two by placing the

| destination type in the conversion bits (8-15) of the node to which
the conversion is applied. (cf. IV.C.5) If the node is a terminal node,

- (i.e. variable, constant), the conversion takes place before the value

1s used. If the node 1s a non-terminal node, the Conversion takes

" place after the operation the node specifies 1s completed,

_ Example

INTEGER I; REAL R; L 2,1

~ R q+ I L 1,=X'022"

A := L, 15, base of seg 52

/\ BAL 0,15
R 1(2) L 15, curreg base

STE O,R

96



EE — |

Example 2

LONG COMPLEX C; REAL R; LE O,R

C ¢:=R + Rj : AFR O,R

A := STE O, TEMP

yd NL ’
C +(5) SDR 0,0

/ \
R R LE 0, TEMP

: SDR 2,2

. STD 0,C

STD 2,C+8

—

12. Arithmetic Expressions

— ADDITION

| The tree produced by Pass Two for addition 1is
Lo

A
- X Y

Since the addition operator 1s commutative, the code produced

does not depend on the order in which the subtrees are processed. Let

- X be the first subtree and Y the second.

Case I. The result of processing X 1s not dumped while processing Y.

If Y 1s in core:

Long Long

Integer Real Real Complex Complex

Register(s) holding
the result of first

subtree: R2 FO FO1 FO,F2 FO1l,F23

Code generated: A 2,Y AE O0,Y AD O,Y AE 0O,Y AD 0O,Y

AE 2,YH4 ap 2,Y+8

If the processing.of Y 1s in a register(s) then the following code

97



sequence is emitted. Assume the register(s) holding the result

of processing X 1s as shown above.

Long Long

Integer Real Real Complex Complex

Register(s) holding
result of second

subtree: R3 F2 F23 FL ,F6 FL45,F67

Code generated: AR 293 AER 0,2 ADR 092 AER O,k ADR 0,4

- AFR 2,6 ADR 2,6

_ Case II. The result of processing X is stored in TEMP while processing Y.

Then the result of the second subtree must be in a register(s).

Long Long

Integer Real Real Complex Complex

i Register (s)
holding result
of second

. subtree: R2" FO FO1 FO, F2 FO1,F2%

Code , .

generated: A 2,TEMP AE O,TEMP AD O,TEMP AE O,TEMP AD O,TEMP

AE 2,TEMP+4 AD O,TEMP+8

MULTIPLICATION

The tree produced by Pass Two for multiplication 1s

\
C x Y

Since the code needed for complex and long complex multiplication

1s lengthy, a run-time subroutine 1s called for multiplication of

these types. A discussion of the linkage and parameter conventions is

found elsewhere in this section.

For integer, real, and long real, the situations and corresponding

98



codes are identical with those for addition except for the following

-— substitutions in the code sequences:

Addition Multiplication

A M

— AR MR

AE ME

E AFR MER
AD MD

ADR MDR

-

All integer multiplications are followed by SLDA r,32 where r

- specifies the even register of the result. This instruction detects

an overflow if it occurred during the multiplication.
g

SUBTRACTION

|.

The tree produced by Pass Two for subtraction 1is

(_

X Y

There are four situations which can arise while processing the

- tree9 as in the case of arithmetic assignment (cf. IV.D.22).

Case I. Process X first.

- A. The register(s) holding the result of the left subtree X is

not dumped while processing Y.

Long Long

Integer Real Real Complex Complex

Register(s) holding X: R2 FO FO1 FO,F2 FOl, F23

Code generated: s 2, SE O,Y sD 0O,Y SE O,Y sD 0,Y

SE O0,Y++ SD 0,Y+8

99



-

B. The register(s) holding X 1s dumped at TEMP while processing

Y.

The result of processing Y must then be in a register(s).

Long Long

Integer Real Real Complex Complex

Register(s)

holding X: R2 FO FOL FO,F2 FOl,F23
- Code

generated: L 3, TEMP LE 2,TEMP ID 2,TEMP LE L4,TEMP LD 4,TEMP

SR 3,2 SER 2,0 SDR 2,0 LE 6,TEMP+4 Lp 6,TEMP+8

SER 4 9 0 SDR 4,0

SER 6,2 SDR 6,2
_ -

Case II. Process Y first.

= A, The register(s) holding Y 1s not dumped while processing X.

X 1s then loaded into a register(s) and the appropriate

register-to-register instruction 1s generated.

. B. The register(s) holding Y is stored in TEMP while processing

X. The result of X is then loaded into a register and the

= appropriate subtract from storage (TEMP) is generated.

DIVISION

The tree produced by Pass Two for division 1s

{ Y

As in multiplication, complex ad long complex division is per-

formed in a run-time subroutine and 1s discussed elsewhere in this

section.

100



3

Integer division 1s accomplished using DIV and REM and 1s also

“ discussed elsewhere in this section. For real and long real, the

situations and corresponding code sequences are identical with those

. for subtraction except for the following substitutions in the code

sequences.

Subtraction Division

= SE DE

SER DER

— SD DD

SDR DDR

DIV AND REM

The trees produced by Pass Two for DIV and REM are

) \ N
X Y X Y

The code sequences for both are identical, After the division,

the result of DIV is in the odd register of the even-odd pair required

for integer division, and the result of REM is in the even register.

No matter which subtree is processed first:, the dividend is even-

~ tually placed in the even register of an even-odd register pair. This

register pair 1s then shifted right-double-arithmetic 3210 bit posi-

tions 1n order to place the dividend in the odd register The division

1s then performed with the divisor in a register 1f 1t has been placed

there or from storage 1f the divisor 1s simply a single variable or if

it has been dumped into storage while processing the dividend subtree.

101



As an example, consider

- A DIV A1(1)

_ where Al 1s a l-dimensional integer array. Assume the subscripting

| has been accomplished leaving Al(l)in R2. Then

-

L h,A

to SRDA 4,30

DR L,2

The result is then in RS.

If an even-odd register pair 1s not available, then the fewest

number of registers are dumped (maximum of two).in order to secure the

even-odd pair.

As another example, consider

A1(1) DIVA .

As before, Al(1l) will be processed first — assume Al(1l) is left

in R2 with R3 already occupied.

IR 4,2
SRDA Lh,32

D h,A

COMPLEX MULTIPLICATION AND COMPLEX DIVISION

Complex multiplication and division are carried out by means of

a Subroutine.

For multiplication, one multiplier must be in the pair of floating

point registers FOl and F23, and the second in storage. If neces-

sary., one multiplier will be stored in a temporary location. Separate

102



routines exist for complex and long complex multiplication. The

calling sequence when one multiplier is in location TEMP is:

LA 1, TEMP ~

L 15, base of segment 62

MV I FLAG,X'02!

BAIR 0,15

X'0001"

L 15, base of current segment

| For division, the numerator must be in the pair of floating point
{

registers FOl and F23; the denominator must be in storage. If neces-

sary, the denominator will be stored in a temporary location. Separate

routines exist for complex and long complex division. The calling

sequence when the denominator is in location TEMP is:

L 15, base of segment 62

MVI FLAG, X'02!

BALR 0,15

X'0003!

