
cS 90

© A MULTI-LEVEL COMPUTER ORGANIZATION

"DESIGNED TO SEPARATE DATA-ACCESS ING

FROM THE COMPUTATION

BY

VICTOR R. LESSER

TECHNICAL REPORT NO. CS 90

March 11, 1968

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

u CGTM 37
January, 1968

A Multi-Level Computer Organization Designed to Separate

— Data-Accessing From the Computation

by Victor R. Lesser*

-

| ABSTRACT

| The computer organization to be described in this paper has been dev-

a eloped to overcome the inflexibility of computers designed around a few fixed
data structures, and only binary operations. This has been accomplished by

separating the data-accessing procedures from the computational algorithm.

= By this separation, a new and different language may be used to express data-

accessing procedures. The new language has been designed to allow the programmer

- to define the procedures for generating the names of the operands for each
computation, and locating the value of an operand given 1ts name.

| ¥ Supported in part by the National Science Foundation
w.

—

CONTENTS

I. Introduction

II. Data Accessing

A. Value Generation

Mechanism

Examples

Limitations

B. Name Generation

Mechanisms

Examples

III. Computer Organization

A. Memory Layout

B. Instruction Format

IV. Extensions and Further Research

V. Bibliography

|"—_—

| ~

ie

—

—

— I. Introduction

. In a conventional computer organization, procedures for accessing none

standard - data structures are expressed in the same language (same 1nstruction
. repertoire and instruction sequencing) as, and are intermixed with, the compu-

tational algorithm. If data-accessing can be decoupled from the computational

| algorithm, one can then implement them in different languages. This permits

= greater economy of representation and ease of programming for both the computa-
tion and data-accessing procedures. This 1s particularly true for sophisti-

= cated problems requiring data representations not anticipated by the computer

: designer.

. Computational operations performed on these complex data structures usually

involve multiple operands. * 2 Therefore, the accessing mechanism must be able
_ to locate both single elements and ordered sets of elements contained in the

data structure. This capability can be accomplished through two formalisms;

one which generates a list of names of operands, and the other which locates

) the value of an operand given its name. Using the above concepts hierarchic-

ally, a list of operand values can be extracted from the data structure to be

used as arguments for a computational operation. ,

In most computer organizations, the machine language instructions are

\ usually binary or unary operations, and the names of the operand for instruction’

are determined by the particular instruction format. In a single address

_ computer, one operand name (an address) 1s contained in the instruction, and the

| other operand is implicitly defined as the accumulator; while in a computer with:

. a stack mechanism, the operands are a few elements' at the top of the stack.

xt In most computers such commonly used data-structures as lists, matrices, and
stacks are considered non-standard.

— %© For example, most operations performed on matrices can be most easily
represented as operation on'rows (columns) rather than on individual elements,

of matrix,

1
- The important point of these examples 1s that the programmer has been given no
’ flexibility in defining the names of the operands for a computation except

= through the use of different instruction formats, The built-in mechanisms for
locating the value of an operand, such as indirect address, indexing, and

. B5500 program reference table, are useful, but only for a small class of data’

structures which are anticipated by the computer designer,

. The computer organization to be described in this paper has been developed
to overcome the inflexibility of computers designed around a few fixed data

structures, and only binary operations. This has'been accomplished by seperat-

= ing the data-accessing procedures from the computational algorithm. By this
separation, a new and different language may be used to express data-accessing

ng procedures. The new language has been-designed to allow the programmer to

¢ define the procedures for generating the names of the operands for each computes

“— tion, and locating the value of an operand given 1ts name.

- IT* Data Accessing

The program for data-accessing has been separated from the computational

N instruction stream by integrating the function of data--accessing into the
computer's memory organization. The key idea in this computer organization is

the ability of each memory register to be more than just a place to hold a.

value. Each memory register K (there are no special purpose registers) can be

3 thought of as representing two different entities depending on how the register
1s accessed in the computation:

_ 1) the name of an opernad K;

2) the name of a computation K.

. If the register 1s accessed as the name of an operand, then we are interest-
ed 1n obtaining the value of the operand, while if the register 1s the name of

the computation then we are interested in generating the names of the operands

- used by the computation. It is important to note the hierarchy: first we

generate the names of the operands for the computation, and then we determine’

~ the values of the operands” These two rfunctions of the register K are ac-

complished by auxiliary information attached to the register (in the implementa-

— tion to be described later, this will be through a pointer) which defines the

;

- first step 1n an algorithm for performing the desired task.

