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ABSTRACT

. E—

Two recent papers by Hansen and by Hansen and

= R.R. Smith have shown how interval arithmetic

(I.A.) can be used effectively to bound errors in
—

matrix computations. This paper compares a method

-— proposed by Hansen and R. R. Smith to straight-

forward use of I.A. in determinant evaluation. Com-

= putational results show what accuracy and running

times can be expected when using I.A. for deter-
-

minant evaluation. An application using I.A.

— determinants in a program to test a set of functions

to see 1f they form a Chebyshev system 1s then

presented.
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—
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— Interval Arithmetic Determinant Evaluation And Its Ise

| In Testing For A Chebyshev Svstem
— —

o l. Introduction

Recently Hansen [1] and Hansen and R. R. Smith [2] have shown how

interval arithmetic (I.A.) can be used effectively to bound errors in

Ce matrix computations. In [2] a method for evaluating the determinant

| - of a real square interval matrix, AI, was proposed. An interval
—

matrix, at has elements which are closed intervals

I

Here we present the results of an implementation of that method and

| —

| compare 1t to a straightforward use of interval arithmetic in deter-

minant evaluation. First we give an algorithm for determinant evalu-
|S_-

ation which simply uses I.A. for all computations. Then we detail the

- method given in [2] and give results which compare the effectiveness

. of the two methods. Finally, interval determinant calculations are

~ used to mathematically test a set of functions for the property of being

a Chebyshev system of functions.
 —

— 2. Straightforward Use Of Interval Arithmetic

L For the purpose of comparision with Hansen's method for determinant

evaluation we chose a previously published algorithm [3] and inserted

~— calls on I.A. routines where appropriate. This algorithm evaluates a

— 1



— determinant by triangularization with searching for pivot in row and

with row equilibration. The I.A. routines are similar to those given
~—

in [4], and are described in detail in [6]. The calls are implemented

as shown in Table 1, where in each-case the resultant interval 1is
—

[CL,CR] and the left and right operand intervals are [AL,AR] and

L.A. Routines

- operation name of routine Parameters

— addition TADD (CL,CR,AL,AR,BL,ER, L

subtraction ISUB (CL,CR,AL,AR,BL,BR,L)
— multiplication IMPY (CL,CR,AL,AR,BL,BR, L)

division IDIV (CL,CR,AL,AR,BL,BR,L)
4

“ Table 1

[BL,BR] respectively. The label L is for an error return when

overflow 1s likely or 1f the denominator interval contains zero when

. IDIV is called. Thus a call of ISUB(CL,CR,AL,AR,BL,BR,L) will give

[CL,CR] « [AL,AR] - [BL,BR] with the subtraction done in I.A. and a

~ transfer of control to the label L if overflow is likely.

: The algorithm given in [3] as modified to use I.A. is now given:
—

do

|—

—
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Algorithm 269 with Interval Arithmetic

| PRCCEDURE IUDETERMINANT(ALEFT,ARIGHTsN,DLEFT,DRIGHT,LBL)S
VALUE Nj

— ARRAY ALEFT(OQ»01,ARIGHTIO0,01]3

INTEGER N3

REAL DLEFT»DRIGHTS LABEL LBL3S

o BEGIN CUMMENT COMPUTES THE INTERVAL VALUE OF AN
INTERVAL DETERMINANT, SEE ALGORITHM 269 IN

| COMMUNICATIONS OF THE A+CeM, NOV. 1965 3
LABEL RETURN;

= REAL PRUDUCTL»PRODUCTR,TEMPL» TEMPR,»TEMLL» TEMRR}
INTEGER IsJsR»§3

o ARRAY MULTL[OINI»MULTRI[OSIN]}
— REAL PROCEDURE MAX(X»Y)3;

VALUE X»Y3

; - REAL X»Y3

MAX t= JFX €Y THEN Y ELSE X3

PROCEDURE EQUILIBRATECAL»ARsN>MULTL,MULTRsLBL>»
DLEFT»DRIGHT,RETURN)}

| VALUE Nj INTEGER Nj; LABEL LBL}
— AKRAY AL[O»01,AR[0,01,MULTLLOI»MULTRIO]}

REAL DLEFT,DRIGHTS LABEL RETURN;
BEGIN

“ INTEGER I»J3 REAL MXLsMXR}

FOR I #= 1 STEP 1 UNTILN DO

BEGIN

L MXL 3= 0405 MXR $= 0.0 3}
FOR J ¢= 1 STEP 1 UNTIL N DO

BEGIN

| IFABS(ALLI»y))> ML THEN MXL $=ABSCALLI,J1)}
a IFABSCAR[I»J1)> MXL THEN MXL $=ABSCARCI,J1)3

END, MXR = MXL;