L 15, base of current segment

The algorithm used for complex multiplication X := A*B 1s

e+if = (v + iw) * (x + iy)

r :=y *w Ss :=y ¥v

e i= V ¥ XxX « 1; I t= w ¥ x + s;

103



i

The algorithm used for complex divisionX := A/B is:

e + 1f := (v + iw) / (x + 1y)

r := abs x; s : = abs yj;

if r > = 5s then

begin r = y/x; S s=y ¥ r + X;
) L = (r *w + v)/s; e = V ¥ r;
“ ’

fzw - e)/s; e t= t;

| end elsebegin r := X/y; Ss i= r ¥ x + y;

Lt = (r *v + w)/s; f = (w of v)/s;
| end;

i UNARY MINUS
The tree produced by Pass Two for unary minus 1s

|

| :
The result of processing the subtree 1s loaded into a register (s).

: Long Long
Integer Real Real Complex Complex

Register(s)

holding result

of processing
sub ¥

tree: R2 FO Fol FO, F2 FOl,F23
Code

r : e

generated LCR 2,2 LCER 0,0 ICDR 0,0 LCER 0,0 LCDR 0,0
LCER 2,2 LCDR 2,2

10k



EXPONENT IATION

The tree produced by Pass Two for exponentiation 1s

¥* *

XY

Since the code needed for exponentiation 1s lengthy, exponentia-

; tion for all types of bases 1s accomplished with run-time routines. Re-

N call that all powers must be of simple type integer.

| One run-time routine, EXPON, handles bases of simple type integer,
real and long real, converting the base to long real before exponentia-

L ting. Input to the routine 1s the type of the base, the register

| holding the base, and the register holding the power. The result of
the exponentiation 1s left in the register of the base if the base 1is

of simple type real or long real. If the base is of simple type

integer, the result 1s left in FOl.

Another run-time routine, CEXPON, handles the bases of simple

type complex and long complex, converting the base to long complex

before exponentiating. Input to the routine is the simple type of the

base, the base in FO, F2 (or FOl, F23), and the register holding the

power. The result of the exponentiation is left in FOl, F23,

: Consider X *¥Y, where X is real and in F% and Y is in R3. Then

the calling sequence for EXPON is

LA O,X'24 3! simple type of base, reg. of base,
reg. of power

MVI FLAG,X'0O1"

L 15, base of standard functions

BAIR 1,15

X 10001!

L 15, base of current segment

105



Now consider X ** Y where X is long complex (in FOl, F23) and Y

is in R2. Then the calling sequence for CEXPON is

LA 0,X'502"

MVI FLAG,X'01!

L 15, base of standard functions

BAIR 1,15

X'0002!

L 15, base of current segment

The algorithm for real exponentiation 1s given 1n the form of an

Algol W procedure,

LONG REAL PROCEDURE EXPON (LONG REAL VALUE BASE; INTEGER VALUE POWER);

| BEGIN
LONG REAL X; BITS A; LOGICAL NEGATIVE

| NEGATIVE := FALSE;
IF POWER< O THEN

| BEGIN
LC POWER := =POWER; NEGATIVE := TRUE

i END;

| A s= BITSTRING (POWER); X = 1Lj
Ls B ¢= A; A = A SHR 1;

| IF (B AND #1) = #1 THEN X := X * BASE;
IF A = = #0 THEN

| BEGIN

BASE := BASE * BASE; GOTO L

END;

IF NEGATIVE THEN 1L/X ELSEX

END EXPCN; |

The algorithm for CEXPON 1s the same as for EXPON except all long

real's above become long complex%,

106



1 ABSOLUTE VALUE

The abs operator has an argument of any arithmetic simple type.

For the simple types integer, real and long real, the quantity must

first be placed in a register r corresponding to its type, 1f 1t 1s not

already there, and one of the following instructions executed:

LPR r,r for integer

LPER r,r for real

] LFDR r,r for long real

| For the types complex and long complex, a subroutine 1s called to
obtain the absolute value, which 1s a real or long real number. The |

| argument of the operator must be placed in the floating point register
pair FOl,F23. The result is returned in register FOl., Separate rou-

| tines exist within the subroutine for complex absolute value and long

| complex absolute value. The calling sequence for the routine is:
L 15, base of segment 62

MVI FLAG,X'01?

BALR 1,15

X'" O00

L 15, base of current segment

The algorithm for the complex absolute value jigs

a $= | x + iy

X ¢= abs x; vy t= absvy

a := 1f x = 0 then y else 1fy = 0 then x else

if x > y then x *¥ sqrt (I + (y/x) *¥* 2)

else yv * sqrt (1 + (x/y) ** 2)

107



13. Logical Expressions

The philosophy of implementation of logical expressions was guided

by two principles. First, only those parts of the expression needed to

determine the truth value of the whole expression need be evaluated,

For instance, in the expression A or (B and C), if A 1s true the whole

* expression 1s true. Therefore, neither B nor C requires evaluation if

- A 1s true, Analogously, if A evaluates to be false, B must be evalu-

1 ated. If B is false, C need not be evaluated since the whole expres-
sion 1s false. A, B, and C are all evaluated only if A is false and

| B 1s true,

| The second principle followed in implementation required that an
explicit logical result be created 1n a register only when necessary,

| For example, the logical expression of the conditional statement, if
A or B thenS, need not have a logical value created for the expression

: A or B. Only a 'branch is required 'based on the condition code set by
the evaluated expression. As succeeding examples will illustrate,

the principle involving explicit evaluation 1s carried to 1ts ultimate

in logical conditional expressions and conditional ease expressions

with at most one extraneous branch instruction being emitted after the

expression. |

108



______________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1

5

1. logical A,B,C

C ¢=A or Band C

_ Va RN CLI A,X'01!
C LOGOR BL =,T

_ YN CLI B,X' OL"
A LOGAND oo 47

B C CLI C,X'01!
-

BC £,F

I LA 2,1

= B STORE

F LA 2,0

h STORE STC 2,C

2. AgBjCal

C :=A or mB

L s= GLI A,X'OL!

/ NN ; _¢’  LOGOR C =5T

Y  \\ CLI B,X'01!
A LOGNOT

| BC £,T
B LA 2,0

B STORE

T LA 2,1

STORE STC 2,0

109



} | | - TTT

| 3. 1A,Byal C
| if A or B then S else S

— TT 7] x=,

SE IFST : | CLI A,X'01"
Ns, oo BC =, T
Y \ | CL B,X' 01"

I AN 51 i
IF FE . I s,

A B B NEXT
NEXT Sp

| 4. logical~n.a.C
) C i= if A or B then A and B else_ = B;
L

Va NN : CLI A,X'01"i | ¢’ 1rmxe BC =,T1
oo 57 | \ | CLI B,X'01"

I B aN Loemor , Lr| / ~~ B T1 CLI A,X'01"

Y\ N20 co he” \ A B CLI B,X'01!
| H AN oo BC #,F2

AB B 0
F1 CLI -B,X'01!| BC =, F2
T2 LA 2,1

B STORE

| | — So F2 LA 2,0
: oo | | R Co ; oo oo STORE STC 2,C

110



EbI —MA— a.