C A. Value Generation

The mechanism (formalism) for describing how the value of an operand 1s

T located, given its name, will be discussed first. The mechanism for generating
the names of the operands for a computation 1s more complex but 1t essentially

= is just an extension of the value generation mechanism. In locating the value
of an operand, 1t 1s desired to generate an access path between the name of the

— operand and its value. This 1s accomplished by attaching to each register K

the following auxiliary information:

_ 1) f, - the name of a function;
2) Ny - the name of a register whose value defines the number of primary

levels of 1indirectness;

~ 3) Fo - the name of a register whose value 1s used as one of the
; arguments for fier
. Let us define C(K) as the contents of register K. If the name of an operand

1s considered to be an address of a memory register, then the value of operand K,

V(X)., is defined by the following recursive definition:

v(0)=0

» v(1)=1

: v(K)=B(v(N) ,K)

= B(M,K)=V(B(M-1,K))=V (B(0,K))

. 3(0,K)T,(5,006), 7(e(1)), (Fy)
-This recursive definition for the value of a register 1s a generalization

I. and combination of the concepts of indirect addressing, and multi~leveling

indexing. At each level in an indirect chain, a computation may be performed to

u determine the address of the next register in the chain, and the .number of
further levels of indirectness is a data parameter contained in the auxiliary

. information, N, . In the normal implementation of indirect addressing either
the number of levels of indirectness is-fixed, or the length of 'chain is

completely controlled by the indirect bits contained in the registers of the
~ chained list. Both of these schemes do not allow operations such as retrieving

the Ith element of a chained list where the number I may vary each time the’

“ 4

~ chain is accessed. The value generation mechanism previously described allows
: the above operation, and much more sophisticated data accessing operations

— through the use of the parameter N,- If N =0, then the recursive mechanism
resembles an addressing schema with no indirection, while N=1 corresponds

- to the normal concept of indirect addressing. The computational capability

represented by the above recursive definition for V(K) 1s very similar to the

representation of an algebraic expression in Cheatham's pseudo code when

N, =0- Let us consider an example of the pseudo code resulting from the al-
gebraic expression:

—

A + 25x(B+C)

Co Line Operator Operand Descriptors

1 D. DysDy
~ D

2 Dy Doss 5 3

If we define the following functions for T:

_ I, (X, Y, Z,W)=Y+W

| T (X,Y, Z,W)=1i

~ then one possible'representation of the above algebraic expression in the

| recursive structure defined for value generation 1s:

Register X cx) ES UN Fy

_ 2 Value of A + 0 3

3 25 CX 0 4

— 4 Value of B A 0 address of C

Let us consider V(2):

v(2)=B(v(N,),2)=B(v(0),2)=B(0,2)

_ B(0,2)=T, (2,¢(2),v(c(2)),V(F_))
9 2

_ (2,0(2),v(c(2)),7(3))

. =C(2)+V(3)=Value of A+V(3)

| v(3)=B(0,3)=T, (3,C(3),7(c(3)),V(}))
=C(3)+V(4)=25xv(4)

| v(4)=Value of B+V(address of C)

if V(address of C)=Value of C

; then V(2)=Value of A+(25x(Value of B+Value of C))
~ If we define two additional functions:

| Togs (Ko Xr Z,W)=24W
-— Tops Ko Yo 25 W)=250

| the computation of the algebraic expression could be represented in a different

L manner:
| Register K c(K) fi We Fe
C 2 address of A ZW+ 0 3

: 3 25 X 0 L

4 address of B ZWX 0 address of C

| if V(address of A)=Value of A then
~ vV(2)=V(address of A)+V(3)

V(3)=25xv(k)

- V(4)=V(address of B)+V (address of C)
therefore V(2)=A+25x(B+C)

— These two formulations of the algebraic expression both have their ad-
| vantages. The first method 1s faster since memory references to find the value

- of A and B are unnecessary, but by having the value of A and B interconnected

| with the computation there 1s no way to isolate the value of A unless the

_ auxiliary information 1s altered. The second method does not have this problem
since the value of A is not part of the computation but only an operand. This

| alternate format also allows us to exploit parallelism.* Let us consider the
N following computation (A+B)e(C+D). Then it can be represented by the following

tree structure which 1s duplicated in the register configuration.

