CS 98

ALGOL W IMPLEMENTAT ION

BY

H. BAUER
S. BECKER
S. GRAHAM

TECHNICAL REPORT NO. CS 98
MAY 20, 1968

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY

ALGOL W IMPLEMENTATION*

By

H. Bauer
S. Becker
S. Graham

*
This research is supported in part by the National Science Foundation
under grants GP-4053 and GP-68h4L.

- ATGOL W IMPLEMENTATION
o Table of Contents
- I, IntroduCtion . . & L L L e e, R
XI. General Organization et et iaeeees D
- ITI. Overall DeSign . . & v v teerievnnrernncsocnononasonans Ceriies b
A. Principal Design Considerationsf......** k4
= B. Run-Time Program and Data Segmentation 6
C' Pass One. ’O.D'll.lll’lﬂllll.l.!.lll'lll‘ 7
— D. Pass Two Ceeeriereaaone U
1. Description of Principles and
i Main TaSkS.o..............o.o....-.8
— 2. Parsing Algorithm ., , .,x......xt*x 8
3. EITOr RECOVEIY vuvverrveovnarnsoenees O
L. Register Analysis*.......%.... 11
- 5. Tables .uuiiiiieiinieieennneerinnneas 13
6' Output ® 8 4 0 00 00009000 8 0 8 00 0 406 00 ¢ e 13
E. Pass Three . e, R L
[S—
IV. Compiler Details 00000000000 L N N NN NEE] 17
- A. Run-Time Organizationc..eveevevenennes 17
1. Program and Data Segmentation ,..,.. 17
2. Addressing Conventions 20
- 3. Block Marks and Procedure Marks ,..,, 20
4. Array Indexing Conventions, , 14 22
5. Base Address Table and Linkage to
_ System Routines . . .iiiiiieeii.n.. . 23
6. Special Constants and Error Codes ,, 24
7. Register Usage B P -1 ¢
8. Record Allocation and Storage
- Reclamation S -1
B. Pass One ,......... e rieeieaa, B 1o

Table Formats Internal to
PASS ONE . tvuvrvennsoonnovannnesss
2. The Output String Representing
. an ALGOL W Program .cccsccocsococs 36

3. The Table Output of Pass One 39
4. Introducing Predefined Identifiers.. Ll

r

E.
Appendix I

Appendix HI

Table of Contents (cont.)

ii

Pass TWO ...ueoiooosoneenunosonnneass I
1. Storage Allocation sesonaaoas 43
2. Value Stackooveeveves.. seanes .o 45
3. Interpretation Rules,...... ... b5
L. Pass Two Tables ceoeciesascas 51
5. Output of Pass Two saeoees sseoaa Sha
Pass Threeovuenos., coeeneos oo ceaaans . 62
1. Register Allocation.,,,............. 62
2. Block ENtIV..uuueoueoneneennnnnnnnn., 65
3. BLock EXIt tuuiiuvvvonronnonnnnnnn. .. 69
L. Procedure Statements and Typed
Procedure Designators 70
5. Procedure Entry000000... T3
~6. Procedure Exit P < (@
Formal Parameters in Expressions
and Assignments ...,........0.00... 81
8. Array Declaration ,............. ... 83
9. Subscripted Variables,...... 89
10. Passing Subarrays as Parameters .,,, 91
11. Arithmetic Conversion ,,,........... %
12, Arithmetic Expressions .,.,,........ 97
13. Logical Expressions ,,,............ 108
k. String Expressions..,..,........... 115
15. Bit Expressions,,,,..... A Ay
16. Record Designators ,,,............. 118
17. Field Designators tecoseseaceocesss 119
18. Case Statements and Case
EXPressions .«eeeeco.. Ceeesaceacaas 120
19, If Statement, If Expression, and
While Statement ve. 122
20. For Statement coccecsncnns 123
21. Goto Statement ceveosasses 127
22, Assignment Statements 130
23, Card Numbers coesos .
Trace Facilities cevoas0.0.0...... 136
. 1] ceceon
Simple Precedence Grammar ..,.,.,......... cocenres

Figures

Reserved Word Tables cocecevooosccccossoaancosos 35
Tdentifier Tables.:occocoocococsocasoscasoacsass 36
Pass One Oubput Codes ceceosocscoass sosessacass 38
Example of BLOCKLIST and NAMETABLE cecososeosoe 41

Format of NAMETABLE and field contents after
Pass Two ® @ 00 0 000 @800 00000039000 3000 e 0 0 e 9 Q0 ¢ &0 52 ff

Pass Two Output Vocabulary..cosceescooesososocs 56 £F

111

I. INTRODUCTION

In writing a compiler of a new language (ALGOL W) for a new machine
(IBM System/360) we were forced to deal with many unforeseen problems
in addition to the problems we expected to encounter. In a few instan-
ces, we gave in to temptation and changed the language; 1in many others
we would have liked to have been able to change the machine. This
report describes the final version of the compiler, Not surprisingly,
there are several things that in retrospect we would do differently,
both in design of the language and in design of the compiler, We will
not discuss these after-thoughts here.

1)

The implemented language ALGOL W ' is based on the Wirth/Hoare

)

proposal2 for a successor to ALGOL 60. The major differences from
that proposal are in string definition and operations and in complex
number representation. Consideration was given to including both paral-
lelism and data file facilities in the language but both ideas were
abandoned because their inclusion would have necessitated substantial
changes in those parts of the compiler that had already been written,
The project was initiated and directed by Professor Niklaus Wirth,

who proposed many of the ideas incorporated in the compiler and suggested

ways to bring them about. Joseph W. Wells, Jr. and Edwin H. Satterthwaite,

1) Bauer, H.R., Becker, S. and Graham, S.L. ALGOL W Language Descrip-
tion, Report CS 89, Computer Science Department, Stanford University
(March 1968).

2)

Wirth, Niklaus and Hoare, C.A.R. A Contribution to the Development
of ALGOL. Comm._ ACM 9 (June 1966), pp. 413-43L.

Jr. wrote the PL30 System in which the compiler is embedded, the
linkages to the compiler, and the loader. Although the authors did

the bulk of the programming for the compiler, valuable contributions
were made by Larry L. Bumgarner, Jean-Paul Rossiensky, Joyce B. Keckler,
Patricia V. Koenig, John Perine, and Elizabeth Fong. We are grateful
also for the many helpful comments and suggestions made by the faculty
and students of the Computer Science Department. Finally, we grate-
fully acknowledge the support given us by the National Science Founda-
tion under grants GP-4053 and GP-684k and the computer time made avail-

able by the Stanford Linear Accelerator Center and the Stanford Computa-

tion Center.

=

II. GENERAL ORGANIZATION

The compiler is divided into three passes,

Pass One is a scanner. It reads the source program, converts the
symbols to internal codes, deletes comments and blanks, converts nu-
meric constants to internal form, builds a block-structured name-table
and lists the source program.

Pass Two does a complete syntactic analysis and extensive error
checking. It does all static storage allocation. The output of Pass
Two is the completed nametable and a binary tree representing those
parts of the program for which code is to be generated.

Pass Three generates the object program in reentrant machine code.

)

The three passes are written in PL56Ol as separate programs. The
passes use a common data area for data shared by them. This area re-
mains in core if sufficient room is available; otherwise the tree
output of’ Pass Two is written on secondary storage and read segment-
by-segment by Pass Three.

The discussion is divided into two sections. Part III describes
the design. of the three passes. Part IV provides information about
the details of the compiler and is devoted primarily to a discussion

of the run-time organization and the object code generated by the

compiler.

1)

Wirth, Niklaus. "PL360, A Programming Language for the 360 Com-
puters,” _Journal of the ACM 15 (January 1968), pp. 37-Tk.

==

ITT. OVERALL DESIGN

A. Principal Design Considerations

Following are the main features we wished to incorporate and some

of the ways they were achieved,

Efficient object code,

All constant arithmetic (e.g. 5+7) is dome at compile time. Global
variables are accessed (at run-time) with no overhead. The inter-
mediate language specifies nearly optimal use of the registers,
resulting in a minimum of temporary saves. Optimization which
involves rearrangement of the source program (for instance,

removing computations from for loops) is not done.

Code generation only for syntactically and semantically correct

programs.

A complete syntactic check and a search for all errors detectable
at compile time are completed before any code is generated. Pass

Three is called only if no errors are found.

Useful tools for numerical computation,

Complex arithmetic in standard mathematical notation and double-
precision (long) arithmetic are implemented features of the
language, Facilities to detect overflow and make appropriate
recovery are provided, as is a set of standard functions of ana-
lysis .

Fail-safe reliability.

Run-time checks on such things as array subscript bounds, substring
operations and formal procedure parameters prevent loss of control
(i.e. wild transfers) by the obje~t program.

Good diagnostics.

Specific error messages are generated at compile~time and at run-
time. All messages give an indication »f where in the source

program the error occurred. A listing of the parsing stack at

the time of a syntactic error can be cbtained as a programmer
option.

B. Run-Time Program and Data Segmentation

Program segments and data segmentm are 'both logically and physi-
cally separate, Program segment8 correspond to the structural unit
"procedure" in ALGOL W. The scope of a data segment is an ALGOL W

block containing declarations. program segments are allocated stat$—-

cally (i.e. once only at compile-time); data segments are created

dynamically (i.e. each time the block is entered at run-time).

{
{
-

—

C. Pass One

Pass One receives the source program as input in 80 character
records, Its functions are to -
1. list the character string and assign it line numbers;

2, recognize basic entities of the language and -place them in
an output string with byte (8%bit) codes;

3. convert constants to internal form;

L. make a table of identifiers arranged by blocks and containing
type and simple type information specified in declarations,,

The input is scanned until a symbol is recognized - i.e. a delimiter,

an identifier, or a literal,, 1In response to this symbol a code repre=
senting the symbol is placed in the output string. New blocks are
noted, and declared variables are placed in the NAMETABLE which is
organized by blocks, A new block is entered at each begin, at the
beginning of the formal parameter list in a procedure declaration, and
at each for statement, A BLOCKLIST table containing one entry for
each block in order of entrance points to the entries in the NAMETABLE
corresponding to the identifiers declared in a given block. A table
of identifier character strings is also filded for use in Pass One

and Pass Two.

Do Pass Two

- 1. Description of Principles and Main Tasks
L The function of Pass Two ish to do a complete syntax check of the
source program, to do a thorough error analysis and generate all com-
~ pile-time error messages, to complete the NAMETABLE, to build the
3 constant tables, and to convert the program to an intermediate language
) to be used by Pass Three for code generation. The syntax analysis
;;. is done by means of a simple precedence analyzer. The interpretation
rules of the grammar specify the other Pass Two actions.
C -
2. Parsing Algorithm
= The algorithm for syntactic analysis is essentially that used by
Wirth in EULER.l) Some program modifications have been made. First:,
N the look-up to determine whether a string is the right part of a pro-
o duction has been changed to include a check on the length of the string
and the length of the right part, Second, the full precedence matrix
- is used rather than the precedence functions. This is done in order
: to detect errors sooner and to provide better error recovery than is
- " possible with functions. Third, the relations found when scanning to
. . the right looking fors are stacked, Therefore, they can be easily
retrieved when in the process of scanning to the left for < rather than
- having to be fetched again from the matrix. The matrix is packed four
elements to a byte in order to conserve space. Consequently, a fetch
-
1) Wirth, Niklaus and Weber, Helmut. "EULER: A Generalization of ALGOL
. and its Formal Definition: Part I." Comm, ACM 9 (January 1966),

pp. 13-23; 25.

-

r

r—-

r— r

o

from the matrix is slower than retrieval from a stack, However, every
time a reduction is made, the relation of the new symbol to the symbol
below it on the parsing stack must 'be fetched from the matrix and
stacked. If most of the rules that are applied have right parts of
length one or two, there is no significant gain in speed by stacking
the relations since few unnecessary matrix fetches would have to be
done. However, there is a gain in efficiency with longer right parts.
For each syntax rule there is a corresponding interpretation rule
which is executed when the reduction is made, For ‘efficiency, Inter-
pretation »rules are written directly in PL360 rather than in some
metalanguage. Associated with the parsing stack is a parallel value

stack containing information used by the interpretation rules.

3. Error Recovery

When simple precedence analysis is used, there are two situations
in which a syntactic error can be detected = when a reducible substring
(i.e. one delimited by < and®) is not the right part of any produc-
tion and when the top of the parsing stack has no relation (<, =, »)
to the incoming symbol', .

In the first situation, the statement in which the error occurred
is deleted from the program To accomplish this in ALGOL W, the stack
is backed up to <BLOCK BODY> , <BLOCK HEAD> , <CASESEQ HEAD> , or the
file delimiter and the input string is advanced to end, ";", 'begin, or
the file delimiter. If end is erased from the stack, it becomes the
incoming symbol, otherwise the next symbol oa the input string is taken,

If a nonterminal which affects the value of the block number is removed

!
-

— o

r—

from the stack, the block number is adjusted accordingly,

Special care is taken with begin's, end's and the block number so

that the block numbers conform to those assigned by Pass One, If the
block structure were to be destroyed, many spurious errors would be
generated, If Pass One had been done by syntactic analysis, these
special fix-ups would be unnecessary provided that Pass One and Pass
Two recovered in the same way.

If the top of the stack has no relation to the incoming symbol, a
variety of recovery actions are possible. A symbol can 'be inserted,
the top of the stack can be deleted, asother symbol can replace the
top of the\étack, a reduction of the stack can be forced., or the in-
coming symbol can simply be stacked. The action to be taken is deter-
mined by the symbol at the top of the stack. For each symbol in the
grammar, there is an entry in table EMIB pointing to a list of recovery
actions in table ERTB.

In order for a symbol to be inserted, it must have a relation to
the incoming symbol and the top of the stack must have a relation to it.
If the inserted symbol is 4 the incoming symbol, the input string is
backed up and the inserted symbol becomes the incoming symbol. Simi-
larly a symbol replacing the top of the stack must have a relation on
either side,

An inserted or replacing symbol may generate another error message.
For instance, an undefined identifier is assumed to be integer although
it may be intended as another simple type. If the trace flag is set:,
the error recovery action is always printed out unless the incoming

symbol was stacked, A flag is set so that the same action will not be

10

r—r r— r— [’r1—

—

tried the next time through. (e .g. 1If the top of the stack is <BLOCK-
BODY> and it has no relation to the incoming symbol, a ";" may be in-
serted, "<BLOCKBODY> ; " reduces to <BLOCKBODY> . If the error routine
is called again before the inpu£ string has advanced, it must not

again insert a ";".)

4 . Register Analysis

Two register counts are kept for each relevant position in the
stack = a count of the integer registers and a count of the floating
registers up to that point, The simple type of the operation determines
the ‘active” set of registers. The active count resulting from a binary
operation Is determined as follows:

Suppose the active counts for the two arguments are equal - both
have value k. Then k registers will be needed to calculate the first
arqument. At the end of that calculation, one register will be in use,
containing the value of the first argument . That regfster remains in
use during the calculation of the second argument, Since the binary
operation uses only the register containing the first argument, the

resulting count is ktl.
Exe.mglek_.lé = active count for i, ki > 0)
integer a, %j;...a + b ...

ka = kb = 0. To compute the sum it is necessary to load a regis~

ter with a and add b into the register containing a. Thus

-

Example 2
integer a, b, ¢, &5 . .. (atb) - (etd) ...
K up = Kepq = 1+ The result (a#) occupies one register, This

register holds the value of atb while c¢td is computed, using an-
other register . Then the register for at+b is subtracted from the
register for ctd, leaving the result in the register previously

occupied by atb. Thus ,

k. = 2 °
(a10) - (1)

Suppose the active counts for the two arguments are unequal - the

counts are kl and k2 where kl > k2 .+ Then if the argument using k1
registers is computed first, that result occupies one register leaving

H;l registers to compute the second argument . Since k1 > k_, k > k2+1y

2’ "1

hence k, -1 > k Therefore there are enough registers left to compute

1=
the second argument . Hence mﬂx“ﬁ}kg) is the resulting count. (If the
other argument were computed first, krﬂ,registers would be necessary.)

Notice that the above reasoning assumes that the operators are
commutative (or that appropriate reverse operators exist) . Adjust-
ments must be made for some noncommutative operators, For instance
DIV and REM require a minimum of two registers if the second argument
has count 0 and three integer registers if it has a non-zero count,

The resulting count of the number of 'inactive' registers is the
maximum of the counts for the arguments. The counts for an_if expres-
sion or a case expression are the maxima of the counts of the consti-
tuent express ions . Register counts for function calls are set arbi-
tarily to a large number since all registers in use before a function
call are saved,

12

e

5. Tables

Pass Two completes NAMETABLE, assigning hierarchy numbers, program
segment numbers and addresses for variables and descriptors, and in-
serting array dimensions, local stack origins and record information.

A bit string is inserted for every reference variable, indicating posi-
tionally to which record classes it may refer. A run-time constant
table and a compile-time constant pointer table are constructed for
each program. Information local to Pass Two is kept in the interpreta-

tion stack rather than in tables,

6. OQutput=

The output of Pass Two is a string called TREE representing the
linearization of a modified structural tree of the program being parsed.
Each nonterminal node has either one or two subtrees.

An n-ary construction is represented as a binary tree by making

the n components terminal nodes joined by a binary list operator.

Example
program fragment: F(B, 5, C + D, GOTO X)
where F is a procedure, C is integer, D is real
Tree:
A\ \
AP/§R<\ 0@8\\ where AP, is an actual parameter
// \\ X list operator and AP) indicates
? the end of the list.

AP
/
AP, 5

/

Semantic information is not included in the tree because it is contained

in NAMETABLE.

The order in which the nodes occur in the string is shown in the

following diagram:

5 10 |\ 16
13 22
9 /\ 18 19 l 23
é 11 12 21

It can be seen that the subtrees of a node precede the node. A
nonterminal Dbinary node contains a pointer to its left subtree; itg
right subtree will directly precede it. Each binary node has a switch
indicating which of its subtrees is to be processed first. yodes are
not processed until their subtrees (in most cases arquments) have 'been
processed. The normal mode is to process the left subtree first,
'thereby preserving the order in which the structures occurred in the
source program. The exceptions are binary arithmetic operators and
the assignment operators. For these operators, the subtrees represent
two operands. In order to minimize register usage, the operand using

the larger number of registers is compiled first. (Such optimization

is permissible according to the language definition,l) which states

that:

"If an operator operates on. two operands, then these operands

may be evaluated in any order, or even in parallel, with the

exception of the case mentioned in 6.4.2,2."

Another motivation for using the tree rather than reverse polish
was the hope that it would be a natural way to represent parallelism in
the language. This use of the tree was investigated but was not fully
developed because it was decided not to implement the parallel. features

of the language.

-~

A separate tree is generated for each program segment. In theory

the program segments (procedures) could be processed by Pass Three in

any order; in practice they are processed in the order they occur.

1 .
) Wirth, N. and Hoare, C.A.R. ™A Contribution to the Development of
ALGOL", Corm. ACM. 9 (June 1966), 413-432.