5. AgBi€3l

Co ¢ := = (case I of (AVB, = B))

L := L 2,1

“ oor LA 1,2
_ | CR 2,1

JN BAL 1,ARRAYERRy/ LOGNOT LTR 2,0
) v \ l Bc <,MAINERR

CASE  LOGOR SLA 2,2

- | ¥  \ B LAST (2)
I A B 11 CLI A,X'01°

~ i BC =,T
CL1 B,X'01!

i. BC £,F
B T

5 L2 CLI B,X +01’

B =,F

LAST B T

- B Ll
B 1.2

T B 0,F

LA 2,0

B STORE

F LA 2,1

STORE STC 2,0

111



RELATIONAL OPERATORS

Relational expressions give logical results and hence are treated

the same as logical expressions 1n that an explicit value 1s not

created unless necessary. In the case of the equivalence or nonequi-

valence of logical expressions a truth value for one side of the ex-

pression must be explicitly generated and the address of the resulting

truth value placed in a register.

| ] In the case of string expressions, efforts have been made to
-

use the CLC instruction as efficiently as possible in analogy to the

| use of MVC instructions in string assignments.

| 1, Arithmetic relations
| togicel A,B; 1 X,Y
|
E

s= LE 2,X

NN

B

¥/ \ CL1 B,X'0O1!
X Y BC #,F

F LA 2,0

B STORE

T LA 2,1

STORE ATC 2,A

112



Co

2. Complex relation

complex C1,C2; logical A;

A := Cl = C2 |

L NN LE O,REAL(C1)NA NN LE 2, MAG(CL)
” V72AN LE It,REAL(C2)

Cl C2
LE 6, IMAG(C2)

= CER 4,0

BC AF

- CER 6,2

_ F LA 2,0
B STORE

T LA 2,1

- STORE STC 2,A

3. Logical relations

l a. logical A,B,C

C:=A=28

L := IC 2,A

; 7 N N 2,=F'1!
. =

Y \ IC 3,B
A B

i. CR 3,2

LA 2,0

B STORE

— T LA 2,1

STORE STC 2,C

113



b. logical A,B,C

. C ¢= (A or B) = (C AND B)

- L := CLI C,X'01!

/ NN BC £, Flc - ’

— £7 \ CLI B,X' OL"
LOGOR LOGAND

py // \ BC £,F1| A B T1 LA 2,1
- cB B NEXT

Fl LA 2,0 |

= NEXT CLI C,X'0L!

BC =,T2

- CLI B,X'01!

BC =, T2

_ | LA 3,0

B COMF

LA 3,1

COMP CR 3199

BC =,T3

~ T2 IA, 2,0

B STORE

T3 LA 2,1

STORE STC 2,0

4, String relation

“ string (5) S,T; logical A;

A:=S~=T

“

L = CLC s(h),T

L Rd NC B #51
74 \. LA 2,0

S T B STORE

T LA 2,1

STORE STC 2,A

114



5. Reference relation

| logical A;

reference (R) R1,R2;

A := Rl = R2

. ya NN L 2,R1
4 \ BC =, T

| Rl R2 -
L LA 2,0

B STORE

| ~ T LA 2,1
STORE STC 2,A

14, String Expressions

| The substring operator forms a string valued expression of the
form V(E|N) where V 1s a simple variable, an array variable or record

| field, E 1s an integer expression and N 1s an integer number. The
result of the expression 1s an address of the string in a general

register. The restriction that 0 < E < (length of V) Nis

checked. If E is an integer constant, the restriction may 'be checked

at compile-time and the run-time code shortened.

115



--.. foo. om — oe rr. fo. Fol PE— r-- r- an —— re foo a re - ro roy re — ea

E :
a8 CO

H fro i jgp) a 4p) 3
~e ~
= ™

on — oN i” pa on
\® wo wo

3 z =
* AN = 4 5 £

/ =/ ibf

;
ON El 3

2

Er E83 83 KE = = =

3g» JINOo oF BB

~~ Ly oa = HW 2 RoLp - HH
~~ ~~

o 2 =
2



15. Bit Expressions

Bit sequences may be ANDed, ORed or shifted, For the shift oper-

ations, the absolute value of the shift expression 1s loaded, No dis-

tinction 1s made between constant and nonconstant shift expressions.

The compile-time procedures involved are SHIFTAMOUNT, BITSSHIFTARGZ,

. and BITSANDORARGZ.

As an example, consider the following:

A:=B shr 3 and (A andB) shl (I-3) or = (B shr 12 or #FF) and = B;

\ .
A"  BITOR : 22

¥/ SR 3,2

/\\ IPR 3,3
Ry N L 2BSHL

B 3 / N 2,AALL 2,0(3)

BITAND BITAND I 3 3y=
- / Yo \

A B \ BIT - BIT - LPR 3,53
I 3 | L 4,B

SRL 4,0(3)
| BITCR

SHR \ L 3,12/ |
| | B 12 #FF R290
L : L 4,B

SRL  4,0(4)

| OR. 4 ,=X"FF'
XOR 4 ,=X'FFFFFFFF’

| L 3.B
XOR  3,=X'FFFFFFFF*

| NR 4,3
OR 2,4

| ST 2,A117



16. Beesrdgnators

ALGOL W permits records to be created in two ways, First, the

name of the record class may stand alone. gesond, the name of the

record class may be followed by a list of the 'initial values of the

_ fields. Both record creations are reference expressions.

- RECORD A(INTEGER I,J);

REFERENCE(A) R;

R =A;

5 ~.

R t= LA 3, address of A's free record

\ / \N chain (FRC)
R RCCLID A

- L 15, base of record creator

BAIR 1,15

- L 15, current segment base

ST 3,R

R := A(5,8); .

R = LA 5, address of A's FRC
N\

R’ Na) L 15, base of record creator
Y \ BAIR 1,15

Rj 8
\ L 15, current segment base

4 A L b,=F'5"
RCCLID A ST 4,0(,3)

L 4 ,=F'8!

ST hob (,3)

C ST 3,R

118



17. Field Designators

o Since a reference points to a record with fields of any of the nine

| simple types, field designators of the form

F(R)

} where F is a field name and R a reference expression select the de-

sired field of the simple type declaredftir F. Throughoutthe compiler,

the loading of the reference value into a register 1s analogous to the

address resulting from a subscript calculation This address 1s then

used as a base to index the proper element of the record while the dis-

placement is the relative displacement of field F within the record,

— necord At(referenge (A) Xx Yj TI ) ;

| dpteger reference (A) Rj;

J i= I(R);

7 IN L 2,R/ 2,02

J yo L 8 )ST 25dN 7 \

I(Y(R)) := J;

y = L c,d
REFX J L 5,8
/ L 3,4(3)

NN
Y R

119



18. Case Statements and Case Expressions

= The purpaseof the case construction 1s to select the statement

or expression given by the value of the expression following case,

When beginning case expressions all registers except the for-variable

register are stored, This occurs immediately before the uncondi-

tional branch selecting the appropriate expression.

1. case I of

- begin

SIE

S555

| end;

aN L 2,1
UJ  NULLST ta LJ
/ \ CR 2,1

aN 82 BAT.  1,ARRAYERR
7 Sq LTR 2,2= <,MAINERRcASE(0) (3) BC SMA

| } l SLA 2,2

_ I B LAST(2)

Lis Sq

— B NEXT

— B NEXT

LAST L3% B NEXT

B Ll
LW.

B L2

B L3

N NEXT

120



fo

QQ

il

Q

/ a &H—& - €v]
HN H

+= cH = NC Hy

— <q oe =
\J1NIL we ~~ =

. nN mg ON
10) = J/ hdoN

=

+ [AD
-

O
H =

_ ON
ro +

©)
4
~~

= =H =
WN PO H

HH +=

0 0 ov 0 Ww ow +2 BH 5B nn HH wr on SE wc SE = « BE © BE wt HE vv BNE ¢2 HE  v I Q =
HH 3 =

PAIS UN MEI EEA = Goh geeagol sorhd hd i] RO HI no nN AN

- - 0 ® - - Hd

S 5 : : 3 SAF ¢QO. oH -  - . ~~

= OO ® Od ON PO 3* ER " 2
5s)

[£5]

Dd
(010



19. If Statement, If Expression, While Statement

= The while statement has the following interpretation,

WHILE C DO Sq = I: IF C THEN

BEGIN 5, GO TO L
END

All registers except the control variable register must be dumped

before entering the 1f expression. They are dumped before the evalua-

tion of the conditional expression,

1. Aogical ;

1f A then Sq

IFST CLI A, X'01!