—

L

¥ This type of local parallelism introduced in computing the data-accessing

) mechanism is easily implemented since there is not the problem of side
_ effects, since no registers are modified 1n the process.

- Register K (K) fX egister C N

| AEN ’ : : k

A B C D 3 address of A ZW+ 0 address of B

“ 4 address of C ZzZW+ 0 address ofD

The three examples which follow indicate how the computational capability

— represented by the above,combined together with the level of indirectness, can

be used to locate elements in data structures. Before considering the examples,

o let us define the following additional functions:

I (X,Y, 2,W)=Y
Y

= T. (X,Y,Z,W)=X
Ix

Top (X,Y, 2, W)=¥+1
So...

EX 1: We would like register K to represent the matrix element [I, JJ.

: let us suppose the value of A [I, J] for particular I, J is the value
-

of the following cell:

Vv (BASE,+ I x D, + J)
he Let us define the following memory configuration:

lo Register L cx) Ip, N, I
K BASE , + 1 K1

I K1 J y 0 K2

K2 I X 0 K3

K3 Dy 1 0
le Then

© V(K) = B(V(1),K) = B(1,K)
~ B(1,K) = v(B(0,K))

B(0,K) = BASE, +V(K1)
- v(K1) = B(V(N,),K1)) = B(V(0),KL) = B(0,KL)

B(0,K1) = J+V(K2)

v(k2) = B(0,K2)

B(0,K2) = I x V(K3) |

v(k3) = B(0,K3) = D,
j —

V(k2) = I Xx Dy

V(Kl) = J + IT x D,
— B(0,K) = BASE, + J + I x D,

V(K) = V(BASE, + J + I x D,)
(-

a
7 .

“

: | Ex 2: We would like register K to represent the Jth element of an ordered list.

. Each element of the list 1s represented by a consecutive pair of

- registers; the first register contains the address of the first register

of the next pair, and the second register contains the value of the list

~ | element. The register configuration is more difficult thanin (EX 1)

| | since there are two separate actions which need to be performed:

_ 1) getting the address of Jth element of the list;
| 2) using the address of Jth element to get 1ts value: the value

ig 1s the second element in the register pair.
Let us suppose that L = address of the first elements of the list,

and each pointer element of the list contains the following auxiliary

= | information: f=Iy, N=0-
; Let us define the following memory configuration:

~~ Register P c(p) £, Np Ep

a | K 1 + 1 K1
Kl L Iy K2

— K2 J Ly 0

_ Then

V(X) = B(1,K) = V(B(0,K))

: B(0,K) = 1+V(K1)
Note V(Kl) = V(K1l) = Vv(B(V(XK2),K1))

address of the |{V(K2) = J

= Jth element V(K1) = v(B(J,K1)) = v(8(0,K1))
of - B(0,K1) = Lj V(K1) = V(L) |

— list [but V(M) = ¢(M), for eachM = the first element of list pair
| ~ v(K1) = ¢'(1) = coc -- c(L)

CO so we get that ;
V(K) = V(1 + ¢°(L))

| which is the value of the Jth element of list.

a

— Notice that 1f the second register was not an operand whose

value was the contents of the register -then the recursive iteration

| C would continue. If the second register was itself a pointer to a

list structure, we could, for instance, get the value of the Ith

L element of the Jth sublist.

EX 3: Let us consider the accessing of a LISP data structure (a binary tree)

~ by an arbitrary string of CAR'S and CDR'S.

\-

AY,

' :
- | |

2 .
py $5 of NG

- tte EE ———_

n Performing a CAR operation at a node means to take the left branch while

a CDR operation takes the right branch. If we have a sequence of these’

instructions, we then have a sequence of left and right branchings

starting at the top node. Let us represent each node as in (EX 2),

where the content of, the first register 1s now a pointer to the left

- node,. and that of the second register a pointer to the right node. Let

theauxiliary information at the Mth level of the free be the following:

- fy = +» Ny = 0, Fy =M+D
Then 1f at the M level we want to perform a CAR or CDR we set:

- 0 CAR
- =V (M + D) {Z 1,CDR

L Then we can perform a string of N CAR'S and CDR'S on any LISP data
structure by specifying L - the position of the first node =~, setting

the V(M + D) appropriately, and setting up the following memory con-

= figuration: | | |

—

: 3

~ j c(P) f N FRegister P ip 2p =p

C 3 L ; KID

Kl N Ty

L-

Limitations

-

The basic limitation in the value generation mechanism 1s that 1t "cannot"*

C be used to express data-accessing procedures which contain in some form the
concept of conditional branching. An example of a data structure which cannot

be accessed efficiently 1s that of a symmetric matrix:
-

if I2 J, C (BASE, + I XD, + J)
AlI,J] =

_ if I< J, C (BASE, + J xD, + I)

There 1s no way to define this data-accessing mechanism without comparing I with

— J and making a decision on the comparison or without using an extremely large

amount of excess storage which defeats the whole purpose.

1 We could program accessing of a symmetric matrix by the algorithm described

above, but the main computational program would have to make the decisions

_ about which data-accessing mechanism should be activated. There 1s a way of

adding conditional branching to the value generation mechanism, but this addition

| 1s dependent on using the auxiliary information required by the name generation
.

scheme. Therefore, a discussion of this new addition will be delayed until the

name—-generation mechanism 1s introduced.
-

B. Name Generation

— The concept of a name generation mechanism has appeared in many higher

level languages. Language formalism such as the FOR statement in AIGOL, he

- generator function in IPL-V, and the mapcar function in LISP are examples

of the implementation of the concept of name generation. This section describes. .

L one way 1n which the facility of name generation can be incorporated into a
* Cannot 1s a little too strong here since in many cases conditional branching,

may be replaced by the use of pre-stored data in the memory. The trouble is |
- that in most cases the extra storage is so prohibitively large that this

approach 1s ruled out.

[-

|

-

Eo

1 computer organization and be combined with the value generation mechanism pre-
viously described. The mechanism of name-generation gives the programmer the

definitional capability to specify the operands for the computation (including

~ the operands to contain the result). Implicit in the above definitional capa-

: bility 1s the ability to specify the number of operands.
“ The name-generation mechanism 1s especilally advantageous 1n a microprogram

| computer where macro instructions involving non-binary operators are easily

C constructed, In addition, it would be unnecessary to have variability in a
macro-instruction format since information concerning data-accessing 1s not

_ part of the instruction format: there is no need for complex decoding of the
instruction format. Pipeline computers also provide a place where name-genera-

tion-can be employed advantageously since creating streams of operands 1s very

= useful in this type of computer organization.

In the introduction, it was discussed how separating data-accessing from

“— the computation allowed for greater economy of representation (higher code

: density) in the program for the computation. This statement can be verified
— by considering the use of the name generation mechanism in a conventional

computer organized around binary operations. It has been found that for most

: problems it 1s unnecessary to have the three operands for a binary operation
| explicitly specified in the instruction. Therefore, in order to increase code

density, instruction formats have been developed 1n 'which one or more of the

” operands are implicitly specified: no address instructions for stack computers,,
1 and single address instructions for computers with accumulators. The incorpor-

ht ation of a name generation mechanism gives the programmer the ability to specify

| the names of the operands implicitly rather than as part of the instruction.
- Therefore, the programmer can construct (simulate) through the name generation

mechanisms the instruction format or formats which give the highest code density

_ for the particular problem.

| Name Generation Mechanism

= Based on the previous discussion the name generation must be able to gener-
ate a list of argument operand names and result operand names. In order to

= generate a list of names, there must be a parameter which specifies the number
of operands, anda parameter which is modified after each name is generated to'

—

—

-

- prepare for the generation of the next name. In addition, 1t 1s felt that the

| mechanism should handle the degenerate case of the three address instruction

on format, and inner product type calculations. The following name generation
mechanism was developed based on the above requirements, and the desire for

this mechanism to be similar to the value generation mechanism.
C

As in the value generation scheme, auxiliary information 1s attached to

| each register K:
|

g, = a function used in parsmeter adjustment after each cycle of iteration;

sk a register which generates the name of the second operand;

D - a register which generates the name of the result operand;
a1 1

BE '

fy , Fo - defined analogously to for Fo

n - defines the number of operands generated by register K.
LN.

