
CS 92

MLISP

BY

| HORACE ENEA

TECHNICAL REPORT NO, CS 92

. MARCH 14, 1968

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

|

=

MLISP

by

Horace Enes

- March 14, 1968

Computer Science Department

School of Humanities and Sciences

Stanford University

Lis research was supported by Grant MH 06645-06 from the National
Institute of Mental Health.

3 - Introduction

Mlisp is an Algol-like list processing language based on Lisp 1.5.

It is currently implemented on the IBM 360/67 at the Stanford Computation

Center, and is being implemented on the DEC PDP-¢ at the Stanford Arti-

ficial Intelligence Project. The translator produces an object program

in Lisp 1.5 S~expressions. at aspeed of 1800/2000 lines of Mlisp per

- minute.

The principle reason for writing Mlisp was to provide & good list

processing language with a convenient notation, a higher degree of

“ machine independence, and string facilities, The balance of this paper

will be a very informal presentation of the language so that the reader

. will be able to run programs in Mlisp with a minimum of effort. The

| language has an extremely simple syntax which is presented in Appendix I.
The style of presentation will be by example. It is assumed the reader

i knows Lisp 1.5 and is familiar with Algol, All the functions of the
underlying Lisp processor are available to the user, and therefore, the

~ user should consult the Lisp/360 manual in addition to this presentation,

3 Additionally, the storage conventions are, of course, those of the under-
.

: lying processor; that is, limitations on the length of printnames of atoms,

conventions for numbers, handling of bindings, etc. These points are

generally not important to the Mlisp user since the translator knows

these conventions and produces appropriate S=expressions.

~]1-

= The Sample Program
: Line No. | Text
: 1 % THIS PROGRAM IS AN EXAMPLE %

3 BEGIN
] NEW A,B,C,D,T,J,L,ST;
5 | MACRO OFF "VERBOS (NIL)";

b | Ci=(6.7%)/3 + 2%¢;
7 | A:=C CONS Dj

8 B:=<,2,3>;
- 9 | B:=C:=CDR(A);

10 B:='B;

i 11 C:="(B (C.A));
12 PRINT (ST:="AB// 7"@DBQUOTE):1 13 FRINTSTR(ST SUBSTR <3,2>);
14 | C:=MAKEATOM("ASDF, /");

16 | LAST: =#1.:
I 17 IF, THEN NIL

| 18 ELSE IF — CDR(L) THEN CAR(L)
19 | ELSE LAST(CDR(L));

. 20 |
01 | REVERSE : 41.

| 22 BEGIN NEW I,J;
23- | FOR I IN IL DO

2h | IF ATOM(I) THEN J:=I £ J
25 | ELSE J:= REVERSE(I) £ J;
26 RETURN(J) ;
27 END;
28 |

=D

Line No, Text

29 RR:=#:<READ(),READ()>;

= 30

31 A:=DO I :=I+1 UNTIL FN(I);

= 32 B:=COLLECT <I:=FN(I)>UNTIL I EQ 'END;

| 33 WHILE —((A:=READ()) EQ 'END) DO INPUT(A);
3h C:=WHILE —((A:=READ()) EQ 'END) COLLECT <A>;

» 35 FOR I ON L DO FN(I);
26 J:=FOR I IN L DO FN(I) UNTIL QN(I);

| 37 FOR I IN 1 BY 4 TO 13 DO FN(I);
38 FOR I IN 1 TO 10 DO FN(I);

- 39 J:=FOR I IN L COLLECT FN(I);

LO

N 41 J:=FN(FUNCTION(+), FUNCTION(TIMES));
ho

i L3 J:=<<3,2>,<b,<6,8>>> SUB <@,1>;

LY J:=F7 (<1525354,5,65758,9,0>)
45 OFF;

) L6 END.

hy (Input follows end.)

_ i.

Explanation of Sample

Lines 1 to 47 represent a collection of all the features of Mlisp.

i The program does not compute anything.