9 \ BC 4, NEXT
IF'J Sq

IF A NEXT

2. If A then Sq else So

7a CLT A, X'01!ZB
uJ SH BC #51

7% | S
' IF'J \s 1

1 B NEXT
¥ \

IF A L So
NEXT

"122



3. whileA do S

WILEST LOOP CLI A,'01"
- cd Vs BC NEXT

vo S
WHILE A n LOOP

} NEXT

- 20. For Statement

- The two kinds of for statements will be designated here — the

step-until statement and the for-list statement

CL -

A, The control identifier

- Both the step-until and for-list statements have control identi-
fiers, The implementation treats this identifier essentially the same

~ in both cases. R2, designated symbolically as FORREG, is generally

_ used to hold its value. Each control identifier 1s also assigned by

Pass Two a relative location 1n a data segment, into which the value

- 1s stored when a transfer of control to a closed subroutine 1s to

: occur or R2 1s needed for some other purpose, At compile-time GETADDRESS

~ will deliver the correct register or location for a reference to a con-

2 trol identifier, The occurrence of the control identifier immediately

after for causes the initial processing of this identifier; this 1s

—- done by NUMERICALASSIGN.

At compile-time a 20-word stack CSTACK and a location LASTFORLOC

- are used to keep track of the locations of the various control identi-
g fiers that may be active at a given time. Af any time LASTFORLOC holds

the address assigned by Pass Two to the innermost control identifier

. 123

|



for the text being compiled. CSTACK is a stack of pointers to the

entries in LSTACK which are control identifier locations. The pointer

for CSTACK itself is a memory location called CPOINTER.

The routines DUMPFORREG and RESTOREFORREG generate instructions

to move the value of a control identifier to and from memory as re-

y quired.

B. Step-until statement

L In addition to the memory location for the control identifier,

three other locations are used for each statement Qf this type.

= These are assigned by Pass Three and are called "incr", "mask", and

| "1 im" § they hold the increment value, the mask used by anexecute
L

instruction in the test, and the limit value, respectively. The

] example below illustrates their use.

-

L

_ 12)



l

i

A FORST
PN

FORCL A :=

J NCS| STEPUNTTL / \
| A z= / AN 8 1
L / \ + +

ANA
i qa 1 r 1

for 1 i= p step g+l until r+l do s := s+l

L
L 2,p

i L 254
N A 3,0one (one contains 1)

/ LTR 3:5

3 ST 3sincr
LA 3,const (const contains 20y¢ )

1 BC >, %+3
| SLL 3, One

| ST 3,mask ~~ (=0010 0000 or 0100 0000),
L 2,

A 3, 0ne

. ST 3,1im
B *+8

- L A 2,incr

C 2,1im

_ L 3,mask

EX 3sM

~ L 348
AR 33°

ST 358

- B L

M BC 0, ¥+4

125



0 fo 'e) Q£3 5 5 Io
¥ foTR ST £5
Ho 0 8

Bog 2 5aq 6) I = = = B 3
) © ZR Ho be 6 S rs

Q; — = (D .
e rd \ 5 oo {Nn He =
a H = = il 0 0 ct
2 ~ ZANE - 5 9 or

NL pd Hj od B ©
0 + ®) oy Ho oO O ct

yd =v) + OQ pe H {DpH = ANE = SE =]
3 bi Q ‘e 0 MD 4) (D

8 5 ° Qu Bs+ Hl nN ct Hy ct
a) — fo O

0 ct nN 15 Hi 0m HO ng !

2 NVR. ~ o &- Hh (@] inNo °0 oO KH ct
He il HH O

2 a i" 5 2 2aw par 7 2 & &
nO Hy Ha do ct
0) o Bs 0

0 08) o, &
+ o 0
Ho M H a)
Q be 0 ct

8 = = = jo .wn +
DQ pe of

o bs a os
3 oo ® ® 0
® 0d BE U2 1 WW Ww HH = Ho .

» i= = 5 = I= fio tnHy = a ct
He = = LY

pal cB
H (4) M

o HF FH NOH 2 BH PDH D ED o a]
He wo - ‘o © “» “- “ - wo “a + c +

H Ww = [mpSE = oR wu  { > a we | dD on

= - = ct Foo - — ny ih =
0 it Q Q
E 8 oo EK
jel = R 0g
= dS 20d = ¥

o = 7
Q i



|
fo
3

2l. Gotaotement

A branch table 1s built in the head of each program segment, and

| each label in the procedure 1s represented by a branch instruction in

the branch table,

— The Pass Two tree format for a labeled statement

- Stat 1;

- Li: Stat 2;

Stat 3;

is as follows:

2

/
— CARD Y\

/ Stat 3
J

\

— J Stat 2
/N

— CARD X i, / LABELID(L)
. \

Stat 1

— where L is a pointer to the NAMETABLE. Since the left sub-trees are

always processed first, the label declaration is encountered just be-

fore the compilation of Stat 2.

_ When the node IABELID(L) is encountered, as above, the NAMETABLE

entry for L enables Pass Three to calculate the address of the branch

~ instruction corresponding to the label L in the branch table in the

head of the procedure. The current value of the instruction counter

is then placed in the displacement field of the branch instruction.

- 127



3
: The Pass Two tree format for the statement gotoL is as follows:

- /
| AN
L J GOTO
| ELI)
-

d where L 1s a pointer to the NAMETABLE. With the NAMETABLE entry for

. L, Pass Three looks up the address of the branch instruction in the

| branch table corresponding to the label L. If this address (relative
to the base of the program segment 1s @&, then the code

L h B a(15)

i 1s emitted,
By the end of compilation of the procedure, all labels have been

y encountered and all branch instructions in the branch table have their
correct form,

-

If the label occurs in a different program segment, code 1s

3 emitted for procedure exit, for loading R15 with the base of the pro-
| _ gram segment being branched to, and for a branch to the appropriate

L instruction in the branch table of the target program segment,

| | The following is the code generated for the statement goto L

= where n 1s the number of the register which gives the base of the data

i segment where the label L is defined, and« is the displacement of
| the instruction in the branch table corresponding to the label L., The

C label I is in a procedure different from the procedure where the _goto

statement occurs.

Lo



i ST n,MP reset data stack pointer
X L 15, base of program

segment 1n which

| label resides
B a(15)

|
L Notice that precisely the same code is emitted for a branchrout of

| ablock, e.g.
begin integer A;

| :
begin integer B;

o Lyto

| o
— end;

| [+]
end;

In this case, the load instruction at X above is superfluous and

1s not compiled.

GOTO STATEMENTS AND LABELS INSIDE FOR-LOOPS

— Because of the manner in which the control identifier 1s manipu-

lated inside a for-loop and the desire to keep the innermost control

\

identifier 1n a register whenever possible, special code 1s emitted

for goto statements and labels which are inside the scope of a for-loop,
_ =SA

As explained more fully in the section on for-loops (ef. IV.D.20),

. Pass Two allocates one word in the data stack for each control identi-

: fier. In the event that a control identifier must be dumped, it is

| dumped into its special location rather than into the local stack.