15

R

f—

—

E. Pass Three

The essence of Pass Three is the algorithm for scanning the lin-
earized trees, beginning at the root node. Theswitch with each binary
operator indicates which branch the scan should follow. The operator
nodes are not otherwise examined at this stage; code generation begins
with the first terminal node encountered,

Pointers to the nonterminal nodes are stacked in STACK as they are
encountered in the scan, STACK also contains a field in which infor-
mation about the first subtree is kept while the second subtree is com-
piled. -

For each binary node there are two phases of code generation. 1Ip
the first phase the operator is considered together with its first
operand; in the second phase the operator and its second operand are
considered . Hence there are two compilation (output-generation) rules

associated with each binary node, Each unary nonterminal node has one

associated rule .

16

§

r——

-

IV COMPILER DETAILS

A. Run-Time Organization

1. Program and Data Segmentation

Since no compiled code is modifiable at run-time, all program
segments are re-entrant. Data segments are created at block and pro-
cedure entry and deleted (by resetting the stack pointer) at block
and procedure exit.

Program segments are allocated statically at the low end of avail-

able core. Data segments are then allocated dynamically, beginning

Just after fhe program segments and proceeding toward upper core,

Segments for system routines apd their data are allocated statically
at the high end of available core. Record pages are allocated dyna-
mically downward beginning immediately before the system routines and

system data. If the data stack and the record pages meet, the run is

terminated.
PROGRAM
SEGMENTS
DATA L STACK
RECORD T PAGES
SYSTEM ROUTINES
AND THEIR DATA

AVATLABLE CORE

17

Each block and procedure requires a data segment. When a block

procedure data segment.

occurs as the 'body of a procedure, its data segment is merged with the

A diagram of a typical data segment is shown below.

FP

RA

DL

REFVAR

REFARY

12
local 11
display

DPD-dynamic
parameter

descriptors

PV-parameter

values

local variables

and array descriptors

local stack .

array
elements -

S ———

block/procedure mark 20 bytes
(cf. IV.A.3)

The static link chain - entries hold the

bases of all currently accessible data

segments. If n is the number of the re-

gister holding the base of this segment:
(13-n) * Lk bytes

* (cf. IV.D.))

* (Occurs only if procedure has value,
result, value/result, or array para-
meters. e¢f, IV.D.DH)

For dumping registers and partial results.

Occurs only for block which is the procedure body of a procedure
with parameters.

18

PR,

Each program segment has the following form:

ER

SFPD's

Branch table

_I_Jitera.l table

*Procedure entry code
Procedure body code

Procedure exit code

N-umber of formal parameters of the

procedure

Static formal parameter descriptors

The static formal parameter descriptors (SFPD's) are one-word

descriptors, one for each formal parameter, giving all information

needed by the system subroutine CHECK to check the formal-actual para-

meter correspondence at run-time. This type of checking is done at

compile-time by Pass Two for non-formal procedure calls, but must be

done at run~time for formal procedure calls.

A branch table exists in the heading of each procedure and con+t

tains one branch instruction for each label in the procedure. When a

goto_statement is executed, a branch is made to the appropriate instruc-

tion in the branch table which then branches to the labeled location.

The literal table is a table of all literals (contants) used in

the procedure. During execution, each literal is addressed by a dis-

placement relative to the base of the program segment given by RI15.

19

-

Only one copy of each literal is given.
The literal table is obtained from Pass Two and is placed into

the program segment at compile-time by Pass Three.

2. Addressing Conventions

Because of the structure of the addressing mechanism in the IBM
System 360 Computer, program segments and the statically allocated
portion of data segments may not exceed 4096 bytes.

During the execution of a procedure or run-time system subroutine,
R15 is a pointer to the base of the procedure or system subroutine.
All brancﬂing internal to a procedure is accomplished with a displace-
ment relative to the base in R15. Branches between procedures are
accomplished by first setting R15 to the base address of the procedure
being branched to and then branching.

Upon entering each procedure and block, a data segment is allo-
cated and a general register is assigned to hold the base of that data
segment. All local variables, descriptors, and value and result para-
meters are then addressed relative to the base of the data segment via
the general register. Because the base addresses of all accessible

data segments are held in registers, all accessible variables are

immediately addressable.

3. Block and Procedure Marks

At the base of a data segment, a $-word procedure or block mark
is created and filled with all administrative data necessary for the

proper usage of reference quantities in the data segment, for the

20

creation of new data segments while this data segment is active, and

o for the deletion of the data segment when its corresponding block or

procedure is exited.

— A mark consists of five full-word fields, as shown in the follow-

ing diagram.

-

i FP

~ RA

DL
REFVAR

C ~ REFARY

FP: The free pointer field points to the first free byte' An the data
stack. When a new array or a new data segment is allocated,
this pointer indicates its base.

RA: The return address field holds the return address for pro-
cedures. This field is not used in block marks but is allo-
cated nonetheless for consistency.

. DL: The dynamic link field contains the base of the data segment
which was the most recently allocated data segment before the
current one. When the current data segment is deleted at an

= exit from the corresponding block or procedure, the stack
pointer is reset to the contents of DL. By tracing backward

- : through the chain of dynamic links, one may obtain the bases
of all data segments which have been allocated and not yet

- deleted. These correspond to all blocks or procedures which
have been entered and not yet exited.

- REFVAR: The upper two bytes of the field REFVAR contain the number

of reference variables local to this block. (Reference
value/result parameters are treated as local variables.)

Allreference variables and reference value/result parameters

21

{
{
|
(-

—

are grouped together so that the garbage collector may pro-
cess them. The lower two bytes of the field REFVAR point
to the first reference variable or value/result parameter,
relative to the base of the data segment. If no reference
variables are declared in the block, the REFVAR field is

ZEro.

REFARY : The upper two bytes of the field REFARY contain the number of
reference arrays declared in the block. The lower two bytes
point to the first reference array descriptor, relative to
the base of the data segment. All reference array descriptors
are contiguous in the data segment. From the array dimension
contained in the first byte of each reference array descriptor,
the garbage collector is able to locate all reference array
descriptors and hence all the elements in all reference arrays.
If no reference arrays are declared in the block, the REFARY

field is zero.

4. Array Indexing Conventions

A data segment corresponding to a block in which arrays are de-
clared contains an array descriptor for each array. The descriptor
specifies the upper and lower bounds of the indices of the array, and
a pointer to the first array element. The size of the descriptor is
dependent only upon the number of dimensions of the array; therefore
the portion of the data segment used by the descriptor is allocated by
Pass Two, At run-time, the bounds are stored into the descriptor,
the total number of bytes required for the array elements is calculated,
storage is allocated in the data stack, and a pointer to the first
array element is placed into the descriptor.

When an array element is referenced, the descriptor is used to

calculate the actual’address of the array element.

22

F—

r— r— r—

—

5. Base Address Table and, Linkage to System Routines

During the execution of a program, a table giving the base ad-
dresses of all the user’s program segments and the base addresses of
all run-time system routines resides at a fixed displacement from Rlk.
The displacement for each segment base is known at compile-time,
allowing the compilation of instruwctions to load R15 with a segment
base before branching to that segment,

The standard calling sequence from a user procedure to another

procedure or system routine 1is

L 15, 4; (14)
BALR 15, 1
L 15, dp (14)

where d; is the displacement of the entry in the base address table
giving the base address of the called procedure or system routine and
d, is the displacement of the entry giving the base address of the
calling procedure.

Because of addressibility problems, the above code sequence 1is
modified when calling certain system routines, The first load instruc-

tion above may be preceded by
MI runtime flag, byte

and the second load instruction may be preceded by a halfword of in-
Pormation. The relative origin withintte system routine is then established
using the value of the run-time flag or the halfword of data.

The instruction BAIR 15,1 is replaced by BAIR 15,0 for some 8ys-

tern routines so that the routines meyuse their parameters more effectively,

23

6. Special Constants and Error Code

Certain special constants needed at run-time, as well as some run-
time error check code, are placed at specified locations based off Rlk.
The inclusion of the constants makes it unnecessary to insert these
constants in the literal tables thus saving room in the program segment.

The precise locations relative to Rl of the constants and various
run-time entry points into the error checking code are known at compile-

time so that the proper addresses may be compiled.

Constants

SEVEN 7 used to make an address fall on a
DUBLMASK #FFFFFFF8 double word boundary
THREE 3) used to make an address fall on a
SINGLMASK #FFFFFFFC single word boundary
AILPNES #FFFFFFFF used in bit-not operations
NULLREF #OOFFO000 the null reference
ALLFCERR C 0,LIM used for data allocation; return

BCR <, k4 to point of call (BAL 4,ALLOCERR)

if LIM = (beginning of record pages)

has not been reached

IR 1,4
LA 0, 5(0) error condition
ARRAYERR BCR <, 1 used for run time array bounds

checking

MAINERR L. 15, base of ERROR error routine prints location of
error = Rl. RO is parameter to
error routine, giving the type of
error so that appropriate termina-
tion messages may be given.

24

|
L

e ——

r—

[r—— f

S

"

BCR 15, 15

UBLBERR BCR <, 1 used in array declarations to be
LA 0, 13(0) sure that upper bound> lower bound.
BC 15, MAINERR - Error condition.

Register Usage

At run-time the following uses are made of registers:

RO and Bl are used by the system as save and link registers for

system subroutines. They are otherwise available for local use.
R2 - R6 and FO - F6 are used in evaluating arithmetic expressions.

gz-ggz_pold the run-time display pointers to all data segments
which at any given time are accessible to the block being exe-
cuted.

R13 always holds the base of the data segment of the main
program block.

R7 - Theare allocated statically downwards from Rle.
word "statically" is emphasized since data segments are created
dynamically and the size of the data stack is limited only by the
physical size of available memory. Any two or more parallel
blocks (or procedures) will have the same display register point-
ing to their data segments, since only one of those data segments

may exist at any one time.

It should be remembered that the data segments for a procedure

and its outermost block (if there is one) are merged into one data

segment .

In the following diagram the numbers represent data segment base

25

!
L

——

r— -

——

-—

———

-

e

registers. Each begin is assumed to be followed by one or more decla-

rations.

13 begin
procedure P
12 begin
11 begin
end
end

procedure Q
12 begin
procedure P
- 11 Dbegin
end
11 begin
10 begin L:
end

gnd
end
12 begin
11 begin
10 begin
procedure S
9 begin
end
end
end
end
end
en

————

Those registers not in use as display registers are available for

arithemetic evaluation, For example, at lebel L in the preceding dia-

26

o

e

r—

gram, R10 - Rl3 are in use as display registers, and R2 - B9 are avail-
able for arithmetic evaluation.

RI4 always points to an area in memory which contains:

the base address table,
special constants,
error codes, and

F W o

» local data for system subroutines.

R15> always holds the base of the program segment currently being
executed.

At particular points in the execution of a program when it 1is
known that none of the arithmetic evaluation registers are in use
(such as at procedure entry and exit, block entry and exit, and in a

procedure call), they may be used by the run-time administration.

8. Record Allocation and Storage Reclamation

Space for records is allocated by pages beginning at the end of
core working downward. Size of the pages is a parameter of the run-
time routines. As each page is allocated, the pages are formatted so
that each record on the page is pointed to by a previous record or by
the FRC (see below). Each page is dedicated to one record class.

Table RCT is prepared by Pass Three and loaded along with the
compiled program. It contains a 16 byte entry for each record class
declared and is indexed by record class number. No record class 0
exists. This allows RCT(0) to be used for a free record page chain.

RCT contains the following information about each record class:

— r—

RCT (0)

16 * RCN

16 * RCN + L
16 * RCN + 8
16 * RCN + 12

FRPC - FREE RECORD PAGE

CHATN
RCN -~ RRCOXD CLASS
NUMBER
FRC - FREF RECORD
CHATN
PC - PAGE CHATN
RL - RECCRD LINGTH
IN BYTES

NR - NUMBER OF REFER-
EXCE FIELDI

FRC, FRPC, and PC are initialized to 0. The last entry in the table is

- ’

set to #FFFFFFFF when fewer than 15 record classes exist.

FRC is the origin of the Free Record Chain for the given record

class.

28

where n 1s the record
class number and each
list element is a record

of class n.

FRPC is the origin of the free record page chain. Each page on

the chain is a page whose origin address Es greater than at least one
of the pages in use. This chain always releases as many pages as
possible to free storage so that free storage may be used by either
data segments or record pages as needed. A record page which was

allocated and later released may then be used for data segments.

FRPC

A new referenue to a record class is always obtained from the
FRC corresponding to that class. 1If the upper byte of FRC is 0, the
garbage collector is called, 1If the garbage collector cannot free
enough storage for a new reference, execution is terminated.

Storage reclamation (i.e. garbage collection) consists of three

_ phases : marking used records, collecting unused records, returning

‘unused pages. For each call of the garbage collector all record classes

are searched and the FRC of each record class is updated.

Records are marked in two steps. First, each reference variable
and each reference array element is tested; for each non-null refer-
ence, the first bit of the record referenced is set to 1. The first

byte of each record ié not allocated for fields and is available.

29

When a record is marked whichlhad not been previously marked, a
check is made of the NR field corresponding to the record class. If
this field is zero, nothing more. needs to be done. If this field is
non-zero, each reference field of the record must be checked. The
reference fields are checked starting with the last reference field
and ending with the first reference field. Each reference field in
turn is treated recursively as a reference variable. The last reference
field has been processed when the marking bit of the record is encoun-
tered . This test restricts the number of record classes to at most 127.

Since-the reference fields of a record are checked when the re-
cord is marked, a backward chain must be kept so that the path may be
retraced and all reference fields of each record inspected. This
chain consists only of the three low order bytes of the reference. The
high order byte remains unchanged. Before proceeding to inspect the
fields of a new record B designated by a field of record A, the address
of the record inspected previous to A replaces the reference field in
A designating the new record. If the record A had been designated by
a simple reference variable or a reference array element, zero re-

places the reference field in A.

e.g. gyecoxd sample (reference (sample) one, two)
reference (sample) R;

Let A, B, C, D be symbolic names for record addresses of class
sample and let N be the mull reference. Suppose Example 1 represents
the situation when the garbage collector begins. Reference R is in-

spected and points to record A of class n (i.e., sample). Record A is

30

marked (first bit on). The last reference field of A (two(A)) is checked
first. Two(A) points to a previously marked record, namely A. Thep
one (A) is tested and points to record B which is still unmarked. A
zero 1is placed in the 24 bit address field of the reference. Recorg

B is marked. Two(B) points to the record C which is unmarked. The
address of A replaces the address of C in two(B). The process is re-
peated until record D is marked and its fields tested. Example 2 re-
presents this state. A return is made up the chain until each field of
each record involved is checked and until the zero field in record A is
encountered and changed, At this point, the result is similar to
Example 1 eécept the first bit of records A, B, C and D is on.

All references in a block are scanned before following the dynamic
links to a previous data segment., When the dynamic link is zero, the
process 1is completed.

Phase One of the garbage collection is completed by looking at
each record. The second bit of each record is used to protect records
which have been created but not yet assigned to a reference location
or used in some other manner. Therefore, each record must be scanned
to inquire if this bit is on; if so, the record is marked and its
reference fields scanned as previously described.

In Phase Two, any record whose first bit is not i is puﬁ on fhe
free list for its record class. Phase Three is integrated with Phase
Two. If any record page has no used records, it is returned to the

free record page chain. Furthermore, if the page adjoins the free

31

F

space for data segments, the page is returned instead to the free space
for data segments. In this case, the free record chain is checked

for record pages adjoining the free space for data segments. Those
found are removed from the FRPC and given to the free space.

After all the storage reclamation is complete, the garbage collec-
tar must supply a record of the class desired. If no free record of
the class desired exists, a new page is allocated for this record
class and placed on the class's page chain. If no space for a new page

is available, execution is terminated.

Example 1
| n | A aloln B n A
B0 |n D n C
Cl0(O0 N n D
D010 N 0 N
Example 2
| n | A | A [80]on 0 n A
B|8| On D n A
¢ [80]00 N n B
D (8000 N 0 N

32

B. Pass One

———

The output of the compiler's first pass is

1) a listing of the source program with each line numbered
beginning at 1,

2) a character string representing in detail the original
source code,

3) a nametable, having an entry for each identifier, arranged
by blocks,

L) a blocklist table which indexes the nametable by blocks,

5) a table listing the record classes to which the declared re-
;erences are bound.

Other tables are passed on by Pass One but have significance only
in producing trace output in Pass Two.
Pass One makes decisions as to the size of the tables based on
the size of the core available, The algorithm used is
CB = commonbase

LC = last core location available

cs = common size

¢cs = LC - CB;

If cs > = #30000 then CS := #18000 else CS := CS DIV 2;
NAMETABLE := CB + NT@RIGIN;

IDDLISTBASE := ((cs DIV3 + CB + NTPRIGIN) DIV 8) *8;

REFRECBASE := IDLISTBASE + ((Cs DIV2:) DIV8) *8;

IDDIRBASE := 2 ¥ REFRECBASE - IDLISTBASE;

INPOINT := IDDIRBASE +3 * ((CS DIV 24) DIV8) *8;
PASSTWOOUTPUTRASE := (ADDRESS orF END oF pPAss oNE OUTPUT) DIV8 *8;

If the Pass Two output area is not at least twice as long as the Pass

One output area, a flag is set so that Pass Two output will be on tape.

33

frer

1. Table Formats Internal to Pass One

Four main tables direct the work of Pass One. Two are intialized
at entrance. They are the table RESERVED of the EBCDIC representations
of the delimiters or reserved symbols and the table CODE containing
an entry corresponding to each reserved symbol. Two other tables are
partially initialized at entry to Pass One and added to during its exe-
cution. They are the identifier directory IDDIR which has the EBCDIC
representation of each identifier, and IDLIST which indexes IDDIR.

The table RESERVED is divided into segments which acccmodate the
ALGOL W syﬁbols grouped (alphabetically) by length. Hence RESERVEDI
contains all the symbols of length 1 such as :, =, (. RESERVED2
contains all symbols of length 2 such as do, 59,%5& This arrangement

continues through RESERVED9 containing -procedure, reference, opce

a match is found in the RESERVED table, a 2-byte entry corresponding
to the reserved symbol is found in CODE. For example in Figure 3, the
corresponding CODE entry for if is hexadecimal 6401.

In most cases, the first byte of the CODE entry represents the
one-byte output code for the ALGOL W symbol, This code corresponds to
the symbol number of the ALGOL W symbol in the syntactic productions
of Pass Two. The exception to this rule occurs with the RESERVED
entries representing the simple types such as integer, real, logical.
These symbols are represented in the output string by the same charac-
ter. Instead, the first byte of the CODE entry gives the simple type
mumber (see Figure 1). In the example of if, 64 is its output string

representation.

The second byte of %$he CODE entry is used as an index to a case
statement. The hexadecimal wvalue 01 means no special processing takes
place. Such is the case in the” example of if, Any other valus means
that some special note must be made of this symbol such as tc enter
declaration mode or to declare a control variable. These special situ-
ations are described in the following pages.

