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by
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Abstract

A formal definition of the syntax of a transformational grammar is given
using a modified Backus Naur Form as the metalanguage. Syntax constraints
and interpretation are added in English. The underlying model is that

presented by Chomsky in Aspects of the Theory of Syntax. Definitions are

given for the basic concepts of tree, analysis, restriction, complex
symbol, and structural change, as well as for the major components of a
transformational grammar, phrase structure, lexicon, and transformations.
The syntax was developed as a specification of input formats for the
computer system for transformational grammar described in [24]. It
includes as a subcase a fairly standard treatment of transformational

grammar, but has been generalized in many respects.

Remark

A major purpose of formalization is to provide explicit subject matter
for discussion. Any comments on the material here will be gratefully

received. A revised version will be submitted for publication.
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INTRODUCTION

In Syntactic Structures[3], Noam Chomsky writes: '"We can determine

the adequacy of a linguistic theery by developing rigorously and precisely
the form of grammar corresponding to the set of levels contained within
this theory and then investigating the possibility of constructing simple
and revealing grammars of this form for natural languages." While the
linguistic theory of transformational grammar has developed and changed
rapidly since this was written, the criterion is still relevant.

In this paper we address ourselves to the first part of the require-
ment, that is, we develop rigorously and precisely a form in which the
syntax of natural language can be described by the transformational
model. We do this in a way which we hope will make it easier for linguists
to construct and examine grammars of natural language.

The linguistic theory which we are modeling is transformational
generative grammar of the syntax of natural language, basically as

presented in Chomsky's Aspects of the Theory of Syntax [4]. We have

also taken into consideration recent linguistic work which is based on
Aspects and which applies or extends the model.

In the development of the syntax it was decided to be inclusive
and general, rather than to try to limit the power of the syntax to
the exact amount likely to be required. We have tried to make the syntax
powerful enough so that it will not require augmentation by special
devices; as a result, many linguists may find the syntax too general for
their purposes. However, the metalanguage offers a relatively easy way

to define a suitable and clean subset.
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The syntax is described in a metalanguage which is a modification of
Backus Naur Form (BNF), which is widely used in the description of program-
ming languages. BNF is a formalism for presenting a context-free language.
In the first section we describe in detail the modification of BNF used
throughout the rest of the paper.

Following the description of the metalanguage, we proceed immediately
to the formal presentation of transformational grammar. We give formats
for transformational grammar; for the basic concepts of tree, analysis,
restriction, complex symbol and structural change; and then for the major
components, phrase structure, lexicon and transformations. For each format,
we specify~£recise interpretations and give examples.

For the parts of transformational grammar which are relatively
standard and well-understood, the presentation 1is complete. However, in
one case where the work is frankly experimental (the control program for
transformations), we have referred to other papers for more details.

The formal definition of the syntax of transformational grammar is
part of the development of a computer system for transformational grammar
which we describe in [24]. A prior reading of the system description is
recommended, since it provides a wider context for this paper and also
points out some of the novel features of the syntax. The system is being
implemented on the560/67 computer so that it can be used to aid in writing
and investigating transformational grammars. While the present paper may
be considered simply as a definition of a syntax for transformational
grammar, it also defines the format in which a grammar can be read into
the computer system.

This paper is a formal presentation of the syntax of a transforma-
tional grammar; it is not intended to be read as an introduction to the
theory. The reader is assumed to be familiar with Aspects.

2



METALANGUAGE

The synsax is described in a modif ication of backus Naur Form {BNF)
[1, 14}, with syntax constraints and interpretation (semantics) added in

Engiish. BNF is Tamilisr to coxputer scientists a

™0

the metalangueage used
. ; ; . . N . P C ; /

in the description of Algel £0. As we will use the symbols |, 4 and )
in transformational grammars, we modify the usual BNF by replacing angular

brackets by underlining, e.g., "transformation" rather than "{transforma-

e

tion)", and using “or' i placeo ¢
3 ax
For linguists unfamiliar with BNP, itshould sufficeto say that
2

E ]

1. the modif ied~BNF production " A : := B ¢ or D or
{ B C
expresses the context-free rewriting rule " A - LD “
E

2. the nonterminal symbols of modified~-RBNF are denoted by the

underlined rame of the constructs, viz.,

transformational grammar : := phrase structure lexicon transformations $END

3. symbols not underlined are used autonymously, (e .g., " $END "),
4. Juxtaposition in the object language is indicated by juxtaposition
ir the metalanguage.
We refer %o the constructs of the metalanguage as "formats", Lecause
. R, . 1
they are in fact the free-field formats of a compuber sys i em Wz have

carried the under iining of format names into the text of the paper .

“The character set of the object language is restricted to that of the
IBM 029 keypunch. Thus, since the set lacks square brackets, we use them
only in the metalanguage, and use only angular brackets in the object
language . ’



Basic to the syntax are the two formats word and integer. A word
is a contiguous string of alphanumeric characters beginning with a letter;
an integer is a contiguous string of digits. Except in these two formats,
spaces may be used freely. ”

If a BNF description is to elucidate a language, it should not intro-~
duce names for intermediate formats which do not have meaning. In order to
avoid additional formats where possible, and to simplify the description,
we have introduced into the metalasnguage six operators. In each case the
operand is given within square brackets following the operator. The
1, 2

operators are:

lIn the LISP1.5 documentation[13] a similarly modified BNF is used.
There are notations corresponding to the first three operators above,
as follows:

list[ integer ] integer ... integer
clist[ integer ] integer, ..., integer
opt| integer ] (integer)

2Modified BNF includes BNF. It is (weakly) equivalent to BNF, although

it does not give the same structure. It is easy to show that each
occurrence of an operastor can be deleted, possibly by the introduction
of one or more intermediate formats.