IF MXL = 00 THEN

— . BEGIN

DLEFT $= 0,03 DRIGHT t=0,03

GO TO RETURN;

. ENDS
MULTLIIY3= ML

MULTRIIJt= MXR }

IF MXL # 1.0 THEN

“ FUR J $= [STEP 1 UNTILN DO

a BIVEALLL 1s ARE 14ST ALL TS JTS ARLTS 4 D1 MEL NRAs |.BL)END;

_ END EQUILIBRATE 3
EQUILIBRATECALEFT»ARIGHTsNy, MULTLsMULTRsLBLsDLEFT»DRIGHT,»RETURN)}
PRODUCTL 1=1.05

. PRODUCTR 3= 1.03
FOR K $= 1 STEP{| UNTIL AN=1 DO
BEGIN

— TEMPL t= MAX(ABSCALEFTIR»R))»ABSCARIGHTCLR,R]1)) }
FUK J t= R+1 STEP { UNTIL N DO

IF TEMPL < MAX(ABSCALEFTLRsJ))»ABS(ARIGHT[R,J1)) THEN
n BEGIN

Z



= TEMPL#=MAXCABSCALEFTIR,J), ABSCARTGHTER, UID) JS &=

END

— IF TEMPL = 0.0 THEN

BEGIN

DLEFT $= 0,03 |

GU TO RETURN 3}

END3

It S # R THEN

~ BEGIN
RMPY(PRODUCTL»PRODUCTR>=1+05=1,0,PRODUCTL»PRODUCTR,LAL)
FOR I%= RSTEP 1 UNTIL N DO

— BEGIN

TEMPL$= ALEFT(I»R]}

TEMPR $= ARIGHT[I,R);

a ALEFTCI,R] $= ALEFTCI»S)S
ARIGHTIIsR] 8= ARIGHT[I»S);
ALEFTLI,S)t=TEMPL}

ARIGHT[I»S)s= TEMPR J

— END:
END;
RMPY(PRODUCTL»PRODUCTRsPRODUCTL»PRODUCTRSALEFTIRsR],

— ARIGHT[R,R1»LBL)}

FUR I 3= R+1 STEM 1UNTILN DO
BEGIN

_ ROIVCTEMPLS TEMPRSALEFTLILRI>ARIGHTLISR],
ALEFTIR,RI»ARIGHTIR,R1,LBL)}

| FUR Jt=s R+1 STEPL1UNTIL N 00
BEGIN

— RMPY(TEMLL, TEMRR,ALEFTIR,»JISARIGHTLR»JI» TEMPL,TEMPRSLBL)}

| RSUBCALEFTLI»JI»ARIGHTIISJI,ALEFTIY»J1,ARIGHTII»J],
TEMLL> TEMRRsLBL)}

“— END}

END

END}

_ RMPY(TEMPL,» TEMPR,PRUDUCTLsPRODUCTR,ALEFTLNsNI»ARIGHTIN,N)»LBL)}
FOR Hs= 1 STEP 1 UNTIL MN Do

RMPYCTEMPL » TEMPR, TEMPL » TEMPRsMULTLIRISMULTRLRI,LBL)J

DLEF!3= TEMPL;
~— © DRIGHI$= TEMPR 3}

RETURN3

END IDETERMINANT 3}

|S_—
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— 5. Hansen's Method

L In [2] a method for determinant evaluation of an interval matrix,
al, is proposed. It can be presented as 4 steps.

— (1) Determine a lower triangular matrix, L, with unit diagonal

elements such that La, = U, where A 1s the center of

- at and U 1s upper triangular. L will contain roundoff
errors but the determinant of L 1s exactly one.

(ii) Using I.A., multiply L times at obtaining BY which will

— in general have very small intervals below the main diagonal.