IDDIR is a character array of all identifiers predefined or occur-
ring in the program being compiled. The list is arranged so that if
only the identifiers SQRT, A, TILDA appeared, the IDDIR fable would
appear as\SQRTATILDA and the irdex to %he table would have a value
equal to the number of characters relevant - in this case, 10.

IDLIST indexes IDDIR by an array of full words with one entry
corresponding to each identifier. The first half word of' each entry
is the length of the identifier minus 1. The second half of the
entry is a pointer to the first character of the identifier. Hence,
in Figure 4, the entry (i } (5) corresponds to TILDA with the length
specification of k4 and pointer value of 5. Also in Figure 2, note that

IDLIST INDEX is a pointer to IDLIST =8.

Figure 1

Regerved Word Tables

RESERVED (in EBCDIC) CODE (in hexadecimal)
RESERVED1 (+ CODEL 5506 4F01 5005
RESERVEDZ DO IF CODE2 6301 6401
RESERVED9 PROCEDURE CODE9 8515

%

Figure?2
Identifier Tables .

IDDIR : SQRTATILDA IDDIRINDEX = 10
IDLIST (3) (o) -~ IDLISTINDEX =8
(0) (&)
(&) (5]

2. The Output String Representing an_ALGOL W _Program

The characters of the output string representing an ALGOL W source
program are the numbers which correspond to the syntactic elements in
Pass Two. For most cases, there is a one-one correspondence between
the AIGOL W symbols and their codes. As an example, Figure 3 shows
that do is represented by hexadecimal 93. Some codes represent two
ALGOL W symbols. These are exponentiation, '¥*¥', and assignment, ':=',
and the bound pair colons, '::'. The following list itemizes the
other special situations requiring modification of the normal corre-

spondence between ALGOL W symbols and string representation.

1. The reserved words and reserved word pairs, integer, real,

long real, complex, long complex, logical and bits receive

the code for <simple type>.

2. Each identifier is replaced by a 3 byte code. The firs%
byte is a code for <identifier>. The following twc bytes
contain the unique identifier number, (Starting from 0).
In Figure b, the identifier number of A would be 1.

3. Each number is represented by a 1 byte code for <number>.
followed 'by a 1 byte indication of the type of the number,
followed by the number.

36

—

10.

11.

Each bit sequence (e.g., #razec (in hexadecimal)), results
in a 1 byte code representing <bit sequence, followed by
the 4 byte literal,

A comma appearing in the identifier list of a declaration or
in the record class specification of a reference declaration
receives the code designated SPECCOMMA.

In a reference declaration, the left parenthesis preceding
the record class specification is omitted from the output

string .

In. a string declaration, if the length is specified explicit-
ly, the entire length specification, (number), is omitted
from the output string,

Each new card is indicated in the output string by a 3 byte
code . The firs% byte specifies’new card’and the following
2 bytes give the card number.

The reserved word comment and all characters up to and in-
cluding the next semicolon are omitted from the output string.

An identifier following the reserved symbol end is omitted

from the output string.

A period (.) following the reserved word g¢nd is recognized
a8 %he end of program.

37

I

::ﬁ:-\/"/\u

6A
67
9
90
TE
TF
L
83
69
8F
91
7€
8E
81
87

95
78

7¢
80

Figure 3

Qutput Ccdes

ABS
AND
DIV

FOR
REM
SHL
SHR

CASE
ELSE
FILE
GOTO
LONG
NULL
STEP
THEN
TRUE

ARRAY
BEGIN
FALSE
SHORT
UNTIL
VALUE
WHILE

38

8D
86

9%
79
8A

9'7
8B
9F
9D
72
9E

RECORD
RESULT

FROCEDURE
REFERENCE

SPECCOLON
SPFCCOMMA
ASSIGNMENT

END OF FILE
EXPONENT!
LINE MARK

NUMBER
IDENTIFIER
STRING SEQ
BITS SEQ
SIMPLETYFE

5
73

71
68

6D
9A
9A

92
88
FE

7
65
81
8E
oD

~—

3. The Tgble Output of Pass One

Three tables are part of the necessary output of Pass One:
NAMETABLE, BLOCKLIST (which indexes NAMETABLE), and RCCLIST,

The BLOCKLIST table has a one-word entry for each block in the
program in the order encountered. (Each program has a predefined
outer block numbered 0 containing predefined symbols such as WRITE and
SQRT.) This full-word entry is divided into two half-word fields. The
second field points to the first ‘byte of the entries in NAMETABLE
corresponding to identifiers declared in the block. The first field
is equal to 12 times the number of identifiers declaredinthe block
(i.e., the length of the NAMETABLE entry for the block). If noidenti-
fiers are declared, both fields are zero. In Figure 4, the first
BLOCKLIST entry points to WRITE and encompasses both WRITE and SQRT
which are predefined. The second BLOCKLIST entry points to i, and
encompasses i, j declared in the outer block of the program. The third
entry corresponds to the control variable i.

The entrance and exit to blocks are defined by the following
rules.

a) Each 'begin signifies the entrance to a block and the corre-

sponding end signifies the close of the block,

b) Each statement following a <for clause> is surrounded by a
block in which the control variable is implicitly declared.

¢) Each procedure body is surrounded by a block in which its
formal parameters, if any, are declared.

In the NAMETABLE all identifiers declared in a block are grouped
together, Therefore the permanent entries in the NAMETABLE cannot ‘be
made until the block closes. If viewed ‘by blocks, the identifiers in

39

L

— r— r

p

r— f f

r r— rr— rm r— [

——

-

the NAMETABLE are listed in order of the closing of the blocks. 1In
Figure 4, the control variable block closes before the outer bleck and,
hence, appears in the NAMETABLE ?irst.

The layout and field contents of NAMETABLE are shown in Figure 5.
Pass One puts in only that information required by Pass Two to check
the semantic correctness of the program Many fields are filie¢ by
Pass Two. The information entered during Pass One consists of the

following attributes appropriate to the variable.

IDNO - The number assigned to the identifier.
- This number is equal to the number of
the IDLIST entry.

SIMPLETYPE

TYPE

TYPEINFO = block number of the formal parameters of
a procedure. Simple type of the argu-
ment of a standard function.

a) Value-result
for formal parameter

. 1if value

. 1f result

3. 1f value-result

1
2

b) Record class number
for record class identifiers, the
record class number
for record fields, the record class

number .

SIMIYPEINFO -~ a) for string, length -1
b) for a reference, a pointer to the
RCCLIST.

40

L

—-

— T

r—

Figure4

Example of BLOCKLIST and NAMETABLE

BLOCKLIST S NAMETABLE

18 l C entry for MAIN
2 | 30 entry for WRITE
c | 2 entry for SQRT

entry for i

entry for i

entry for j

entry for L

begin integer ;

L: end.

Each entry of RCCLIST is a half-word which gives the IDNO of a record

to Which the reference is bound. A zero entry signifies the end of
the group. The NAMETABLE entry for a reference variable contains a

pointer to the first entry of RCCLIST for that variable,

L. Introducing Predefined Identifiers

To introduce in the compiler new psedefined identifiers such as
standard functions or standard procedures, a series of changes must 'be

made in Pass One.

1. The EBCDIC code of the identifier and its length must be
added to array IDLISTFILT.

L1

g

— r—— rm [~

r-——

r— r

-

—

—

r

Two half-word entries corresponding to the identifier must be
added to IDDIRFILL. The first helf-word is the (number of
characters -1) in the identifier. The second half-word is
the (sun of the preceding pairs of entries +1),

IDDIRINDEX must be initialized.
IDLISTINDEX must be initialized to be equal to the (sum of
the last pair of IDDIRFILL entries +l).

A 12 byte entry (3 integers) must be added to NAMETFILL-as
described in the description of the NAMETABLE entries
(ef. IV.C.5).

For example the entry for ROUND is:

nupber
/
(#0) (#o000000L ¥ (#0701 0009)
type of stelndahpe of
parameter function procedure

BIFILL must be changed to be initialized to (#aasa000c)
where aaaa is the hexadecimal representation of the (number
of integers -3) declared for NAMETFILL) % L.

SYMBOLINDEX must 'be initialized to the (number of integers
declared for NAMETFILL) # L.

In the initialization section of the algorithm, the initiali-
zation o:f IDDIR, IDLIST, and NAMETABLE must be corrected to
represent the length changes,

L2

1. Storage Allocation

All static storage allocatisn for variables and constants is
done by Pass Two. For this purpose a number of counters and link
tables are necessary,

BNC contains the current block number (cf. IV.B). BN contains
the highest block number assigned so far (necessary in order to set
BNC when a new block is entered). BLOCKLIST2 contains static links
for blocks. These are necessary to restore BNC to the current block,

Progréﬁ segment numbers are assigned by Pass Two. Each proce-
dure constitutes a separate program segment and is assigned a unique
number. SNC contains the current segment number; SN contains the
largest segment number already assigned, SNLIST contains static
links for program segments.

The hierarchy number represents the level of nesting of data and
in actuality is the number of the base register used to access the
data segment. HN contains the current data hierarchy number.

DREIAD contains the address of the first free byte relative to
the beginning of the current data seguent. DRELSAVE is a stack used
to save values of DRELAD while parsing actual parameter lists.
DRELPOINT contains a pointer to DRELSAVE. While a record class de-
claration is being parsed, RELAD contains the current address relative
to the beginning of the record class Layout,

All addresses of variables, array descriptors, and other data are

indicated in NAMETABLE. An address consists of the hierarchy number

43

(base register number) plus the address relative to the beginning of
the data segment (displacement). Reference variables are grouped to-
gether at the head of the data segment; other variables occur in the
order in which they are declared in a block. A location is allocated
for each control identifier as well,

Fields of records are given addresses relative to the origin of
the record. Field addresses are first assigned to reference fields,
then to logical and string fields, then to other fields. The first
byte of the record or the two high-order bits of the first reference
(1f there is one) are reserved for the garbage collector.

The length\in bytes of any record in a record class is indicated
in the NAMETABLE entry for the record class. The length is always a
multiple of 8.

Labels are given an address relative to the beginning of the pro-
gram segment in which they occur. The location is used for indirect
transfers.

The dimension of an array is inserted in NAMETABLE when the first
array designator or the declaration is encountered (whichever occurs
first) . This information is subsequently used to compute the length
of the descriptor (and to check the number of dimensions each time
‘that array identifier occurs).

Storage is allocated in the program segment of a procedure for
descriptors of its formal parameters, Descriptors of actual name para-
meters are assigned addresses relative to the beginning of the data
segment of the procedure. Space is allocated in the data segment for
values of the actual value and result parameters, since they are

treated like local variables while control 1is within the procedure
by

body. Value and result parameters of simple type "reference'! follcw
all others so as to be adjacent to the local reference variables.

The first free location following the variables in each data seg-
ment is the origin of the local stack (temporary storage) for the data
segment. Its address is indicated in NAMETABLE for the outermost data

segment of a procedure and in the associated begin output node otherwise.

2. Value Stack

The value or interpretation stack consists of 8-byte elements.

This stack works in parallel with the parsing stack.

! ! !]
I Va1 | vez [|

vl v2 V3 vk \&

The standard uses for the fields are described below, although
the actual uses vary with the construction being parsed.
V1l Simple type information
Vel Type
V22 Simple type
V3 Integer register count
V4 Floating register count
V5 Output pointer
When an identifier is looked up in NAMETABLE, a pointer to NAMETABLE

is inserted in V1, V2 is filled, and V3 and V4 are set to zero. When

a node is put in the output array TREE, the tree pointer is put in V5.

3. Interpretation Rules

Associated with each syntax rule is a body of code, the interpre-
tation rule, which performs the semantic actions appropriate to the

45

syntactic construction, The interpretation rules are contained in

procedures EXECUTEl, MECUTE2, and EXECUTE3 and are accessed via a

case statement indexed by the rule number. (Three procedures rather

than one are necessary because of the addressing structure of PL360.)

The interpretation rules use the value stack for working storage,

Semantic actions and value stack layouts for major constructions of

the language follow:

Simple variable declaration
a. Layout 1is standard
b. Each identifier is located in NAMETABLE, checked for multi-

ple declaration, and allocated storage, No output is gener-

ated,

Array declaration

a. Layout
V1 pointer to NAMETABLE entry of first identifier
va current block number of block containing declaration
V3 number of identifiers
v4 dimension
V> output pointer
b. The identifiers are counted, the simple types of the bound

pair expressions are checked, the bound pairs are counted,
storage is allocated for the descriptors, the array dimen-
sion is inserted in NAMETABLE for all the identifiers, and

output is generated for the structure.

Procedure declaration

a.l Layout of procedure head

V1 simple type information (if typed procedure)

Va2l type (i.e. code for procedure)

Va2 simple type (if typed procedure)

v3 & v4 current DREIAD of procedure head (mark, descrip-
tors, etc.)

V5 output pointer

46

a.2 Layout of procedure body

Vi simple type information of expression (if typed
procedure)
ve 0

v3 & v4 DRELAD of procedure body

V5 output pointer

The counters and pointers are stacked, storage is allocated
for the descriptors of the formal parameters, record class
masks are constructed for reference parameters (cf. IV.C.k),
the relative origin of the label transfer table is computed,
the simple types (for a typed procedure) are compared, the
output for the procedure and the literal table aregenerated,
the counters and pointers are restored, and the output is

(optionally) listed.

Record class declaration

a.

Layout
V1 pointer to NAMETABLE for current field
va current RELAD

v3 & v4 not used

V5 pointer to NAMETABLE entry of record class identi-
fier

The identifiers are located in NAMETABLE and checked for

multiple declaration, storage is allocated for the record

class identifier, relative addresses are assigned to the

fields and the number of fields is inserted in the NAMETABLE

entry for the record class.

Substring designator

Layout 1is standard

The simple types of the simple variable, the index expression,
and the length are checked, the length is checked against the
length of the simple variable, and output is generated for

the structure.

47

Field designator

Layout 1is standard

The simple type of the reference is checked, a check is made
that the reference expression can point to a record of the
record class containing the field, and output is generated

for the structure.

Array designator

a.

Layout (replaced by standard layout after structure is parsed),,

V1 pointer to NAMETABLE

Va2l number of *'s

va2 number of subscripts remaining, #FF if dimension
unknown

V3,V4,V5 standard

The subscripts are counted (in NAMETABLE) if dimension is not

already known; otherwise the number of subscripts is checked
against the dimension The simple type of each subscript

is checked, register counts are computed, and output is gener-

ated for the structure,

Function designator and Procedure statement

a.

Layout (replaced by standard layout after structure is parsed),

V1 simple type information (if typed procedure)

vel contains #FF if too many actual parameters, number
of parameters yet to come otherwise,

Va2 simple type (if typed procedure)

v3 & v4 pointer to NAMETABLE entry of current formal para-
meter if it is actual procedure, C if it is formal
procedure

V5 output pointer

If the procedure is not formal the number of parameters and

their types are checked, output for the structure is gener-

ated.

48

e

10.

11.

12,

13.

If expression

a.
b.

Case

Layout 1is standard

Simple types of then expression and else expression are
checked for type compatibility, type conversion is indi-
cated if necessary, simple type of expression in if clause

is checked, output is generated.

expression

Layout

Vi simple type information
v21 number of cases

vaz2 simple type

V3,V4,V5 standard

Simple type of expression in case clause is checked, cases
are counted and simple types are checked for compatibility,

register counts are adjusted, output is generated.

argumentl [=, >=, <, <=, >, and, or, +, -, *,/, shr, shl, div,

rem,

[=
8.
b.

**] argument?2

Layout 1is standard

Simple types of arguments are checked, type conversion is
indicated where necessary, register counts are adjusted,

order of compilation is indicated, and output is generated.

-y long, short, abs] argumentl
Layout is standard

Simple type of argument is checked, output is generated.

Record designator

a.

Layout (replaced by standard layout after structure is parsed).

V1 pointer to NAMETABLE entry for current field
v21 number of fields
Va2 record class number

V3,V4,V5 standard
The number of fields is checked, the simple type of each field
is checked, conversion is indicated if necessary, register

counts are adjusted, and output is generated.

49

14,

5.

16.

17.

18.

19.

Blockbody
a. Layout
vl not used
Ve 0 if no declarations, #F if enclosing block of pro-

cedure body (with declarations), #FF otherwise
v3 & v4 DREIAD of surrounding 'block
V5 output pointer
b. At begin BN, BNC, and HN are stepped, V2 and DRELAD are
set, storage is allocated for reference variables, and record
class masks are constructed (cf. IV.B.4). At end, DRELAD

and HN are restored. Output is generated for structure.

Label definition
a. Layout 1is standard
b. Storage is allocated for transfer, SNC and HN are inserted

in NAMETABLE, output is generated.

Assignment statement

a. Layout 1is standard

b. Simple types are checked for compatibility, register counts
are adjusted, order of compilation is indicated, output is

generated,

Case statement
a. Layout 1is same as for case expression.

b. Cases are counted, output is generated.

For statement
a. Layout 1is standard
b. Simple types of expressions are checked, storage is allocated

for control identifier, output is generated.

While statement
a. Layout 1is standard
b. Simple type of expression in while clause is checked, output

is generated.

50

4. Pass Two_ Tables

Pass Two completes NAMETABLE and creates literal tables.
The information entered in NAMETABLE consists of those of the
following fields appropriate to the variable, For field contents and

table format, see Figure 5.

1. IDLOC1
2. IDLOC2

3. SIMIYPEINFO

a. for a record class identifier, the record length is in-
serted
b. for a reference, the pointer to RCCLIST (a list of record

classes to which the reference may point) is replaced
by a 16 bit mask in which each bit position represents
a record class and is a 1 if the reference may point to

records of that class.

4. TYPEINFO

a. for a label, the hierarchy number is inserted
b. for an array, the dimension is inserted
c. for a record class identifier, the number of fields is
inserted.
5. TYPE
a. for a formal value/result parameter, the TYPE code is

replaced by the code plus 16.

Two tables to handle literals are constructed for each program
segment. The literal table contains all literals (numbers, literal
strings and bit sequences) occurring in the program segment. At run-

time it is located before the program segment code. The literal pointer

51

r

table is used by Pass Three and contains the simple type, the length
“ (1f the literal is a string), and a pointer to the literal table for

each literal. The integer 1 and the logical values occur in every

literal table. Pass Two uses the stack CONSPOINTERSTACK to save the
: pointers to these tables when a nested program segment is parsed.
L -
L Figure5
FORMAT OF NAMETABLE AND FIELD CONTENTS AFTER PASS TWO
— 12 Dbytes/entry
‘_
- Ingjocy IDIOC2]
| hierarchy ' prog seg
. SIMTYIEINFO TYPINFO dimen
- vr e ol Tcel number
TYPE SIMPLETYPE IDNO
FIELD KIND OF ENTRY CONTENTS
IDL.OC1 simple variable hierarchy number
label program segment number
) array hierarchy number
procedure origin of local stack

record class identifier hierarchy number

record field hierarchy number
control identifier hierarchy number
standard function simtypeinfo of argument
formal parameter hierarchy number

_ mwLoca simple variable relative address
label relative address
array relative address of de=

scriptor

52

.
FIELD

.

