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ABSTRACT

Two recent papers by Hansen and by Hansen and
R.mR. Smith have shown how interval arithmetic
(I.A.) can be used effectively to bound errors in
matrix computations. This paper compares a method
proposed by Hansen and R. R. Smith to straight-
forward use of I.A. in determinant evaluation. Com-
putational results show what accuracy and running
times can be expected when using I.A. for deter-
minant evaluation. An application using I.A.
determinants in a program to test a set of functions

to see if they form a Chebyshev system is then

presented.




Interval Arithmetic Determinant Evaluation And Its Use

In Testing For A Chebyshev Svstem

1.  Introduction

Recently Hansen [1] and Hansen and R. R. Smith [2] have shown how
interval arithmetic (I.A.) can be used effectively to bound errors in
matrix computations. In [2] a method for evaluating the determinant
of a real square interval matrix, AI, was proposed. An interval

matrix, AI, has elements which are closed intervals

Here we present the results of an implementation of that method and
compare it to a straightforward use of interval arithmetic in deter-
minant evaluation. First we give an algorithm for determinant evalu-
ation which simply uses I.A. for all computations. Then we detail the
method given in [2] and give results which compare the effectiveness

of the two methods. Finally, interval determinant calculations are

used to mathematically test a set of functions for the property of being

a Chebyshev system of functions.

2. Straightforward Use Of Interval Arithmetic

For the purpose of comparision with Hansen's method for determinant
evaluation we chose a previously published algorithm [3] and inserted

calls on I.A. routines where appropriate. This algorithm evaluates a
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determinant by triangularization with searching for pivot in row and
with row equilibration. The I.A. routines are similar to those given
in [4], and are described in detail in [6]. The calls are implemented

as shown in Table 1, where in each-case the resultant interval is

[CL,CR] and the left and right operand intervals are [AL,AR] and

I.A. Routines

operation name of routine Parameters
addition TADD (CL,CR,AL,AR,BL,BR, L)
subtraction ISUB (CL,CR,AL,AR,BL,BR,L)
multiplication IMPY (CL,CR,AL,AR,BL,BR, L)
division IDIV (CL,CR,AL,AR,BL,BR,L)
Table 1

[BL,BR] respectively. The label L is for an error return when
overflow is likely or if the denominator interval contains zero when
IDIV is called. Thus a call of ISUB(CL,CR,AL,AR,BL,BR,L) will give
[CL,CR] « [AL,AR] - [BL,BR] with the subtraction done in I.A. and a
transfer of control to the label L if overflow is likely.

The algorithm given in [3] as modified to use I.A. is now given:
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Algorithm 269 with Interval Arithmetic

PROCEDURE IDETERMINANT(ALEFT,ARIGHTsN,OLEFT,DRIGHT,LBL)S

VALUE N3

ARRAY ALEFT(0»0],ARIGHT[0,01] 3

INTEGER N3

REAL DLEFT»DRIGHT3 LABEL LBL3S

BEGIN CUMMENT COMPUTES THE INTERVAL VALUE OF AN
INTERVAL DETERMINANT, SEE ALGORITHM 269 IN
COMMUNICATIONS OF THE AeCeM, NOV. 1965 3
LABEL RETURN,
REAL PRUDUCTL,»PRODUCTR,TEMPLs» TEMPR»TEMLL» TEMRR}
INTEGER IsJsR»S’
ARRAY MULTLL[OIN),MULTRCOSNI}S
REAL. PROCEDURE MAX(X»Y)3;

VALUE

XsY3

REAL XsY3

MAX 1=

IF X €Y THEN Y ELSE X3

PROCEDURE EQUILIBRATECAL»ARsN>MULTL,MULTR»LBL»
DLEFT>»DRIGHT,RETURN)
VALUE N# INTEGER N3 LABEL LBL3S

AKRAY

ALLO»01,ARL0,01»MULTLLOI»MULTRLO]}

REAL DLEFT,DRIGHT3 LABEL RETURN;