(111) Perform Gaussian elimination on Bl using I.A. This will
~~ I

result 1n an upper triangular matrix T° . It 1s noted in

_ [2] that an exact zero for a zeroed element can not be computed

during the elimination but it 1s correct to insert such zeros

i (iv) Compute the determinant as the I.A. product of the diagonal

elements of T°. That is,
[N—_—

N

- at = 1l 6,
i=1

— The implementation of this technique was accomplished by using an

algorithm given by Ralston [5, p. 411] for determination of the appro-

- priate lower triangular matrix L with unit diagonal elements. The

_ algorithm in [5] takes a matrix A and reduces it to two matrices L

and U such that A = LU where L 1s lower triangular with unit

— diagonal elements and U 1s upper triangular. It is then simple to

determine 1,7 which 1s the lower matrix required by Hansen's method.

- p



— The decomposition was implemented both with column pivot selection and

without any pivot selection. It 1s interesting to compare the results

— This comparison
of Hansen's method with and without pivot selection*

1s presented in the next section. -
—

A Burroughs Extended Algol implementation of Hansen's method is

— now given:

Hh

|_

-

|—

.

—

|

—

o—

—

—
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CO

PRCCELDURE HANSENSMETHODCAL,ARsDL,DRsN,IAERR) J
VALUE Nj; INTEGER N3
REAL ODL 2DR

LAREL LAERR;
REAL AKRAYAL»AR[Q0,013

BEGIN CUMMENT

Co THIS PRUCEDURE CUMPUTES THE-INTERVAL DETERM NANT
UF AN INTERVAL MATRIX USING THE METHOD DESCRIBED

IN SIAM JOURNALUN NUMERICAL ANALYSIS»VOL 8C1967)sN0,1,

By ELDON HANSEN AND R.R4SMITH,

THE INPUT IS AL»AR» AND N, WHERE
§ AL IS THE LEFT END POINTS OF AN INTERVAL MATRIX:
L AH IS THE RIGHT END POINTS», AND

N IS THE ORDER OF THE MATRI X,

. THE OUTPUT IS DL AND DR »THE LEFT AND RIGHT END POINTS
UF THE DETERM NANT,

| IF A DIVISION BY ZERQ»FOR EXAMPLE, OCCURS DURING THE
- INTERVAL ARITHMET CALCULATIONS, CONTROL 1S TRANSFERRED

IU THE LAHEL IAERR 3

L COMMENT PUT UECOMPs»INVLCWER, AND INTDET HERES
PROCEDURE UVDECOMP(ASN,P)J

VALUE N

g INTEGERM3
ARRAY ALOQ0,01);

INTEGER ARRAY P[0]}

BEGIN CUMMENT SEE RALSTON (1ST COURSE IN NesA+J)Po.414}
— INTEGER HRsKsIs JsDMAXS

ARRAY DION] 3

LABEL ZRU,0D0ONE;

“ REAL TMP;
FOR K $= [STEP 1 UNTIL N DO

. BEGIN

_ FUR K t= 1 STEP | UNTILN DO
DLK] $= A[LK,R} 3

FUR J t= 1 STEP 1 UNTIL R-l pO

| BEGIN
— ALJsR) t= DIPLJ]] 3

DIPCJI] = DLJ] 3}.

FOR I $= J+1 STEP 1 UNTILN DO

i. DII] t= DCI) =ACI»JIx ALJ,R] 3
ENDS DMAX t= Rj

FUR I 3= R STEP 1 UNTIL N OC

C IPABS(DII]) > ABSCDIDMAX]) THEN DMAX 3= I 3
ALR,R) t= D[DMAX) 3

PLR) $= DMAX;

DLUMAX] t= DIR] J

— Fuk [ $= R+1 STEP 1 UNTIL N DO
BEGIN

[IF A[RsR]= O THEN GO TO ZRO,

i



AtI,R) = DLI] 7 ALR,R} }

» END;
ENDS

GO TU DONE}
| ZRO: WRITEC<"A[RSR1=0,0"»110>,R)}
- DUNE?