Line No, Text

1 Comments ~--

| Anything except a "%'" between two "%"s is a comment
and is ignored by the translator.

Blanks =-

Blanks may be used between any identifiers or special

| symbols to improve readability.
Programs =-

Mlisp programs generally start with a BEGIN and

| finish with an END (See Appendix I for a definitive

| specification of the syntax.,). Each BEGIN-END pair
| constitutes a program, The value of a program is NIL

unless there is a RETURN within the BEGIN-END pair.

(See line 26 for an example.) All BEGIN-END pairs

are translated into Lisp programs, and therefore,

return a value even if they have no local variables.

4 NEW --

Program variables are bound by the NEW declaration.

Their initial value is NIL.

$ MACROS --

A simple substitution macro facility is provided so

that line 45 will be expanded into:

VERBOS (NIL);

“li

SE

Line No. Text

i) and then translated. If another macro call is dis-
SE. covered it is expanded, therefore, recursive expansion

is possible. Macros must be declared before they are

used.

6 Arithmetic --

Line 6 translates into:

(SETQ C (QUOTTENT (TIMES 6.74)

(PLUS 3 (EXPT 2 4))))

Notice that hierarchies are right to left. Unary

operators (= + =) are translated before binary
operators. Any operator that is not unary is binary.

] Infix operators --

“ Any function or operator which takes actly two

arguments may be used as an infix operator, The

| translator recognizes the following abbreviations:
Mlisp Lisp

L ¢ C ONS

1 @ APPEND
= EQUAL

* TIMES

DIFFERENCE (or MINUS when used in unary position)

| : am
+ PLUS

/ QUOTIENT

| OR

“5a

C—O

| NOT (this is equivalent to NULL)

| a SETQ (when used as operator)
| 3 Lists --

: a, 2, 3> translates into:

| (LIST 1 2 3)

a, <2, 3>> translates into:

(LIST 1 (LIST 2 3))

| 9 Multiple assignment --

Multiple assignment statements are allowed,

10-11 Quoting S~expressions --

S-expressions are preceded by a single quote mark (I)

and follow the syntax of Lisp except that special

characters may not be used within an atom. (See

line 1k for a description of how to create atoms

containing special characters.)

12 Strings --

: "ABC" is an abbreviation for '(A B C) ; however,

special characters may appear between quotes ("),

and will be handled correctly. DBQUOTE has as its

value:

- HM)

therefore, by using the APPEND operator (@) any

string may be created. Iine 12 would produce

-

| Line No. Text
i 10 AB// 7")

as output. By using the intrinsic function PRINSTR

| instead of PRINT we would have gotten:
AB// 7"

13 Substrings --

The intrinsic function SUBSTR takes two arguments;

a string, and a list of two integers (starting position

and number of characters to be extracted). The value

of

: "ABCDEF" SUBSTR <3,2>
| is "CD". PRINT will print this as:

(Cc D)

| and PRINTSTR will print this as:
CD

- 14 MAKEATOM and STR --

MAKEATOM takes a string as its argument and produces

an atom with that string as its printname. (See line 12),

STR takes an atom or a number and makes a string of

its printname,

16- 19 Defining functions ~-

On line 16 LAST is defined to be a function. The

name of the function being defined need not be declared

NEW. Sharp (#) stands for LAMBDA. A function with

three arguments would start:

FN:=#A, B,C:

~~]

| Line No. Text
| 16-19 The translation of lines 16-19 is:

(DEFINE (QUOTE ({LAST

(LAMBDA (L)

(COND

| ((NOT L) NIL)

| ({NOT (CDR L)) (cm L))
i >)

|))))
Remember in Lisp NOT and NULL are the same.