1. 1list[ b | can be replaced by the new format bl, where bl is

defined by bl ::=b or bl b .
2, clist[ b ] can be replaced by the new format bl, where bl
is defined by bl ::=b or Dbl , b .

3. sclistl b ] is Tsimilar to clist[ b 1.

L. opt[ b ] can be removed by replacing any string o opt [ b ] B
by b B or «B (for any strings @, B in the metalanguage).

5. booleancombination[ b ] can be replaced by bl, where
bl ::=b or bl | bl or bl A_bl or,bl or (bl) if we
are not concerned with obtalnlng structure, or, if we are, by
Boolean expression defined as in Algol 60:

Boolean primary ::=_b or (Boolean expression)
Boolean secondary ::= Boolean primary or — Boolean primary
Boolean factor ::= Boolean secondary or
Boolean factor A Boolean secondary
Boolean term ::= Boolean factor or ‘
Boolean term | Boolean factor
Boolean expression ::= Boolean term

6. choicestructurel b ] can be replaced by bl, where bl ::= b
or (clist[ bl ]), and clist[ bi ] is tben replaced as above.
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list
a t:= list| integer |
would allow a to be
1 2 6 9171 3 20

A list may be of length 1 but may not be empty.

clist (comma list)
a ::= clist| integer |

allows a to be

1, 2, 6, 9171, 3, 20

A clist may be of length 1but may not be empty.

sclist (semicolon 1list)
a ::= sclist| word ]
allows a to be

CAT; DOGL; MOUSE

A sclist may be of length 1 but may not be empty.

opt (option)

a ::= opt| integer | word

allows a to be either

3 NP or NP
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5.

booleancombination

a ::= booleancombination[ word ]

would allow a to be
A& (B|=D&cC)

The logical operators —, &, | (not, and, or) are allowed in
a boolean combination. Parentheses may be used to override the
precedence order. The precedence order of the operators is:

— 1is stronger than & 1is stronger than | .

choicestructure
rule right ::= choicestructure[ list[ word 1 1

would allow rule right (the right-hand side of a phrase struc-

ture rule) to be

B (C)((D E,F))

The choicestructure operator is used to represent choices and
options in the object language. An entity within parentheses
represents an option; two or more entities within parentheses
and separated by commas represent a choice. The expression
above could be used as part of an object language rule

A

it

B (C)((D E,F)) to abbreviate the six subrules A = B,

A

i

BC, A=BDE, A=BF, A

it

BCDE and A=BCF,

The usual linguistic representation for this rule is

D E})

a-~B(c) g

6
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Syntax constraints. In various places below, the syntax description

is augmented by syntax constraints. In almost all cases, the use of
constraints could have been avoided. However, where the cholce appeared
to be between a simple constraint and an alternative introduction of
several intermediate formats, we have felt that clarity was best served

by the use of the constraint.
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Transformational Grammar

The model of transformational grammar we use is a version of the

one presented by Noam Chomsky in Aspects of the Theory of Syntax [4].

The components of the grammar are a set of phrase structure rules, a
lexicon, and a set of transformations. The phrase structure rules are
used to generate base trees, the lexicon to insert the vocabulary words
and complex symbols into a completed base tree, and the transformations
to transform the base tree into a surface tree with terminal symbols
which represent a sentence of the language. Since the remainder of the
paper is esgsentially an expansion of this brief description, we proceed
immediately to the first rule of the syntax:

0.01

transformational grammar ::= phrase structure lexicon transformations $END

Basic to the formats for the three components are trees, analyses, restric-
tions, complex symbols, and structural change. We will define these basic
concepts first (in terms of one another) and then give the definitions of
the components.

For each set of formats the presentation follows a fixed order:
syntax description in the metalanguage, syntax constraints in English,
examples of the syntax, and interpretation of the formats, Remarks are
interspersed between these sectiomns.

Appendix I contains an example of a transformational grammar.

Appendix II is a listing of the full syntax.
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BASIC FORMATS

1. Tree
Syntax
1.01 tree specification ::= tree opt[ , clist{ word tree ] 1.
1.02 tree ::= node opt{ complex symbol ] opt[ ( listl tree ] )]
1.03 node ::= word or sentence symbol or boundary symbol

1.0% sentence symbol :a= S

1.05 boundary symbol ::= #

Constraint*

1.0k The sentence symbol is distinguished. It may not be used

as a word.
Interpretation*
1,01 The tree specification treeo wordl treel word2 treeg .

wordn treen is interpreted to mean that the occurrence of wordl
in treeO is to 'be replaced by tree1 . The process continues,

always applying to the result of the previous steps.

1.02 A complex symbol following a node 1s attached to that node

as a list of properties. A iist of trees within brackets following

a node is the (left-to-right) iist of the daughter sub-trees of the

node.

Examples*

e

1.0L tree specification

Constraints interpretations, and exampies are numbered to correspond
to the syntax. :
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s(s1s2), s1 np (N), S2 VP (B), A V.

represents the tree

1.02 tree

s (NP (N) vp (V))

This represents the same tree given above:

NP VP

tree

S (# NP (N | + ¥ + HUMAN | (GEORGE)) VP (V | +V | (saw)
NP (DET | + DET | (THE) N | + N -ANIMATE - ABSTRACT |

(MOVIE)) # )

10
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AN

+ N N
+ -

L_ + N
George saw DET«~~[+ DET] Ne-- | - ANIMATE
’ ~ ABSTRACT
o~ the movie
%
—

Note that a complex symbol following an element is attached

to that element as shown in the diagram. The vocabulary word

GEORGE is treated as a daughter node of the category symbol N,

r— r

while the complex symbol |+ N + HUMAN| is attached to N rather

than to GEORGE . The alternatives would have been to attach the

—

complex symbol directly to the vocabulary word or to include the

vocabulary word as part of the complex symbol. The advantages to

r—

| be gained from our treatment are first that 1t allows complex sym-
‘ bols to be attached to any node of the tree, and second that it

% makes the vocabulary words into node names which are then available
“ for mention in a transformation.

|

- Reference

\ Formats for trees are discussed further in [31] where a

= fixed-field format is also given.