; FOR 18a1 STEP 1 UNTIL N=1DQ
- FOR J $= I+1STEPI1 UNTILNDO

IF PtJl# J THEN
BEGIN

L TM Pt=AlJds1]3
AlJr»I) t= ALPLJI»1])

y ALPLJIsL1] t= TMP
di END?
-

| END DECUMP}
}

g PROCEDURE INVLUWNERCLIN,LOUT2N)}
VALUENIINTEGERN}

( ARRAY LIN,LOUT(O0,01}
L BEGIN  -

REAL SUMJ INTEGER I»JsP3}

FOR 18=1 STEP 1 UNTIL N DO

BEGIN

— LUUTCI,I) t= 1.07

| FUR J 8=1 STEP 1 UNTIL I=1DO
| BLGIN SUM t= 0,03
- FORPs=J STEP 1 UNTIL 1-100

SUM 12 SUM +LINCI»PIXLOUTLPLJ])S
{ LOUUTEI»J] $= =SUMS

Lo END:
ENDS

END INVLOWERS

— PROCEDURE INTUDETCLsAL»ARSDL,DR,N)}
VALUE N? INTEGERNJ

: ARRAY L2AL»AR[0»01]}

— REAL DL»UR}J

BEGIN CUMMENT THIS PROCEDURE TAKES A LOWER TRIANGLE

! SUCH THATLxA= UCUPPER)»WHERE A IS INTERVAL SO
t USINGIeAa»U IS NOT REALLY UPPERAND J,A«GAUSSIAN

ELIMINATION IS THEN DONE TOGET THE INTERVALDETERMINANT)
INTEGER I,JsK}

| REAL SUML,»SUMR,MULTLsMULTR,TL»TRS
— ARRAY ULLOINSQSNJ»URLOSN,OINIS LABEL LBLSDONE}

FOR 1 8= 1 STEP 1 UNTIL N DO

FOR J $= 1 STEP 1 UNTIL NDO
. BEGIN

SUMLI= ALLI»J]l 3 SUMR 3= AR{1I»J] 3}

! FUR K $= ISTEP 1 UNTIL I-1 DO BEGIN
Lo RMPYCTLTRALIIAKIsLLI»KI»ALIKs JIS ARLK2JI»LBL)S

RADDCSUML» SUMR» SUML»SUMRs TL, TR LBL SEND}
ULLIsJ) 32 SUMLS

| URLIsJ] $= SUMRJ

8

—



“ END
COMMENT NOW DJ GAUSSIAN ELIMINATION ONULsUR

OR USE IDET ON IT}

_ FURL ¢=1 STEP 1 UNTIL h DO
FOR Jt= I+41 STEP 1 UNTIL N DO

BEGIN

RUIVIMULTLAMULTRAULCJ»II>URL» IIs ULLISTII»URLII»I)sLBL)Y}

— FUR K $= Id+1SSTEP{ UNTILL NW DO

BEGIN

RMPY(TL» TRoMULTLsMULTRAULLI»K]»URCI»K1s»LRBL)S

- RSUBCULLJUsKI»URIJs>KIL,ULLJ,KI>URLJ2KI»TLsTRsLBL)S
ENDS

a ENDJ

I COMMLNT NOW COMPUTE THE DETERMINANT:
DL $= UL(1»11)3

} DR $= UR[1,11}

} FOR it= 2 STEP 1 UNTIL ANDO
1 RMPY(DLAOR»DL»DRsULLI»IJ2URII»I)»LBL)YS

GO TU DONE 3

LBLS WRITE(<"I,.A« TROUBLEIN INTDET">)}

- DONE 8 ~.
END INTUETS

{

a REAL ARRAYA,LICOIN,ON]Y}
INTEGER ARRAY PLOINI}

INTLGER 1,0 3

REAL TEMPL,TEMPR»SGN 3
a

FOR I13= 1 STEP 1 UNTIL N D0
FOR J 3= 1 STEP 1 UNTIL NDO

- ALT»JYi=CALLI»J] + AR[I»J1) 72,0 }
COMMENT A HAS THE MIDPOINTS. NOWDECOMP WILL FINDL AND U

SUCH THAT A=LXU AND PUT L IN A }

. DECUMPCASN,P)}
| COMMENT NOW INVLOWER WILL INVERT THE LOWER TRIANGLE INA

- ANDPUTT H EINVERSEI N LIS
—

INVLOWERCALLISN)J

_ COMMENT IF INTERCHANGES OCCURRED DURINGDECOMPWENONW
INTERCHANGE AL AND ARACCORDINGLY?