C

Lo

) hierarchy

i

L Prog seg
SIMIYPEINFO

|-
TYPEINFO
dimen
rcclnumber
vr
TYPE

SIMPLE TYPE

KIND OFE ENTRY

record class identifier

record field

control identifier

formal parameter

procedure

procedure

string

reference

record class identifier
label

procedure (not formal)

array
record class identifier
record class identifier

formal parameter

standard procedure
simple variable
label

array

procedure

record class
record field
control identifier
standard function
standard procedure
formal name parameter
integer

real

long real

complex

53

CONTENTS

relative address

address relative to ori-
gin of record

relative address

relative address of de-
scriptor or value/result

hierarchy number
program segment number
length -1

record class mask
record length
hierarchy number

block number of formal
parameters

dimension
record class number
number of fields

1 if value, 2 if result,
3 if value/result

vr for parameters

6 + TYPE number

B w e =20 N N Fowo

FIELD KIND OF ENTRY CONTENTS

long complex 5
logical 6
string 7
bits 8
reference 9

NOTE: The SIMTYPEINFQ entry for a reference variable and the
TYPE entry for a formal value/result parameter are
changed from their contents at the end of Pass One.

The tables PRTB, MIB, and MATRIX: are used by the syntactic ana-
lyzer and are initialized upon entry to Pass Two. MATRIX contains the
simple precedence relations of the ALGOL W (simple precedence) grammar
(cf. Appendix 2). The array is packed two bits per entry. PRTB con-
tains the productions of the simple precedence grammar grouped SO

that all productions having the same leftmost symbol of the right part

are together. The format for a production is the following

production: L ::= Ry Ry ... R 1<n<s5

representation in PRTB (one byte per entry):

production number

The symbol #FF indicates the end of a production group, MTB is

an index to PRTB. The entry for a given symbol indicates the beginning

54

of the group of productions of which that symbol is the leftmost symbol
of the right part.

METATABLE contains the EBCDIC representation of the symbols of the
simple precedence grammar and is used for printing out the parsing
stack. OPTABL contains the EBCDIC representation of the Pass Two
output nodes and is used for printing out the tree. Both tables are

initialized upon entry to Pass Two

5. Output of Pass Two

Each element of the output string TREE consists of a four-byte

word with the following format:

OP CONV POINTER

SWITCH

SWITCH is on (1) if the right subtree is to be compiled first and off
(0) if the left subtree is taken first. Conversion of arithmetic type
may be indicated in the source program implicitly, by mixed-type ex-

pressions, or explicitly, by the operators long or short. In either

case, the simple type to which the expression is to be converted is
indicated in CONV. For a terminal node POINTER points to NAMETABLE
or the literal pointer table; for a nonterminal it points to the last

node of the first subtree.

5ka

~

Example

program fragment and tree — previous example (cf. I1I.D.6)

output substring:

SWITCH OP CONV POINTER
FUNCID points to table entry for F
VARID points to table entry for B
0 AP, . J
NUMBER points to table entry for 5 \j
0 AP, .
VARID 2 points to table entry for C !
VARID points to table entry for D '
+ .
- AP, °
LABELID pointer to table entry for X
GOTO
0 AP) o

A separate tree is generated for each program segment, with output
pointers relative to that tree, The output for each program segment is

of the following form:

pointer to end of tree ;\\\

PROCDC . pointer to NAMETABLE
. (tree for procedure body)
PCL) pointer to PROCDC 4

Origin of literal table

Length of literal pointer table
Literal pointer table

Length of literal table

Literal table

55

Figure 6

OUTPUT VOCABULARY

Binary Operators

conversion

OF1 bits

pointer to I1first argument

tree
switch

Where OP1 can be one of the following binary operators;

OPERATOR CODE REMARKS
I 1
2

~ 5
/ 4
*% 5 exponentiation
L = 6 logical assignment
A 3= 7 arithmetic assignment
S &= 8 string assignment — conversion field contains

string length

R := 9 reference assignment - no conversion
STEPUNTIL 12
DIV 13
REM 14
< 15~
< 16
> 17 conversion bits indicate length for string
S 18 comparison
= 19
% 20
L =2 22 multiple assignment
A =2 23
s 1= 2 2L
R :=2 25

56

e

conversion |

or2 pointer to|lfirst argument

L bits

(left branch always processed first)

(conversion field may contain-string length for string arguments)

OPERATOR CODE REMARKS

AP) 29 Indicates end of actual parameter list. Con-
version bits indicate conversion of result
of function call.

INDX 30 Indicates subscripting operation. Conversion
bits can occur only with last such operator
and indicate that resulting array element
must be converted.

REFX 31 Indicates computation of field (lst arg.) of
N record reference (2nd arg.).
IFEXP 232 Indicates that label should be issued for end

of if exp. and unconditional jump patched.
Conversion bits indicate that resulting ex-
pression must be converted,

PCL 39 Indicates end of procedure declaration.

SUBSTRING 40

(j{—] OP3 pointer to0 first argument _J

tree (no conversion)

switch

OPERATOR CODE REMARKS
SHL 35 left shift
SHR 36 right shift

57

["o

pointer to first argument

(no conversion:

OPERATOR

BB

END
1

R)
LAGER
BIT#R
L@GAND
BITAND
ITERST

ITERST?2

FPRLIST
F@R CL
ENDF@RLIST
UJIFEXP

uJ

CL

WHILEOP
WHELEST
IFg

CODE

37

38
41
42
b3
44
45
46

47

48
k9
50
51

52

53
54
55
56
57

58

59

60
61

left branch always processed first)

REMARKS

indicates end of declarations, beginning of
blockbody.

for actual parameters

for record designators

for array declarations

indicates end of array declaration
indicates end of record designator
indicates ¢R of logical arguments
indicates @R of bit sequences
indicates AND of logical arguments
indicates AND of bit sequences

indicates generation of transfer to iteration
test (for WHILE st and simple F¢R st)

indicates generation of transfer to iteration
test (for PgR st with PER list)

links control assignment and STEPUNTIL

indicates unconditional jump in IF exp

indicates issue jump to end af case list or
IF st. (to be patched)

indicates label should be issued for end of
CASE st and jump addresses patched

indicates label should be issued for end of
IF statements and jump addresses patched

array bounds COLON

indicates N@gP (statement separator)

indicates issue jump on condition false to
end of IF exp, or IF st.

58

II.

Unary Operators
0 conversion ~ I
£ bits .I
o
Where O can be one of:
OFFERATOR CODE REMARKS
UMINUS 67 unary minus
ABS 68 absolute value
1
I
l OP6 I
Where OP6 can be one of:
OPERATOR CODE REMARKS
Lfe = T1 negation of logical value
BIT = 72 negation of bit sequence
p 73
grF 74
GPTg 75
76 label COLON
STACKADDR 77 arqgument is local stack origin for implicit
subroutine (statement parameter)
X
CARD(79) source card !number
e _ . ungr:,' operator for
- - IN, PROC ARRA
CASE(BO) Slmple n,u 2 DC, YDC)
. type number of|cases
(if expr. |

59

III. Terminal Nodes

{BEGIN(BB) | block no. | local stack origin
block no. and local staek origin
occur only if begins data seg-
ment
T {85§R integer value
NUMBER conversion ,
(86) bits pointer to constant table
- ~ — 1
X1 CONVELSLON ., inter to NAMETABLE
bits 1
Where X1 can be:
B TERMINAL CODE REMARKS
ID 87
LABELID 88 no conversion
‘ ARRAYID 89 no conversion
FUNCID 90 no conversion if proper procedure
RCCLID 91 no conversion
L FIELDID 92 no conversion
CONID 93
PROCDC 95 no conversion (procedure declaration)
RCCLDC 96 no conversion (record class declaration)
SEG(97) program segment number

indicates program segment
occuring in outer segment.

60

X2

pointer to constant table

]

Where X2 can be:

TERMINAL CODE REMARKS
BIT 98
STRING 99
TRUE 100
FALSE 101
T
X3 :
Where X3 can be:
TERMINAL CODE REMARKS
IF 111
WHILE 102
NULL 103 indicates undefined reference
NULLST 104 indicates empty statement
ARRAYDC 105 array declaration
AR¥* 106 indicates dummy array subscript
- i
| o |eomersion) pointer td namane

Where XL can be:

TERMINAL CODE REMARKS
STFUNCTD 107
STPROCID 108

61

r.._“_".

D. Pass Three

1. Register Allocaticn

Code generation for arithmetic operations involves the knowledge of
which registers are occupied and where each partial result is held,
Temporary storage must be provided for dumping partial results from
registers into main memory when either too few registers are available
or a subroutine call is made. An even-odd pair of general regis-
ters is required for integer multiplication and division,

All the floating registers are available for arithmetic, Some of
the general registers are reserved for special purposes, The compiler
variable CLN always contains the number of the lowest-numbered base
register in the current program segment. All lower-numbered general.
registers are available for arithmetic with the exception of RO and RIL,
and R2 in iterative statements.

The compiler uses two half-word arrays R and F to indicate which
registers are occupied, To each general register which is free corre-
gponds a flag equal to 0 in the array R. A non-zero flag indicates
the register is occupied, The érray F serves the same function for
the floating resgisters.

Partial results are located by referring to ISTACK. FEach current
partial result, whether value or address, has an entry in LSTACK.

These entries have the following formats:

(1)]ﬂ O|N; [N 0
oL 8 12 16 31

r

—_— T

(2) 0 0 N
01 16 20 Ei

In (l),Né is zero except for one case: a complex value is in the
floating registers N1 and N I%_is the number of either a general
or floating register, and bits 16-31 are interpreted as a base with
displacement address.

In general, a procedure call involves dumping all partial results,
Also, one or more partial results will be moved from registers to main
memory when & shortage of registers occurs. Each quantity dumped must
have its LSTACK entry changed to indicate the new location. Thus
pointers to the LSTACK entries indicating registers are required.
These pointers are in two arrays, FSTACK for general registers and
FSTACK for floating registers. Each RSTACK entry consists of only the
displacement field, for indexing LSTACK. Each FSTACK entry has this
index and two other bits of information: bpit 0 is on for type real
and off for type complex, and bit 1 is on only if the quantity is not
long. Complex values are never split between a register and a memory
call; either both real and imaginary parts are in registers or both
-are in memory.

A procedure call requiring the saving of registers causes the
necessary store instructions to be generated, all corresponding LSTACK
entries referenced via RSTACK and FSTACK to be updated, and RSTACK
and FSTACK to 'be emptied. During Pass Three R2 always points to the

next available word in RSTACK and Rk similarly for FSTACK. The pro-

63

cedures DUMPALLGENREG and DUMPALLFLREG carry out these functions.

When one or two registers are needed @Gor partial results and
are not availabie, one or two registers 'holding the currently oldest
partial results are stored, This involves updating at most two LSTACK
entries, The relevant RSTACK or FSTACK element(s) are eliminated,
and all elements above are moved down. The currently oldest partial
results in registers are thus always referenced via the bottom entries
of RSTACK and FSTACK, The procedures DUMPGENREG, DUMPFLREG, and

DUMPFRFIREG generate the store instruction(s) and do the necessary up-

dating,

When a register or pair of registers is needed, the appropriate
register request routine is called and is one of the following:
GENREG, PRGENREG, FLREG, or PRFLREG. This routine scans the R or F
array to find, if possible, the required single register or pair., If
necessary, it will call the appropriate save procedure as described
above . Having determined or created the requested register(s), the
procedure will flag the appropriate element(s) of R or F, set up
the LSTACK entry at the top of the stack, and create the appropriate
RSTACK or FSTACK entry, A register release is performed by either
RELEASE or ZRELEASE.

In certain cases of inputs to binary operations, an adjustment
must be made in the top pointer value of either RSTACK or FSTACK.

Consider the situation below just before code is to be generated for

an add operation,,

S

RSTACK LSTACK

o~ 0 ADDR

It is only necessary to generate one ADD instruction to add the con-

tents of memory location ADDR to register N. Afterwards, the situa-

tion must be the following.

RSTACK LSTACK

¢ > 1 N

The pointer at the top of RSTACK must be decremented to point to the
new top of LSTACK, Whenever this is necessary, procedure ADJSTACKS
is called.

Procedure ASSEMBLE, though used in many parts of Pass Three, was
designed primarily with arithmetic instruction generation in mind, It
accepts as inputs registers holding two LSTACK-format entries, one of
them also holding the second half-byte of the instruction code in
bits L4-7. The third input contains the type, From these the routine
can determine the first half-byte of the instruction code and build

each field of the instruction.

2. Block Entry
There are four purposes of block-entry code: First, the data

stack pointer, a system cell called MP, must be updated. At any given

65

time, MP contains the base address of the most recently created data
segment.

Secondly, space must be allocated in the data stack for the data
segment to be created.

Thirdly, the block mark must be built and placed at the base of
the data segment.

Finally, the local display must be set to reflect the accessibi-
lity of all variables which can be referenced within the block.

The total amount of storage to be allocated for the data segment
is not known when Pass Three encounters a block. pass Two calculates
the static ;%ount of storage required for the block mark, local display,
and local variables and array descriptors. This information is given to
Pass Three. However, during compilation of the block body., registers
with partial resultsmay need to be dumped due to procedure calls, etc.,
and the amount of storage required for this purpose, called the local
stack, 1is not known until the block is compiled. Hence at the end of
compilation of the block the instruction which specifies the total
amount of data storage required for the data segment is fixed up, and at
execution time the total amount of data storage needed is correctly given.

Since the display registers are allocated statically downwards
from R13, the base register to be used for the data in the block being
entered is nutn'bered one less than for the enclosing block. The display
for the block is then identical with the display for the enclosing
block with the addition of the display entry for this block.

The code for block entry is given below: n is the number of the

register which will be the base of the data segment for this block.

66

IR 2,n+l R2

base of data segment of enclosing

block
L 6,FP(2) R6 = free pointer in enclosing data
segment
6,=7 = base of new data segment
N 6,X ' FFFFFFF8! set data segment on a double word
boundary
LA 0,length(,6) length is the total amount of static
storage needed for this data seg-
ment = fixed up at block exit,
RO = new FP
BAL 4 , ALT.OCERR see discussion of error code (Sec. IV.A.6)
LA 3,X see discussion below
LA b,y see discussion below
STM =~ 0,4,0(6) RO = FP
Rl = not used in block mark
R2 = dynamic link
R3 = REFVAR
Rik = REFARY
ST 6,MP update stack pointer
LR n,6 R6 = Rn = base of this data segment
STM n,12, 20 §,6) store local display (if n=12, then

ST 12, 20(,6))

In the instructions

LA 3,X
LA b,y
X is the relative address of the first reference variable declared in
the block, and Y is the relative address of the base of the first
reference array descriptor declared in the block.
After all code producing declarations (e.g. array declarations)
have been processed, MVI instructions are used to insert the number of

reference variables and number of reference arrays in their appropriate

67

M
L

[— |

ro——

fields in the block mark.
Note that if there are no reference variables declared in the
block, the instruction
LA 3,X is replaced by SR 3,3
and no MVI REFVAR+1, zw is compiled.
Likewise, if there are no reference arrays declared in the block,
the instruction
LA 3,Y is replaced by SR 4ok
and no MVI wmw>ww+yw N

o is compiled.

The tree output of Pass Two for a block with declarations is

declarations
requiring code to

be emitted, e.g.
\\\\ array 4&clarations
CARD n

/
BEGIN p statements

The tree node BB is present even if there are no declarations reguiring

code tc be emitted, in which case the tree is as follows:

AN

END

N

BB statement;s

RN

CARD n NULLST

7

BEGIN p

68

=

Blocks without declarations have the fcllowing trees

N
END
e

CARD n statements

BEGIN

The pointer field p in the node BEGIN is the amount of data storage
required for the block, with the exclusion ¢f the lonal stack, except
for the outermost 'block of a procedure whose data segment is merged
with the procedure data segment. In this case, the p-field in the
node BEGIN is O and the amount of storage reguired for the combined
procedure-block data segment is given in the NAMETABLE entry for the
procedure,

The second byte in the node BEGIN is a pointer (by 1's) to the
BLOCKLIST table. Hence, the NAMETABLE entries for the variables and
arrays declared in the block can be scanned., and the count and start-
ing addresses of the reference variables end array-s can 'be obtained
for the inclugion in the blcck mark.

The node CARD n is explained in a following section (=f.IV.D.23),

3. Block Exit

The purpose of the code emitted for block exit is to reset MP to
the base of the data segment for the block tc which control is being
returned .

The tree output of Pass Two for block exit is the same part of the
tree used for block enbry. It is encountered again after all state-

ments in. the block have been processed. Compound statement exit and

69

block exit are distinguishable, as 'before, by the presence or absence
of the tree node BB.

Code emitted for a block exit is as follows: n is the number of
the register which holds the base of the data segment corresponding to

the block being exited.

L 1,DL{,n) Rl = dynamic link (field mark Dblock)
= base of data segment of block re-
turning to
ST 1,MP Reset data pointer stack

L. Procedure Statements and Typed Procedure Designators

The tree output for procedure statement and function designator

parameters (n > 0) is as follows:

AP)
/7 \
tree for

AP,
//’ \\ parameter #n

‘ éree for
// parameter # n-1
AP,

tree for
parameter # 1

FUNCIiD(t)

The pointer field t of FUNCID is a pointer to the NAMETABLE.

70

The tree for a proper procedure without parameters is:

/

- / \FUNCID(t)

The tree for a typed procedure without parameters looks just like
an identifier except that the terminal node is FUNCID(t) instead of ID(t).

The code generated for a proper or typed procedure call, with or
without parameters, is as follows where m is the number of the regis-
ter which holds the base of the data segment corresponding to the
block in wh{gh the called procedure was declared:

IR 5,m R5 = base of data segment from which

. display will be updated in pro-

cedure entry (after parameters
are established)

L 15, base of procedure
BAIR 1, 15
L 15, base of current
procedure
B SETDIS
SAPD' s
. Subroutines (cf. Iv.D.5)
SETDIS 1M n, 12, 20(2) Reset the display -
R2 = dynamic link loaded at procedure

exit
= base of current data segment

n is the number of the general register holding the base of the

data segment for the current block. If n=13, the IM instruction is

cmitted .

71

Call 2£.3 Formal Procedure

The following code is emitted for the zall of a formal procedure:

M 4,5,DPD Rh = address of subroutine (cf. IV.D.5)
LA 0, number of actual
parameters
L 15, CHECK
BALR 1, 15
L 15, base of current
procedure
B SETDIS
SAPD'S
Subroutines
SETDIS IM n, 12, 20(2)

The CHECK routine checks actual-formal correspondence, since this
checking cannot be done at compile-time, Actual parameter descriptors
are obtainable via Rl (the 2nd-kth byte of each SAPD). Formal para-
meter descriptors are in the head of the called procedure (SFPD'S).

Rk contains the address of the subroutine which will call the procedure;

therefore there is an instruction in the subroutine of the form
L 4, base of called procedure

The CHECK routine locates this instruction (via Rk), executes it
and then checks actual-formal correspondence.

The CHECK routine saves Rt and R5, and ends with

BCR 15, L

72

5. Procedure Entry

The tree produced 'by- Pass Two for proczedure entry is:

PCL
/

CARD n

PROCDC(t)

The purposes of procedure entry code are almost those of block
entry code, and for this reascn the codes will be quite similar.

