CS 90

A MULTI-LEVEL COMPUTER. ORGANIZATION
DESIGNED TO SEPARATE DATA-ACCESS ING
FROM THE COMPUTATION

BY

VICTOR R. LESSER

TECHNICAL REPORT NO. CS 90
March 11, 1968

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

T
lUN;q.' N

£

2

i CGTM 37
January, 1968

, AMulti-Level Computer Organization Designed to Separate
- Data-Accessing From the Computation
by Victor R. Lesser*
(-
ABSTRACT

—

, The computer organization to be described in this paper has been dev-

L eloped to overcome the inflexibility of computers designed around a few fixed
data structures, and only binary operations. This has been accomplished by
separating the data-accessing procedures from the computational algorithm.

= By this separation, a new and different language may be used to express data-

{ accessing procedures. The new language has been designed to allow the programmer

- to define the procedures for generating the names of the operands for each
computation, and locating the value of an operand given its name.

x ¥ Supported in part by the National Science Foundation

(.

—

CONTENTS

I. Introduction

II. Data Accessing
A. Value Generation
Mechanism
Examples
Limitations
B. Name Generation
Mechanisms

Examples
ITII. Computer Organization
A. Memory Layout

B. Instruction Format

IV. Extensions and Further Research

V. Bibliography

I. Introduction

In a conventional computer organization, procedures for accessing non-
standard*1 data structures are expressed in the same language (same instruction
repertoire and instruction sequencing) as, and are intermixed with, the compu-
tational algorithm. If data-accessing can be decoupled from the computational
algorithm, one can then implement them in different languages. This permits
greater economy of representation and ease of programming for both the computa-
tion and data-accessing procedures. This is particularly true for sophisti-
cated problems requiring data representations not anticipated by the computer
designer.

Computational operations performed on these complex data structures usually
involve multiple operandS.*2 Therefore, the accessing mechanism must be able
to locate both single elements and ordered sets of elements contained in the
data structure. This capability can be accomplished through two formalisms;
one which generates a list of names of operands, and the other which locates
the value of an operand given its name. Using the above concepts hierarchic-

ally, @ list of operand values can be extracted from the data structure to be

used as arqguments for a computational operation. ,

In most computer organizations, the machine language instructions are
usually binary or unary operations, and the names of the operand for instruction'
are determined by the particular instruction format. In a single address
computer, one operand name (an address) is contained in the instruction, and the
other operand is implicitly defined as the accumulator; while in a computer with-

a stack mechanism, the operands are a few elements' at the top of the stack.

1

*~ In most computers such commonly used data-structures as lists, matrices, and

stacks are considered non-standard.

2 . . .

*~.For example, most operations performed on matrices can be most .easily
represented as operation on'rows (columns) rather than on individual elements,
of matrix,

PSS

The important point of these examples is that the programmer has been given no
flexibility in defining the names of the operands for a computation except
through the use of different instruction formats, Tye built-in mechanisms for
locating the value of an operand, such as indirect address, indexing, and
B5500 program reference table, are useful, but only for a small class of data'
structures which are anticipated by the computer designer,

The computer organization to be described in this paper has been developed
to overcome the inflexibility of computers designed around a few fixed data
structures, and only binary operations. This has'been accomplished by separat-
ing the data-accessing procedures from the computational algorithm. By this
separation, a new and different language may be used to express data-accessing
procedures. The new language has been-designed to allow the programmer to
define the procedures for generating the names of the operands for each compute-

tion, and locating the value of an operand given its name.

II* Data Accessing

The program for data-accessing has been separated from the computational
instruction stream by integrating the function of data--accessing into the
computer's memory organization. The key idea in this computer organization is
the ability of each memory register to be more than just a place to hold a.
value. Each memory register K (there are no special purpose registers) can be
thought of as representing two different entities depending on how the register
is accessed in the computation:

l) the name of an opernad K;

2) the name of a computation K.

If the register is accessed as the name of an operand, then we are interest-
ed in obtaining the value of the operand, while if the register is the name of
the computation then we are interested in generating the names of the operands
used by the computation. It is important to note the hierarchy: first we
generate the names of the operands for the computation, and then we determine’
the values of the operands" These two rfunctions of the register K are ac-
complished by auxiliary information attached to the register (in the implementa-

tion to be described later, this will be through a pointer) which defines the

r

first step in an algorithm for performing the desired task.

A. Value Generation

The mechanism (formalism) for describing how the value of an operand is
located, given its name, will be discussed first. The mechanism for generating
the names of the operands for a computation is more complex but it essentially
is Just an extension of the value generation mechanism. In locating the value
of an operand, it is desired to generate an access path between the name of the
operand and its value. This is accomplished by attaching to each register K
the following auxiliary information:

1) f, - the name of a function;

2) Nk - the name of a register whose value defines the number of primary
levels of indirectness;
3) Fk - the name of a register whose value is used as one of the
arguments for fk'
Let us define C(K) as the contents of register K. If the name of an operand
is considered to be an address of a memory register, then the value of operand K,

V(K) ., is defined by the following recursive definition:

v(o)=0

v(1)=1

v(x)=B(v(N) ,K)

B(M,K)=V (B(M-1,K))=V" (B(0,K))