L

-

—

11
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2.01 analysis ::= list| opt| integer ] term |

2,02 term ::: structure or skip or choice

2.0% structure ::= element opt| compiex symbol ]

opt[ opt[ = ] opt[ / 1{ analysis )]

2.0k element ::= node or ¥ or

2.05 choice ::= ( clist| analysis ] )

2.06 skip ::= % optl opt[ ] optl & ] { clist| structure | ) ]

Constraints
2.01 In the implementation, integers in an analysis must be
greater than O and less than or equal to 50 .
2.02 Two adjacent terms of an analysis may not both be skips.
2.0k The element __ may appear only in an analysis in a

contextuai feature (h,8) and must appear there precisely once.

2.05 Each analysis in the clistl analysis ] of a choice must

contain at least one term which is not a skip.

Alternative
2.06a skip : := % opt| optl = J(qstructure 7]

At the present time 2.06a rather than 2,06 has been implemented.

Examples
2.01 analysis
# (PRE) 3 NP AUX 5V (PREP) 7 NP % PREP 10 P% #
$ %N (3 *[*cl) sh np %)% #

s(# NP (% N|+ ABSTRACT|) Vi %) # )

12
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2.03 structure
N (3 *[*c| )
N |+ ABSTRACT]
vl %)
#

2 . 0 5choice
( PREP )

( BE, HAVE )

2.06 skip

-

% = (A, B)

% -& (c, D)

Remark
A tree (1.02) is a special case of an analysis in which none

of the symbols ( ) = % & nor integers occur.

Interpretation

An analysis specifies a template against which a tree may be
matched. If the match succeeds, the tree is said to "satisfy" the
analysis. The match may succeed in more than one way--the order
in which the matches are taken is specified by the analysis

algorithm (see [28]).

An analysis matches a tree as follows: Each term in the
analysis matches a section of the tree. All leaves of the tree
are part of some term's match. Left-to-right order in the analysis

corresponds to left-to-right order in the tree.

13
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2,01 The integers in an analysis are labels for the terms which

follow and are used in restrictions and structural changes to

refer to the subtrees defined by those terms. An integer should
not normally be used mﬁre than once in an analysis, unless at
most one of the terms so labeled will be matched, viz.

A(1B,1C)D. This is equivalent to A 1 ( B, C ) D .

2.05 A structure matches a subtree 1if:

A. the element is a node which is the name of the top node of
the subtree,

the element is * ,

the element is __ and the top node of the subtree is the loca=-

tion at which lexical insertion is currently being attempted.

B. the complex symbol matches the complex symbol of the subtree.

(For analyses in contextual features the test used is nondis-

tinctness. For analyses in the structural description indu-

sion appears to be the appropriate test.)
C. all restrictions referring to the integer (and to an integer
preceding a choice in which this structure is the first term

of an analysis, etc.) are met.

There is an analysis ) on this structure and:
i, it is /( and the subtree matches the analysis
ii, it is */( and the subtree cannot match the analysis
iii. it is ( and the subtree matches the analysis, with the fur-
ther requirement that each sub-subtree matched by a structure
not inside further ( )'s be headed by an immediate daughter

of this subtree's head.

14



iv. it is —{ and no type-1ii match can be found.

2.04 The element * is an unspecified single node, which will
match any one node ia the %ree. The is also an unspeci-
fied single node, and defines the location for lexical inser-

tion in a contextual festure.

2,05 A choice matches a part of the tree 1f at least one analysis
in its clist matches. If it has only one analysis, it

also matches a null part of the tree.

2.06~ A skip replaces the variable nodes in the more usual treat-

ment.

2.06a A skip matches a region bounded by two subtress if:
A. all restrictions are met [see . under structure],
B. there is a { structure ) and
i. it is { and there is a matching subtree somewhere
in this regiomn,
ii. it is —{ and there is no matching subtree in the
region.
Note : An analysis cannot succeed with two adjacent skips;
a skip must be bounded on both left and right by

structures or by edges of (sub)+trees.

In a skip the clist{ structure ] is a list of subtrees to
be matched with the skip. If the skip is simply %( clist[ struc-
ture | ) then at least oue of the structures must be matched. If

% — ( clist[ structure | ) then rone of them must be matched. If



H

% & ( clist[ structure ] ) all must be matched, and, finally, if

% —& clist{ structure ] ) then at least one must fail to match.

Examples

An analysis % (A) B (C) (D,E) 2F(G H)(% - (I) J,K)39F with

restriction RES 2 EQ %9. matches the tree.

H J
% (A) matches the region ( \f, since this includes a
f a ¥
node A . B matches the subtree B . (C) matches a null portion

of the tree. (D,E) matches the subtree E . 2F(G H) matches the

subtree F since G matches subtree G and H matches

/N

subtree H . (% - (1) J, K) matches the subtree K .
/\J
Note that only K matches; if % - (1) J matches, I would have

to match subtree J, 1leaving region I for % - (I>, which would

fail because I matches I . 39F matches the subtree

since this and the subtree 2 are equal.