FOR I #= 1 STEP 1 UNTIL ND O

BEGLN

hr IFPLI)# | THEN
FUR J $= 1 STEP 1 UNTIL N DO

BEGIN

- TEMPLt= ALLI»J] 3
TEMPR$= AR[I»J] 3

| ALCI»J] t= ALIPCI1»J)3
L ALIPLI1sJ]lt=TEMPL 3}

AR[I»Jd] t= ARIPILI1s»J]

ARLP[I),J)s=s TEMPR 3}.
END

— END3

Y

[



[ COMMENT NOW INTDETCOMPUTESBI = LIXACINTERVAL)AND

Lo PERFURMS GAUSSIAN ELIMINATION ONBITOFIND THE
DETERMINANT AS THe PRODUCT OF THE DIAGONAL ELEMENTS)

3 INTUETCLI»ALsARsDLsDRsN);
COMMENT NOW ADJUST THE SIGN ACCORDING TO THE INTERCHANGES;
SGN i= 1,0

FOR I $= 1 STEP 1 UNTIL NDD

Ch IF PLID # | THEN SGN 3= =SGN3J

IF SGN <0 THEN
KMPY(DL2DR,DL2DRs=1,0s=1,0,1AERR)}

. END HANSENSMETHUD 3

—

—

—

—
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k. Comparison of results

The test matrices were generated using a mixed congruentigl method

of generating uniform pseudo-random numbers in the interval (0,1) as

| implemented on a Burroughs B5500 computer. A matrix A was filled

with random numbers, then a small positive number, {, was added to

~ and subtracted from each element of A to obtain the right and left

i. end points respectively of the interval elements of al
Various values of [ were tried for a range of values of N, the

— order of the test matrices. Selected results are shown in Table 2.

| Note that the Burroughs B5500 can hold approximately 11 decimal digits

: of accuracy so the input interval widths are quite significant compared

- to machine accuracy.

The value of pivot selection 1s strikingly illustrated by columns

~ four and five of Table 2. For the case N=), c=10"° no pivoting was

necessary and the results are identical as expected. However, at the

= other extreme, the case N=9, =10"° without pivoting shows an interval

w width of over 600 times the interval computed with piuoting.

. Table 2 also shows that Hansen's method can retain correct signi-

a ficant digits for matrices of order at least 20 whereas the straight-

forward use of I.A. begins to lose all correct significant digits for

© matrices whose order approaches 20. Consider the case N=17, (=10"0

g Hansen's method gives a result which can be expressed as al = -. 00334
+. 0000075, leaving two correct significant digits. However for the

= same case the straightforward approach gives at = -. 00334 + .000k4

which has no correct significant digits. The case N=20, c=10"C
-

— 11
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_ provides a similar comparison. Hansen's method yields at = -0,00776

| + .0000065 (2 correct significant digits) and the alternate method
-

gives at = -0.00770 + .00025 (barely 1 correct significant digit).

_ }
Comparison of Interval Determinant Widths

u (2 is the width of the elements in the original matrix)

| | Width Width Width Multiplicative
i Value of Hansen's | Hansen's | Algorithm factor for all

| N C Determinant | w/pivot w/o pivot [269 w/I.A. | 3 widths

L -8 | | -8
3110 | 0.01311.. | 2.18 | 2.24 | 3.28 x10 ‘

: 3 107° -0.25862. . 5.0 | 13.1 | 5.66 x10~
L L 107° 012517. . lok 12.0 2.1 x10”!

L 107° | -0.18143. . 0.95 | 9.1 2.0 x10"
o 5 107% -0.01023.. | 0.7 3.4 0.9 x10”

5 1076 0.02672. 0.69 | 0.69 | 0.78 x10"
| 61107°| o.oe365.. | Lan | 2.51 | 3.6 x1077
- 6 1078 -0.09218.. 0.26 | 1.03 | 0.52 aot

711078] o.oers8.. | 1.80 | 8.38 | 6.8 x1077
— 7 1076 -0.00818. . | 0.81 | 1.5 108 | x10"
[ 8 107° 0.03106. . 5.2 83.2 13.7 x107
{ lL - -

- 8 110 51 0.00680.. 0.13 2.3 0.28 x10™
9 10-8 0.07876... | 1.09 | 282. 1.79 x1070

[ 9 i 1076 O. 02018. [] ) OQ. 29 ' 178.6 1. 1h 4 <10~
10 107° | 0.01337... | 1.05 13.1 0.66 x1070

{ 10 1076 | 0.00023.. 1.75 | 23.25 2.19 x10"
-— | 8 | | | -

15 | 10 ° 0.00087.. | 0.47 | --- boh3 x107C

L 17 1070 | -0.00334.. | 0.15 -— 3.15 x10”20 [1070 | ~-0.00776.. | 0.13 Sp. 4.59 x10” .