Let us define OP(M) as the ith operand name (address) generated by the
register M. If i > vO), then the operand name OP (M) 18 considered to be null..
Let the register K be accessed as the name of a computation, then the following

sequential string of names* 1s generated:

1 1 1 2 2

OP (XK), OP (5), OP (D,), OP (K), OP"(8,),
2 . [] i -

oF“(D,), « « . ., OP(XK), OP™(S.), OP (D,)k k k

where the string continues until

: 1i = max (vin), v(n—_), vw))
k Sy Dk

We define oP" (K) in the following way:
i i

or" (K) = Tl (K,c(K), V(c(K)), V(F",))
k

¥*¥ Note the 6 pieces of auxiliary information can be grouped into 2groups
~~ of 3, such that each group has the same format as value-generation infor-

mation.

- * There 1s a difficult problem in deciding where the result operand names

appear in the generated list of names: intermixed or at the end of the

string. This really depends on the nature of the computations to be per-

’ formed on the argument operands. It is believed the best solution is for
he the memory organization to generate a result operand name only when the

computation desires to store a result. For the sake of example, the
intermixed case 1s represented.

where after each stage

cK)e—1T, (K,c(K), v(c(K)), V(X))k

so that 1f C* 1s the original C(K) then

i 1

OP" (K) = TL (K,L,V(L), V(F))
k

where

i-1
L=T (K,C*,v(C*),V(K))

Ex

The name-generation scheme for one step 1s exactly the same as value-

generation where there is no indirection. Instead of using the parameter
1 Ca fy -

Nk to specify the level of 1ndirectness it is used to specify the number of

operands to be generated. The contents of register K 1s the parameter which

~ 1s modified after each cycle, and 1s modified by the same scheme used to generate

the operand name at each cycle.

— The following examples illustrate how the name-generation mechanism can

be used to generate the names of the operands of some commonly used computation-

— al operations:

EX 1: A stack Address Mechanism. Let us define a stack by 2 registers.

_ The first register holds the contents of the top of the stack,
and the second contains the address of the second element of the

stack. (It 1s assumed the remaining stack entries are the se-

quential cells following the second element). Consider the follow-

ing register configuration:
- .

Reg P C(P) f N F
“2 2 2

K value of the top element of stack Ly 0
—

Kl address of the second element of stack Ty 0

| —

Reg P £ S D ft! XN’ F!
— 2 —E 2 2 2 2 |:

t K Ly K1 K Ix 1
-

Kl Pl Ly 1

\. Let us reference register K as the name of the computation; ther the
following operand names are generated:

-

1 |

~ oP'(k) = TT (XK, ¢(K), V(C(K)), V(F (X))= K
X

_ cK) = 11 (K C(K), V(C(K)), V(K)) = c(K)
Y

| oP (s,) ~ op (K1)
= 1

OP (K1) = T, (K1, c(K1), v(c(K1)), V(F' (K1))) = C(K1))
: | Y

— op (K1) = C(K1) = address of second element of stack

_ C(Kl) = Tp (K1, c(K1), v(c(kL)), V(KL)) = C(K1) + 1

| C(K1l) = address of third element of stack
—

0p" (D,) = op*(K) = K
C We get that computation K 1s a binary operation in which its argument

| operand names are K and the address of the second element of the stack, and the

result operand is also register K. If the value function 1s now applied to

the argument operands, we get V(K), V(address of second element of stack),

but V(K) = value of the top element of stack. The valueof the second operand

h cannot be predicted since we don't know the auxiliary information attached

to the second element of stack, but note that it could be itself an operand

— name which points into a complex data structure: 1t' could be in the form of

the name of a matrix element, as discussed in exemple 1 in the value generation

— section.

So we have seen that the correct operand names are generated for stack

_ operations,, and the addressing mechanism 1s set up properly for future stack
operations.

= Ex 2: Let us generate the names of the elements of a vector A ¢f length N.

There are two ways that this can be done, one in which the bese

“— address of A is destroyed, and the other in which a cell must be

| initialized to zero at the beginning of the procedure. Let us
- consider the former case; consider the following register configur-

ations:

—

Register P C(P rf N Fme i r I P
K BASE

A

- K1 N Ty 0

Register P &, S D f! N' F!

K Pl 0 ? Iy Kl

— 1 1

Then OP (K) = Tro (Ks c(x), v(c(x)), v(r J)

C = C(K) = BASE,

remember C(K) = Top (Ks ¢(K), v(c(x)), v(x))

— = C(K) + 1 = BASE, + 1

SO

— i _ i=-1
OP" (K) = TI (Xk, Tp ~ (K, ¢(K), V(c(K)), V(K)), v(c(k)), V(K))

Y

i-1

- = 137 (x, ¢(K), V(c(K)), V(K))
= C(K) + (i -1)

—

= + 1 =
BASE, 1 1

- So we generate the names

BASE, , BASE, + 1, .e..e BASE, + N -1
“ which are the elements of the vector A.