The additional requirements of procedure entry are those of set-
ting up dynamic formal parameter descriptors, evaluating value para-
meters, and the more complicated manner of setting up the display.

At procedure call (ef. IV.D.4); BR5 holds the base of the data
segment surrounding the declaration of the called prozedure. This
data environment is precisely that which should be valid while the
procedure is 'being executed. *Therefore the display of this surround-
ing 'block plus the display entry for the called procedure constitute

the display while executing the procedure.

73

- s

o

e

Procedure entry code is

data segment to be created.

L 2,MP
6,FP(,2)
LA 0,length(, 6)
BAL 4 ; ALLOCERR
LA 3,X
LA b,x
STM 0,4,0(6)
ST 6,MP

SAPD =+-DPD operations

LM n+l,12, 20 (5)
IR n,6
STM n,12, 20 (6)

[DPD + PV operations

as follows: Rn will hold the base of the

base of calling data segment
R6 = base of new data segment
add in required storage. RO = new FP.
check to see that allocation is valid

(Note 1) {cf . IV.A.6)

store procedure mark

update stack pointer

(Note 2) update the display

(Note 3)

Note 1: X is the relative address of the first reference wvalue/

result parameter; or if there are no value/result parameters, X

is the relative address of the first reference variable local to

the block whose data segment is merged with this procedure's data

segment ; or if there are no reference value/result parameters and

no local reference variables or no block, then X is O,

Y is the relative address of the first reference array de-

scriptor in the block whose data segment is merged with the pro-

cedures data segment If there are no reference arrays or no

block, then ¥ is C.

MVI instructions are used to place the number of reference

value/result parameters and local reference variables, and the

7)4_

i

number of local reference arrays:, into the fjelds REFVAR and REFARY,

respectively, in the procedure mark.

Note 2: This instruction is omitted if n = 12.

If n = 11, the instruction becomes L 12, 20 (,5)

Note 3: If n = 12, then th is instruction becomes ST 12, 20 (,6)

Notice that & < n < 12.

SAPD's — Static Actual Parameter Descriptors and Subroutines

The calls of procedures without parameters haveno SAPD's or sub-
routines corresponding to them, and the reloading of R15 to the base
of the current program segment is immediately followed by the resetting
of the display at procedure call {zf. IV.D.4).

For procedures with parameters,? each parameter has associated with
it one SAPD of 8 bytes. According to different forms of actual para-
meters, different SAFPD's are established. 1In general, an actual para-
meter is represented by a subroutine, and the SAPD gives the address
of that subroutine, If the parameter is an identifier, the SAFD con-
tains the address of the identifier. Note that addresses of subrou-

tines are given relative to the instruction
L 15, base of current program segment

immediately fcllowing the instruction BALR 1,15 in procedure
call.
The Pq bits in the 5APD define the character of the actual para-

meter . P specifies whether a subroutine exists or not:

75

P=1 : @accessto parameter involves a subroutine call

P=0 : no subroutine call

Q specifies whether the parameter may occur in the left part of an

assignment statement:

Q=P : assignment is possitie

QP : assignment not possible

The type information field of three bytes is used only by the CHECK

routine when a formal procedure is called.

ACTUAL PARAMETER IS

-

identifier

constant, expression
or statement

procedure

subscripted variable
or field designator

formal parameter

I

v

SAFD IS DPD IS
P
V" -
00 | type 00| address of id
LA 3, id(n) ST| data base
lOl type 10] address of subr.
A 3, subr(l) ST| data base
10| type 10| address of subr
LA 3, sube (1) ST | data base
lll type 1 address of subr.
LA 3, subr(l) ST| data base
00 | type Copy of DPD
M 3,4 ,0PD(n)

The implicit subroufines corresponding to parameter types IT

(expressions and stahements) and IV create data segments of hierarchy

level one less than at the point of procedure call. The format of

these data segments is like those created by blocks except that for

implicit subroutines,

76

there are no local variables.

et i

.

Implicit subroutines corresponding toconstantsareasfollows:

L 15, base of segment
in which constant
table lies
L 2,MpP set R2 for return
LA 3, address of
constant (15)
BCR 15,1 this subroutine branched to via Rl

Implicit subroutines corresponding to proper procedures and all typed

procedures are as follows:

L L, base of called prccedure
IR 15, 4
L 5,=F'"(X-CLN+1)*4' (5) where
X = hierarchy # of called
procedure
CLN = current hierarchy
number
BCR 15,15

The purpose of this subroutine is to set R5 correctly. Recall that RS
will be used as the base to update the display in the entry code of
the called procedure . R5 cannot be set correctly at the point of men-
tion of the formal name parameter corresponding tc the procedure for
which this subroutine is set up in certain recursive procedure call
gituations .

Notice that the subroutines given above do not set up a data seg-
ment of their own.

All string routines (i.e. string procedures and implicit sub-
routines returning the results of string procedures) are exited with

the address of the resulting string in R3. For some string routines

77

=

the string itself may 'be in the data segment of the string routine.
When the routine is exited, the data segment is released, and the rec-
sulting string may thus be destroyed if another data segment is allo-
cated before the string (whose address is in R3) is used.

This situation arises for typed procedures cf types other than
string, but the manner of compiling expresggions of these types insures
that the result of the typed procedure will Se used {i.e. citherplaced
in a register, added to an accumulating sum, compared, etc.) before
any new data segment could be created.

This is not the case for strings.

Hence, to insure that the string which is the result of a string
routine is not lost, the string must be moved to a data segment which
cannot possibly be 'released, until the string is used. In the case
under discussion, the string must be moved into the local stack of the
data segment at the point of call of the string routine.

In the description of the DPD's (to be discussed presently), the
address and data base fields are absolute core addresses. The data
base field is the base of the data segment of the block in which the
procedure call occurs . This field is used as the base from which to
spcdate the dispiay when executing implicit subroutines cr procedures
¢ orres pond ing to the mention c¢f the corresponding formal parameters.

The byte ST is the simple type of the actual parameter (0 for
proper procedures aud statements) and is used for type conversion for
va loe/re sult parame ters . Kecall that all name parameters must match
exget Ly in type .

Implicit subroutines which 'have values are so constructed. that the

78

I TSI — R i R

address of the result is returned.

SAPD » DPD Operations

SAPD ¢ Static Actual férameter Descriptor
DPD ¢ Dynamic Parameter Descriptor
The SAPD = DPD operation consists of enevsluation of the static addresses
given ineech SAPDat procedure call, and the transmission of the type infor-
mation about the actual parameter including the #%wo~bit code (PQ).
If the actual parameter is a formal parameter? the DPD must be copied.

Each DPD is eight bytes wide and there is a l-1 correspondence between

- SAPD and DFD. The possible formats for the DPD's are given in the
section discussing the SAPD's.
The code for producing the DPD's is as follows:
Let a = address of DPD to be created (using R6 as base — see, pro-
cedure entry code)
- " = address of SAPD (using Rl — see procedure call code)
LR h,2 dynamic link = data base for DPD
EX 0, b+ executes instruction in SAPD. For all
types except V, this loads R3 with
address of procedure or implicit sub-
routine.
for type V, (actual parameter is formal
parameter), this loads DPD of formal
N parameter into R3 and Rk.
SIM 3,4 ,a store DPD
¢C a{l),b establish PQ bits
MVC ath(1),b+3 establish ST field

79

|

DPD * PV Operations

As stated in the report, each value parameter is evaluated and its
value is stored in the procedure's data segment, Any further occurrence
of the parameter uses the parameter value (PV).

Since, by definition, arrays are always passed by name, the DPD
is used to obtain the address of the actual descriptor, which is then
copied into the data segment of the procedure. The DPD may or may not
require a subroutine call to obtain the address of the descriptor,
depending on whether or not a sub-array is being passed. Any further
occurrence of the array parameter uses the copied descriptor, the

parameter vg;ue(PV), to compute the addresses of the array elements.

6. Procedure Exit

Because of the tree scanning mechanism in Pass Three of the com-
piler, typed procedures with parameters and typed procedures without
parameters are detected as requiring a procedure call at different
places in Pass Three. For this reason, the mode of returning the
result is different,

Por typed procedures with parameters, the result of the procedure

is returned in a register, depending on the type, as follows:

integer R3

real FO

Long real FOP

complex FO-F2

long complex FO1-F23

bits R3

reference R3

logical R3 (address of result)
string ., R3 (address of result)

80

—
For typed procedures without parameters (which include implicit
“ subroutines which return values), the address of the result is returned
in R3.
-
The addresses of the actual parameters corresponding to result
L parameters are evaluated and a validity check is made to be sure that
y the actual parameter can be stored into. The type of the result is
o
i
Co converted if necessary and the result is stored.
The code emitted for procedure exit is as follows:
M 1,2,RA(n) Rl = return address
. - R2 = dynamic link
ST 2,MP
BCR 15,1

Notice that upon return, the display is updated from R2, set

correctly here in procedure exit.

T. Formal Parameters in Expressions and Assignments

Reference to a formal n&e parameter requires testing whether a
subroutine call is necessary, or whether the descriptor (DPD) already
contains the absolute address of a variable. Furthermore, a validity

test is performed if an assignment is to be made to the formal para-

meter.

81

The code emitted for a formal parameter in an expression is:

T™ DPD{n),K* 02" test P-bit
Y BC 1,X branch if P=l, i.e. must call subr.
L 3,DPD(n) “no subroutine, R3 = address of id
BC 15,7
X L 5,DPD+4(n) R5 = data base = base to update dis-
play inside subroutine or procedure
L 15,DPD R15 = base cf subr. or procedure
BCR 15,15
L 15, base of current
program segment
IM n,12, 20 (2) reset display

At Z, R3 has the address of the formal parameter, and its value
is easily obtained.

Value parameters are referred to only once as shown abeve, in the
DPD = PV . operations. If the type of the value parameter is arithmetic,
a call to a system routine which converts the actual parameter if
necessary and stores the result in the formal value location is placed
at the label Z. Tf the type is non-arithmetic no conversion is
possible and an instruction to store the value is placed at Z. If the
¥ype is string, instructions to insure that non-significant characters
of the formal parameter are set to blank are inserted before the store
instruction.

For a formal name parameter occurring on the left of an assign-
ment statement, the code is as before except for the first instruc-

tion, which is replaced by:

82

T™ DPD(n),X' 03" test P and Q bits

BC B,Y branch if PQ bits not mixed, i.e. can
store into

BAL 1,MAINERR - branch to error routine, R1 = loca-

tion of error

Result parameters are referred to only once in this manner in pro-
cedure exit.

8. Array Declaration

Corresponding to the array declaration of n dimensions

! e ® 00 !

<simpl 2 e s e
simple type> array X (lo T 1 Hy

0’ n-1 °° Hn—l)
in the head-of a block, an array descriptor of length 12n+8 bytes is

built in the data segment of the block.

SIMPLE NUMBER OF BYTES
TYPE PER ARRAY ELEMENT
1. integer 4
2. real 4
3. long real 8
i, complex 8
5. long complex 16
6. logical 1
e string declared string length
8. Dbits 4
9. reference 4

The size of the descriptor depends only upon the number of di-
mensions of the array and hence the storage for the descriptor is
allocated statically. The storage for the array elements themselves

must ; of course, be allocated dynamically. The descriptor has the

83

s e A A

following format:

un—l
A
n

where &, — is the base address of the array elements

A, = is as given in the table above and is the number of
bytes per array element

£. - the lower bound of the it dimension

“i = the upper bound of the ith dimension

N = - + AN .
i (“i-l li-—l 1) x {1 i=1,2,...,n

We require that Ai9i=0)11“°‘,n-l fit into 15 bits so that the more

convenient multiply halfword (MH) instruction may be used for the

multiplication. Note that no such restriction is required for Ah’

whi ch represents the total number of bytes required for the array.

The value of Aiﬁi=192a° **,n is the number of bytes required for
the first 1 dimensions of the array. The restriction that A
J:)
J=0,...,n-1 fit into 15 bits results in the restriction that A it
n-1

into 15 bits, for if any Aﬁ J=0,...,n-2 does not fit into 15 bits,

then An , will not fit into’lS bits. Therefore, the value of A

1
n-1

84

must be less than or equal to 3276710- Observe that for a l-dimensional

array, this restriction is automatically satisfied,
The following table gives the maximum number of elements for the

first n-1 dimensions of an array of the indicated simple type,

maximum number of elements

simple type of array in first n-1 dimensions
logical 22767
integer, real, Dbits,
reference 8191
long real, complex 4095
long complex 2047
string 32767 DIV q

where g is the
declared string
length

For storage of the array itself upon block entry, An bytes are re-
quested and the free pointer (FP) of the data segment in which the
descriptor resides becomes the base of the array, after which FP is

incremented by An'

FP

il

In Algol notation: ¥y

FP := FP + A
n

In the case of reference arrays, the upper byte of the first word of
the descriptor, the r-field, gives the number of dimensions so that

the garbage collector can find the next reference array descriptor.

85

The tree format for the array declaration <simple type> array X1, X2,

covy Xm (lo gy B 2T Hgs e, ln 1 Hy l) is as follows:

AR)
\oo
/ N\
AR, !n-l Mol
/ \
// _2'3\
Aﬁc !n{g Hn-2

AR, 1 Hy
\ o
z/ \
CARD n o ko

ARRAYDC m p

The pointer field p in ARRAYDC is a pointer to the NAMETABLE entry for
Xl; m is the number of identifiers. The nodes li and Wy can be sub-
trees for any integer arithmetic expression.

All. left subtrees are processed first. The descriptor is built
into the descriptor location of the last identifier, in this case Xm,
and finally at AR) the completely built descriptor is copied into the
descriptor locations for the other arrays. As each descriptor ism

o

copied, storage for that array is allocated and the base address is

Rad

placed in the ¢

o field of the descriptor,

86

r

Example:
L 2,=F'0'
ST 2,1,
II.A. 2’]4'
ST 2,8,
L 2,=F'10"
ST 2,u0
S 2,14,
BAL 1,UBLBERR
LA 2,1(2)
SLL 2,2
ST 2,A1
SLA 2,16
L 2,A
ST 2)11 -
£
L 2,A
A 2,B
ST 2,ul
S 2,8,
BAL 1,UBLBERR
MH 2,§&l + 2)
ST 2,8,
L 0,FP
A 0, THREE
N 0,SINGIMASK
ST 0,a
A 0,0,
BAL, L4,ALL@CERR
Mmve x(29),Y
ST O,ao
A 0,8,
BAL k4 ,ALL@CERR
ST O,FP
*
For

For

anteger a vy X,¥(0::10,A:sA+B)

lower bound of first dimension '\\
number of bytes per array element

upper bound of %irst dimension

First
dimension
see error code discussion in section IV.A.6
(po - lo + l)
- + A
by = Lo+ 1) x4
check if Al ean fit into a halfword _,//
lower bound of second dimension ‘\\
upper bound of second dimension
Second
’ dimension

_/

free pointer

see discussion of special constants
based off R4 (cf. IV.A.6)

see discussion of special constants

) set base of
array to ward
boundary *

store base Y in descriptor Y

RO = new FP =‘base of next array

see error code discussion

move descriptor (30 bytes) from Y to X
store base X in descriptor X

RO = new FP

store new free pointer

arrays of type logicaland string, the free pointer is not adjusted.
arrays of type long real and long complex, the free pointer is ad-
justed to a double word boundary. For all other types, the free pointer
is adjusted to a word boundary. 87

— p— -

",

At each node "::", the lower bound is placed in the descriptor when

the left sub-tree has 'been processed. After the right gup-tree has

been processed, the upper bound is placed in tue descripuor,

A = - 5 4
41 (pi b+ 1) x A, 320, 000,102

is calculated, and Ai is placed into the degcriptor. For i=0;...,n=3,

+1

a test is performed to assure that A“+l will fit into a 'half-word, For
i :

i=0, the multiplication by AO is performed by a shift for all types

except <string>, since AO will be a power of two for these types, Arrays
are stored by columns. At the completion of the execution of this code,

the deswiptorg in the stack would loch like the following, assuming

A=3, B=k (all numbers in base 10).

220

220 bytes
for ¥

| — 220 bytes
for X

88

9. Subscripted Variables

Consider the following reference to a subscripted variable from

an array A of n dimensions:

A (XO, X5 X .y X

2’ n-1’
where Xi may be any integer arithmetic: expression In tree form, the

above construction is represented as:

\

ool Yoy
Xn—2
INDX
/ \ The address @ of the array
INDX X‘_L element is given by

\ n-1

X0 @=an S (X,-L) x O
Cc = 1i=0 i1 i

where the left sub-trees are always processed first. The pointer field
of the node ARRAYID is a pointer to the NAMETABLE.

Each node Xi may be a subtree for an arithmetic expression. The
indices are evaluated in order from X to Xn_l
After the value of Xi has been computed, it is checked against

lj and. i‘ii (the upper and lower bounds for the ith dimension). If
either bounds test fails, the run is terminated with an appropriate
error message . If the bounds tests are successful, the lower bound is

subtracted from the subscript and this quentity is multiplied by the

current Ai and added into the accumulating address.

89

As an example, consider a reference Y(59T~27) to an array de-

clared integer array Y(0::10, A::A+B), where T=32, A-3, B=lk,

The address of the array element is given by
@ = oy * (3-0) x 4+ (5-3) x bh = + 10C
where oy is the base of array and is obtainabie from the first word of

the descriptor. (See descriptor given in section on array declarations.)

The following code is generated for this array reference:

L 3, % R2 will be accumulating address register

L 3,=F"3" firs% subscript

¢ “B,MO

LA 0,0(3) sets RO to type of error if bounds check
fails (see discussion of error checking
code [section IV.A.67)

BAL 1 ,ARRAYERR (cf. IV.A.6)

S 5,10

BC <,MAINERR (cf. 1-V.A.6)

T o A

SLL 3,2 (xo zO) x 8,

AR 2,3 add in%o accumulating register

L 35T

S 3,=F127" second subscript

BAL 1,ARRAYERR

5054

BC < ,MATNERR
MH 3, (842)
AR 2,3

At this point, R2 has the addressof Y(3,T-27) ,

90

10. Passing Sub-Arrays as Parameters

The user may pass any generalized row or column, i.e. any sub-
array of dimension 1,2,...,n-1 of-an n-dimensional array as a parameter
to a procedure. Since all array parameters are passed by name, all
that is needed is to copy certain parts or all of the array descriptor.

Atthis point, the reader should familiarize himself with the de-
tails concerning the building and format of array descriptors, and the
calculation of the address of an array element when the element is re-
ferenced,

According to %he syntax, an asterisk (¥) is placed in those posi-
tions of the actual sub-array parameter to indicate which dimensions
are to be included in the formal array.

In those positions in which * occurs in the source code, the
Pass Two tree output is the node AR¥ For example, the tree corre-

sponding to the actual parameter
A(%,4)

is

N\

INDX
INDX L
N\

AR*

ARRAYID(A)

indicating that the firs% dimension of the two-dimensional arrayAis
to be unspecified and that the fourth column corresponds to the one-

dimensional formal array.