129



|
-

| Since only the innermost control identifier 1s kept in a register, the

L compiler always has a variable LASTFORLOC which contains the relative

address of the word in the data stack into which the control identi-
i

fier 1s dumped when necessary and from which it 1s reloaded.

|

LC 1) For a goto statement inside the scope of a for-loop,, the control

| identifier 1s first dumped into LASTFORLOC:

ST 2, LASTFORLOC(n)

| B a(15) branch to branch table
-

2) At the definition of a label L, a branch is made around the in-

L struction to which transfer is controlled by the branch instruc-

i tion in the branch table, At the label, the control identifier
1s reloaded, 1.e.:

~ BC NEXT

L L 2, LASTFORLOC(n)

NEXT

This allows transfers within a for-loop and from an inner for-
L

loop into an outer for-loop.

_ |
22. Assignment Statements

- ARTTHMETIC ASSIGNMENTS

The tree produced by Pass Two for arithmetic assignments is

L

/a BN
L X Y

| Since the discussion concerning implicit conversion between the

arithmetic types occurs elsewhere in this report (cf. IV.D.1l), this

130

L



section will deal only with arithmetic assignments of identical type,

WC Four situations may occur 1n processing an arithmetic assignment

since either the right or left subtree may be processed first, and for

- each of these cases, the register(s) holding the result of the subtree

processed first may be dumped while processing the second subtree.

Ho I. Process right subtree first

= A. The register(s) holding Y is not dumped while processing

the left subtree.

Long Long

_ .. Integer Real Real Complex Complex
Register(s)

holding X: R2 FO FOP FC, F2 FO1l,F23

~ Code
generated: ST 2,X STE 0,X STD 0,X STE 0,X STD O,X

_ STE 2,&++ STD 2,x+8

»

_ B. The register(s) holding Y 1s dumped while processing the left

subtree.

— This situation may occur when the left subtree contains

- a procedure call. For example

X(P) t= Y |

~ where X is a l-dimensional array and P is an integer pro-

cedure with no arguments.

- Assume the register(s) holfing the results of the right
. subtree have been dumped at TEMP, and that general register.2

holds the address of X(P).

131



Code generated:

Long Long

- Integer Real Real Complex Complex

I, 3,TEMP LE O,TEMP LD O,TEMP LE O,TEMP LD O,TEMP

ST 3,0(2) STE 0,0(2) STD 0,0(2) LE 2,TEMP+: LD 2,TEMP+8

STE 0,0(2) STD 0,0(2)

STE 2,4(2) STD 2,8(2)

TTL. Process left subtree first.

Assume the processing of the left subtree results in an ad-

dress 1n general register 2.

A. R2 1s not dumped while processing the right subtree.

Long Long

integer Real Real Complex Complex

= Register

holding Ys: R3 FO FOl FO,F2 FO1l,F23

| Code

= generated: ST 3,0(2) STE 0,0(2) STD 0,0(2) STE 0,0(2) STD 0,0(2)

STE 2,4(2) sto 2,8(2)

B. Re is dumped at TEMP while processing the right subtree.

= The code sequences are then identical to those given in

| i II.A except that each code sequence 1s prefixed by

L 2, TEMP

LOGICAL ASSTGNMENTS

Co For logical assigmmants, a truth value must be generated, 1 re-

presents true and 0 represents false. This value 1s placed 1n an

— integer register and stored by an STC instruction, Examples of this

assignment may be seen in the section concerning logical expressions,

(7.0.13).

132



STRING ASSIGNMENTS

L—

The assignment of string variables is defined so that the assign-

ment takes place left to right, character by character. If the assigned

string 1s shorter than the destination string, the remaining characters

-— are filled with blanks. The MVC instruction is used for the assign-

ment and some combination of MVI and MVC instructions used for the in-

- sertion of blanks. The length of the assignment appears in the con-

version bits of the S:= operator and the length of the string appears

in the node immediately to the left of the S:= node.

Example 1

— STRING(5) S,T; S:=T

. S:=(5) MVC 5(5),T
NN

3(5) T

Example 2

- STRING(5) S; STRING (k) T; S:=T

_ Se=(k) MVC s(Lk),T
/ A MVI S+l4 ,X'LO?

s(5) TI

- STRING(S) S:; STRING(3) T; Se¢=T

Ss=(3) MVC 5(3),T

: A \ MVI S+3,X'L0"oH |
MVI S+i,X40!

1353



LW.

Example4

STRING(5) S; STRING (1) T; S:=T

i=) MVC s(1),T
\ MVI S+1,X'hO"

s(5) T ’
MVC S+2(3),S+1

REFERENCE ASSIGNMENTS

Reference assignments are handled just as integer assignments are

~ handled in the integer registers. Examples of reference assignments

may be seen1n the section on field designators (cf. IV.D.16).

23, Card Numbers

In order to give the user a meaningful message if an error occurs

— during Pass Three or at run-time, a unary card node having the form

a | carp | SOURCE CARD NUMBER |

| 1s placed 1n various places 1n the tree, as described in the documen-
—

tation of Pass Two. With this information, Pass Three always has

a available the current (or almost current) user card number If an

error occurs during Pass Three, the current card number 1s printed out

~ along with an appropriate message.
|

In addition, to prepare for possible errors at run-time, Pass

Three builds one table for each user procedure (including the main

Lo block) associating a card number with a relative location in the user's

| procedure.

= If no errors are detected during Pass Three, the card tables are

134



written out onto the same device used to hold the user's compiled pro-

- cedures prior to their loading and execution. The card tables are

written out only after all the user 's procedures have been written out,

~ and associating each card table with a procedure, the card tables are

3 written out in order of ascending (procedure) number, beginning at 1.

y If an error is detected at run-time, the absolute location of the

error is available to a run-time error routine. This routine deter-

mines the number of the user procedure in which the error occurred by

= scanning the program reference table which contains the base addresses

g of all userprocedures. In addition, the relative location of the

error within thet procedure is determined. The appropriate card table

- is then read in, and with the relative location available, the card

number is retrieved.

- o

135



E. Trace Facilities

c-

An optional trace card of the form $TRACEXy beginning in column 1

- of the card allows the user to trace certain features of the compila-

tion and execution of his job,

x and y are integers which may take on the following values, with

- the associated results:

2 or greater Complete map of all compiler passes 1s printed.

- 0) ~ All actions of garbage collector are printed.

4 or greater In case of run error, dump of absolute location

of error, contents of general registers, data

area, and record and run-time data area are

printed.

- 0 or blank None of the above.

— Different values of y will cause printing of different parts of

the output of Pass Two and Pass Three of the compiler, The following

abbreviations will be used:

— NT nametable

| BL blocklist

- TREE tree

| ist compiled code before certain addresses are fixed

up -listed as procedure 1s being compiled.

final final version of compiled code which will be exe-

cuted = listed at end of procedure compilation,

= reg contents of general registers at end of compiling

a procedure.

- 136

|—



y Actions

” 1 reg, final

2 lst, reg, final

 - 3 NT, BL

L NT, BL, reg, final

5 NT, BL, lst, reg, final

6 TREE, NT, BL

7 TREE, NT, BL, reg, final

8 TREE, NT, BL, lst, reg, final

0 no action

The trace card $STACK has the same effect as $TRACEO3.