BEGIN

INTEGER 1»J5 REAL MXL»MXR3}
FOR I ¢= 1STEP 1 UNTIL N DO
BEGIN

MXL = 0.0} MXR = 0.0 3
FOR J $¢= 1STEP 1 UNTIL N DO
BEGIN
IFABSCALLI»J))> MXL THEN MXL $=ABSCALLI,J])}
IFABSCAR[I»J])> MXL THEN MXL $=ABSCAR[I,J1);
END, MXR 3= MKXL;
IF MXL = 0+0 THEN
BEGI N
DLEFT $= 0,03 DRIGHT $=0,03
GO TO RETURN;

END;
MULTLIIlIt= MXL
MULTRIIJ!= MXR

IF MXL # 1.0 THEN
FUR J ¢= 1 STEP 1 UNTIL N DO
ROIVCALLI»JI»ARCI,JI»ALLI»JI»ARLI»JIsMXLoMXRLBL)S

END;
END EQUILIBRATE 3

EQUILIBRATECALEFT»ARIGHT» N, MULTLsMULTRsLBLsDLEFT»DRIGHT,»RETURN)}

PRODUCTL
PRODUCTR
FOR K =
BEGI N
S &=
TEMPL
FUK J

1=1.05
1= 1.0
1 STEP 1 UNTIL AN=1 DO

R

$= MAX(AUBSCALEFTIRs,R))»ABSCARIGHT[R,R1)) 3
t= R+1 STEP { UNTIL N DO

IF TEMPL < MAX(ABSCALEFT(R»J))»ABSCARIGHTCR,J1)) THEN

BEGIN

zZ



TLMPLJS;MAX(ABS(ALEFT[RpJ})»ABS(ARIGHT[RpJ])) 3
S &=
END
— I1F TEMPL = 0.0 THEN
BEGIN
DLEFT $= 0,03
o DRIGHT t= 0407
GO TO RETURN ;3
ENDS
It S # R THEN
BLGIN
RMPY(PRODUCTL»PRODUCTR»=1405=1,0,PRODUCTL»PRODUCTR,LARL)}
FOR It= RSTEP 1 UNTIL N DO
— BEGIN
TEMPL 8= ALEFT[I»R]}
: TEMPR 8= ARIGHT[I,R);
— ALEFTCI»,R] t= ALEFTLI,»S)}
ARIGHTII»R] t= ARIGHT[I»S)}
ALEFTCI,SIs=TEMPL }
ARIGHT(I»S) s= TEMR 3

END;

END;

RMPY(PRODUCTLs»PRODUCTR,PRODUCTL»PRODUCTRSALEFTIR2R],
— ARIGHT[R,R)»LBL)}

FUR I 3= R+1 STEM 1UNTILN DO

BLGIN
w ROIVCTEMPL, TEMPRAALEFTCILRI,ARIGHTLIAR],

ALEFTIR,RI»ARIGHTIR,R1»LBL)}
; FUR Jt= R+1 STEPIUNTIL N 00
; BEGIN
~ RMPY(CTEMLL»TEMRRIALEFTIR,JISARIGHTCRs»JI» TEMPL,TEMPRsLBL )}
RSUBCALEFTII»JI»ARIGHTIISJI»ALEFTIY»JI»ARIGHTIISJ]>»

i TEMLL» TEMRRsLBL)S
- END;

END3
f . END #
o RMPYCTEMPL» TEMPR, PRUDUCTLsPRODUCTRSALEFTCNsNI»ARIGHTIN,N)»LBL)3

FOR Rs= 1 STEP 1 UNTIL N Do
RMPYCTEMPL s TEMPR,TEMPL»TEMPR»MULTLIRISMULTRER]I,LBL)I
: DLEF! 3= TEML;
~ R DRIGHI ¢8= TEMPR 3
RETURN ¢

