CS 92

MLISP

BY

HORACE ENEA

TECHNICAL REPORT NO. CS 92
MARCH 14, 1968

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

MLISP*

by

Horace Enesa

March 14, 1968

Computer Science Department
School of Humenities and Sciences

Stanford University

lmis research was supported by Grant MH 06645-06 from the National
Institute of Mental Health.

—~-s LY

Introduction

Mligp is an Algol-like list processing language based on Lisp 1.5 .
It is currently implemented on the IBM 360/67 at the Stanford Computation
Center, and is being implemented on the DEC PDP-6 at the Stanford Arti-
ficial Intelligence Project. The translator produces an object program
in Lisp 1.5 S-expressions. at a speed of 1800/2000 lines of Mlisp per
minute,

The principle reason for writing Mlisp was to provide a good list
processing language with a convenient notation, a higher degree of
machine independence, and string facilities., The balance of this paper
will be a very informal presentation of the language so that the reader
will be able to run programs in Mlisp with a minimum of effort. The
language has an extremely simple syntax which is presented in Appendix I.
The style of presentation will be by example. It is assumed the reader
knows Lisp 1.5 and is familiar with Algol, All the functions of the
underlying Lisp processor are available to the user, and therefore, the
user should consult the Lisp/360 menual in addition to this presentation,

Additionally, the storage conventions are, of course, those of the under-

lying processor; that is, limitations on the length of printnames of atoms,

conventions for numbers, handling of bindings, etc. These points are
generally not important to the Mlisp user since the translator knows

these conventions and produces appropriste S~expressions.,

.

p—

- r

Line No.

I

gOOO\IO\U'I»bw!\)

10
1i

13
14
15
16
17
18
19
20
21
20
23-
2k
25
26
27

4

28

The Sample

Program

Text

% THIS PROGRAM

BEGIN

IS AN EXAMPLE %

NEW A,B,C,D,I,J,L,ST;
MACRO OFF "VERBOS (NIL)";

Ci=(6.7%4)/3 + 2%

A:=C CONS D;
B:=,2,3>;
B:=C:=CDR(A);
B:="B;

C:="(B (C.A));

PRINT (ST:="AB// 7"@DBQUOTE) ;
PRINTSTR(ST SUBSTR <3,2>);

C:=MAKEATM("ASDF/ /");

LAST:=#1:
IF-L THEN NII,

ELSE IF — CDR(L) THEN CAR(L)
ELSE LAST(CDR(L));

REVERSE : =#1,:
BEGIN NEW I,J;

FOR I IN L DO
IF ATOM(I) THEN J:=I ¢ J
ELSE J:= REVERSE(I) £ J3

RETURN(J) ;
END;

Line No.

29
30
31
32
33
3L
35
36
37
38
39
Lo
41
4o
L3
Ly
L5
NS
L7

Text

RR:=#:<READ(), READ()>;

A:=DO I :=I+1 UNTIL FN(I);

B:=COLLECT <I:=FN(I)>UNTIL I EQ 'END;

WHILE —((A:=READ()) EQ 'END) DO INPUT(A);
C:=WHILE —((A:=READ()) EQ 'END) COLLECT <A>;
FOR I ON L DO FN(I);

J:=FOR I IN L DO FN(I) UNTIL QN(I);

FOR I IN 1 BY 4 TO 13 DO FN(I);

FOR I IN 1 TO 10 DO FN(I);

J:=FOR I IN L COLLECT FN(I);

J:=FN(FUNCTION(+), FUNCTION(TIMES));

J:=<3,2>,<4,<6,8>>> SUB <2,1>;
J:=F7(<152535455565758,9,0>);
OFF';

END.

(Input follows end.)

Explanation of Sample

Lines 1 to 47 represent a collection of all the features of Mlisp.
The program does not compute anything.

Line No,

1

Text

Comments ~--
Anything except a "%" between two "%"s is a comment
and is ignored by the translator.

Blanks =-
Blanks may be used between any identifiers or special
symbols to improve readability.

Programs =~
Mlisp programs generally start with a BEGIN and
finish with an END (See Appendix I for a definitive
specification of the syntax.). Each BEGIN-END pair
constitutes a program, The value of a program is NIL
unless there is a RETURN within the BEGIN-END pair.
(See line 26 for an example.) All BEGIN-END pairs
are translated into Lisp programs, and therefore,
return a value even if they have no local variables.

NEW --
Program variables are bound by the NEW declaration.
Their initial value is NIL.

MACROs --
A simple substitution macro facility is provided so
that line 45 will be expanded into:

VERBOS (NIL)

hn

— —

Line No,

5

Text
and then translated. If another macro call is dis-
covered it is expanded, therefore, recursive expansion

is possible. Macros must be declared before they are
used.
Arithmetic --
Line 6 translates into:
(SETQ C (QUOTIENT (TIMES 6.74)
(PLUS 3 (EXPT 2 4))))
Notice that hierarchies are right to left. Unary
operators (- + =) are translated before binary
operators. Any operator that is not unary is binary,
Infix operators --
Any function or operator which takes actly two
arguments may be used as an infix operator. The
translator recognizes the following abbreviations:

Mlisp Lisp
¢ C ONS
@ APPEND
= EQUAL
* TIMES

DIFFERENCE (or MINUS when used in unary position)

& AND

+ PLUS

/ QUOTIENT
| OR

Line No.