- This examples 1s not exactly right since the string of names generated

does not include any names generated for the result operands. As mentioned 1n

= a previous footnote, where the result operand names appear is a function of

the type of computation performed, and therefore 1n order to simplify the |
example they have been ignored.

-

| EX 3: Let us generate the names of the diagonal elements of a matrix A of | E
dimension N X N. Let A [I, J] = loc (BASE, + (I - 1) N+'0-1). Co
We then have A [I, I] = loc (BASE, + (1-1) X (N + 1)). For setting

- up this computation there 1s a very important point which must be

considered: whether the quantity (N + 1) should be computed each . |

o time, or whether it 1s a constant computed only once. This problem |
1

he

oo

~~ points up a limitation of the recursion computation capability

since there 1s no way to generate intermediate results and save them
i

- for future steps 1n the computation, except for the contents of

register K, but if the value 1s changed at one step then it 1s
t

a. changed at all steps. It appears that for complex data structures

to be done efficiently the computational algorithm must interact

L with the name generation mechanism to set up constants. Two
| register configurations will be set up to illustrate both of the

ways the problem can be attacked:

— Case 1: (N + 1) is defined previously

Register P c(p f N F- eit 2 “R 2
K BASE, Iw 0 KN1

a KN N Iy 0

(KN1 N+1 Ly 0
C R ! t ! t

eglister P & S D £ ~~ .N F| a “p 2 D 2
K + 0 ? Ty KN

- 1
We get OP (XK) = C(X) = BASE,

. C(K) = I, =.C(K) + V(K)

V(X) = Tru = V (Kl) = (N+ 1)
= so C(K) = C(K) + (N + 1)

L
Case 2: (N + 1) 1s computed.

3 The-only change is register KN:
c(KN1) = 1

f
= a = -_—KN1 , Ny Oo, F KN

L then V(KN1L) = C(KN1) + V(XN) = (N + 1)
The problem of computing the names of a row of a matrix: A [I,,*] are

L similar to the above problem since A [I, *] = loc of
| (BASE,+ (I - 1) N+ J), J=1, . . N. The quantity (I = 1) X N would
L need’ to be pre-computed or generated at each stage.

L 16

IIT. Computer Organization

The next sections are concerned with how the value generation and name
{

— generation mechanism already discussed can be integrated into the framework of

a total computer organization. The first section discusses a possible technique

. for adding the auxiliary information to a memory structure; the second section

discusses an instruction format which can advantageously use the value end name

generation mechanisms; the final section is concerned with possible extensions.
|—_—

A. Memory Layout
~—-

Before discussing the instruction format, it is worthwhile to consider a

possible schema for the memory organization:

register K | c (x) ’ | B P ER A
£ N F dr d2 =a |

uu Ce ———— Co |

I : ; Se

Attached to each register K, we have a pointer, P (K), which points to a table
— !

entry which contains 3 additional pointers. . Each of 'these pointers

(35 Jos J3) o (K) points into table containing, for each entry, a function
~ and two operands. We then get that =~

£f, N,F)=/(f | |

1 Nt 1f=. F

s,D) = (f, N, F

- This double level technique for determining the auxiliary information has been

used since the 9 pieces of auxiliary information can be broken up into3 groups,

C each having the same format. |

|.

B. Instruction Format

The instructimm formats have been designed to make full use of the implicit

name generation capability and therefore get high code density whenever possible,

There are three pieces of data which must be either implicitly or explicitly

stated in each instruction format:

1) OP - operation code;

2) KX - the name of the cell generating the names of the operands;

3) J - the entry in the table (J1, J2, J3) which specifies the auxiliary

informet 1on.

Let us define KI, and JI as registers which contain values for K and J,

respectively. There are four basic instruction formats:

(- 1) OP - this instruction format is used when the name generation mechanism

is fixed like a stack address mechanism. 'The values of K.) J.
are used for K, J.