16
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Analyses and the analysis algorithm will be discussed further

in a forthcoming paper by Friedman and Martner [28].

r;’l;.
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3. Restriction

Syntax
3,01 restriction ::= booleancombination| condition ]
3.02 condition ::= unary condition or binary condition
3.0% unary condition ::= unary relation integer
%,04 binary condition : := integer binary tree relation node desig-
nator or integer binary complex relation complex symbol desig-
nator
3,05 node designator ::= integer or node
3.06 _complex symbol designator ::= complex symbol or integer
3,07 unary relation ::= TRM or NIRM or NUL or NNUL or NONREP
3,08 binary tree relation ::= EQ or NEQ or DOM or NDOM
3.09 binary complex relation : := INCL or NINC1 or INC2 or
NINC2 or CSEQ or NCSEQ or
NDST or NNDST
Constraints
3,05 For the binary conditions with EQ and NEQ, the subtree
designator must be an integer. For DOM and NDOM the
subtree designator must be a node.
Examples
3,00 RES 1 EQ 2 |3 NEQS5 .
3002 1 EQ 2 &3 NEQ5S
3.03 NUL 2
3,07 3 INCL | + HUMAN |

18
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Remark

The conditions listed above are examples; the list can easily

r—

be expanded.

Interpretation

Restrictions are tested during an attempt to match an analysis.

r— r

Where both NXXX and XXX are relations, NXXX is the nega-
tion of XXX . It is generally more efficient to use A NXXX B
rather than — A XXX B, "“but the result is identical.

Integers in conditions refer to nodes of the tree which match

— r— -

the correspondingly numbered terms of the analysis. Integers in

subtree designators refer to the subtree headed by the numbered

o term,
The meanings of the conditions listed are as follows:

3, 03 unary relations

TRM integer means that the subtree corresponding to integer

o
consists of a single (terminal) node.

- NUL integer means that the label integer is unassigned (null).
NONREP integer means that the subtree corresponding to integer

- must not be the same for two applications in a set of appli-

L_ cations of the analysis. This is appropriate to transforma-
tions with the parameter C or CNR .

- 3.08 binary tree relations
integer EQ integer means that the subtrees corresponding to

-~ the two integers are equal and have nondistinct complex sym-
bols.

-

- 19




integer DOM node means that the subtree corresponding to
integer contains at least one occurrence of node. Note that
A/ (% B% ) is exactly equivalent to 1 A RES 1 DOM B .
The former is generaliy to be preferred.

3.09 binary complex relations

An integer as an argument of a binary complex relation refers

L to the complex symbol of the node matching the corresponding
labeled term of an analysis.
. Each of the binary complex relations is defined by a matrix
[ which gives the result of a comparison of two feature speci-
- ifications. The relation will be true for two complex symbols
g if and only if it is true for all of their feature specifica-
tions. The matrices are given in the Table below.
- integer INC1 complex symbol designator
The complex symboli B pointed to by the integer on the left
- includes-1 the complex symbol A pointed to by the
g complex symbol designator on the right. That is, every
feature specification of A also occurs in B . It is false
- only if some feature for which A has a specification is
absent from E, or if some feature occurs in one with the
. value + and in the other with the value - .
g integer INCz complex symbol designator
The complex symbol B pointed to by the integer on the left
- inciudes-2 the complex symbol A pointed to by the
complex symbol designator on the right. Includes-2 differs
. from includes-i only in the case of the value * .
L
20
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Includes-2 will be false if A has * where B has
+ or -, or if B has * where A has + or - .

integer CSEQ complex symbol designator

The relation CSEQ holds between two complex symbols if

and only if their feature specifications are identical.

r r— r—

integer NDST complex symbol designator

1_ Two complex symbols are nondistinct (NDST) unless there is
a feature for which one has the wvalue + and the other has
{_ and the other has the value =~ .

TABLE

— r

Matrices defining binary complex relations

r—

EQUALITY NONDISTINCTNESS

. B B
% \R\\ + - ¥ abs \A + -~ % gbs
(-

+ 1T F F F + |T F T T
| F T F F F T T T
(-

* |F F T F * |t 7 T
{ . abs|F F F T abs|T T T T
L
g
— INCLUSION -1 INCLUSION -2

N N
- ¥ -

- AN |+ abs A ‘+ abs
: + |T F F +{T F F F
_ F T F -|F T F F

* | T F * |F T F
, abs|T T T T abs|T T T
S

_(a Note follows on next page)

~ 21
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Note: T represents true, F represents false,and abs indicates that
the feature is absent altogether. For the test to be true for
complex symbols it must be true for all of their feature specifi-
cations.

Reference

Restrictions are discussed further in Pollack [34].

22



b, Compiex symbol

— Syntax
. L .01 complex:syumbol = !Listifeatu]k specification
—

L.,02 feature specification ::= value feature

4,0% feature : :-- catoxory feature inherent feature or

ruaie Teature or contbextual feature identifier

|~ 4,04 category feature ::= category

{ 4.05 category : := word

4,06 inherent feature : ;= word
;~ L.07 _rule feature : := transformation name
, 4,08 contextual feature identifier : := contextual feature or
¢
- contextual feature label
! (See 7.06, 7.07 for contextual featurelabel)
b-. . «
4,09 contextual feature : := ( analysis ) opt{ restrictions |
4,10 wvalue ::=+ or « or *
_ ya_ue
Constraints
—
4,02 A feature may appear oniy once in a complexsymbol.
- L .03 No more tharn one category feature may appear 1n a compiex sym-
bol.
= 4,05 Y To avold ambiguity, each word should have onliy one immediate
4.06| parse.
N
4,07
_ 4.09
4,08 The analysis in a contextual feature is restrictedby
— constraints 3.04 arnd 3 .Olabove.
-

23
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Alternatives

4 .,10a value ::=+ or - or * or value word

i
4
]
2]

i

4,10b value or value word

Remarks
4,02 The use of "feature specification"” to denote a signed feature
is introduced in Chomsky [&4].
4,10 The value * was suggested in the UCLA Working Papers [20],
where it is used to mean "obligatory specification".