91

—

r—

It should be recalled that an array descriptor consists of a

series of triples {Ai’zi’“i}’ where fi and M, are the lower and upper

th . .)
bounds of the 1™ dimension, Ai = (“i~l"zi~l) X Ai-l (except for &g), and
that the first entry inthe descriptor is e, the absolute address of the first
array element Therefore, to compose the sub-array descriptor, rules

must be given on how to build the triples {Ai,li,pi} and how to calcu-

late ab- These rules are as follows:

. th
If X, is the 1™ index, then for each position with
X, =% ¢ copy the descriptor triple &ﬁ”iﬂﬁ}

Xi % *¥ ¢ omit the descriptor triple

To calculate ., the absolute address of the first formal array

element:
n-1
a,. =& + ¥ (2.,-4,) x A,
f 0 ol i™i 7
where Zl - £l if Xl = %

X, if Xi # %

As an example of the use of these rules, consider the following

array declaration and the layout of the array elements in core:

92

-

logical array A(0::1,0::2,03:3)

¥y * =11 000 0
A, 1 100 1
£y 0 —>{ 010 2
Ho 1 110 3
A1 2 020 4
£ 0 >[120 5
Hy 2 f >{ 001 6
A, 6 101 7
£ 0 011 8
Ko 3 111 9
2k 021 PO
total number of bytes in array | 121 11
—‘not used in'subarray calcula~ 002 12
tions or descriptors
102 13
— | 012 1k
112 15
022 16
A(%1,2) 122 17
el 003 18
! > (103 19
° 13 20
= 113 21
)23 22
123 23
A(1,%,3) A(1,2,%) A(*,%,1) A(*,1,%)
8 o—i J o
2 6 1 1
0 0] 0] 0
2 3 1 1
2 6
0] 0
e 3

93

r——

The calculation of the addresses of sub-array elements is the
same as for ordinary array elements.

The implicit subroutine corresponding to an actual sub-array para-
meter builds the sub-array descriptor in the local stack of its data
segment and returns the address of this descriptor. pyring the
DPD =+ PV operations, this descriptor is copied into the procedure's

data segment,

110 Arithmetic Conversion

Type conversion in ALGOL W is implicit in a number of cases.
However ; real to integer, or complex or long complex to real or integer
must be specified by transfer functions,

I. Integer to real or long real
A quantity of type integer is converted to long real by means of

a subroutine. The linkage code 1is:

LA 1,Xtrii®

L 15, base of segment 57
BAIR 0,15

L 15, current segment base

The quantity placed in register 1 is a parameter to the conversion
routine. i specifies the register which contains the quantity to be
converted and r specifies the destination floating point register,
Therefore, the same conversion routine is called for integer to real

conversion as for integer to long real conversion. TLikewise, the same

routine is used to obtain the real part in conversion from integer to

complex and long complex, The imaginary part is attained by the in-

ok

struction
SDR Tos Ty

The routine to do the conversion stores the absolute value of register
i in the lower half of a double word whose upper half is #4E000000.
This quantity is loaded into register r to which zero is added to nor-
malize the number. Register r is negated if register i contained a
negative number. The execute instruction is used to mainpulate
register i and register r.
II. Real to long real, complex or long complex
A quantity of type real is converted to long real by two methods.
a) If the value V is not in a floating-point register, the

sequence of instructions used to load V into register r is

SDR rl, rl
LE I'l; v

b) If the value is in register r, the sequence of instructions

used to convert V is

STE r,TEMP
SDR r,r
LE r , TEMP

A quantity of type real is converted to complex by subtracting
the second of the pair of floating-point registers from itself.. If
the conversion is to long complex, the real value is first converted

to long real. and then the subtract register instruction is emitted.

95

III. Conversion from long real

No instructions are used to convert to real. A conversion to
either complex or long complex is done by subtracting the register
representing the impginary part from itself.
IV. Conversion from complex

A complex value 1is converted to long complex by applying the rules
for converting from real to long real to both the real and imaginary
parts of the complex value.
V. Conversion from long complex

No instructions are emitted to convert long complex values to

complex values.

The indication for conversion is made in Pass Two by placing the
destination type in the conversion bits (8-15) of the node to which
the conversion is applied. (cf. IV.C.5) If the node is a terminal node,
(i.e. variable, constant), the conversion takes place before the value
is used. If the node is a non-terminal node, the Conversion takes

place after the operation the node specifies is completed,

Example
INTEGER I; REAL R; L 2,1
R {+ I L 1,=X'022"
A s= L, 15, base of seg 52
/\ BAL 0,15
R I(2) L 15, curreg base
STE O,R

96

Example 2
LONG COMPLEX C; REAL R; LE o,R
C =R + R; . AE O,R
;é,:= STE 0, TEMP
C +(5) SIR 0,0
/\
R R LE 0, TEMP
SDR 2,2
- STD 0,C
STD 2,c+8
(-
12. Arithmetic Expressions
- ADDITION
‘ The tree produced by Pass Two for addition is
L
//j
(- X Y
Since the addition operator is commutative, the code produced
does not depend on the order in which the subtrees are processed. Let
“ X be the first subtree and Y the second.

Case I. The result of processing X is not dumped while processing Y.

If Y is in core:

Long Long
Integer Real Real Complex Complex
Register(s) holding
the result of first
subtree: R2 FO FOl FO,F2 FOl,F23
Code generated: A 2,Y AE 0,Y AD 0,Y AE 0,Y AD 0,Y

AE 2,Y#+ ap 2,Y+8
If the processing.of Y is in a register(s) then the following code

91

-

Case

sequence is emitted. Assume the register(s) holding the result

of processing X is as shown above.

Long Long
Integer Real Real Complex Complex
Register(s) holding
result of second
subtree: R3 F2 F23 F4,F6 FL5,F67
Code generated: AR 293 AER 0,2 ADR 092 AER O,k ADR 0,4

AER 2,6 apr 2,6

II. The result of processing X is stored in TEMP while processing Y.

Then the result of the second subtree must be in a register(s).

Long Long

Integer Real Real Complex Complex
Register(s)
holding result
of second
subtree: R2™ FO FO1 FO,F2 FO1,F23
Code , .
generated: A 2,TEMP AE O,TEMP AD O,TEMP AE O,TEMP AD O,TEMP

AE 2,TEMP+4+ AD O,TEMP+8

MULTIPLICATION

The tree produced by Pass Two for multiplication is
\
x Y

Since the code needed for complex and long complex multiplication
is lengthy, a run-time subroutine is called for multiplication of
these types. A discussion of the linkage and parameter conventions is -
found elsewhere in this section.

For integer, real, and long_real, the situations and corresponding

98

r L

codes are identical with those for addition except for the following

substitutions in the code sequences:

Addition Multiplication
A M
AR MR
AE ME
AER MER
AD MD
ADR MDR

All integer multiplications are followed by SLDA r,32 where r
specifies the even register of the result. This instruction detects

an overflow if it occurred during the multiplication.

SUBTRACTION

The tree produced by Pass Two for subtraction is

/\

X Y

There are four situations which can arise while processing the
tree9 as in the case of arithmetic assignment (cf. IV.D.22).
Case T. Process X first.
A, The register(s) holding the result of the left subtree X is

not dumped while processing Y.

Long Long
Integer Real Real Complex Complex
Register(s) holding X: R2 FO FO1 FO,F2 FOl, F23
Code generated: s 2, SE 0,Y SD O,Y SE O,Y SD 0,Y

SE 0,Y+4+ sSD 0,Y+8

99

r

B. The register(s) holding X is dumped at TEMP while processing
Y.

The result of processing Y must then be in a register(s).

Long Long
Integer Real Real Complex Complex
Register(s)
holding X: R2 FO FO1 FO,F2 FOl,F23
Code
generated: L 3,TEMP LE 2,TEMP 1D 2,TEMP LE 4,TEMP 1D 4,TEMP
SR 3,2 SER 2,0 SDR 2,0 LE 6,TEMP+} Lp 6,TEMP+8
SER 490 SDR 4,0
SER 6,2 SDR 6,2
Case II. Process Y first.
A, The register(s) holding Y is not dumped while processing X.

X is then loaded into a register(s) and the appropriate
register-to-register instruction is generated.

B. The register(s) holding Y is stored in TEMP while processing
X. The result of X is then loaded into a register and the

appropriate subtract from storage (TEMP) is generated.

DIVISION

The tree produced by Pass Two for division is

{ N
As in multiplication, complex adlong complex division is per-

formed in a run-time subroutine and is discussed elsewhere in this

section.

100

fro

Integer division is accomplished using DIV and REM and is also
discussed elsewhere in this section. For real and long real, the
situations and corresponding code sequences are identical with those

for subtraction except for the following substitutions in the code

sequences.
Subtraction Division
SE DE
SER DER
SD DD
SDR DDR
DIV AND REM

The trees produced by Pass Two for DIV and REM are
A\ A
X Y

The code sequences for both are identical, After the division,
the result of DIV is in the odd register of the even-odd pair required
for integer division, and the result of REM is in the even register.

No matter which subtree is processed first:, the dividend is even-
tually placed in the even register of an even-odd register pair. This
register pair is then shifted right-double-arithmetic 3210 bit posi-
tions in order to place the dividend in the odd register The division
is then performed with the divisor in a register if it has been placed
there or from storage if the divisor is simply a single variable or if

it has been dumped into storage while processing the dividend subtree.

101

As an example, consider
) A DIV A1(1)

where Al is a l-dimensional inteéer array. Assume the subscripting

has been accomplished leaving Al(l) in R2. Then

L oA
SRDA 4,32
- DR 4,2

The result is then in R5.

If an even-odd register pair is not available, then the fewest
number of registers are dumped (maximum of two).in order to secure the
even-odd pair.

As another example, consider
A1(1) DIV A

As before, Al(1) will be processed first — assume AL(1l) is left

in R2 with R3 already occupied.

IR 4,2
SRDA L, 32
D h,A

COMPLEX MULTIPLICATION AND COMPLEX DIVISION

Complex multiplication and division are carried out by means of
a subroutine.

For multiplication, one multiplier must be in the pair of floating
point registers FO1 and F23, and the second in storage. If neces-

sary., one multiplier will be stored in a temporary location. Separate

102

routines exist for complex and long complex multiplication. The

calling sequence when one multiplier is in location TEMP is:

LA 1,TEMP

L 15, base of segment 62

MVI FLAG,X'02'

BAIR 0,15

X'000L"

L 15, base of current segment

For division, the numerator must be in the pair of floating point
registers FOl and F23; the denominator must be in storage. If neces-
sary, the denominator will be stored in a temporary location. Separate
routines exist for complex and long complex division. The calling

sequence when the denominator is in location TEMP is:

LA 1,TEMP
L 15, base of segment 62
MVI FLAG,X'02!
BALR 0,15
X'0003
L 15, base of current segment
The algorithm used for complex multiplication X := A*B is
e+if = (v + iw) * (x + iy)
ri=y *w s =y ¥v
e :=V ¥x - r; ft=w *x + s;

103

— —

The algorithm used for complex division X := A/B is:

e+ if := (v + iw) / (x + iy)
r := abs x; s :=absy;

if r > = s then

begin r := y/x;

ti=(r *w+v)/s;
fitw - e)/s;
end else
begin r := x/y; s
t = (r *v + W)/s;
end;
UNARY MINUS

S =Yy *r + x;

e = v ¥ p;

e = t;

The tree produced by Pass Two for unary minus is

The result of processing the subtree is loaded into a

Register (s)
holding result
of processing
subtree:

Code
generated:

UMINUS

X

Integer Real

R2 FO

LCR 2,2 LCER 0,0

104

Long
Real

FOl

LCDR 0,0

Complex

FO,F2

LCER 0,0
ICER 2,2

register(s).

Long
Complex

FO1,F23

LCDR 0,0
LCDR 2,2

—

e

EXPONENT TATION

The tree produced by Pass Two for exponentiation is

* %
/i

Since the code needed for exponentiation is lengthy, exponentia-
tion for all types of bases is accomplished with run-time routines. Re-
call that all powers must be of simple type integer.

One run-time routine, EXPON, handles bases of simple type integer,
real and long real, converting the base to long real before exponentia-
ting. Input to the routine is the type of the base, the register
holding the base, and the register holding the power. The result of
the exponentiation is left in the register of the base if the base is
of simple type real or long real. If the base is of simple type
integer, the result is left in FOl.

Another run-time routine, CEXPON, handles the bases of simple
type complex and long complex, converting the base to long complex
before exponentiating. Input to the routine is the simple type of the
base, the base in FO, F2 (or FOl, F23), and the register holding the
power. The result of the exponentiation is left in FOl, F23.

Consider X *¥ Y, where X is real and in Fi and Y is in R3. Then

the calling sequence for EXPON is

LA 0,X'24 3" simple type of base, reg. of base,
reg. of power

MVI FLAG,X'01'

L 15, base of standard functions

BALR 1,15

X'10001!

L 15, base of current segment

105

Now consider X *¥* Y where X is long complex (in FOl, F23) and Y

is in R2. Then the calling sequence for CEXPON is

1A 0,X1'502'

MVI FLAG,X'01!

L 15, base of standard functions
BAIR 1,15

X'oo02!

L 15, base of current segment

The algorithm for real exponentiation is given in the form of an

Algol W procedure,
LONG REAL PROCEDURE EXPON (LONG REAL VALUE BASE; INTEGER VALUE POWER);
BEGIN
LONG REAL X; BITS A; LOGICAL NEGATIV%
NEGATIVE := FALSE;
IF POWER < O THEN

BEGIN
POWER := -POWER; NEGATIVE := TRUE
END;
A := BITSTRING(POWER); X := 1L;
L: B ¢=A; A := A SHR 1;

IF (B AND #1) = #1 THEN X := X * BASE;

IF A = = #0 THEN
BEGIN

BASE := BASE * BASE; GOTO L
END;

IF NEGATIVE THEN 1L/X ELSEX
END EXPCN; '

The algorithm for CEXPON is the same as for EXPON except all long

real's above become long complex%,

106

—

ABSOLUTE VALUE

The abs operator has an argument of any arithmetic simple type.
For the simple types integer, real and long real, the quantity must
first be placed in a register r corresponding to its type, if it is not

already there, and one of the following instructions executed:

LPR r,r for integer
LPER r,r for real
LFDR r,r for long real

For the Eypes complex and long complex, a subroutine is called to
obtain the absolute wvalue, which is a real or long real number. The
argument of the operator must be placed in the floating point register
pair FOl,F23. The result is returned in register FOl., Separate rou-

tines exist within the subroutine for complex absolute value and long

complex absolute value. The calling sequence for the routine is:

L 15, base of segment 62

MVI . FLAG,X'01!

BALR 1,15

X' 0004 !

L 15, base of current segment

The algorithm for the complex absolute value igs

a o= X + iy
X := abs x; vy := abs y
a := 1f x = 0 then y else if y = 0 then x else
if x > y then x * sqrt (I + (y/x) ** 2)
else y * sqrt (1 + (x/y) ** 2)

107

—_— T

13. Logical Expressions

The philosophy of implementation of logical expressions was guided
by two principles. First, only those parts of the expression needed to
determine the truth value of the whole expression need be evaluated,
For instance, in the expression A or (B and ¢), if A is true the whole
expression is true. Therefore, neither B nor C requires evaluation if
A is true, Analogously, if A evaluates to be false, B must be evalu-
ated. If B is false, C need not be evaluated since the whole expres-
sion is false. A, B, and C are all evaluated only if A is false and
B is true,

The second principle followed in implementation required that an
explicit logical result be created in a register only when necessary,
For example, the logical expression of the conditional statement, if
A or B then S, need not have a logical value created for the expression
A or B. Only a 'branch is required 'based on the condition code set by
the evaluated expression. As succeeding examples will illustrate,
the principle involving explicit evaluation is carried to its ultimate

in logical conditional expressions and conditional ease expressions

with at most one extraneous branch instruction being emitted after the

expression.

108

r

2.

logical 4,B,C

c:=A_c5r_B§._n_dC

STORE STC

CLI

LA

STORE STC

109

A, X101t
=,T
B,X'01!
£,F
c,X'o1!
#5F
2,1
STORE
2,0

2,c

A, X101
=,T
B,X'01'
#,T

2,0
STORE
2,1

2,c

1f AorB then S else S

- T] ==

logical ~A.&. C

ir A or B then A and B else_

r—

/ N

AV
A\

CLI
BC
CL1
BC

Sp

CLI
BC
CLI
BC
CLI
BC
CLI

(o9)

LA
STC

A,X'01!
:,T
B,X'01!

#,F

NEXT

A,X'01!
=,T1
B,X'01"
#,F1
A,X'01!
#,F2
B,X'01'
#,F2

T2

‘B,X'Ol’

=,F2
2,1
STORE
2,0
2,c

5.

A9BiC31

¢ := = (case I of (AVB, = B))

L := L 2,1

" LOGNOT LA 1,2
| CR 2,1
CL
4\ BAL 1,ARRAYERR
/ LOGNOT LTR 2,2
uJ |
’7 B Bc <,MAINERR
CASE LOGOR SLA 2,2
' // \ B LAST(2)
oA B L1 CLI A,X'O1"
BC =T
CL1 B,X'01’
BC £,F
B T
L2 CLI B,X*O1'
B =,F
LAST B T
B L1
B L2
T B O,F
LA 2,0
B STORE
F LA 2,1
STORE STC 2,c

111

e

L ages

RELATIONAL OPERATORS

Relational expressions give logical results and hence are treated

the same as logical expressions in that an explicit value is not

created unless necessary.
valence of logical expressions a truth value for one side of the ex-

pression must be explicitly generated and the address of the resulting

truth value placed in a register.

use the CLC instruction as efficiently as possible in analogy to the

In the case of string expressions, efforts have been made to

use of MVC instructions in string assignments.

1.

Arithmetic relations
togicel A,B; 1 X,Y

A:=(X<Y)orB

L := LE

A LOGOR CE
/‘ \ BC

// <\ CL1

X Y BC

STORE ATC

112

In the case of the equivalence or nonequi-

2,X

2,Y
<,T
B,X'OL!
#,F

2,0
STORE
2,1

2,A

Complex relation
complex C1,C2; logical A;

A = Cl = ¢Cc2

Logical relations

a. logical A,B,C

Cs=A =238

N
Afy \}3

LE
LE
LE
CER
BC
CER

(o9)

STORE STC

og)

T LA
STORE STC

113

0,REAL(C1)
2, MAG(C1)
L ,REAL(C2)
6, IMAG(C2)
k,0
£,F

6,2

2,0
STORE
2,1
2,A

2,A
2,=F'1"
3,8
3,=F'1!
3,2
=,T
2,0
STORE
2,1
2,C

b. logical A,B,C

C s:= (A or B) = (C AND B)
L =
C// \Qs

VZAN

LOGOR LOGAND

A
C B

String relation
string (5) 8,T; logical A;

A:=8~="T

/N
2

S T

©o

///]

114

Tl

Fl
NEXT

COMP

T2

T3
STORE

T

CLI
BC
CLI
BC
LA

LA
CLI
BC
CLI
BC
LA

LA
CR
BC
LA,

LA
STC

CLC
B
LA
B
LA

STORE STC

C,X'01'
£, F1
B,X'OL*
#,FL
2,1
NEXT
2,0
C,X'o1!
=, T2
B,X'01!
=,T2
3,0
COMP

351

s(y),T
#5T
2,0
STORE
2,1
2,A

—_— o T

5. Reference relation

logical A;

reference (R) R1,R2;

A :=Rl = R2

L = L 2.R1
// \Qﬁ C 2,R2

A = 3

AN BC =,T

Rl R2 -

LA 2,0
B STORE

- T LA 2,1

STORE STC 2,A

14. String Expressions

The substring operator forms a string valued expression of the
form V(ElN) where V is a simple variable, an array variable or record
field, E is an integer expression and N is an integer number. The
result of the expression is an address of the string in a general
register. The restriction that 0 < E < (length of V) N is
checked. If E is an integer constant, the restriction may 'be checked

at compile-time and the run-time code shortened.