% END IDETERMINANT 3
e
-



¢
]
e

5. Hansen's Method

In [2] a method for determinant evaluation of an interval matrix,
AI, is proposed. It can be presented as ! steps.
(i) Determine a lower triangular matrix, L, with unit diagonal
elements such that LAC = U, where AC is the center of
AI and U is upper triangular. L will contain roundoff
errors but the determinant of L is exactly one.
(ii) Using I.A., multiply L times AI obtaining BI which will
in general have very small intervals below the main diagonal.
(1ii) Perﬁorm Gaussian elimination on BI using I.A. This will
result in an upper triangular matrix TI . It is noted in
2] that an exact zero for a zeroed element can not be computed

during the elimination but it is correct to insert such zeros

(iv) Compute the determinant as the I.A. product of the diagonal

elements of T . That is,
N

at = [ <%,

. ii
i=1

The implementation of this technique was accomplished by using an
algorithm given by Ralston [5, p. 411] for determination of the appro-
priate lower triangular matrix L with unit diagonal elements. The
algorithm in [5] takes a matrix A and reduces it to two matrices L
and U such that A = LU where L is lower triangular with unit
diagonal elements and U is upper triangular. It is then simple to

determine L_l which is the lower matrix required by Hansen's method.
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The decomposition was implemented both with column pivot selection and
without any pivot selection. It 1is interesting to compare the results

of Hansen's method with and without pivot selection* This comparison

is presented in the next section. -
A Burroughs Extended Algol implementation of Hansen's method is

now given:
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PRCCEDURE HANSENSMETHODCAL»ARsDLsDRsN, TAERR) 3
VALUE N3 INTEGER N3

REAL

DLsDRS

LAREL LAERR;

REAL

AKRAYAL,AR[0,01]5

BEGIN GCUMMENT
THIS PRUOCEDURE CUMPUTES THE-INTERVAL DETERM NANT
UF AN INTERVAL MATRIX USING THE METHOD DESCRIBED
IN SIAM JOURNAL UN NUMERICAL ANALYSIS»VOL 8C1667),Nlis1»
By ELDON HANSEN AND R.R¢SMITH,

THE INPUT IS ALsAR» AND N, WHERE

AL IS THE LEFT END POINTS OF AN INTERVAL MATRIX»
AH IS THE RIGHT END PQINTSs, AND
N IS THE ORDER OF THE MATRI X,

THE UOUTPUT IS DL AND DR »THE LEFT AND RIGHT END POINTS

UF THE DETERM NANT,

IF A DIVISION BY ZERO»FCR EXAMPLE, OCCURS DURING THE

INTERVAL ARITHMET CALCULATIONS, CONTROL 1S TRANSFERRED
U THE LAHEL IAERR }

COMMENT PUT UECOMP»INVLCWER» AND INTDET HERE}

VALUE

PROCEDURE UECOMPCA»N,P)’

N

INTEGER N3

ARRAY

ALO,01);

INTEGER ARRAY P[Q]3

BEGIN CUMMENT SEE RALSTON (1ST COURSE IN No.A«)P.4143
INTEGER RsK»I»JsDMAXS
ARRAY DILO:N] 3
LABEL ZRO,D0NE;

REAL TMP;

FOR K $¢= 1 STEP 1 UNIIL N DO
BEGI N

FUR K 3= 1 STEP | UNTIL N DO
DLK] 3= ALK,R) 3
FUR J = | STEP 1 UNTIL R-l DO
BEGIN
ALJ,R]) 3= DIPLJUI]) 3
DCPLJI] 3= DIJ] 3.
FOR I 3= J+1 STEP 1 UNTIL N DO
DLI) s= DLI) =ACI»Jlx ALJ,R1 3}
END3 DMAX t= R
FUR I 3= R STEP 1 UNTIL N DO
IPABS(DLI]) > ABSC(DIDMAX]) THEN DMAX 3= I 3
ALR,R] 3= D(DMAX] 3}
PLR) $¢= DMAX3
DLUMAX] t= DIR]
Furn I 8= R+1 STEP 1 UNTIL N DO
BLGIN
IFALRsR] = OTHEN GO TO ZRO;
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AtI,R]) §= DILI] 7/ ALR,R] 3}
END
ENDS
GO TU DONES
ZR0¢ WRITE(<S"A[(RSsR1=0,0"»110>,R)}

DONE S

FOR I8=a1STEP 1 UNTIL N=1DO
FOR J 8= I+1STEP1 UNTILNDO
IF PLtJd #J THEN
BEGIN
TMPi=sAlLJs1]3
A[JrI) %= ALPLJI»1) 3
ALPLJ1s1] 8= TMP 3
END?