21-27 Another function 1s defined --

This function reverses a list. J is the value of

| the function. I becomes successively:

| CAR(L), CADR(L),0.

until IL is exhausted. When IL is exhausted, the

| FOR expressicn (See 37-39) terminates and the value

of I becomes NIL outside the FOR expression, Notice

| that a RETURN is needed for each BEGIN-END pair;

for example:

A:=BEGIN

RETURN(BEGIN

RETURN(L);

END);

END;

3 Line No, Text
29 A function with no argument is defined --

RR, a function with no arguments is defined,

READ, a function with no arguments is called.

31 DO-UNTIL =--

Every expression has a value including control ex-

~ pressions.

FORM:

B DO expressioni UNTIL expression?

| EVALUATION:
A) V « value (expressionl).

i B « value (expression).
if B # NIL then return (V).

- go to A.
§ 52 COLLECT- UNTIL -~

FORM:

COLLECT expressionl UNTIL expression?

EVALUATION:

V « NIL.

A) V « V append value (expressionl).

B « value (expressionp).

if B # NIL then return (V).

go to A.

Notice that the value of expressionl should be a list,

and that expressicnl may be considered as an "example"

of the value of the COLLECT-UNTIL.

-O- ”

eeemeemem—————————

’ Line No, Text
: 33 WHILE-DO --
| WHILE-DO 1s evaluated similarly to DO-UNTIL except

that the test is performed first.

FORM:

WHILE expression] DO expression

EVALUATION:

V « NIL,

~ A) if value (expressionl) = NIL then

return (V).
LC

V « value (expressiong).

| go to A.
34 WHILE-COLLECT =-

| WHILE-COLLECT is like COLLECT-UNTII, except the test
is performed first,

: FORM:

| WHILE expressionl COLLECT expression?
EVALUATION:

V « NIL,

A) if value (expressionl) = NIL then

return (V) .

V« V append value (expression).

go to A.

35 ON =

ON may be subsii tifrag for IN in any FOR expression.

When ON is used 'I’ becomes successively L, CDR(L),

CDR of that, etc., until L is exhausted.

~3i0~

Line No. Text

36 UNTIL in FOR expression --

By adding an UNTIL clause to a FOR expression an

additional test may be performed. The FOR expression

will terminate if the value of the UNTIL becomes true

(non-NIL), The value of 'I' is the last value

assigned to it.

37-38 STEP-FOR --

In line 37 'I' becomes successively 1, 5, 9, 13.

In line 38 the BY is omitted and is, therefore,

understood to be 1,

_ 39 FOR-COLLECT =--

COLLECT may be substituted for DO in FOR expressions

- with the same effect as in WHILE-COLLECT or COLLECT=-

UNTIL. Notice that 'FN(I)' must return a list as its

) value,

L1 Functional arguments =--

Functional arguments are passed via the pseudo-function

FUNCTION as in Lisp 1.5.

- 43 A subscription function --

A subscripting function called SUB is available,

The value of 'J' in line 43 is 4, The first argument

is the list to be subscripted and the second is a

— list of subscripts. An ‘out of range' subscript

returns NIL. Subscripts may not be used on the

left of a ":=",

~1]-

| Line No. Text
Ly Fields --

| A set of functions Fl, F2,...F9 is available
corresponding to CAR, CADR,. ..CADDDDDDDDR respectively.

| The values of 'J' in line 44 is 7.A field function
may not be used on the left of a ':=',

46 Ending a program --

| After the final END in as program put a period (,) o

LT Data --

] Input data directly follows the END card.
No special cards are needed after the last

| data card,

| -1o-

Appendix T

The svntax of Mlisp

The syntax 1s in Backus-Naur form with the following

additions:

[1 enclosed construction is optional

{3 alternative possibilities enclosed

... preceding may be repeated any number of times

_—

~13-

3 <prog> Di= <expr>

<expr> P i= <simpex> [<opr> <expr>]...