7

10-11

12

Text

Mlisp Lisp

| NOT (this is equivalent to NULL)

** EXPT
1= SETQ (when used as operator)
Lists --

a, 2, 3> translates into:
(LIST 1 2 3)
a, <2, 3>> translates into:
(LIST 1 (LIST 2 3))
Multiple assignment --
Multiple assigrment statements are allowed.
Quoting S~expressions =--
S-expressions are preceded by a single quote mark (t)
and follow the syntax of Lisp except that special
characters may not be used within an atom. (gee
line 14 for a description of how to create atoms
containing special characters.)
Strings --
"ABC" is an abbreviation for '(A B C) ; however,
special characters may appear between quotes ("),
and will be handled correctly. DBQUOTE has as its
value:
'(")
therefore, by using the APPEND operator (@) any

string may be created. ILine 12 would produce

-

-

L aaniah

Line No,

12

13

14

16- 19

Text

aB// 7")
as output. By using the intringic function PRINSTR
instead of PRINT we would have gotten:
AB// 7"
Substrings -~
The intrinsic function SUBSTR takes two arguments;
a string, and a list of two integers (starting position
and number of characters to be extracted). The value
of
"ABCDEF" SUBSTR <3,2>
is "CD". PRINT will print this as:
(c D)
and PRINTSTR will print this as:
CD
MAKEATOM and STR --
MAKEATOM takes a string as its argument and produces
an atam with that string as its printname. (See line 12),
STR takes an atom or a number and makes a string of
its printname,
Defining functionsz ~-
On line 16 LAST is defined to be a function. The
name of the function being defined need not be declared
NEW, Sharp (#) stands for LAMBDA. A function with
three arguments would start:

FN:=#A,B,C:

Line No.

16-19

21-27

Text

The translation of lines 16-19 is:
(DEFINE(QUOTE ((LAST
(LAMBDA (L)
(cowp
((NOT L) NIL)

({wor (CDR L)) (cm L))

))))
Remember in Lisp NOT and NULL are the same.
Another function is defined --
This function reverses a list. J 1s the value of
the function. I becomes successively:
CAR(L), CADR(L); .0
until I is exhausted. When L 1is exhausted, the
FOR expressicn (See 37-39) terminates and the value
of I becomes NIL outside the FOR expression. Notice
that a RETURN is needed for each BEGIN-END pair;
for example:
A:=BEGIN
RETURN (BEGIN
RETURN(L);
END);

END;

rr —

Line No.

29

31

32

Text
A function with no argument is defined ~--
RR, a function with no arguments is defined,
READ, a function with no arguments is called.
DO-UNTIL, -~
Every expression has a value including control ex-
Pressions,
FORM:
DO expressioni UNTIL expression?
EVALUATION:
A) V « value (expressionl),
B « value (expressionz).
if B # NIL then return (V).
go to A.
COLLECT- UNTIL -~
FORM:
COLLECT expressionl UNTIL expression?
EVALUATION:
V « NIL.
A) V « V append value (expressionl).
B « value (expression2).
if B # NIL then return (V).
go to A.
Notice that the value of expressionl should be a list,
and that expressionl may be considered as an "example"

of the value of the COLLECT-UNTIL.

- 9_)

=

—

Line No,

33

34

35

Text

WHILE-DO ~--
WHILE-DO is evaluated similarly to DO-UNTIIL except
that the test i1s performeg first.
FORM:
WHILE expressionl DO expressiong
EVALUATION:
V « NIL,
A) if value (expressionl) = NIL then
return (V).
V « value (expressionz).
go to A.
WHILE-COLLECT -~
WHILE-COLLECT is like COLLECT-UNTTIIL €xcept the test
is performed first,
FORM:
WHILE expressionl COLLECT expressgiong
EVALUATION:
V « NIL,
A) if value (expressionl) = NIL then
return (V) .
V « V append value (expression2).
go to A,
ON ==
ON may be subsii tvifteq for IN in any FOR expression,
When ON is used 'I' becomes successively L, CDR(L),
CDE of that, etc., until L is exhausted.

«10~

Line No. Text

36 UNTIL in FOR expression --

By adding an UNTIL clause to a FOR expression an
additional test may be performed. The FOR expression
will terminate if the value of the UNTIL becomes true
(non-NIL), The value of 'I' is the last value
assigned to it.

37-38 STEP-FCR --

In line 37 'I' becomes successively 1, 5, 9, 13.

In line 38 the BY is omitted and is, therefore,
understood to be 1.

39 FOR-COLLECT -~

COLLECT may be substituted for DO in FOR expressions
with the same effect as in WHILE-COLLECT or COLLECT-
UNTIL. Notice that 'FN(I)' must return a list as its
value,

41 Functional arguments --

Functional arguments are passed via the pseudo-function
FUNCTION as in Lisp 1l.5.