4,100 is used by Gross [8].

Interpretation

Complex symbols appear in the lexicon, inbase trees during
and after the lexical insertion process, and in analyses and
restrictions. Their use in lexical insertion will be described
in Friedman and Bredt[26]. Their role in analysis is described
briefly in section VIbelow and in more detail in Friedman and

Martner [28]. Complexsymbols are implicitly expanded by the

redundancy rules of the lexicon.

4.01 A complex symbol is an unordered list of properties or

feature specifications.

4,08 A complexsymbol appearing in a treec may not contain

contextual features.

4 .10 The value ¥ is defined by its use in the binary complex

relations (3.10) and operations (5.1C). It can be regarded

as +; 1t is nondistinct from both + and - .

2L



Examples
L 4,01 complex symbols
|+ N + HUMAN - COMMON|

IL |+ v - TRANS + ANIMSUBJTI
g 4,02 feature specifications
— + HUMAN
4 + ANIMSUBJ
-

4.06 inherent feature
L HUMAN

4,07 rule feature

TPASSIVE

4.08 contextual feature identifiers

~

ANTMSUBJ

s(#wp($N| +aNMATE |) VP { __ % ) #)

e

r—

r—-

r

N
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- 5,70
5,11

e 5,12

—

- 5. Structural Change
— Syntax
; 5.01 structural changes i= SC structural change .
= 5.02 structural change ::= clist[ change instruction ]
;_ 5.0% change instruction ::= change or conditional change
) 5.04 conditional change ::= IF ( restriction ) THEN { structural
e change ) opt[ ELSE ( structural change ) ]
: 5.05 change ::= tree designator binary tree operator node designator
= or complex symbol designator binary complex operator
o node designator or unary operator node designator
| or complex symbol designator ternary complex oper-
L. ator node designator node designator;
‘ 5.06 node designator ::= integer c<word
= 5.07 complex symbol designator ::=_complex symbol or integer
. 5.08 tree designator ::= ( _tree ) or node designator
5.09 Dbinary tree operator ::= ADLAD or ALADE or ADILADI or
;.. ATADEI or

ADFID or AFIDE or ADRIA or ARIAE or
ADRIS or ARISE or ADRISI or ARISEI or
ADIES or ALESE or ADLESI or ALESELI or
SUBST or SUBSE or SUBSTI or SUBSEI

binary complex operator ::= ERASEF or MERGEF or SAVEF

unary operator ::= ERASE or ERASEI

ternary complex operator ::= MOVEF
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Remark

The operators listed here are just examples. They include

those used in the MITRE grammars [21] and in the IBM Core Grammar

[16].

The list can easily be expanded.

The changes are to be made in the order in which they appear

in the structural change.

5.11

unary operator

ERASE n deletes the subtree headed by n, and furthermore
erases 1ts ancestors until a node with more than one daughter

is encountered.

5.09 binary tree operators

The changes with binary tree operators are adjunctions of the

form m ADXXXX m and mean that the subtree headed by the node
corresponding to the label m is to be adjoined to the node

corresponding to n .

n ADRIS m (n ADLES m) means that a copy of the subtree headed
by n 1is to be adjoined as the rightmost (leftmost) sister of

node m .

n ADFID m (n ADLAD m) means that a copy of the subtree headed

by n is to be adjoined as the first (last) daughter node m .

These same operators, when the second letter (D) is missing
and they are terminated by the letter E, i.e., ARISE, ALESE,
AFIDE and ALADE, mean that the original subtree headed by n
is to be erased in the course of the operation. That is,

n ARISE m is equivalent to n ADRIS m, ERASE n .
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n SUBST m, and n SUBSE m, mean that the subtree n is

to be substituted for the subtree m .

The operators with names terminated by the letter I, ADLADI,
ADRISI, ADLESI and SUBSTI, are the similar, but not identical,
operators used in the IBM Core Grammar and defined in[16].

5.10 binary complex operators .-

The binary complex operators modify complex symbols. The

complex symbol pointed to by an symbolr is the complex

of the node corresponding to the term of the gnalysis labeled

with the integer.

-~

n ERASEF m means that the feature specifications of the

complex symbol pointed to by n are to be deleted from the

complex symbol pointed to by m .

n MERGEF m means that the feature specifications of n are

to be merged into the complex symbol m .

n SAVEF m means that all feature specifications of m are

to be deleted except for those of n, which are to be saved.
Notice that | *SG *PRO | SAVEF m will leave in m only

the specifications for SG and PRO, and will leave their values

unchanged.
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Table binary complex operators

—

The matrices show the values in m after the change is performed.

—

n MERGEF m

n
+ - ¥ abs
n

r—

i + |+ + + o+
L —
* + - * *
— abs [+ =~ % abs
n ERASEF m n SAVEF m
L -
m m
' + - ¥  abs + - *  abs
L_ n n
+ abs - - abs + + abs + abs
- + abs + abs - abs - - abs
- * |abs abs abs abs * + - *  abs
abs | + - *  abs abs |abs abs abs abs
L
: 5.12 ternary complex operator
(-
n MOVEF m k is equivalent to first evaluating the result of
- n SAVEF m and saving it temporarily as r (without changing
m) and then merging this result into m by r MERGEF k . Thus
-
| *SG | MOVEF n m will change the complex symbol m so that
‘ the value of the feature SG is the same in m asinn.
—
=
-
- 29
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COMPONENT FORMATS

6. Phrase structure

Syntax
6.01L phrase structure ::= PHRASESTRUCTURE list[ phrase structure
rule ] $END
6.02 phrase structure rule ::= rule left = rule right .
6.03 rule left ::= node
6.04 rule right ::= choicestructure[ list[ node ] ]
Constraints

6.03 The rule left of the first phrase structure rule must be the

sentence symbol.