END DECUMPJ

PROCEDURE INVLUNERCLIN,LOUTAN)}
VALUENIINTEGERN}
ARRAY LIN,LOUTLO0,0]3
BEGIN -
REAL SUM3 INTEGER I»JsP3
FOR l$=1 STEP 1 UNTIL N DO
BEGIN
LUUTCILI) 8= 1.03
FUR J 3= 1 gSTEP 1 UNTIL I=1DO
BLGIN SUM t= 0405
FORP3$=JSTEP | UNTIL I=1DO
SUM 1= S UM +LINCIPIXLOUTLPLJYS
LOUTII»J) 8= =SUM)
END;
ENDS
END INVLOWERS

PROCEDURE INTUDETCLs»AL»ARSDL,DR,N)}

VALUE N} INTEGER N3

ARRAY L2AL»AR[0»01]}

REAL DL»UR3}

BEGIN CUMMENT THIS PROCEDURE TAKES A LOWER TRIANGLE
SUCH THATLxA= UCUPPER)»WHERE A IS INTERVAL SO
USINGIeA4s»UIS NOT REALLY UPPER AND I,A«GAUSSIAN
ELIMINATION IS THEN DONE TOGET THE INTERVALDETERMINANT}
INTEGER IsJsK3}

REAL SUML,SUMR,MULTLsMULTR,TL»TR}

ARRAY ULLOSN,»OSNI»UKLOSN,OSNIS LABEL LBL,DONE}
FOR 1 3= 1 STEP 1 UNTIL N DO

FOR J ¢= 1 STEP 1 UNTIL NDO

BEGIN
SUML = AL[I»J]l 3 SUMR s= AR({I,J] 3}
FOR K 8= ISTEP 1 UNTIL I-1 DO BEGIN

RMPYCTLoTRALII»KIsLLIoKI»ALEKsJIsARLK2JI»LBL)S
RADDCSUML» SUMR» SUML»SUMRsTL,TR>LBL)SEND}
ULLIo,Jd]) 3= SuMLS

URLIsJ] $= SUMRJ
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LBL?
DONE 3

END
COMMENT NOWDD GAUSSIAN ELIMINATION ONUL»sUR
OR USE IDET ON ITS
FURL! =1 STEP 1 UNTIL h DO
FOR Jt= I+41 STEP 1 UNTIL N DO
BEGIN
RUIV(MULTL,MULTRAULCJ» T3> URLJSII»ULLISIY»URLIAI)sLBL)YS
FUR K s= I{dI+1SSTEP { UNTILL ™ DO
BEGIN
RMPY(TL» TRy MULTLsMULTRAULLI»KI>URCI»KIsLBL)}
RSUBCULCLJUs»KIS»URLJsKI,ULLJsKI»URLJ2KI»TL»TRsLBL)S
ENDS
ENDJ
COMMLNT NOW COMPUTE THE DETERMINANT;
DL 8= UL[1,11)3
DR 3= UR[1,11}
FOR lt= 2 STEP 1 UNTIL NDO
RMPY(DL»ORsDLsDRaULLI»I1sURII»TI]»LBL)}
GO TU DONE 3
WRITE(<"I,As TROUBLE IN INTDET">)}

END INTUET)

REAL ARRAYA,LI[OtN,O8N]3
INTEGER ARRAY PLO3SN]}
INTEGER 1,4 3 '

REAL TEMPL,TEMPR»SGN 3}

FOR [%= 1 STEP 1 UNTIL N DN

FOR J #= 1 STEP 1 UNTIL NDO
ALT»Jd)i=CALLI»J] + AR[I,»J]1) /2,0 3

COMMENT A HAS THEMIDPOINTS« NOWDECOMP WILL FINDL AND u
SUCH THAT A=LXU AND FUT L IN A 3

DECUMP(A,N,P)}
COMMENT NOW INVLOWER WILL INVERT THE LOWER TRIANGLE IN A
ANDPUT T H EINVERSE I N LI}

INVLOUOWER(CA,LI,N)}
COMMENT IF INTERCHANGES OCCURRED DURINGDECOMPWENON

INTERCHANGE AL AND AR ACCORDINGLY?3
FOR I %= 1 STEP 1 UNTIL ND O

BEGLN
IFPLIJ# | THEN
FUR J $= 1 STEP 1 UNTIL N DO
BEGIN

TEMPL ¢t= ALLIsJY) 3
TEMPR $= AR[I»J] 3
AL{I»J) t= ALIPCI1»J))
ALLPCI),J18=TEMPL 3
AR[I»J] t= ARIPL[I1»JI3
AR[P[I1,J)t= TEMPR }.
END
END 3
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COMMENT NOW INTDET COMPUTESBI = LIXACINTERVAL)AND
PERFURMS GAUSSIAN ELIMINATION ONBITOFIND THE
DETERMINANT AS THEPRODUCT OF THE DIAGONAL ELEMENTS)