2a,b) OP-K - this instruction format is essentially a single address

5 instruction in which J = P(K). There could be another variation

3) OP-J-where K = KI, This instruction is advantageous when for one

~ instruction a different set of auxiliary information is desired:
this 1s useful when the contents of a register is to be altered,

“ and the value of the register is not its contents.

4) OP-K-J, The justification for this format is similar to that of
{

. format 3.

There Will be other formats but they will be concerned with modifying

. pointer variables P(K), KI, JI, entries (915 Jp, 33)% end (£, N, F)*.
Let us consider how the addressing schemes of conventional computers can

be represented 1n this computer organization.
|

- * Tt'ls really not necessary to modify these entries, therefore, they could
be located in a slow write fast read memory.

¥
¥

ho

-

| 18

—

Ex 1: Stack computer - a computer where instructions are just operation

ou codes and can be accomplished through the format OP, where XK; end J
point to a stack address mechanism previously discussed.

| Ex 2: Single address computer - in this organization one operand is

= contained in the instruction and the second and result operands

| : are the accumulator. Let us simulate this instruction format with
-- the format OP-K where J = Joe Let us define register A to be the

accumulator. Consider the following auxiliary information for every

i register:

| Se = A, Dy = A 8 = Iy

P= 1, N = 1 rro=T

fl then oP (X) = I: (X, yy) = K, first operand name
X

op’ (s,) = P(A) = TI (A, , 5) =A, second operand name
x

In a similar manner a computer with an instruction format of single address

plus increment can be implemented using the format OP-K-J. 'If, 1n most cases,

the index register associated with a variable 1s fixed, then the format

- OP-K can be used. The format of the /360 with base registers can be accomplished
| by using the format OP-J. The purpose of these examples is to show how .

— programmer could structure the generation of the names of the operand of a
computation so as to be most efficient (high code density) for the particular

_ application.

CL IV. Extensions and Further Research
In the section on value generation a limitation of this mechanism was

discussed. This problem arises due to the inability to alter the value

" generation algorithm based on the comparison between two operands.. It is
| believed that this problem can be remedied if the auxiliary information tied

. to the name-generation mechanism 1s used where comparisons are necessary. There
are 3 triplets of auxiliary information; let one of these triplets be used to

~— make the comparison, and, based on the comparison, use one of the two remaining

triplets to generate the value of the register.

: 19

|
Another extension is oriented towards high code density. In the instruction

L format previously mentioned the variable K which defined an address 1n memory

was assumed to be large enough so as to address all of pemory. In the B5500,

4 it was shown that through the use of a program reference table, the operand
| address in an instruction could be mé&de to be much smaller than the length of

| memory, thereby increasing code density. The program reference table 1s an
— address generation mechanism easily simulated in this organization. Therefore

it would seem reasonable to have instruction formats where the size of K was

- smaller than the length of memory. This smaller size K could also be used as

increment quantity which would allow a simulation of one of the IBM-360

L instruction formats: RX.
There are two important questions so far ignored, whose answers will

{

L eventually decide the utility of the concepts developed in this paper:
1) How can the name and value generation mechanisms be implemented

i in computer hardware, and with what speed?
2) Can a compiler for a higher level language produce machine code

| which takes Yadvantage" of this data accessing mechanism?
|

We Further research 1s intended to answer these questions.

—

—

{
|

“

L

¢

—

\
-

|
Bibliography

{

-

1. McKeeman, W.M. Language directed computer design. AFIPS Cont Proc
- 1967 FJCC pp 413-417.

2. Iverson, K.E. A Programming Language Wiley 1962.
.

3. Holland, J.H. A Universal Computer Capable of Executing an Arbitrary
Number of Subprograms Simultaneously. Proc. EJCC (1959).

- 4. Murtha, J.C. Highly Parallel Information Processing Systems.
Advances in Computers, Vol. 7.

- 5. Standish, T.A. A Data Definition Facility for Programming Languages.
Ph.D Thesis, Department of Computer Science, Carnegie-Mellon University.

L 6. Barton, R.S., A New Approach to the Functional Design of a Digital Computer
Proc. WJCC 19, (1961) pp. 393-39.

8 Te Cheatham, T.E. The introduction of definitional facilities into higher
level programming languages Proc. AFIPS FJCC(1966), 623-637.

| 8. Galler, B. and Perles, A.J. A proposal for definitions in AIGOL
- CACM 10(April 1967).

—

—

|
-

(_

-

-

-