- 157



APPENDIX IT

EXAMPLE OF ALGOL W COMPILER OUTPUT

SOURCE LISTING

XALGOL

0001 BEGIN

0002 REAL X ¢SUMX¢MEANX

0003 INTEGER NyI3
C004 1 := 03

0005 SUMX := MEANX s=0

GCo6 READIN)3
JyGov WRITE(N);
0008 LsREADON(XLs

0009 I = 1 + 13

v0O1GC sux : =SUMX + X ;

0G1l) MEANX := SUMX / I;
G01: WRITE(T9XySUMX,MEANX

0013 IF | = N THEN WRITE(YFINISHED"}ELSE GO TO L;

GOl4 END.

— PASS ONE OUTPUT

| FE000197  FE00020D 65002866 65002966
65002A70 Fev0030D 65002866 65002CT0 FE000463 O02CIAT7T 01000000 0070FEDO

~- C5650029 94650024 9A7T70100 00000070 FEO00665 D0106A65 00286770 FE0O0O0765

000 16A65 0b284770 FE000865 00209965 00186A65 002 86770 FE000965 002C9A65GO2CTET7 0100Q 0 0 C170FEQO 0A650029 | 9A650029 76650028 TOFE0008B 65002A9A
650C2983 65/002C70 FEOOOC65 00016A65 002C 6965 002 86965 00296965 002A6T7TT70
FEOCODTS 65002C90 65002879 6500016A 8107C6C9 DSCO9E2C8 CSC46TTA 94650020
T0FEQQCOE 4F920Q00 00000000 00000000 00000000 00000000 00000000 0000000";

138



PASS TWO QUTPUT TREE

PROGRAM SEGMENT 1
1 LOC FLAG OPCODE CONV POINTER
f 00C0 Jl159
FE 0004 }OPRAOCDC orn

0008 QO CARD 2201
0ooo0C OQBEGIN 1 0C0n
0010 OCARD 0002
0014 9 NULLST GCeo
0018 3 BB 0010

; 001C 3 NULCST Con
0020 0 CARD 0C04
0024 0 ID 0210

0028 J NUMBER aCOoC
C02C 1 A:= GO24
6Q30 J QC20
C034 9 CARD 0C05
0038 3 IO O1EC

N 003¢ 0 ID 01F8

i 0040 ONUMBER 2 200C
| 0044 1 Az=2 3C3C

0048 1 A:-= 0C38
G04C 0 ’ GO34

| 0650 0 CARD 0C06
cc 54 3 STPROCID 00CO
0058 0 ID 1204
C0s5C J AP) C054

| 0060 3 0500064 9 CARD 0007
0068 3 STPROCID CoC
006C o ID 0204
00 70 3 AP) 0068

: co74 0 JC64
007s 0 CARD 008
GC7C 9 ID 021C
0080 UCOoo

: 2084 3 C78
0C8s8 0 STPROCID 0120
008C 3 ID Q1ED
009¢ 0 AP) 0c8s8

2G98 0 CARD 0CG9
0CaocC 2 ID 0210
QQAC J ID 0210
OCA4 J NUMBER 0Coo
CO AS8 1 + CAD
00AC 1 A:= 009C
CCRC J 0C9-8
0084 3 CARD CQOA
0088 G ID N1EC
008C J ID 0 1EC
G0Co 2 ID Ol1EQ
OGC4 I + 0CBC
00C8 1 A:= 0CBs8
oocc 3 QC8B4
0CDQ 3 CARD coos

CQD4g 3 1D O1F8
GODS 3 , ID O1EC
000C J ID 2 {210
GOEO 1 7 uCD8

139



|

—

NCES 1 b:= C04

OCESR J ’ GC D9
OOEC Jd CARD™ COC

— GCFC J) STPROCID 2C0C

OGF4 D ID C210

QCF8 iJ AP, SCUFO

S0FC DID J1EOQ

— 0100 0 AP, GCF8

3104 3 ID O1EC

C108 3 AP, 7100
010C 0 10 N1F8

- 0110 3 AP) 2108
0114 3 9 OGEC

0118 3 CARD 0C0D

011C Jd ID 3210

0 | D 0204

1 = N11C

312011 3 | F C00
012C 1 IFJ 0124

-. 0130 Jd STPROCID Coc

— 0134 0 STRING 0010

0138 0 AP) 0130

Gl3C 0 uJ 012C

0140 0 LABELID 021C

0144 3 GOTO 0000

0148 0 I FST 013C

014C 0 9 0118

0150 3 CARD Q000E

— 0154 0 END 0Cl1l8

0158 0 PCL 0008

LITERAL ORIGIN ~ GOOC

_ LITERAL POINTER TABLE

LOC LENGTH TYPE POINTER

0000 1 0000

0oC4 6 0000

_ 0008 6 0003
GGOC 1 000 4

0010 7 7 0008

LITERAL TABLE

050108 000GI001! OGO000QO C6CIDSCY E2C8C5C4

ELAPSED TIME 1500:01:58 |
TOTAL TREE LENGTH‘IS 0 15C

— TOTAL OUTPUT LENGTH IS 018C

- 140



|

 —_—

NAMETABLE

Loc [DLACl IDLOC2 SIMIYPE INFO TYPEINFO Type SIMTYPE I D
(HEX) HN SFG VR RCCLNO (HEX)

- 0C00 0J28 GD 1 0 03 MAIN
0C0oC 0300 0GGO | GO WRITE
0018 0000 0000 00 ADUMP

C24 0200 OCOG 1 07 6 ODD

0030 0000 N0CGC 1 07 8 BITSTRING
= CC3C 0U00 00COo 3 07 | NUMBER

C048 0300 0CCOC ] 07 1 DECODE
Fl 0054 QJCO acco 0 1 07 7 CODE

: ace GQ CCO0 2 07 1 TRUNCATE
— 0N6C 0uCo 0GOC 2 07 I ROUND

C78 00C0 0000 2 07 1 ENTIER

QC 84 0aC0 00CO 4 07 2 REALPART

N090 0000 0 00 4 07 2 IMAGPART

— J09C ACO 0a GO 5 07 3 LONGREALPART

JOAS 0002 0000 5 ot 3 LUNGIMAGPART

0JUB4 GIDC 0CCO 3 07 3  LONGSART
0CCO 0000 00CC 2 00 READ

— NCCC 0I0G = GCCOo 2 07 2  SQRT

CODA I IVIVIE wCCo 2 07 2 EXP
COE4 0200 Q0CO 2 07 2 LN

QGFG ¢oou 000 2 07 2 LOG

Lo GCFC del 0GCG0 2 c7 2 SIN
D1CAH Quo NCCco 2 07 2 Cos

| 0114 092430 Q0GO 2 07 2 ARCTAN
Ccl12¢ 390.0 0CCO 2 00 READON

- d12C 000 0000 3 07 3 LONGEXP
¢134 SIAINI S000 3 07 3 LONGULN

| Ol44 N30C Q0oCo 3 07 3 LONGLOG
| 015G 00Q¢C aCeo 3 07 3 LONGSIN
| 5150 Oly GGCO 3 07 3 LONGCOS
— 0168 D0GU 00CG 3 07 3 LONGARCTAN

174% oar NGCO 2 07 4 IMAG
0183C Canc 0000 3 07 5 LONGIMAG
118C soc 0nco 4 07 4 COMPLEXSQRT