6.01 The following ordering constraint is sometimes placed on the

phrase structure: The phrase structure rules must be ordered

so that, with the exception of the sentence symbol, no node

occurs in a rule right below a rule in which it occurs as

rule left.

In the computer system [24], this constraint is imposed
only i f the algorithm for directed random generation of

base trees [23] is used.

Interpretation

6.0k The node on the rule left can be expanded to any of the

lists of nodes obtained from the rule right choicestructure.

Remark
6.04 The use of the Kleene star to define rule schemata is not

included.
30
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Example

"ALFREDI A N PROSE == TRAUGOTT"
PYRASESTRUCTURE
e S = # (PRE) NP VP AUX (ADV) #
" PRE = (NEG) (Q).
""" AUX = (AUX1) T.
wiy" T = (PRES,PAST).
"y AUX1 = (IMF M, PP PERF).
"yi|" PERF = (HABB,BF),
"wi1" vP = ((ADJ,NP) COP, MV).
"V IYADJ = (NP)( INT)AD.
MIX" MV = (PASS)(NP)((NP,S))V(PRP BE),
nx PASS = PREP P,
ux{" NP = (DET) N (S).
Y] 1" DET = (QUANT1) (DEM) ((QUANT2,NUM))(D)(S).
$ENDPSAH

-

-

Reference

—-

“Further discussion of phrase structure is given in Doran {35].

r—

.
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7. Lexicon

Syntax

7.0L lexicon ::= LEXICON prelexicon lexical entries $END

7.02 prelexicon ::= feature definitions opt[ redundancy rules ]

7.03 feature definitions ::= category definitions

opt[ inherent definitions ]

opt[ contextual definitions ]

7.04 category definitions ::= CATEGORY list[ category feature ].

7.05 inherent definitions ::= INHERENT 1ist| inherent feature ],

7.06 contextual definitions ::= CONTEXTUAL clist| contextual defi-
nition ].

7.07 contextual definition ::= contextual feature label = contextual
feature

7.08 contextual feature label ::= word

7.09 redundancy rules ::= RULES clist[ redundancy rule ].

7.10 redundancy rule ::= complex symbol => complex symbol

7.11 lexical entries :;= ENTRIES list[ lexical entry ].

7.12 lexical entry ::= list[ vocabulary word ] list{ complex symbol ]

7.13 vocabulary word ::= word
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Example

PHRASESTRUCTURE
S = # NP VP # . VP- = V (NP). NP = (DET) N.
$ENDPSG
LEXICON .
CATEGORY VN DET .
INHERENTABSTRACT ANIMATE COUNT HUMAN
CONTEXTUAL TRANS = <VPL_NP>>, COMMON = <NPLDET _>>,
ABSTSUBJ = <S<#NPSINI+ABSTRACTI > VPL_Z>#>D>,
NABSTSUR=CS<CANPLIN|-ABSTRACT [DVPL_BD>#>>,
ANIMSUB J=<S<HNPLIN| +ANIMATE [DVPC_Z>#>>,
NABSTOBJ= <VP<_NPCZ N| —ABSTRACT | >>>,
NHUMDBJ = <VP<_NP<Z N|-HUMAN[>>>,
ANIMOBJ = <VP<_NP<LZ N} +ANIMATE|>>> .
RULES J+COUNT| => |+COMMON}, | +HUMANI=>]+ANIMATE],
| +ABSTRACT| => |+COMMON ~ANIMATE} .
ENTRIES
SINCERITY VIRTUE |+N-COUNT +ABSTRACT|
- BOY |+N ¢+ COUNT +COMMON +ANIMATE +HUMAN]
GEORGE NOAM|+N -COMMON +HUMAN|
THE |+DET|
G R O WEAT |+V +TRANS +ANIMSUBJ +NABSTOBJ |
FRIGHTENI| +V +TRANS +ANIMOBJ
ELAPSE OCCUR | #+V —-TRANS +NANIMSUB |
AOMIRE READ |4V +TRANS+ANIMSUBJ|
BUTTER | +N —-COUNT -ABSTRACT|
BOOK | +N —ANIMATE +COUNT]
BEE |+N +COUNT +ANIMATE -HUMAN]
READ WE AR | +V +NHUMOBJ |
KNOW OWN § +V +TRANS]
EGYPT |+N -COMMON -ANIMATE|
DOG | +N +COMMON -HUMAN +ANIMATE]
CARROJ |+N +ANIMATE —HUMAN +COUNT|
RUN |+V —TRANS +ANIMSUBJ].
$ENDLEX

Interpretation

7.06 The contextual feature label is used in complex symbols as

an abbreviation for the contextual feature.

7.09 A redundancy rule (A = B) has the interpretation that if

the left-hand complex symbol A is explicitly included in

another complex symbol C, then the right-hand complex sym-

bol B is—implicitly included in the complex symbol C .
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Alternative a

4,09a value ::= + or - or * or value word
7.03a feature definitions ::= category definitiopns

opt[ inherent definitions |-

opt[ analysis definitions ]

opt [ value definitions |

7.031a value definitions ::= VAIUE 1list| value word ]
7.032a value word ::= word
Remark

If 4.09a is chosen as an alternative tol4.09, the additional

rules 7.03a, 7.031la and 7.032a would be nesded for the lexicon.

Reference
The use of the lexicon in lexical insertion will be described

in Friedman and Bredt [26].
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8. Transformations

Syntax

S

8.01 transformations ::= TRANSFORMATIONS list[ transformation |
— control program $END

8.02 +transformation = identification structural description
~ optl restrictions ] opt[ structural changes ]
i_ 8.03 identification ::= TRANS opt| integer ] transformation name

opt{ list { parameter 1] ] opt[ keywords ] .
“ 8.0k parameter ::= group number or optionality or cyclicity
or embedding

— 8.05 \group number : := I or IT or III or IV or V or VI or VII
{_ 8.06 optionality ::= OB or OP

8.07 cyclicity ::= NC or C or CNR

8.08 embedding ::= EMB

8.09 keywords ::= ( list[ node |}

8.10 structural description ::= SD analysis .