INTUETCLI»AL»AR»DL»DR,N)3
COMMENT NOW ADJUST THE SIGN ACCORDING TO THE INTERCHANGES;
SGN 1= 1,0
FOR I 8= 1 STEP 1 UNTIL N~NDD
IF PLIY # | THEN SGN 3= =SGN3
IFSGN <O THEN
KMPY(DLs»DR,DL»DR»=1,0s=1,0,1AERR)}

END HANSENSMETHOD 3

10
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L. Comparison of results

The test matrices were generated using a mixed congruentigl method
of generating uniform pseudo-random numbers in the interval (O,l) as
implemented on a Burroughs B5500 computer. A matrix A was filled
with random numbers, then a small positive number, §, was added to
and subtracted from each element of A to obtain the right and left
end points respectively of the interval elements of AI

Various values of { were tried for a range of values of N, the
order of the test matrices. Selected results are shown in Table 2.
Note that the Burroughs B5500 can hold approximately 11 decimal digits
of accuracy so the input interval widths are quite significant compared
to machine accuracy.

The value of pivot selection is strikingly illustrated by columns
four and five of Table 2. For the case N=5,C=10_6 no pivoting was
necessary and the results are identical as expected. However, at the
other extreme, the case N=9, C=IO_6 without pivoting shows an interval
width of over 600 times the interval computed with piuoting.

Table 2 also shows that Hansen's method can retain correct signi-
ficant digits for matrices of order at least 20 whereas the straight-
forward use of I.A. begins to lose all correct significant digits for

8

matrices whose order approaches 20. Consider the case N=17, (=10~
Hansen's method gives a result which can be expressed as dI = -.0033k
+.0000075, leaving two correct significant digits. However for the
same case the straightforward approach gives dI = -.00334 + .0004

8

which has no correct significant digits. The case N=20, £=10"

11
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rovides a similar comparison. Hansen's method yields
y

dI = -0,00776

+ .0000065 (2 correct significant digits) and the alternate method
gives dI = -0.00776 * .00023 (barely 1 correct significant digit).
Comparison of Interval Determinant Widths
(2C is the width of the elements in the original matrix)
Width Width Width Multiplicative
Value of Hansen's | Hansen's Algorithm factor for all

N C | Determinant |w/pivot |w/o pivot |269 w/I.A. 3 widths
3 10’8 0.01311. . 2,18 2.2k 3.28 x10'8
3 10'6 -0.25862. . 5.0 13.1 5.66 x10’6
p 1078 oaesi7.. | 1 12.0 2.1 x107"
N 10"6 -0.18143. . 0.95 9.1 2.0 x10™°
511078 | -0.01003.. | 0.7 3.1 0.9 x107 1
5 10”6 0.02672. . 0.69 0.69 0.78 ¥10™7
611078 o0.02365.. | 1.1 2.51 3.6 x10™"
6 10'6 -0.09218. . 0.26 1.03 0.52 x:Lo'LL
711078 o.02758.. | 1.80 8.8 6.8 x107 "
711076 | -0.00818.. | o.81 1.5 108 X107
8 10'8 0.03106. . 5.2 83.2 13.7 x10™
8 10'6 0.00680. . 0.13 2.3 0.28 x107%
9 10'8 0.07876. . 1.09 282. 1.79 xlo'6
9 10'6 0.02018.. 0.29 178.6 1. 14 xlO-u
10 10'8 0.01337. . 1.05 13.1 0.66 x10‘6
10 10'6 0.00023. . 1.75 23.25 2.19 x10™7
15 10'8 0.00087. . 0. 47 —— 4. 43 xlo'6
17 10'8 -0.0033k. . 0.15 - 8.15 xlO-u
20 10'8 -0.00776. . 0.13 ——— 4,59 xlo‘LF