115

Example 1

- STRING 5) S; INTEGER T;

) s(z|2)

_. SUBSTRING L r,I

- \ // LTR r,r

s _ :

i 72N BAL 1,ARRAYERR

| I 5

L I INUMBER A 0,3
CR O,r

\

L BC <,MATNERR
LA r,s(r)

““

o

Example 2

, —

i

- STRING(5) S;

oo s(k|1)

L

1

C chmeﬂzm L r,=Flt

N

; S V_/ LA r,s(r)

- r\ INUMBER 1

L

|

C

M

!

(.

116

=

o

15. Bit Expressions

Bit sequences may be ANDed, ORed or shifted, For the shift oper-
ations, the absolute value of the shift expression is loaded, No dis-
tinction is made between constant and nonconstant shift expressions.
The compile-time procedures involved are SHIFTAMOUNT, BITSSHIFTARG2,

and BITSANDORARGZ2.

As an example, consider the following:

A:=B shr 3 and (A and B) shl (I-3) or - (B shr 12 or #FF) and - B;

- o= L 2;:5
A\ -
A BITOR b 351
¥/ SR 3,2
BITAND IPR 3,3
/ \
/SHE\{\\ L 2,B
SHL
B 5 / N 2,A
ALL 2,0(3)
/BITAN\]i\ . §ITAN< L 3,=3
¥
A B/\\\ BIT = BIT - LFR 3,3
I 3 g L L,B
SRL 4,0(3)
BITOR
¥/ NR 2,4
;HR\ L 3,12
NI :
B 12 #FF LER 3,3
L 4,8
SRL 4,0(k)
OR. 4 =X FF*
XOR 4 ,=X'FFFFFFFF’
L 3,B
XOR 3,=X'FFFFFFFF:
NR L,3
OR 2,k
ST 2,A

117

16, Reemrdgnators

ALGOL W permits records to be created in two ways, First, the

name of the record class may stand alone.

Sezond, the name of the

record class may be followed by a list of the 'initial values of the

fields. Both record creations are reference expressions.

RECORD A(INTEGER I,J);

REFERENCE (A) R;

R =4;

R 2=
N

R RCCLID A

RCCLID A

LA

ST

LA

ST

ST
ST

118

3, address of A's free record
chain (FRC)

15, base of record creator
1,15
15, current segment base

35R

3, address of A's FRC

15, base of record creator
1,15

15, current segment base
L,=F'5"

k,0(,3)

L,=F'8

bk (,3)

3R

r

17 . Field Designators

Since a reference points to a record with fields of any of the nine

simple types, field designators of the form
F(R)

where F is a field name and R a reference expression select the de-
sired field of the simple type declared for F. Throughoutthe compiler,

the loading of the reference value into a register is analogous to the
address resulting from a subscript calculation This address is then
used as a base to index the proper element of the record while the dis-

-~

placement is the relative displacement of field F within the record,

tecord At(referenge (@) Xy Y; I) ;

dnpteger reference (A) R;
J = I(R);
/A :=\\ L 2,R
7 //REFX L 2,8(2)
ST 2,J
- I \R

e?A :=\\ L e,Jd
REFX 7 L 5,R
/' \a L 5,4(3)

I REFX ST 2,8(3)

119

18. Case Statements and Case Expressions

The purpaseof the case construction is to select the statement

or expression given by the value of the expression following case,

When beginning case expressions all registers except the for-variable

register ae stored, This occurs immediately before the uncondi-

tional branch selecting the appropriate expression.

1. case I of

begin
Sl;

32;

end;

/ \ A
/ \ CR

uJg 8y LTR
CASEgo) (3)

I

LAST L3

NEXT

120

2,I

1,3

2,1
1,ARRAYERR
2,2
<,MAINERR
2,2
LAST(2)

NEXT

NEXT
NEXT
11
L2

L3

2. C := case I of (17.6, 12, 16 + OI)

/

mem (+) (5)

T Ll

L2

L3

LAST

NEXT

121

W oW

STE
STE

2,1

1,5

2,1
1,ARRAYERR@R
2,2
<,MAINERR
2,2
15,LAST(2)
0,=R'17.6"
2,2

NEXT
2,=F'12!
1,X'022!
15, INTREAL
0,15

15, current seg
base

2,2
NEXT
0,=R'16.0!
2,=R'0.,0"
NEXT

Ll

L2

L3

0,C

2,0+

19. If Statement, If Expression, While Statement

The while statement has the following interpretation,

WHILE C DO Sl = L:; IF C THEN
BEGIN S
END

13 GO TO L
All registers except the control variable register must be dumped
before entering the if expression. They are dumped before the evalua-

tion of the conditional expression,

1. Aogical ;

if A then S

1
IFST CLI A,X'01'
Y\ BC #, NEXT
IFJ 8,
Y\ 5
IF A NEXT
2. If A then Sl else S2
iEST CLI A,X'01!
B
us s, BC £,L
6/ \ S
IFJ 81 Bl
NEXT
¥\
IF A L S,
NEXT

'122

!

3, while A do S

WHILEST LOOP CLI A, oL
WHILEOP 5 BC #, NEXT
N 5
WHILE A B LOOP
NEXT

20. For Statement

The two kinds of for statements will be designated here — the

step-until statement and the for-list statement

A, The control identifier

Both the step-until and for-list statements have control identi-
fiers, The implementation treats this identifier essentially the same
in both cases. R2, designated symbolically as FORREG, is generally
used to hold its value. Each control identifier is also assigned by
Pass Two a relative location in a data segment, into which the value
is stored when a transfer of control to a closed subroutine is to
occur or R2 is needed for some other purpose, At compile-time GETADDRESS
will deliver the correct register or location for a reference to a con-
trol identifier, The occurrence of the control identifier immediately
after for causes the initial processing of this identifier; this is
done by NUMERTICALASSIGN.

At compile-time a 20-word stack CSTACK and a location LASTFORLOC
are used to keep track of the locations of the various control identi-
fiers that may be active at a given time. At any time LASTFORLOC holds

the address assigned by Pass Two to the innermost control identifier

123

—

for the text being compiled. CSTACK is a stack of pointers to the

entries in LSTACK which are control identifier locations. The pointer

for CSTACK itself is a memory location called CPOINTER.
The routines DUMPFORREG and RESTOREFORREG generate instructions
to move the value of a control identifier to and from memory as re-

quired.

B. Step-until statement

In addition to the memory location for the control identifier,
three other locations are used for each statement af this type.
These are égsigned by Pass Three and are called "incr", "mask", and
"1l im" 3 they hold the increment value, the mask used by anexecute
instruction in the test, and the limit value, respectively. The

example below illustrates their use,

124

r—

-

1

FORST
AN
A 3=
N\ SN\,
PUNTIL / \

for i := p step g+l until r+l do s = s+l

L

LTR

2,p
34
3,0ne
353
3,incr
3,const
>, %48
3, one
3,mask
3sr

3, 0ne
3,1im
*+8
2,incr
2,1lim
3,mask
35M
338
352

(one contains 1)

(const contains

(=0010 0000 or

125

0100 0000),

C. For-list statement

In the case of a for-list statement, the statement following the
for clause is compiled as a closed subroutine. RI1 is used for branch-
and-1link instructions. The following example illustrates the compiled

code.

for 1 := 1, ktl, t do s := 1

FORST2 L 2,=F'1
Eémoﬁmﬂ / - BAL L,
J/ / \ \ L 2,k

wowﬁoe 4 N -
FORLIST BAL 1,0
R > S
1 BAL 1,L
B N

L ST 1, TEMP
ST 2,8

L 1, TEMP
BR 1

N

The addresses in the BAL instructions are fixed up by a simple

chaining.

126

[

2l. Gototement

A branch table is built in the head of each program segment, and
each label in the procedure is represented by a branch instruction in
the branch table,

The Pass Two tree format for a labeled statement

Stat 1;

L: Stat 2;
Stat 3;

is as follows:

) /

s / LABELID(L)

,/// \ Stat 1

where L is a pointer to the NAMETABLE. Since the left sub-trees are
always processed first, the label declaration is encountered just be-
fore the compilation of Stat 2.

When the node LABELID(L) is encountered, as above, the NAMETABLE
entry for L enables Pass Three to calculate the address of the branch
instruction corresponding to the label L in the branch table in the
head of the procedure. The current value of the instruction counter

is then placed in the displacement field of the branch instruction.

127

-

. r— r r— r—

oo

The Pass Two tree format for the statement goto L is as follows:

/

/Sy

LABELID(L)

where L is a pointer to the NAMETABLE. With the NAMETABLE entry for
L, Pass Three looks up the address of the branch instruction in the
branch table corresponding to the label L. If this address (relative

to the base of the program segment is &, then the code

B a(15)

is emitted,

By the end of compilation of the procedure, all labels have been
encountered and all branch instructions in the branch table have their
correct form,

If the label occurs in a different program segment, code is
emitted for procedure exit, for loading R15 with the base of the pro-
gram segment being branched to, and for a branch to the appropriate
instruction in the branch table of the target program segment,

The following is the code generated for the statement goto L
where n is the number of the register which gives the base of the data
segment where the label L is defined, and « is the displacement of
the instruction in the branch table corresponding to the label L. The
label L is in a procedure different from the procedure where the _goto

statement occurs.

128

r—

ST n,MP reset data stack pointer

X L 15, base of program
segment in which
label resides

B @(15)

Notice that precisely the same code is emitted for a branchrout of

ablock, e.g.

begin integer A;

0
°

begin integer B;

Lgto

end;

.
°

N
end;

In this case, the load instruction at X above is superfluous and

is not compiled.

GOTO STATEMENTS AND LABELS INSIDE FOR-LOOPS
Because of the manner in which the control identifier is manipu-
lated inside a for-loop and the desire to keep the innermost control
identifier in a register whenever possible, special code is emitted
for goto statements and labels which are inside the scope of a for-loop,
As explained more fully in the section on for-loops (cf. IV.D.20),
Pass Two allocates one word in the data stack for each control identi-
fier. 1In the event that a control identifier must be dumped, it is

dumped into its special location rather than into the local stack.

129

r-—r— r 1

—

rrr

e

Since only the innermost control identifier is kept in a register, the
compiler always has a variable LASTFORLOC which contains the relative
address of the word in the data stack into which the control identi-
fier is dumped when necessary and from which it is reloaded.
1) For a goto statement inside the scope of a for-loop,, the control
identifier is first dumped into LASTFORLOC:
ST 2,LASTFORLOC(n)
B a(15) branch to branch table
2) At the definition of a label L, a branch is made around the in-
struction to which transfer is controlled by the branch instruc-
tion in the branch table, At the label, the control identifier

is reloaded, i.e.:

BC NEXT
L L 2,LASTFORLOC(n)
NEXT

This allows transfers within a for-loop and from an inner for-

loop into an outer for-loop.

v,
J

Assignment Statements

ARTTHMETIC ASSIGNMENTS

The tree produced by Pass Two for arithmetic assignments is

A 3=
/ \
Y

X

Since the discussion concerning implicit conversion between the

arithmetic types occurs elsewhere in this report (cf. IV.D.11), this

130

[

section will deal only with arithmetic assignments of identical type,

Four

situations may occur in processing an arithmetic assignment

since either the right or left subtree may be processed first, and for

each of these cases, the register(s) holding the result of the subtree

processed

first may be dumped while processing the second subtree.

I. Process right subtree first

A.

The register(s) holding Y is not dumped while processing

the left subtree.

Register (s)

holding X:

Code
generated:

B.

Long Long
-. Integer Real Real Complex Complex
R2 FO FOP FO,F2 FO1l,F23
ST 2,X STE 0,X STD 0,X STE 0,X STD 0,X

STE 2,¥+4 STD 2,x+8

»
The register(s) holding Y is dumped while processing the left

subtree.
This situation may occur when the left subtree contains

a procedure call. For example
X(P) ¢=Y

where X is & l-dimensional array and P is an integer pro-
cedure with no arguments.

Assume the register(s) holliing the result§ of the right
subtree have been dumped at TEMP, and that general register.2

holds the address of X(P).

131

Code generated:

A Long Long
. Integer Real Real Complex Complex
L 3,TEMP LE O,TEMP LD O,TEMP LE O, TEMP LD O,TEMP
ST 3,0(2) STE 0,0(2) STD 0,0(2) LE 2,TEMP+: LD 2,TEMP+8
STE 0,0(2) STD 0,0(2)
STE 2,4(2) STD 2,8(2)

II. Process left subtree first.
Assume the processing of the left subtree results in an ad-
dress in general register 2.

A. R2 is not dumped while processing the right subtree.

Long Long
Iinteger Real Real Complex Complex
= Register
holding ¥: R3 FO FO1 FO,F2 FOl1,F23
Code

generated: ST 3,0(2) STE 0,0(2) STD 0,0(2) STE 0,0(2) STD 0,0(2)
STE 2,4(2) s 2,8(2)

B. R2 is dumped at TEMP while processing the right subtree.
= The code sequences are then identical to those given in
) IT.A except that each code sequence is prefixed by
'L 2,TEMP
LOGICAL ASSTCGNMENTS
- For logical assiguments, a truth value must be generated, 1 re-
presents true and 0 represents false. This value is placed in an

integer register and stored by an STC instruction, Examples of this
assignment may be seen in the section concerning logical expressions,

(1v.0.13),

132

STRING ASSIGNMENTS

~
The assignment of string variables is defined so that the assign-
. ment takes place left to right, character by character. If the assigned
string is shorter than the destination string, the remaining characters
- are filled with blanks. The MVC instruction is used for the assign-
ment and some combination of MVI and MVC instructions used for the in-
- sertion of blanks. The length of the assignment appears in the con-
version bits of the S:= operator and the length of the string appears
in the node immediately to the left of the S:= node.
Example 1
— STRING(5) S,T; S:=T
- S:=(5) MvC s(5),T
/N
5(5) T
Example 2
— STRING(5) §; STRING(k) T; S:=T
- Se=(4) MVC S(k),T
/- \\ MVI S+4, x40
s(5) T
Example 5
- STRING(5) S; STRING(3) T; Ss=T
S:=(3) MVC 5(3),T
Vi o
o\
MVI S+i X140

133

Example k4

STRING(5) S; STRING(1l) T; S:=T

S:=(1) MVC s(1),T
s(é) \T MVI S+1,X'40°
MVC S+2(3),8+1

REFERENCE ASSIGNMENTS
Reference assignments are handled just as integer assignments are
handled in the integer registers. Examples of reference assignments

may be seen in the section on field designators (cf. IV.D.16).

23%. Card Numbers

In order to give the user a meaningful message if an error occurs

during Pass Three or at run-time, a unary card node having the form

| CARD I I SOURCE CARD NUMBER

is placed in various places in the tree, as described in the documen-
tation of Pass Two. With this information, Pass Three always has
available the current (or almost current) user card number If an
error occurs during Pass Three, the current card number is printed out
along with an appropriate message.

In addition, to prepare for possible errors at run-time, Pass
Three builds one table for each user procedure (including the main
block) associating a card number with a relative location in the user's
procedure.

If no errors are detected during Pass Three, the card tables are

13k

written out onto the same device used to hold the user's compiled pro-
cedures prior to thelr loading and execution. The card tables are
written out only after all the user 's procedures have been written out,
and associating each card table with a procedure, the card tables are
written out in order of ascending (procedure) number, beginning at 1.

If an error is detected at run-time, the absolute location of the
error is available to a run-time error routine. This routine deter-
mines the number of the user procedure in which the error occurred by
scanning the program reference table which contains the base addresses
of all user_ procedures. In addition, the relative location of the
error within thet procedure i1s determined. The appropriate card table
is then read in, and with the relative location available, the card

number is retrieved.

1%

E. Trace Facilities

An optional trace card of the form $TRACExy beginning in column 1

of the card allows the user to trace certain features of the compila-

tion and execution of his job,

x and y are integers which may take on the following values, with

the associated results:

X

2 or greater
b -~

4 or greater

0 or blank

Action

Complete map of all compiler passes is printed.

All actions of garbage collector are printed.

In case of run error, dump of absolute location
of error, contents of general registers, data
area, and record and run-time data area are
printed.

None of the above.

Different values of y will cause printing of different parts of

the output of Pass Two and Pass Three of the compiler, The following

abbreviations will be used:

NT
BL
TREE
1st

final

reg

nametable

blocklist

tree

compiled code before certain addresses are fixed
up -listed as procedure is being compiled.

final version of compiled code which will be exe-
cuted = listed at end of procedure compilation,

contents of general registers at end of compiling

a procedure.

136

NA Actions

1 reg, final

2 lst, reg, final

3 NT, BL

L NT, BL, reg, final

5 NT, BL, 1lst, reg, final

6 TREE, NT, BL

7 TREE, NT, BL, reg, final

8 TREE, NT, BL, lst, reg, final
0 no action

The trace card $STACK has the

same effect as $TRACEO3.