2i= <empty>

| <simpex> ::= BEGIN | <decl>;]...[<expr>| ;
<expr>]..,. JEND

i= IF <expr> THEN <expr> [ELSE <expr>]

IN
t:i= FOR <dig> oN <expr> <fortail>

p1= 400 <expr> UNTIL <expr>COLLECT

-

P= WHILE <expr> Do <e; >| His *P COLLECT[<&XPr

| pi= [<expr> [» <expr>]...1>
i += "[<any character not">],.."

n vi= (<expr>)

’ Li= <simpex>
| 1 71

tis! <sexp>

Piz <dd> [<exprl>]

c= <number>

<opr> Sal I A ES I I pe

<decl> pi= NEW <dd> [,<dd>]...

: t= MACRO <id> "[<token>]..."

-1h-

1 <fortail> ::= [<by opt>]— <expr> [UNTIL <expr>]
| <by opt> ::= [BY <expr>] TO <expr>

<token> i= <dd>

| : i= <number>

. := <any special character except " >

<exprl> ::= (<expre> [,<expr2>]...)

vooa i= [#<ID>]] :] <expr>

<expre> :.= FUNCTION (<opr>)

11= <expr>

<sexp> . i= (<sexp2>

| ::= <token>
<sexp> ti=)

| : i= <sexp> <sexpi>

<sexp3> ::= . <sexp>)

v oro <SEXPL>

| <gexpkh> ::=)

| ; i= <sexp> <sexpl>

| -15-

|

Appendix II

Initial Conditions

The garbage collector printout is turned off; it may be

turned on by saying:

_ VERBOS(T);

Job Setup

~ Wylbur -- Col, 72

//XXXX JOB (nnnn, bin, r, £),'your name',MSGLEVEL=1l

//JOBLIB DO DSNAME=SYS2.PROGLIB,DISP=CLD

~ //JOBLIB EXEC PGM=LISPA

//LISPOUT DD SYSOUT=,DSNAME=nnnn.pppp,UNIT=231L C

// VOLUNE=SER=vvvv, SPACE=(CYL, (1,1)), C

// DISP-(sss, KEEP), DCB=(, BLKSIZE=133, RECFM=F)

//MLISP DD DSNAME=J629.TRANS,UNIT=231k, C
—

VOLUME=SER=SYS06,DISP=(0LD, KEEP)

//LISPIN DD *

OPEN (MLISP SYSFILE INPUT)

— RESTORE (MLISP)

MEXFR (

= (Mlisp program goes here)

“

= -16-

Batch ~--

Col. 72

-

//¥XXXX JOB(nnnn, bin, r, £),'your name',MSGLEVEL=1l
-

//JOBLIB DO DSNAME=SYS2 ,PROGLIB,DISP=0OLD

L //JOBLIB EXEC PGM=LISPA
//LISPOUT DD SYSOUT=A

L //MLISP DD DSNAME=J629.TRANS,UNIT=2314, C
VOLUME=SER=SYS06, DISP=(OLD, KEEP)

-
//LISPIN DD *

8 OPEN (MLISP SYSFILE INPUT)
RESTORE (MLISP)

- MEXPR ()

-

(Mlisp program goes here)
f

Lo where,
XXXX = job name

nnnn = job number

bin = Bin number

= r = Run time

| , = Lines of output
|—_-

PPPP = Wylbur output file name

L Va'a'av = Volume, for example, SYSO6

XXX = Status, NEW or OLD

- 3
See Users Manual” for more detail on control cards. After //LISPIN you

are taking to LISP/360. MEXPR() is the call on the translator.

i -17-

!

f

3

—

Bibliography

L

1. J. McCarthy, et al. Lisp 1.5

i. programmers manual. M.I.T. Press,

Cambridge, Mass., 1962.

| 2. J. Kent and R. Berns. Lisp/360
—

reference manual. Campus Facility Users Manual,

- Stanford Computation Center, 1967.

= 3. Users Manual, Computation Center,

Stanford University, Stanford, California 94305.

he

t

(-