L Table 2

.
{

L 12
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— 5. Average Relative Widths using Hansen's Method

— In an attempt to generate some useful guidelines as to what accuaracy

to expect when using Hansen'S Method for determinant evaluation we have

— done tests using random matrices with elements in the interval (-1,1) .

Thus, if a matrix is scaled so that all elements are less than one in

| modulus the results given in Table 5 will provide an estimate of the

- size of interval determinant value that can be expected when using Hansen's

. method. A relative width of 1.0 X 107" means that at least m-1 S1g-

nificant digits are correct in the interval determinant value.

Consider, for example, a problem involving the determinant of a

matrix of order 8 with interval elements of maximum width 107° °

— If the matrix elements are scaled to lie in the interval [-1,1] and

Hansen's method 1s used to evaluate the determinant, a crude interpolation

in column 4 of Table 3 will provide an estimate of the accuracy that

can be achieved. For this example a relative width of about 10 X 107
can be expected which means at least three correct significant digits

- in the interval determinant value.

-

- 15



— Average Relative Widths of I.A. Determinants

using Hansen's Method (averages calculated for 3 matrices)

— w = width of interval determinant

d = true value of determinant

C = half the width of origjnal elements of matrices

-10 -8 -6 |w -b

- N |g, $5107 13, ¢=10T |g, £=1070 |, C=10
4

| |

- 3 0.65x10° 0.21x10°° 1.58510" | 0.49x10°°

. 5 2.025100 1.17x10 2 1.7hx10” 1.64x10"°
71 384x070 | k.8ux10"0| 3.98x107" | 13. 19x1077

| 9 7.34x10™C 9.51x10~C 2k, 57x10” 19. 40x10™°
-8 6en -h N -2

] 11 | 35. 46x10 41.97x107 | 52.69x10 38« 23x10
Table 3

L

L

1

L 1

1



6. Comparison of Running Times

Table 4 gives average times for determinant evaluation on the

Burroughs B5500. All I.A. calculations are performed with the I.A.

subroutines coded in Burroughs Extended Algel and are obviously quite

slow compared to noninterval arithmetic.

Hansen's method 1s significantly slower than the I.A. version of

+ algorithm 269. Thus in any application a study of Tables 2, 3, and &,

| together with a knowledge of the input element widths and the accuracy

- desired, should indicate which routine to use from the standpoint of

efficient machine time utilization.

L Average Times to Evaluate Determinants
using various Methods (Times 1n seconds)

= | Number of matrices

N | 85C |269(T.A.)|Hansen’s | used in averaging

— 31.0183| . 7100 | . 9017| 10
L 1 00200} 1. 4450 | 2.123%} 10
51.0250) 2.5933 4.2917 | 10
6.04831 L.,0817 | 7.4350} 10

71-0778 6, 2222 | 11.8056 ,
81.1000} 9.3667 | 18.9500 L
9 |.1167| 120 9167 | 26.3500 1

= 10 | -1667| 17. 2000 | 36.6833 1
15 | - 41661 56.8500 [125.4333 1
17 | -5833| 8L.7167 185.8333 1

- 20 | .8500] 128.1333 {309.3333 1

_ 85C is Stanford Library program number 85C which
uses Gaussian eliminaticn with row equilibra-
tion and row interchanges.

- 269I.A, is C.A.C.M. algorithm 269 as modified to
use interval arithmetic.

- Hansen's 1s the method of Hansen described in

this report.

Table 4
— —————
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|

- 7. An Application - Testing for a Chebyshev System

| 7.1 Introduction
— -

Given that a set of functions form a Chebyshev system, certain

” algorithms in approximation theory can be proved to converge. In

- particular, the second algorithm of Remez [7] can be applied to find

the best approximation in the Chebyshev (minimax) sense to a continuous

— function by a linear combination of the functions forming the Chebyshev

system. However, 1n some cases 1t 1s not known a priori whether a

- given set of functions form a Chebyshev system or not. In these cases

- the program-to be described can be used to indicate the presence or

absence of the desired property. In case the set does not form a

— Chebyshev system the use of interval determinants can possibly prove

this fact.