(for analysis see 2.01)

—

8.11 restrictions ::= RES restriction .
o (for restriction see3.0l)

8.12 structural changes ::= SC structural change .
— (for structural change see 5.01)
— Interpretation
{ 8.05 Group numbers are for use in the control program. If no
- group number is given in the identification, the group number

of the previous transformation will be used, or I for the

first transformation.
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8.07 The cyclicity determines whether and how a transformation is
to be retested after a successful application. If NC (non-
cyclical), it will not be retested. If C (eyelic), it will
be retested. If CNR (cyclical non-recursive), all analyses
will be found before any changes are made. See also the
discussion of the restriction NONREP.

8.06 If no optionality is given, OP (optional) is assumed, rather
than OB (obligatory).

8.07 The null option is NC.

8.09 The keywords are used by the control program to avoid unnec-

Tessary analysis. If none of the keywords appear in the tree,

the analysis routine is bypassed.

Control Program

As long as the theory of transformational grammar is still
changing, grammars are likely to differ in the order of consider-
ation of the transformations. Therefore, to complete the descrip-
tion of a grammar, it is necessary to specify the order in which
the transformations are to bz considered. Rather than choose a
particular order for this system, we have chosen to include a
control program as part of the specification of the grammar.
However, since this part of the syntax is highly experimental and
subject to more radical change than the rest of the syntax, we do

not include it in full in this presentation.

9.01 control program ::= CP sclist| opt[ label : ] control instruc-
tion |
9.02 1label ::= word
36
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9.03 control instruction ::= transformation name or group number

or transformation 1list or conditional

instruction or goto instruction or

repeat instruction

9.04 goto instruction ::= GOTO label
9.05 repeat instruction ::= RPT opt[ integer ] control instruction
9.06 conditional instruction ::= IF transformation name THEN ( list

[ control instruction]) opt[ ELSE

( 1ist[ control instruction ] ) ]

References

Transformations are further described in [32]. A full descrip-
tion of the control language and its use will be presented in Friedman

and Pollack [3L4].
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APPENDIX I

The following is an example of a transformational grammar, based on

one written by Olasope Oyelaran [36]. It is not intended here to be
linguistically correct, but is just an example of the use of formats.
Strings within guotation marks are comments, and are ignored by the

program.
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" LF TEST OLASOPE OYELARAN o AUG, 22 9 1967 . "

PHRASESTRUCTURE

S = # NP VP #

V2 = (PRE) V (L{(NP) (PP) (AGNT), Sy AP) ).
V = AUX (VB 4 COPI).,

AUX = ((DD, (HAVE EN)(RE ING) )) AUXA,

AJXA = (MOD) (PRES, PAST) tASP),

ASP = (IMPERFPERF)

AP = ({PRE) ADJ (S}, $) .

PP = PRT NP.

NP = (NP Sy (D) N NU, S),

NU = (SGyPL),

D PRE) (ART(ADJ) (S), (D) ADJ).

=
PRE = (NEG) .

ART (WH) (INDEF, DEF).
$END WEND 0NF PHR AS ES TRUC TURE *
LEXTCON

CATEGURY VB COP ADJ N DEF INDEF PRT NOMINALIZER MOD ,
INHERECNT COUNT PRO ANIMATE HUMAN ABSTRACT MASC SG1 SG2 SG3
LOC TIME PLACE .
CONTEXTUAL
TRANS = <VP/<Z_NP ¥T>>,
ANIMSUBJ = <S< # NP < % N|+ANIMATE| % >VP/KI_Z>%>>,
HUMSUBJ < SK # NP < % N|+HUMAN| % >VP/<E_2>%>)>,
ABSTORJ <VP <% _ NP < % NI+ABSTRACT | £ > 2 > >,
VPCOMP = <VP < 2 V € AUX _ % > S % > >,
SGNOUN = <NP /<% SG>>,
COMMON - <NP<CD_NUD>>,
VPADJ = < VP < 2 V < AUX _ > AP C % ADJ % > % > > .
RULES ] +COUNT | => |+CCMMON],
| +ABSTRACT| => |+COMMON -COUNT —~ANIMATE| ,
|-ANIMATE] => | -HUMAN] ,
| +HUMANT => |+ ANIMATEl &

W

ENTRIES
JOKEN CHOMSKY RUSS |+N =CCMMON + HUMAN #MASC |
MARY | +N —-COMMON +HUMAN -MASC] ,
GRAMMAR | +N +CUMMON -ARSTRACT |
OFF ICE |+N #CDUNT ~ANIMATE} ,
MIGHT ]+N +ABSTRACT],
COME | +VB ~TRANS] o
OEFEND | +VB +#+TRANS #ANIMSUBJI
WEEP | +v3 ~TRANS +ANI MSUBJ |,
KNCW | +VB +TRANS +ANI MSUBJ) | +VB +VPCOMP +HUMSUBJ |,
CLAIM |+VB +TRANS +HUMSUBJI

| +VB +VPCUMP +HUMSUBJ | »
WRITE | +VB +ABSTOBY |
BE |+COP +TRANS| |+COP +VPADJI| ,
B8E | +v8 -TRANS} ,
RIGHT PONR |+ADJI,
FOR AT IN |+PRT},
CAN | +MQDI,
THE |+DEF!, SOME |+INCEF{,
WHENTHAT W H v | +NOMINALIZER] .
$END "END OF LEXICON®