— 198 DJul 0ndo 5 37 5 LONGCOMPLEXSORT

J1AS SNE CoCo 1 07 1 MSGLEVEL

. UlBg anne neCo 1 07 1 TIME
513C SIVIVE = Gg 280 00 1 INTFIFLDSIZE

— ClCH UUGE 2AD 00 6 UNOERFLOW
0104 OCDE U2AE 00 6 OVERFLOW
D1ED 0201) O014 GO 2X
NEC 20D 0018 00 2 SUMX

- SRS: COD co1C 00 2 MEANX
D206 00D 0020 00 1 N

S20 VIVES). 0024 00 1 1
210 22391 QGC8 13 01 L

-

CK TST

GOKU LENGTH POINTER

— JING cCocC

“ GL4R ClEC

= 141

!
—



|

FASE THREE CoTRUT

|N—

SEDESS| SOC RC CORA XATV

Lo 20C 4 120000
2901 vul 8 BC 4 IFIFLC96

uJCl oCc a ok A ok 0033
3901 OOOE x 3 G0OIO

_ Go10 00000301
0014 00 J900QC

C018 C6CIDSC9

GO1C E2C8LCSC4

0021 0020C L 58290E17¢C
= 0001 GO24 L 58602000

030 1 us28 A 5A60E194

0301 002C N 5460E198

: 3001 CC30 LA 41006028
— 0001 L034 BAL 4540E17A

0301 C033 L A 41300000

0001 C03C LA 41490000

0301 0040 STM 20046000

— = 0001 C044 ST 5060E170
0J0 1 CC48 LR 1806

0004 0G4A L 5820F014

0004 CO4E ST 50200024

0005 0052 L 5820F014
0005 0056 LA 41100022

0005 00H A L S8FOEQES

0005 O0SE BALR GS0F

_ 0005 0G 60 L 58F0E004
0005 C064 STE TCO0DO1C

3005 0068 STE 70030018

0306 co6C MV I 92FFELT9

0006 C0790 LA 41203100
= 0006 0074 LA 41300020

0006 0078 L 58FQEODC

09206 007C BALR 0O51F
0006 OO7E L 58F0E004

= 0307 0082 LA 41200001

0007 GO86 L 58323D020

0307 008A L 58FQEOF4

3007 008E BALR 0S51F

— 0037 0090 ok kok 0001
0007 0c92 L 58F0E 004

0308 030 LA 412002000008 009 4 L A 41300014

— 0008 OD9E L 58F2EQDC

0108 O0A2 BALR O51F

0208 O0A4 L 5 BFOE 034

0209 00AS L 5820F010

o 0009 OOAC A 5A23D024

0009 coB?3 ST 50200024
0310 C0B4 LE 78000014

0010 C08 AE 7A00D018

0310 OOBC STE 7000D018

0311 GGCO L 58200024

0311 ooc4 LA 4110069022

0311 00Cs8 L 5BFO0EQE4
0011 JOCC BALR 050F



JIL aC L 58F0EDON4

3711 00D 2 LE 78200018

— 4711 uuD6 DER 3N20

JJ11 00D8 STE 7N020D01C

212 O0ODC LA 41200001
0J12 OOEO L 5830D024

- NIJ12 00E4 L 58FNEQES
0712 DOES BALR 051F

2312 UOEA L S8FOEQ04

Q012 O0EE L A 41200002

-— JJ12 JQUF2 LE 78200D014
0312 COF6 L 58FQ0EQES

03212 GOFA BALR CH1F
0212 OOFC L 58FCEQ04

mn D212 0100 LA 41200002
0012 0104 LE 7800D018
0J12 0108 L SBFOEQES

0912 010C BALR C51F
—. 0J12 O10E L 58FQEQ04

= 0012 0112 LA 41200902
Q012 0116 LE T7800D01C

0J12 Ol1A L S5B8FOEQF4

| Qu1l2 OllE BALR O051F
= 0J12 0120 oe kk 0001

0012 0122 L SBFOEQO4

9013 0126 L 58200020

Q013 012A C 59200024

— 0013 012E BC 4T70F152

0013 0132 LA 41200007

0713 0136 SLA 882900010
0913 013A LA 41202007

— 0013 013E LA 4130FQ18

0013 0142 L S8FOEOQOF4

0213 0146 BALR 051F

0J13 0148 3% od ok 0001
- 0J13 Ol4A L 58FQEQQ4

vJl3 Ol4E BC 4TFOUF 156

0013 0152 BC 4T7FOFNOS8

0014 0156 LM 98120004

Co gd la 015A ST S020E170
0J14 C1l5E BCR O7F1
0J1l4 0160 * kkk 0000

| 0014 0162 Hk 0000
“

~ OUTPUT FROM EXECUTION OF COMPILED PROGRAM

— ;

1 le CO0Q00 +00 le 0C000CD* +00 l¢ 000 CP

2 2400000" +00 3.00CNCD 400 Le 500000° +003 . o ‘4 5 rs
P FINISHED 0CC0*+0C 6 00GC CN +CO 2000000+00

143



|

. APPENDIX TI

SIMPLE PRECEDENCE GRAMMAR FOR ALGOL W

|

1 KTv A RID>{2:=<ID> .

y <LABEL ID> $3= <ID>

o 3 KTARRAYID>ite=CID>
4 KTF uN CID>is=KLKID>

5 CRC cL iD> t3= [D>

6 <TFLD ID7 38= <ID>

] <CON ID> 21= LID

— 8 <ST FUNCIDB>::=<ID>
9 <ST PHOC ID>3%= -|D>

10 {SI VAR DC> 33%3= <£SIvARDC%>.

11 <SIv A RDCx>z3:= <KSITYPE> (KIDD

~ 12 CSIVAR DC *79ee LID

13 <S1 TYPED $3= <REF TYPE> )

14 <REF TYPE> $3 REFERENCE< ID >

15 <REF TYPE> 449 KID

— 16 <ARRAY DC7 tt=<BNDL Ss THD> KT EXP> =: CT EXP>

17 CARRAY HM $3= CSI TYPE> ARRAVKID>

18 CARRAY HO> 44 <ID>

19 <BND T.ST HND> 21:1=<CARRAY HD> |

— 20 CRND LST HDO> KT EXP> tt LT EXP>

21 <PROC DECL> ¢:=<T PR HEAD7 <STATEMENT"*>

22 <T PR HEAD>
23 CT PR HEAD>YTP RBODY>

» 2 4 <T PR BODY> 3:= <T EXP>
2s <BLOCKBONDY> <TEXP>E N D

26 <T PR HEAD» s:=«<T PR HEAD*> 3

27 TPR HEAD+7 :: = <PROCENDURE>

28 <PROCEDURE> <FPARH E A D >)

= 29 <PROCEDURE> 3:2 PROCEDURE KID>

30 | <SI1 TYPE> PROCEDURE <ID>
31 <FPARH E A D > ?2¢=<FPAR HEAD*>

32 <FBND LIST?