Table 2
12



5. Average Relative Widths using Hansen's Method

In an attempt to generate some useful guidelines as to what accuaracy
to expect when using Hansen 's method for determinant evaluation we have
done tests using random matrices with elements in the interval (-1,1) .
Thus, 1if a matrix is scaled so that all elements are less than one in
modulus the results given in Table 3 will provide an estimate of the
size of interval determinant value that can be expected when using Hansen's

method. A relative width of 1.0 X 107" means that at least m-1 sig-

nificant digits are correct in the interval determinant wvalue.

Consider, for example, @ problem involving the determinant of a
matrix of order 8 with interval elements of maximum width 10_6 °
If the matrix elements are scaled to lie in the interval [-1,1] and
Hansen's method is used to evaluate the determinant, a crude interpolation
in column 4 of Table 3 will provide an estimate of the accuracy that
can be achieved. For this example a relative width of about 10 X 10

can be expected which means at'least three correct significant digits

in the interval determinant value.

13
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Average Relative Widths of I.A. Determinants

using Hansen's Method (averages calculated for 3 matrices)

width of interval determinant
true value of determinant
half the width of origjnal elements of matrices

-10 - -6 -L
N %, £=10 g, £=10 8 g, ¢=10 %, (=10
3 o.65x10‘8 0.21x10'6 1.58x10'LL 0.49x10'2
5| 2.02x100 | 1.17x10°0 | 1.70x107%| 1.6kx1072
7 u.8hx10'8 4.84x10'6 3.98x10'LL 15.19xlo'2
9 1,54x10'8 9.51x10‘6 24.57;&0‘1L 19.h0x10'2
11 35.46x10‘8 u1.97x10'6 52-69x10'u 38, 25x10™°
Table 3
14
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6. Comparison of Running Times

Table 4 gives average times for determinant evaluation on the
Burroughs B5500. All I.A. calculations are performed with the I.A.
subroutines coded in Burroughs Exfénded Algel and are obviously quite
slow compared to noninterval arithmetic.

Hansen's method is significantly slower than the I.A. version of
algorithm 269. Thus in any application a study of Tables 2, 3, and &,
together with a knowledge of the input element widths and the accuracy
desired, should indicate which routine to use from the standpoint of
efficient machine time utilization.

Average Times to Evaluate Determinants

using various Methods (Times in seconds)

Number of matrices

N | 85C [269(T.A.)|Hansen's | used in averaging
31 .0183 . 7100 . 9017 10
L | 00200 1. 4450 2.12%3% 10
51 .0250 2.593% 4.2917 10
6| .ou83 4.0817 7.4350 10
71.0778 6. 2222 | 11.8056 5
8 | . 1000 9.3%3667 | 18.9500 1
9 .1167| 120 9167 | 26.3500 1
10 | <1667 | 17. 2000 | 36.6833 1
15| 4166 | 56.8500 |125.4333 1
17 1.58%3] 84,7167 |185.83%3 1
20 | .8500} 128.1333 13009.3333 1

85C is Stanford Library program number 85C which
uses Gaussian eliminaticn with row equilibra-
tion and row interchanges.

269I.A. is C.A.C.M. algorithm 269 as modified to
use interval arithmetic.

Hansen's 1s the method of Hansen described in
this report.

Table L

15



7. An Application - Testing for a Chebyshev System

7.1 Introduction

Given that a set of functions form a Chebyshev system, certain
algorithms in approximation theory can be proved to converge. In
particular, the second algorithm of Remez [7] can be applied to find
the best approximation in the Chebyshev (minimax) sense to a continuous
function by a linear combination of the functions forming the Chebyshev
system. However, in some cases it is not known a priori whether a
given set of functions form a Chebyshev system or not. In these cases
the program-to be described can be used to indicate the presence or
absence of the desired property. In case the set does not form a
Chebyshev system the use of interval determinants can possibly prove

this fact.