_ 7.2 Definition of a Chebyshev system of functions

Given a set of linearly independent continuous functions,
|—

P, (x), ce es® (x) defined on a closed interval [a,b], form a function

~ n

(7.2.1) F (x) -L Mo. (x)
—

If any such function, which 1s not identically zero on [a,b] , has

- not more than n - 1 zeros in Lasb] with double zeros counted twice,

“ then the set {o. (x)}] forms a Chebyshev system. For more an Chebyshev
systems see [9] for example.

_ 16



— An equivalent definition is the following: given the set lo, (137

| if for any set of n arbitrary distinct points (x, 1, X, ela,bl, the
— determinant whose i, j element 1is 9; (x,) 1s non-zero, then the set
| lo. (0)}, forms a Chebyshev system.- That is, the determinant, D,

given by

L

1 P, (x) P(x). Lyx)
| Cr22) v= | en) 90). LL a(x)
L | )

L oe (x) ol) Ley (x))
{

L must be non-zero for any set of n distinct points in [a,b]

[ The second definition 1s used in this program to test for a
Chebyshev system. The determinant 1s tested to see if it has a zero

i for any possible set of distinct points (x, 3 + It can be shown that
. D, given by (7.2.2) 1s a continuous function of (x, 1] - Thus, 1f we

L order the (x, } by requiring that xy < Xo <.e. < X we know that
[ 1f there exists two sets, (x) and {x} such that D({x,}) > 0 and

D({x; }) < 0, then D must be equal to zero for some other set {x} :

| This property is used in conjuction with interval determinant calculations
to prove that a system 1s not a Chebyshev system.

i Two examples of Chebyshev systems for any closed interval of the

| real line are the set {p, (x) 3] with P, (x) = a and the set
{v, (0) % with v, (x) = I, _1(x); where I. (x) represents the Chebyshev

| polynomial of the first kind of order i . That 1is,

g y

i



L (7.2.3) T, (x) = cos(i6), cos 6 = x .

L
A third example is the set {1, cos(x), sin(x), cos(2x), sin(2x), ...,

i cos(nx), sin(nx)} on the interval . {0, 2x].
| An example of a set of functions that is not a Chebyshev system

L is {o. (0) = cos(2i6), i=1,2, ..., n} on the interval 0 < 6 < n/2.

i This can be seen easily since as 0 varies from 0 to n/2 the arqgu-
ment of the cosine varies, from 0 to im, thus passing through 1 odd

i ) integer multiples of =/2 where the cosine takes the value zero. 'Hence,
we have that ?, (8) possesses 1 distinct zeros in the interval [0,n/2]

L which contradicts the requirement of no more than 1 - 1 zeros set

| forth in the definition.

i T+ The problem

| Assume that we are given a set of functions lo, (0) }] defined on
an interval [a,b] . We ask whether the functions form a Chebyshev

L system on that interval or not.

L 7.4 Description of the method
L The method utilizes the determinant definition of a Chebyshev

| system to test a set 9, (x) for that property 1n an interval [a,b]
L The steps involved can be outlined as follows:

i (1) Choose an arbitrary initial set of n distinct points EN
in [a,b] .

{
L.
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o (11) Knowing a priori the errors in calculating the functions

| Pb. (x), i=1, ..., n, create an interval matrix which contains
the matrix shown in (7.2.2). Calculate the interval deter-

| minant of this matrix. The interval obtained will be greater

| than zero, less than zero or contain zero. If 1t contains

_ zero, minimize or maximize D until the interval determinant

BH does not contain zero. (Always require that XxX, <x, <a

n

(111i) Depending on whether the interval determinant 1s positive or
[_-

| negative, then minimize or maximize D({x,}) . When (if) a

L change 1n sign of D({x,}) occurs, use the interval deter-

{ minant calculation again to see 1f the interval has changed

ho sign. If so, it 1s proved that the fo. does not form a
Chebyshev system. If not, try to minimize (maximize) D

oe

| further and use the interval determinant calculation again.

L If no further minimization or maximization 1s possible and

the interval determinant contains zero, this may indicate

— a zero determinant and thus not a Chebyshev system but it

) does not prove anything. However,, 1f both positive and
-

| negative interval values of the determinant can be found,

» | it 1s proved that the (0, } do not form a Chebyshev system.
| In practice, there are an infinite number of choices for a new

- set {x} in the interval, therefore a direct ‘computation is impossible,
| To surmount this problem we use an approximate minimization technique

= on the determinant, D, as a function of n parameters, the set

L EN Thus, 1f an interval change in sign 1s found, we can be sure

-



- that the set of functions does not form a Chebyshev system, however,

1f an interval containing zero or an interval of the same sign as the

- starting point is found, we can not be positive that we do not or do

have a Chebyshev system. This dichotomy of certainty is due to the

fact that any known numerical procedure for minimization can failto

— locate the absolute minimum of a function, thereby locating a non-zero

minimum whereas in fact a zero minimum exists.