~~ 33 CFPARHEAD*>%2={ «SI TYPE? <ID>
3 4 { <SITYPED> VALUE <ID>

35 { <¢SI TYPE> RESULT <I D>

36 ( <SITYPE>V ALUE RESULT <IDO>

37 {( <SITYPE> PROCEDURE CID>

38 {PROCEDURE CID»

39 <FPAR HEAD-> <KSITYPE7 <ID->

4 0 <FPARHEAD-7<SITYPEDVALUE< ID >

4 1 <FPAR HEAD~> <(KSITYPE> RESULT <I1D7Y

42 <FPAR HEAN=> (SITY PE? PROCEDURE <ID>
4 3 CFPAR HEAD) CSITYPE>D VALUE RESULT<< I D >
4 4 <FPAR HEAD-> PROCEDUREKID> ,

_ 4s CFPAR HEAD%®> 4, <ID>

4 6 CFPAR HEAD.» t2=CEPARM £ A OP ’47 <FBND LIST :
4 8 CFBND L 1 ST >22=<FBNDHE A D 7%}

o 49 <FBNDH EADS>2: =XFARRAYHI{
50 <FBND HEAD> *%*
51 <¢ ARRAY HD> 2:= ( <SITYPE> ARRAY <IM

52 <FPARHEAD-7 KSI TYPE> ARRA YLID>

53 <F ARRAYHD>yy KID

— S4 <RC cL DC» 2:=<KRC HEAD> )
55 CRCHEADs>22=<RECORDs>{ «SI TYPE> <ID>

56 <RC HEAD? 29 <ID>

57 <RC HEAD%> <KS1 TYPE> <(ID>

— 53 CRCHEAD*> $¢=2=CRC HEAD}

14h

-



-

— 59 <RECORD> ::= RECORD <ID9

60 <T VAR> t:= SI 17 VAR>

6 1 <T ARRAY 1ID9
62 <STR- SEL HO9 <KTEXP> <cLENGTHO9)

— 6 3 CSTRsS ELHD> 23= KSI T VAR
64 SLENGTH> ts= | <T NUMBER>
65 <SI1 T VARD> 22= {TvARID>

66 CT FLD HD> T EXP> )

| 67 <T ARRAY HD> <T EXP>)
= 68 <T ARRAY  HD> %)

69 KT FLD HD> s¢=c1T FD D9 |

fo 70 <T ARRAY HO> 23= KT ARRAY [D>
71 <T ARRAY HD> <T EXP> ,

72 <T ARRAY HD>*

73 <T FUNC DES> 2:= KTFUNCID>

74 <APARH E A D ><TEXP>)

75 <APARH E A D > <STATEMENT>)

— 76 CAPARH EAD >)

77 CAPAR HEADY 2:= CT FUNC [D>
78 CAPARH E AD > KX FYChr,

79 CAPARH E A D 9 <STATEMENT>,

— 80 = <APARHE AD 9

8 1 CTEXP> $3= KT EXP*%D>

82 <T EXP*> ti= KSI 17 EXP>

83 <IF CL9 <TRUTEEXP>LTEXP*>

“ 04 <CASE HEADO9KTEXP>)
85 IF CLO $2= IF CT EXP> THEN

86 <TRUE EXP> t12= LTEXP>E L S E

87 €CASE HEAD> s:=<KCASECc L > ¢

- 88 | < C A S E HEADY KT EXP>4
89 CCASEcC Lo $2= CASF CT EXP3 OF
9G <SE T EXPY $2= &SI 7 EXP*®%D>

91 <ST T EXP*> <EQL OP> <S1 T EXP*x>
92 <S1 T EXP*> REL OP> <S1 T EXP*%x>

~~ 93 KSI 17 EXP%)> Tg <RC cL I1D>
94 SI T EXP*%)> 3:= <SI T EXP%*>

95 KSI T EXP%> $:2= <T TERM

9b + <T TERMY
— 97 ~ <T TERM

9B ST T EXP%>+ (KT TERM

9 <SI T EXP%>» . KT TERM?

i <SIT EXP¥> OO RCTTERMOY
— 1 SRC cL 1092 CRC DES HD> <T EXP> )103 <STRING>»

104 NULL |

- 105 <T TERM» $3= <TTERM"*>
106 <T TERM*> 33=<KT FACTS

157 <T ren uks * (CT FACT»108 <T TERM%> J KT FACT>

- 1C 9 {YT TERM*> DIV <T FACT>
11C {TTERM*> REMCCTFACTO

111 <V TERM%> ANDLKTFACT>

112 KT FACT» 2:= Cc T7T SECON>

113 ~<TFACT?

— 114 <T SECON> 213= KT PRIMY
115 <T SECON> <SHL © R *¥%> (KT PRIM>

116 CTSECON>svy RTP RI MQ
117 CT PRIM> t= KT VARD>

en 118 <T FUNC DES>

145

|
—



|

— 119 <ST FUNC {D>
120 <LEFT PAR> KT EXP> )

121 TRUE

122 FALSF

“— 123 <CON ID>
124 LONG <TPRIM>

125 SHORT <7 PRIM>

126 ABS <T PRIM

o 127 <T NUMRER>
128 <BITSEQ>

129 CREL OP> 231= <

¢ 13¢ < =
131

= 132 > =

133 <EQL 0OP> $3= =

1.34 - =
135 CLERAT PARD gs= |

— 136 <ST FUNC I0>(

137 CRC IDES HP>  21= <RC oo. I0>(
L-3 8 <RC DES HD> <T EXP>
139 <PROGRAMOY9:t=. <BLOCK>

— 1a TSTATEMENTY> :3= .STATEMENT*>

141 CSTATEMENT*>D¢¢= ST ST->

147 <FORc L 9DN

143 <FOR CL>DU<STATEMENT*>

- l44 <WHILE CL> DO

145 CAHI LE CL> D O <STATEMENT#)>

1 4h <1 FCL>
Lal {IFcL> <STATEMENT*D>

- HES} <KIFcL9 <LTRUF PART»
149 CIFCLO>KTRUEPARTY> «STATEMENT*9

150 <CASESEQ> END

191 <CASESEQ>» <STATEMENT> END

| 152 <ST sT> t= IILNCKD>
— 153 <T ASS STO

15% <TFUNCDES->
155 GUTO <LABELID >

156, <57 PROC HO><T EXP> )

— 157° <BLOCK> t= {BLOCKBADY> END
154 <BLOCKBNDY> <KSTATEMENT> END

159; <BLOCKBODY> : 3 - <HLOCKHEADD>
16H <BLOCKBNDY>

C— 141 <BLOCKBODY> <STATEMENT>3}

12 <BLOCKBODY> << L A B E LDEF>fF <BLAOCKHEAD> te= BEGIN |184 BLUCKHEAD> <SI VARD C > 3
— 16% YBLOCKHEAND> <ARRAY DC >;

166 I <PROC DECL> 3
167 CBLNCKHEAD>< KC CL DC »>3
168 <LABEL DEF» s:2= LCID> :

w 169 <T ASS ST» 22= KT VAR> := KT EXP*>
LTO / <TVAR> $= <TASS ST»
171 LTRUE PART» !2= <CSIsT9 ELSE

172 ELSE f

a 173 <CASE SEQ> t13= <CASECL>BEG IN
1.74 <CASESEQ> <STATEMENT>}
175 < CAS ESEQ>;

176 <FOR CL> t2=<CFORHEAD> <KSTEPUNTIL> <KT EXP>

177 CFCRHEAD>

178 <FOR LISTS LT EXPY

146



| bo

174 <F IR HEADD> tor KFGRY> t= LT rxpx>
187 FIR LIST :s= <FOR HEADD ’
131 <FOR LIST> KT EXP N
182 FORD r= FUR <ID>

: 183 SSTERPUNTIL> =:= STEP <T EXPO UNTIL
_ 1834 UNTIL

135 KWHILF CL> Sl: WHILE <T EXP
| 156 ST PROC HD> ff <ST PRNC ID> (
3 187 <ST PROC HD> KT EXP>
L

147