7.2 Definition of a Chebyshev system of functions

Given a set of linearly independent continuous functions,

ml(x), +++»® (x) defined on a closed interval [a,b], form a function

n

(7.2.1) F(x) = Z )x.icpi(x) .

i=1

If any such function, which is not identically zero on [a,b] , has

not more than n - 1 zeros in La,b] with double zeros counted twice,

then the set {Qi(x)}g forms a Chebyshev system. For more an Chebyshev

systems see [9] for example.

16
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An equivalent definition is the following: given the set {@i(x)}i

if for any set of n arbitrary distinct points (Xi}?' X, ela,bl, the
determinant whose i, j element is @i(xj) is non-zero, then the set

{mq(x)}? forms a Chebyshev system.-. That is, the determinant, D,

given by
P, (x;) P (x) . L 9q(x)
(7.2.2) o = P (x;) Polxy) . L 9y(x)
¢, (%)) P (%) P, (x,)

must be non-zero for any set of n distinct points in [a,b] .

The second definition is used in this program to test for a
Chebyshev system. The determinant is tested to see if it has a zero
for any possible set of distinct points {xi}z . It can be shown that
D, given by (7.2.2) is a continuous function of {xi};.Thus, if we
order the {Xi} by requiring that Xy < X <.e. < X, we know that

+ - +
if there exists two sets, {Xi} and {XT}’ such that D({Xi}) > 0 and

- (0]
D({xi}) < 0, then D must be equal to zero for some other set {Xi}

This property is used in conjuction with interval determinant calculations

to prove that a system is not a Chebyshev system.

Two examples of Chebyshev systems for any closed interval of the
real line are the set {Qi(x)}§ with @i(x) = Xi-l: and the set
{wi(x)g with wibd = Ti_lbd, where TibO represents the Chebyshev

polynomial of the first kind of order i . That is,

17
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(7.2.3) Ti(x) = cos(i8), cos 8 = x

A third example is the set {1, cos(x), sin(x), cos(2x), sin(2x), ...,
cos(nx), sin(nx)} on the interval . [0, 2x].

An example of a set of functions that is not a Chebyshev system
is {¢i(9) = cos(2i6), i=1,2, ..., n} on the interval 0 < 6 < n/2.
This can be seen easily since as 6 varies from 0 to n/2 the argu-
ment of the cosine varies, from O to im, thus passing through i odd

integer multiples of =/2 where the cosine takes the value zero. 'Hence,

we have that ¢i(e) possesses 1 distinct zeros in the interval [0,n/2]

which contradicts the requirement of no more than i - 1 zeros set

forth in the definition.

7.2 The problem

. . n .
Assume that we are given a set of functions {wibd}l defined on

an interval [a,b] . We ask whether the functions form a Chebyshev

system on that interval or not.

7.4 Description of the method

The method utilizes the determinant definition of a Chebyshev

system to test a set {@i(x)}i for that property in an interval [a,b] .

The steps involved can be outlined as follows:

s . n
(1) Choose an arbitrary initial set of n distinct points {Xj}l

in [a,b] .
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(ii) Knowing a priori the errors in calculating the functions
Py (x), i=1, ..., n, create an interval matrix which contains
the matrix shown in (7.2.2). Calculate the interval deter-
minant of this matrix. -The interval obtained will be greater
than zero, less than zero or contain zero. If it contains
zero, minimize or maximize D until the interval determinant
does not contain zero. (Always require that X < X < oo
<x ).
n
(iii) Depending on whether the interval determinant is positive or
negative, then minimize or maximize D({xi}) . When (if) a
change in sign of D({xi}) occurs, use the interval deter-
minant calculation again to see if the interval has changed
sign. If so, it is proved that the {mi} does not form a
Chebyshev system. If not, try to minimize (maximize) D
further and use the interval determinant calculation again.
If no further minimization or maximization is possible and
the interval determinant contains zero, this may indicate
a zero determinant and thus not a Chebyshev system but it
does not prove anything. However,, if both positive and
negative interval values of the determinant can be found,
it is proved that the {mi} do not form a Chebyshev system.
In practice, there are an infinite number of choices for a new
set {x.} in the interval, therefore a direct ‘computation is impossible,
To surmount this problem we use an approximate minimization technique

on the determinant, D, as a function of n parameters, the set

{xj}q Thus, if an interval change in sign is found, we can be sure
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that the set of functions does not form a Chebyshev system, however,
if an interval containing zero or an interval of the same sign as the
starting point is found, we can not be positive that we do not or do
have a Chebyshev system. This dichotomy of certainty is due to the
fact that any known numerical procedure for minimization can failto
locate the absolute minimum of a function, thereby locating a non-zero
minimum whereas in fact a zero minimum exists.