TRANSFORMATIONS
"CYCLIC RULES 1.
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TRANS 1 NUAG YNUABER AGKEEMENTW I CNR 0B,
SD T N INU 2V 2
SC 1 ADRIS 2.
TRANS 2 RELNOM “RELATIVE NOMINALIZATION® NB,
SD T NP V NP/GS/<# INP V %> %2> Ze
SC NOMINALIZER ADLES 1.
TRANS 3 PRO1 “PRONOMINALIZATION®  NC EMB OB.
SD % D/<Z 1IN 2NU DT NP<SS<# 3N 4NU> V > % »
RES 1 EQ 3 & 2 EQ 4 »
SC | +PRO| MERGEF 3. ;
TRANS 4 PRO2 “PRONOMINALIZATION® 0P,
" SO % INKN NU> V NPC S<¢  2D<3N NU> V 2> T > %.
RES 1 EQ 2 o
SC 1+PRO! MERGEF 3,
TRANS 5 NEG  “NEGATIVE PLACEMENT™ OB (NEG) o
SC % INEG 2(DO,HAVE EN, BF ING, MOD) VB %,
SC 1 ADRISE 2.
TRANS 6 WHPLA "WH PLACEMENT™ 0B (WH).
SO0 ¥ ART $/< % LNP 2 S/< % 2NP /<(PRE) WH (DEF,INDEF} N NU > 2 > 3 > Z.
SC 2 ADLESE 1.
TRANS 7 RELEX ®RELATIVE EXTRAPUOSITION® Of EMB C o
SD % NP V DCART # 1S/<Z (PRE} WH %> %> N 2NU,
SC 1 ADRISE 2.
WCYCLIC RULES 2 ®  “RULES 8 TO 11 ARE ORDERED"
TRANS 8 NUMCON "NUMBER CONCORD® NBe
SC Z N INU V<2AUX %> %o
SC 1 ADRIS 2.
TRANS 9 ASP1 ®™ASPECT SPECIFICATION® 0B (ING IMPERF),.
SD % V< BE LING (PRES, PAST) IMPERF 22> %,
SC 1 ADRISE 2,
TRANS 10 ASP2  ™ASPECT SPECIFICATION® 0B (HAVE EN PERF).
SD % VCKHAVE 1EN (PRES, PAST} PERF 2%,
SC 1 ADRISE 2.
TRANS 11 "A" SIMPV "SIMPLE VERB TRANSFORMAT JUNY 0Be
SD % V<Z 1(PRES,PAST) 2NU 3(VB,COP)> Z.
SC 1 ADRISE 3 , 2 ADRISE 3,
TRANS 11 "B® MOD - "“COMPOUND VERB"™ DB (MDD) .
SD % V<MOD (PRES,PAST) INU>Z,.
SC ERASE 1.
TRANS 12 BOUNDE  "“BOUNDARY ERASURE" 08,
SD 1# % 24,
SC ERASE 1 , ERASE 2 .
“PCST CYCL IC RULESe™ “PARTIALLY ORDERED."
TRANS 13 WHREP1 "WH REPLACEMENT"™ 11 0B (WH DEF).
SD % NP<(PRE) LWH 2DEF N NU> %.
SC WHICH SUBST 2, ERASE le
TRANS 14 WHREP2 “WH REPLACEMENT" 0B (WH INDEF) .
SC Z NP<{ PRE) IWH 2INDEF N NU> Z.

SC WHICHEVER SUBST 2y ERASE 1.

TRANS 16 THAT BTHAT SURSTITUTION." OP (WHICH) .
SC % 1%<N NU> % NPK 3 WHICH 4%<N NU>> %,

RES 1 EQ 4.

SC THAT SiIBST 3 ¢ EKASE 4

TRANS 17 WHPRO1 "WH PRONOMINAL SUBSTITUTION % 0P (WHICH).
SC 2 N % NPK 1WHICH 2N| +HUMAN] 3> T

§C WHO SUBST 14 ERASE 2.

TRANS 18 WHPRO2 OP (WHICH).

SO ¥ N % NPC  1WHICH 2N]+ABSTRACTI %> Z.

SC WHAT SUALT 1, FRASF 2

TRANS 20 NEGSP UNEGATIVE SFLLL NG 8 (NEG).

SO %#2NEG 4.
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SC NOT SUBST 2.
"PCST CYCLIC V-TRANSFORMATION, ORDERED."
TRANS 22 V2 0B (BE PRES PL)»

SC % 1BE 2PRES 3PL %

SC ARE SUBST 1, ERASE 2, ERASE 3,
TRANS 24 V4 0B (PRES SG}.
SD 2 N 1 (BE, HAVE, DO, VB) 2PRES 3SG Z.
SC S ADRIS 1, ERASE 2, ERASE 3,
TRANS 25 V5 08 (PRES).

SC % (HAVE, DO,y VB) 1PRES 2NU %,

SC ERASE 1, ERASE 2,

TRANS 26 vé 0B (BE PAST).

SC % 1BE 2PAST 3(PL, SG) %.

SC WERE SUBST 1, ERASE 2, ERASE 3.
TRANS 27 v7 0B (BE PAST SGi.

SC % 1BE 2PAST 35G %,

SC WAS SUBST 1, ERASE 2, ERASE 3,
TRANS 28 v8 0B (PAST).

S0 %€ (HAVE, DO. VB) 1PAST 2NU Z.

SC ED SUBST 1, ERASE 2.
TRANS 29 NSP1 YNDUN SPELLING®™ OB (PL).
SC ¥ N 1PL %.

SC § SuBST—1.

TRANS 30 NSP2

SC 2 N INU Z.

SC ERASE 1.

CP 1T I1 Illa "CONTROL PROGKAM®

$END "END OF TRANSFORMATICNS®

$TEST

b5
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