— In spite of the uncertainty involved 1n this method, 1f a reasonably

faithful minimization procedure 1s employed, a non-zero minimum Or a

B zero minimum with very close points 1s a very good indication of Chebyshev

— system. A zero minimum (an interval containing zero), with well sepa-

rated points 1s convincing evidence that a Chebyshev system 1s not at

hand. A change in sign (a positive interval and a negative interval)

1s proof that a Chebyshev system is not at hand.

- The program to test for Chebyshev systems incorporates three basic

algorithms Algorithm 178 [8] as coded for a Burroughs 135500 was

modified slightly and used to perform the minimization. A routine

= similar to Algorithm 269 [3] was used to evaluate intermediate deter-

) minants for the minimization and Hansen's method was used for the

N interval determinant calculations. The interval [a,b] and the functions

_ | lo, (1, must be specified for each particular problem.

| — 7.5 Examples

— The program as implemented on a Burroughs B5500 computer has been

used to test several sets of functicns. Some of these are given below

- with the points chosen and the corresponding interval determinant values.

20



- The functions such as exp and cos Which occur in the examples

were computed by the B5500 system routines to approximately ll accurate

= decimal digits. To ensure that the interval determinants that were

evaluated contained the mathematically correct values, we added (sub-

—— -8 .
tracted) 10 to each computed element of D (7.2.2) to obtain the

“_ right (left) endpoint of the interval determinant.

Co example 1. Not a Chebyshev system

2

lo. (x)3 = {x, exp (x) ]} on [0,3] ) ([10, Pe 551)

Xq Xo interval determinant

start 1.0 2.0 [1.952k922, 1.952k926]

finish 0.0 3.0  [-3.0000003, -2.9999997

example 2. Not a Chebyshev system

(x) = cos(2 ® 1 ® x), i = 1,2,5,% on [0,m/2]

= xX, Xz X), interval determinant

~ start 0.3 0.6 0.9 1.4 [0.0343986, 0.0343990]

) finish 0.1 0.8 0.9 1.5 [-2.4963293, -2.4963286]

example 3. A Chebyshev system

: i-1

P, (x) = x ~, i= 1,2,3 on [-1,1] .

xq Xo Xs interval determinant

— start  -0.5 0.0 0.5 [0.2499999%, 0.25000007}
- -12

finish -0.040601 -0.040k -0.0405 [-8.571X10 12 +4.510%x10 7]
|
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Lo In this case the functions do form a Chebyshev system and we know that

there should be no set of distinct points for which the determinant,

~~ D, 1s zero. The program 1s written to prevent points from becoming

closer than To . As shown by-these results, the only way the

minimization routine could obtain smaller values for D was to use
i

_ points as close together as possible. This is typical of the results

3 obtained when the given set of functions does form a Chebyshev system.
!
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“— 8. Conclusions

. The computational results show that Hansen's method with pivot

selection provides a smaller interval fcr the determinant than straight-

— forward use of I.A. for all but one of the test matrices. This 1s as

would be expected since the elements in the lower triangle of Bt

” are very small intervals and thus interval widths are kept small during

- the elimination.

. As is well known, and as shown dramatically by Table 2, the correct

— selection of pivots during decomposition (or elimination) can produce

a striking difference in the resultant accuracy of a determinant

~ evaluation. Table 2 also shows that for matrices of order as high as

E 20, and with original element widths less than or equal to 2. 0x10",
Hansen's method will compute interval determinants which retain useful

—- significance. However, the interval determinants computed by the

straightforward use of I.A. begin to lose significance for matrices

- whose order approaches 20 .

_ The timing results given in Table 4 indicate that some trade-off

between accuracy and running time might be appropriate in particular

— applications. That 1s, some a priori information about input widths

and order of the matrices, together with the information given in the

a. Tables,, might indicate that the straightforward use of I.A. would give

. sufficient accuracy and save a considerable amount of machine time.

The application of interval determinant calculation in a program

- to test for Chebyshev systems shows that this particular use of interval

arithmetic can be used in mathematical proofs.

—
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