In spite of the uncertainty involved in this method, if a reasonably
faithful minimization procedure is employed, a non-zero minimum or a
zero minimum with very close points is a very good indication of Chebyshev
system. A zero minimum (an interval containing zero), with well sepa-
rated points is convincing evidence that a Chebyshev system is not at
hand. A change in sign (a positive interval and a negative interval)
is proof that a Chebyshev system is not at hand.

The program to test for Chebyshev systems incorporates three basic
algorithms Algorithm 178 [8] as coded for a Burroughs 135500 was
modified slightly and used to perform the minimization. A routine
similar to Algorithm 269 [3] was used to evaluate intermediate deter-
minants for the minimization and Hansen's method was used for the
interval determinant calculations. The interval [a,b] and the functions

{¢i<x)}2=1 must be specified for each particular problem.

7.5 Examples

The program as implemented on a Burroughs B5500 computer has been
used to test several sets of functicns. Some of these are given below

with the points chosen and the corresponding interval determinant wvalues.
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The functions such as exp and cos which occur in the examples
were computed by the B5500 system routines to approximately 11 accurate
decimal digits. To ensure that the interval determinants that were
evaluated contained the mathematically correct values, we added (sub-
tracted) 10_8 to each computed element of D (7.2.2) to obtain the

right (left) endpoint of the interval determinant.

example 1. Not a Chebyshev system
2 .
{o, ()} = {x exp(x)} on [0,3] . ([10, p. 55])

X X5 interval determinant

start 1.0 2.0 [1.952k922, 1.9524926]

finish 0.0 3.0 [-3.000000%, -2.9999997 ]

example 2. Not a Chebyshev system
cpi(x) =cos(2 ®1i® x),i=1,2,3,4 on [0,n/2]

xl x2 x5 xh interval determinant
start 0.3 0.6 0.9 1.4 [0.0343986, 0.0343990]

finish 0.1 0.8 0.9 1.5 [-2.496%29%, -2.4963286]

example 3. A Chebyshev system

. i-1
cPi(X> - x" ;i =1,2,3 on [-1,1] .
Xl X5 x5 interval determinant
start  -0.5 0.0 0.5 [0.24999993, 0.25000007 ]

finish -0.040601 -0.040L -0.0LO5 [-8.571x10'12, +u.510x10'12]
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In this case the functions do form a Chebyshev system and we know that
there should be no set of distinct points for which the determinant,
D, 1is zero. The program is written to prevent points from becoming
closer than 10_1F . As shown by-these results, the only way the
minimization routine could obtain smaller values for D Was to use
points as close together as possible. This is typical of the results

obtained when the given set of functions does form a Chebyshev system.
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8. Conclusions

The computational results show that Hansen's method with pivot
selection provides a smaller interval fcr the determinant than straight-
forward use of I.A. for all but one of the test matrices. This is as
would be expected since the elements in the lower triangle of B
are very small intervals and thus interval widths are kept small during
the elimination.

As is well known, and as shown dramatically by Table 2, the correct
selection of pivots during decomposition (or elimination) can produce
a striking difference in the resultant accuracy of a determinant
evaluation. | Table 2 also shows that for matrices of order as high as
20, and with original element widths less than or equal to 2-0X10-8y
Hansen's method will compute interval determinants which retain useful
significance. However, the interval determinants computed by the
straightforward use of I.A. begin to lose significance for matrices
whose order approaches 20 .

The timing results given in Table 4 indicate that some trade-off
between accuracy and running time might be appropriate in particular
applications. That is, some a priori information about input widths
and order of the matrices, together with the information given in the
Tables,, might indicate that the straightforward use of I.A. would give
sufficient accuracy and save a considerable amount of machine time.

The application of interval determinant calculation in a program

to test for Chebyshev systems shows that this particular use of interval

arithmetic can be used in mathematical proofs.
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