- 43 A subscription. function --

A subscripting function called SUB is available,

The value of 'J' in line 43 is L4, The first argument
is the list to be subscripted and the second is a
list of subscripts. An 'out of range' subscript
returns NIL. Subscripts may not be used on the

left of a ':=",

-11-

Line No.

Ly

46

bt

Text

Fields -~

A set of functions Fl, F2,...F9 is available
corresponding to CAR, CADR, . ..CADDDDDDDDR respectively.
The values of 'J' in line 44 is 7. A field function
may not be used on the left of a ':=",
Ending a program --
After the final END in a program put a period (.) .
Data -~
Input data directly follows the END card.
No special cards are needed after the last

data card.

Appendix I

The svntax of Mlisp

The syntax is in Backus-Naur form with the following
additions:

[1 enclosed construction is optiocnal

{3 alternative possibilities enclosed

preceding may be repeated any number of times

-13-

<prog>

<expr>

<simpex>

<opr>

<decl>

]

i

il

1}

h

1}

i

.. __
PP —

<expr>

<simpex> [<opr> <expr>]...

<empty>

BEGIN [<decl>;]... [<expr>[;

<expr>]...]END

IF <expr> THEN <expr> [ELSE <expr>]

. IN
FOR <da> {ON

COLLECT

<expr> <fortail>

{DO } <expr> UNTIL <expr>

DO
WHILE <expr> { c OLLECT}

<{<expr> [, <expr>]... >

"[<any character not">],.,"

(<expr>)
<simpex>

' <sexp>
<da> [<exprl>]

<umber>

AR VARAF AN

<did>
NEW <did> [,<id>]...

MACRO <id> "[<token>]...

-1k

| & @ | **
[<id> [, <dd>]...]: <simpex>

n

DO

<fortail> ::= [<by opt>] GOLLECT

} <expr> [UNTIL <expr>]

<py opt> = [BY <expr>] TO <expr>
<token> = <dd>

= <number>

= <any special character except " >
<exprl> = (<expr2> [,<expr2>]...)

v oHE i= [#[QD>]] :] <expr>

<expr2> ..z FUNCTION (<opr>)

= <expr>
. <sexp> . = (<sexpe>
; = <token>
<sexp> ti=)

<sexp> <sexp3>

it

i

<sexp3> <sexp>)
v o . <sexpl>
<sexph> ::=)

<sexp> <sexphk>

-15-

Appendix IT
o
Initial Conditions
The garbage collector printout is turned off; it may be
- turned on by saying:
- VERBOS(T) 3
Job Setup
~ Wylbur -- Col, 72
//¥XXX JOB (nnnn, bin, r, {),'your name',MSGLEVEL=1
//JOBLIB DO DSNAME=SYS?2,PROGLIB,DISP=OLD
- //JOBLIB EXEC PGM=LISPA
//LISPOUT DD SYSOUT=,DSNAME=nnnn.pppp, UNIT=231k4 C
// VOLUNE=SER=vvvv, SPACE=(CYL, (1,1)), C
// DISP=(sss, KEEP),DCB=(, BLKSIZE=133, RECFM=F)
//MLISP DD DSNAME=J629.TRANS,UNIT=231k, C
= VOLUME=SER=8YS06, DISP=(0LD, KEEP)
//LISPIN DD *
OPEN (MLISP SYSFILE INPUT)
- RESTORE (MLISP)
MEXFR 0
= (Mlisp program goes here)
|-

f
!
-

r-

— r-

—

r—

Batch ~-

Col. 72

//¥XXX JOB(nnnn, bin, r, £),'your name',MSGLEVEL=1

//JOBLIB DO DSNAME=SYS2 .PROGLIB,DISP=0LD

//JOBLIB EXEC PGM=LISPA

//LISPOUT DD SYSOUT=A

//MLISP DD DSNAME=J629.TRANS,UNIT=231k, C
VOLUME=SER=SYS06, DISP=(OLD,KEEP)

//LISPIN DD *

OPEN (MLISP SYSFILE INFUT)

RESTORE (MLISP)

MEXPR ()
(Mlisp program goes here)

where,

XX = job name

nnnn = Jjob number

bin = Bin number

T = Run time

{ = Lines of output

pppP = Wylbur output file name

Vv = Volume, for example, SYSO6

XXX = Status, NEW or OLD

See Users Manual’ for more detail on control cards. After //LISPIN you
are taking to LISP/360. MEXPR() is the call on the translator.

-17-

S |

E

e

1.

Bibliography

J. McCarthy, et al. Lisp 1.5
programmers manual. M.I.T. Press,

Cambridge, Mass., 1962.

J. Kent and R. Berns. Lisp/360

reference manual. Campus Facility Users Manual,

Stanford Computation Center, 1967.

Users Manual, Computation Center,

Stanford University, Stanford, California 94305.

-18-

¥ co—