137

XALGOL

0001

0002
0003
C0C4
0005
C006
uGoT
0008
0009
0010
001}
001z
0013
G014

65002A70
C5650029
000 16A65
GO2CTETT
65C0C€2983
FEQOCADTS
T10FEOQOE

APPENDIX I

EXAMPLE OF ALGOL W COMPILER OUTPUT

BEGIN
REAL X sSUMX ¢ MEANX;
INTEGER NyI§

1 := 03

SUMX 2= MEANX t= 0
READ(N) 3
WRITE(N);

L:READON(X L3
I =1+ 13
sudx : =SUMX + X ;
MEANX := SUMX [/ I;
WRITE(T9XySUMX,MEANX)3
F 1 =

END.
Fep0030D 65002866
9A65002A 9AT170100
002B4770 FE000865
01000 0 0 C170FEQO
65002C70 FEOOOC65
65002C90 65002879
4F920Q00 00000000

SOURCE LISTING

N THEN WRITE("FINISHED"}ELSE GO TO L

PASS ONE OUTPUT

FE0O00197
65002CT0 FE000463
00000070 FE0O00665
00209965 00186465
04650029 | 9A6%0029
00016A65 002C6965
65000164 8107C6C9
00000000 00000000

138

FE00020D
Q02CIATT
001064A65
002 86770
76650028
002 86965
DSC9E2C8
00000000

65002866
01000000
00286770
FE000965
TOFE0008
00296965
C5C46TTA
00000000

65002966
O070FEQO
FE000765
002C9A65
65002A9A
00246770
94650020
00000007,

PASS TWO OUTPUT TREE

PROGRAM SEGMENT 1
LOC FLAG 0PLNDE
0000
0004 b} PRACDC
0008 O CARUD
oooc OBEGIN
oQlo OCARD
0014 0 NULLST
0018 3 BB
001C 3 NULCST
0020 0 CARD
0024 0 ID
0028 9 NUMBER
002C 1 A=
0q30 d
ané J CARD
0038 3 IO
003¢C 0 Ip
0G40 ONUMBER
0044 1 =
0048 1 A:=
G04C 0
0G50 O CARD
cc 54 3 STPROCID
0058 0 1D
00scC J AP)
006G 3
0064 3 CARD
0068 3 STPROCID
006C o ID
0070 3 Ap)
co74 0]
0078 o CARD
007¢C 9 ID
0080 o
0084 3
ocss 9 STPROCID
008C 3 ID
009¢ 0o AP)
0094 0
0698 0 CARD
0C9cC 9 D
Q0AC J D
OCA4 0 NUMBER
COAS8 1 +
00AC 1 :=
oCRae Q »
0084 3 CARD
0088 G ID
00BC) D
00Co 3 ID
0GC4 I+
Q0C8 1 A:=
oocc 3 »
0CDo 3 CARD
00D4s 3 1D
GODS8 3 ,lD
000C > ID
GOEO 1 v

139

CONV POINTER
3158
crng
3001

1 slele]s}
0002
oceo
0010
0con
0C04
0210
acoc
G024
oc20
0C0s
01EC
OlF8

2 300c¢C
363C
0C38
G034
0C06
ooco
0204
C0S54
0Cs50
0007
0C0C
0204
0068
3064
o008
021C
0Co0
aC78
3120
O1ED
0c8s8
3084
0Co9
0212
0210
0CcGo
OCAO
009C
GCI9R
CO0A
01EC
0 1EC
OlEQ
OCBC
ocsa
Q0B84
coos
01Fs8
01EC

2 G210
oC0os8

NCE4
OCES
COEC
GCFC
OGF4
OCF8
COFC
0100
3104
cL08
013C
0110
0114
0118
011cC

3 1201w 18
o12C
0130
0134
0138
Cl3C
0140
0144
0148
014C
0150
0154
0158

b:=

'
CARD™
STPROCID
1D
AP,
ID
AP,
ID
AP,
10
AP}

(S R

<o

?

CARD
1D
1D

I F
IFJ
STPROCID
STRING
AP)

uJ
LABELID
GOTO

I FST

?
CARD
END
PCL

COWOOWOCOLDLT WMEDOCDOWWWO WwWwO

LITERAL ORIGIN - GOOC
LITERAL POINTER TABLE
LOC LENGTH TYPE POINTER

0000
00C4
0008
GGOC
0010

1 0000
6 0000
6 0003
1 000 4
7 7 ooo8

LITERAL TABLE
050108 0000001 0GO000QO

ELAPSED TIME

15 00:01:58

TOTAL TREE LENGTH ‘IS 0l5C
TOTAL OUTPUT LENGTH IS 018C

140

004
30 09
DCOC
NIelste
c219
Z0Fo
J1E0
GCF8
01EC
0100
Q1F8
3108
OGEC
0C0D
3210
0204
n11icC
0C00
0124
acoc
0010
0130
01l2C
021C
0000
013C
0118
O00E
0cC18
0008

C6C9ID5CY

E2C8C5C4

|

r

NAMETABLE

Loc

0C00
000C
0018
oG24
0030
¢C3C
0048
Q054
acet
0n6C
oc78
Q084
n09C
JG9C
J0A8
0JB4
0CCO
neec
CONA
COES
QGFG
GCFC
Q1CA
Oll4
cl2¢
gl2C
138
0144
015G
G15C
0168
G174
018¢C
2183C
198
J1AG
LB
180
0108
ClD4
2E0
Nni{Lc
m(wa
204G
2L

G210

KIS
L GOKIG

4

InLacl [pLoc2 SIMIYPE INFO
(HEX) HN SFG
0228 0D 1
0200 0GGO
0000 0000
0200 0COG
0000 noco
U0 00Co
0300 00CO
00CO 0CcCo 0
Ga0ce cCo0
coCo 0GecC
[e]¥] 010} 0000
0300 00COo
0000 0 00
slolels 0a 00
0002 0000
GJ0C oceoe
0900 oocc
020G = GGeo
[\I V1€ vCCo
0200 00CO
¢GOU Q000
el 0GCo
Quao ncco
22430 0060
3900 0CGO
2300 0000
onae C000
N20C goco
qoocC ‘0coo
DIV 0CCOo
D0GU 00CG
¢oav noeco
¢anc 0000
La(C 00Co
2300 onoo
00 ¢000
anoc ncco
UGG E G280
VUGE Q2AD
OoDE U2AE
20001 0014
BRI 0018
NS ce1C
PBIsD) 0020
VN Ir)) 0024
22301 00ocs
LENGTH POINTER
J1ND4 ccoc
CU4R 0lEC

VR

1

141

TYPEINFO
RCCLNO
0

DO DO DO DO DO DO DO W OO B DO DO DD] 0O P

e Ol W DWW W w W

13

TYPE

(HEX)
03
GO

SIMTYPE

WwWWMN N = — = -3 — o o

DO DO DO DN DO DO DO

st NI DO DO D O 1 s O O S W WO L W W W

ID

‘MAIN

WRITE

ADUMP

shly}
BITSTRING
NUMBER
DECODE

CODE
TRUNCATE
ROUND

ENTIER
REALPART
IMAGPART
LONGREALPART
LUNGIMAGPART
LONGSART
READ

SQRT

EXP

LN

LOG

SIN

cos

ARCTAN
READON
LONGEXP
LONGLN

LONGLOG
LONGSIN
LONGCOS
LONGARCTAN
IMAG
LONGIMAG

COMPLEXSQRT
LONGCOMPLEXSORT
MSGLEVEL
TIME
INTFIELDSIZE
UNOERFLOW
OVERFLOW

X
SUMX
MEANX
N

I

L

3701
uJCl
29701

00021
0001
030 1
0301
3001
0001
0301
0361
0301
0001
030 1
0004
0004
0005
0005
0005
0005
0005
0005
0005
0306
0006
0006
0006
0206
0006
0307
0007
0307
3007
0037
0007
0308
0008
0008
0108
0298
0209
0009
0009
0310
0010
0310
0311
0311
0311
0011

FASS THRFE CUTPUT

2O
00C 4
ool 8
IoEs oy
OOOE
6010
0014
0018
co1cC
0020
G024
u28
002C
cC30
w034
c03s8
C03C
0040
Co44
CC4s8
0G4A
CO4E
0052
0056
005A
00SE
0G50
0064
0068
co6C
C079
0074
0078
007C
00TE
0082
G086
008A
008E
0090
oc92
0296
009 4
O09E
00A2
00A4
00AS8
OOAC
CcoBQ
c0B4
cos8
O0OBC
GGCO
ooc4
00C8
QOCC

1hp

RC

BC
ok ok
ok dek

> r

BAL
LA
LA
STM
ST
LR

ST
LA
BALR
STE
STE
MVI
LA
LA

BALR

LA

BALR
koK

LA
LA

BALR

ST
LE
AE
STE

LA

BALR

LIE R 2
200C0
4 IFOFC96
0033
G000
00000301
00 00006
C6C9D5C9
E2C8CS5C4
58290E17C
58602000
5A60E194
5460E198
41006028
4540E17A
41300000
41400000

90046000

5060E170
1806

5820F014
50200024
5820F014
41100022
S8FOEQE4
GSOF

58F0E0Q4
7C00DO1C
70030018
92FFELT9
41203100
41300020
58F0EODC
051F

58F0E0C4
41200001
5830D020
S8FOEOF4
051F

0001

58F0E0C4
41200200
41300014
58FOEQODC
051F

5 8FOE 034
5820F010
5A200024
50200024
78000014
7A00DO18
70000018
58200024
411009022
58F0EQE4
050F

I

r—-

FINISHED

JI1ll
3711
2711
3711
2312
0J12
NJ12
Q012
02312
0012
D12
09312
09212
0212
0012
09012
0012
0212
0J12
0012
00212
0J12
0012
0d12
09012
0013
0013
0013
0013
0713
0913
0013
0013
0213
0213
0J13
vail3
0013
0014
ad1l4
0314
0J14
0014

Cac e
00D 2
uane
0008
ooDC
OOEO
00E4
DOES
GOEA
O0EE
JQOF2
COF6
GOFA
OOFC
0100
0104
0108
010C
Ol10E
0112
0116
011A
OllE
0120
0122
0126
012A
012E
0132
0136
013A
O13E
0142
0146
0148
014A
0l4E
0152
0156
015A
Q15E
016Q
0162

LE
DER
STE
LA

BALR

L A
LE

BALR

LA
LE

BALR

LA
LE

BALR
Hokok ok

BC
LA
SLA
LA
LA

BALR
*okkok

BC
BC
LM
ST
BCR
*kkk
koK

S8FOEON4
78200018
3D20
7020D01C
41200001
5830D024
S8FNEQES
051F
58FO0EQ04
41200002
7820D9014
58FOEQES
C51F
S8FCEQOQ4
41200002
7800D018
S8FOEOQES
C51F
58F0EQ04
41200902
7800D01C
58F0EOQOF4
051F
0001
S8FOEQO4
58200020
59200024
4TT0F152
41200007
882900010
41202007
4130F918
S8FOEOF4
051F
0001
58FOEQ004
4TFUF 156
4TFOFN08
98120004
5020E170
07F1
0000
0000

OUTPUT FROM EXECUTICN OF COMPILED PROGRAM

W N o

14 C00000'+00
240CC0O00*+00
3.000C00'+0¢C

143

1e 00000N*+00
3.00CNCDY 400
64 000C 0N +C0

14 000000°+00
14500000 +00
2+ 000000*+00

—
DO o a1 B WO

APPENDIX II

SIMPLE PRECEDENCE GRAMMAR FOR ALGOL W

Tv A RID>t3:=<ID>
<LABEL ID> $3= <[D>
TARRAYID>it¢=CcID>
<TF U N ClD>32=<LID>
CRC CcLiD> 1= <ID>
<TFLD ID7 3s= <ID>
<CON ID> tt= <LID>
<ST FUNCIDB>:2=<ID>
<ST PHOC ID>33= <|D>

KSIVAR DC> 323= <SIvaARDC*>.
<SIv A RDCx>33= <SITYPE>

<ID>

CSIVAR DC*79e <ID>
<SI1 TYPE> t3= <REF TYPE)>
<REF TYPE> 23= REFERENCE <ID>

<REF TYPE>
<ARRAY DC7 ts=<BND L s THD>

<ARRAY HND> $3= CSI TYPE>

<ARRAY HOD>

<BND LST HD> $:1=<ARRAY HO> (
- <BAD LST HD> <KT EXP>
<PROC DECL> ¢:=<T PR HEAD7 <STATEMENT

<T PR HEAD>
CT PR HEAD> TP RBODY>

<T PR BODY> 3:= <T EXP>

<ID>

<Y EXP> s T EXP> }
ARRAVLID>

<ID>

<BLOCKBODY> <TEXP>E N D

<T PR HEAD> 3:=(«(T PR

HEAD*>

KT PR HEAD+7 :: = <PROCEDURE>
<PROCEDURE> <FPARH E A D >
<PROCEDURE> 33=PROCEDUREKID>

<S1 TYPE>

<FPARH E A D » t2= <FPAR HEAD*>
<FBND LIS T7

C{FPARHEAD*> 8¢= <Sl1

<Sl1

{
{ <SITYPE>
(
(

TYPE7

TYPE>

PROCEDURE <1D>

<ID>
VALUE <ID>
RESULT <1 D>

<SITYPE>V ALUE RESULT<IDO>
{ <SITYPE>PROCEDURE CID>
(PROCEDURE CID>
<FPAR HEAD-> <KSITYPE7 <ID>
<FPARHE AD -

<FRAR HEAN=>

<FPAR HEAD- >
<FPAR HEAD%*>

CFPARHEAD->2t=<FPARHE A}
<FBND LIST

<FBND L

1 ST >
<FBNDH E AD >

<FBND HEAD>
<FOARRAY MDD := U <SITYPED>
<FPARHEAD-7
<F ARRAYHD> sy <ID>

<RC cL DC>» 2:=<KRC HEAD>)

<RCHEADS>22=<RECORDS>{
<RC HEAD?7
<RC HEAD*>

CRCHEAD*> $¢=2CRCHEADS>;}

14k

7<SITYPED VALUE
<FPAR HEAD=> <KSITYPE>RESULT
\ <SI1T Y PE7PROCEDURE <ID>

<FI‘ARHEAD-9> <SITYPE> VALUE RESULT< I D >
PROCEDURE KID>

4

vy <ID>

»
’,

t:=<FBNDH E A D 7 %1}
::=<FARRAYHI{

ARRAY <IN
<S1 TYPE>

<SI TYPE> <ID>

x)
<ST TYPE> <ID>

<ID>

2 <T EXP>

<1 D>
<1 D7

ARR A Y LID>

59
60
61

62
63
64
65

111
112
113
114
115
116
117
118

<RECORD>
<T VAR>

<STR s E L HD>
CLENGTH>
<SI T VAR>

<T FLD HD>
<T ARRAY HO>

<T FUNC DES>

<IF CLO9
<TRUE EXP>
€CASE HEAD>

CCASEcC L9
<81 T EXP>

<SI T EXP*x%x>
<SI T EXP*>

<T TERM>
KT TERM*>

T FACT>

<T SECON>

CT PRIM>

e

.
]

RECORD <ID9
<SI T VAR>
<T ARRAY ID9

<STR- SEL HO9 <iExP><LENGTH9)

<SI T VAR> (
| <T NUMBER>
<TvARID
<T FLD HD> <T EXP>)
T ARRAY HD> <T EXP>)
<T ARRAY HD> %)
ct FD 9 |
<T ARRAY ID>
<T ARRAY HD> <T EXP> 4
<T ARRAY HD> *,
<TFuNCID>
<APARH E A D ><TEXP>)
<APARH E A D > <STATEMENT>)
<APARHEAD>)
CT FUNC ID>(
CAPARH E A D ><TFYORY.,
<APARH E A D 9 <STATEMENT> ,
<APARHEADG9
<T EXP%*>
<SI T EXP>

<IF CL9 <TRUEEXP><TEXP*>

<CASE HEADG9KTEXP>)

IF <T EXP> THEN

<TEXP>E L S E

<CASEC L >t¢

< C A S EHEADY <TEXP>
CASFE <t EXP3 OF

KSI T EXP*%>

<ST T EXP*> <EQL OP> <St T
<SI T EXP*> <REL 0OP> <S1 71
<SI 7 EXP%> IS <RC cL I1D>
<SI T EXP*>

<T TERM>
+ <T TERM9
- <T TERW>

<ST T EXP%> + KT TERMY
<S1 T EXP*> <T TERM9
<SI T EXP¥> O RCTTERMO
SRCcL 109

<RC DES HD> <T EXP>)

<STRING>»

NULL ‘

KT TERM*>

E=<T FACTO

<TTERMF9 * (KT FACT>
KT TERM%> / KT FACT>
<TTERM*> DIV<T FACT>
<TTERM*> REMKTFACTY
<7 TERM%> ANDKLKTFACT>
C T SECON>

~<TFACTY

<T PRIMY

EXP *x>
EXP*x*>

<T SECON> <SHL o R *%> <KT PRIM>

<TSECON>s vy RLTPRIMY
<T VAR>
<T FUNC DES>

145

119
120
121

122
123
124
125
126
127
128
129
13
131
132
133
1.34
135
136
137
L-38
139
14t
141

14?2
143
144
145
Jd’)
L4\
140
149
150
191
192
153
15%
155

156,

157’
194
159
16U
141,
142
143

164
166
166
167
168
169
170
171

172
173

1.74

175
176
177
1738

<REL OP>

CEQL 0P>
CLERAT PAR>

<RC DES HM>

<PROGRAMSY9 3=,

TSTATEMENT>

CSTATEMENT®> ¢ 3

<SIsT>

<BLOCK>

3

Y
.

.
o

<BLOCKBODY> : 3

<BLNCKHEADD>

<LABEL DEF>
<T ASS ST>
!

KTRUE PART>

<CASE SEQ>

<FOR CL>

.
.

<

"

(']

<ST FUNCID>

<T EXP>)

<LEFT PAR>
TRUE

FALSFE .

<CON ID>

LONG <TPRIM>
SHORT <T PRIM>
ABS <T PRIM>
<T NUMRER>
<BITSEI>

<

< =

> =

-~

<ST FUNC 10> ¢

KRC cL In>
HD> <T EXP>

<RC DES
<BLOCK>
<STATEMENT*>
ST ST»>
<FORcCc L 9DN

<FOR CL>DU <STATEMENT*>

<WHILE CL> DO

<WHI LE CL> D O <KSTATEMENT*>
<1 FCL>

<I[FcL> <STATEMENTx*>
<IFcL9 <KTRUFPART>

CIFCL>CKTRUEPART> <« STATEMENT*9
END

<CASESEQ>

<CASESEQ>» <STATEMENT>

<ALNCKD>
<T ASS ST9
<TFUNCDES->

GUTO <LABELID >

<57 PROC
<BLOCKBNOY>
<BLOCKBANY>
<BLOCKHEAD>
<BLOCKBNDY>
<BLOCKBADY>
<BLOCKBNDY >
EGIN)
BLUCKHEAD>

{BLNCKHEAD>
CBLNACKHEA> <
<ID> :

<T VAR> :=
<TVAR> =

HO> <T EXP>)
END
< sTATEMENT>

END

END

<STATEMENT> 3
<L ABELDEF>

<S1 VARD C »
YBLOCKHEAN> <ARRAY DC >3

<PROC DECL>
KC CL DC >

<T EXP*>
<T ASS ST>

<SI1sT9 ELSE

ELSE

<CASECL>BEG IN

<CASE SEQ>

<STATEMENT>

< CASESEQ>;

<FOR HEAD >
<FOR HEAD>
<FORLIST>

146

<T EXP>

’

°
*

KSTEPUNTIL> <T EXP>

rﬁwﬁ

179
183
131
132
133
1834
135
186
187

<FIR HEAD>
<EFIR LESTS

<EAR>
SSTERPUNTIL>

<WHILE CL>
ST PROC HD>

e
s
s
e
E
e
e
e

@
@
L)

s
- s
s

w09

" oee

®
s
s
e

#Hoo

ss sy

LKFGR> 1= (T

<FOR HEAD> ,
<FOR LIST> (7
FOR <ID>

STEP KT EXP>
UNTIL

WHILE <T EXP>
<57 PRDC ID>
<ST PROC HD>

147

CXPxED>
EXP>

UNTIL

(
T EXP>

?