B(0,K)=T, (K,C(K),V(¢(K)),V(F))

k

-This recursive definition for the value of a register is a generalization
and combination of the concepts of indirect addressing, and multi-leveling
indexing. At each level in an indirect chain, a computation may be performed to
determine the address of the next register in the chain, and the .number of
further levels of indirectness is a data parameter contained in the auxiliary
information, Nko In the normal implementation of indirect addressing either
the number of levels of indirectness is-fixed, or the length of 'chain is
completely controlled by the indirect bits contained in the registers of the
chained list. Both of these schemes do not allow operations such as retrieving

the Ith element of a chained list where the number I may vary each time the'

chain is accessed. The value generation mechanism previously described allows
the above operation, and much more sophisticated data accessing operations
through the use of the parameter Nk' If NK=O’ then the recursive mechanism
resembles an addressing schema with no indirection, while N-k=l corresponds
to the normal concept of indirect addressing. The computational capability
represented by the above recursive definition for V(K) is very similar to the
representation of an algebraic expression in Cheatham's pseudo code when

N, =0. Let us consider an example of the pseudo code resulting from the al-

k
gebraic expression:

A + 25x(B+C)

Line Operator Operand Descriptors
1 D+ DA’D2
D
2 D>< D25, 3
3 D+ DB’DC

If we define the following functions for T:
T, (X,Y,2,W)=Y+W
TX(X,Y,Z,W)=Y>M

then one possible'representation of the above a.JTgebraic expression in the

recursive structure defined for value generation is:

Register K G(K) E.I.(. HE EK
2 Value of A + 0 3
3 25 X 0 4
4 Value of B + 0 address of C

Let us consider V(2):
v(2)=B(v(N,),2)=B(V(0),2)=B(0,2)
B(0,2)=T,, (2 c(2),v(c(2)),v(F,))
T, (2 c(2),v(c(2)), v(3))
=C(2)+V(3)=Value of A+V(3)
v(3)=B(0,3)=1,(3,C(3),v(c(3)),V(}))
=C(3)+V () =25V (L)

V(4)=Value of B+V(address of C)

[

o

if V(address of C)=Value of C
then V(2)=Value of A+(25x(Value of B+Value of C))
If we define two additional functions:
Tzw+(X,Y,Z,W)=Z+W
T.ZWX(X,Y,Z,W)=Z><W

the computation of the algebraic expression could be represented in a different

manner:
Register K c(x) £ W Fe

2 address of A ZW+ 0 3

3 25 X 0 L

4 address of B ZWX Q address of C

if V(address of A)=Value of A then
V(2)=V(address of A)+V(3)
V(3)=25xv(4)
V(4)=V(address of B)+V(address of C)
therefore V(2)=A+25x(B+C)

These two formulations of the algebraic expression both have their ad-
vantages. The first method is faster since memory references to find the wvalue
of A and B are unnecessary, but by having the value of A and B interconnected
with the computation there is no way to isolate the value of A unless the
auxiliary information is altered. The second method does not have this problem
since the value of A is not part of the compu£ation but only an operand. This
alternate format also allows us to exploit parallelism.* Let us consider the
following computation (A+B):(C+D). Then it can be represented by the following

tree structure which is duplicated in the register configuration.

¥ This type of local parallelism introduced in computing the data-accessing
mechanism is easily implemented since there is not the problem of side
effects, since no registers are modified in the process.

X Register K C(K f N,
PN 7 (K) K K T
///f\\ //h\\ 2 3 ZWX 0 4
A B C D 3 address of A ZW+ 0 address of B
4 address of C ZW+ 0 address of D

The three examples which follow indicate how the computational capability
represented by the above,combined together with the level of indirectness, can
be used to locate elements in data structures. Before considering the examples,

let us define the following additional functions:
f (X,Y,Z2,W)=Y
Y

T (X,Y,Z,W)=X
X
Tpy (X, Y,2,W)=Y+1
EX 1: We would like register K to represent the matrix element [I, J].
Let us suppose the value of A [I, J] for particular I, J is the value
of the following cell:
V (BASE, + I x D, + J)

A
Let us define the following memory configuration:

Register L c(@) 2 b} iy
K BASEA + 1 K1l
K1 J + 0 K2
K2 I X 0 K3
K3 DA IY 0
Then

V(K) = B'(V(l),K) = B(1,K)

B(1,K) = V(B(0,K))

B(0,K) = BASEA+V(K1)

V(1) = B(V(Ng,),K1)) = B(V(0),K1) = B(0,K1)
B(0,K1) = J+V(X2)

v(k2) = B(0,K2)

B(0,K2) = I x V(XK3)

v(x3) = B(0,K3) = Dy

V(K2) = I x D,

V(K1) =J + I X D,

B(0,K) = BASE, + J + I x Dy
V(K) = V(BASEA +J+ I x DA)

o

Ex 2:

Let us

Note V(K1) = ;’V(Kl)
address of the [V(K2)
Jth element < V(K1)

of

list

We would like register K to represent the Jth element of an ordered list.
Each element of the list is represented by a consecutive pair of
registers; the first register contains the address of the first register
of the next pair, and the second register contains the value of the list
element. The register configuration is more difficult than in (EX 1)
since there are two separate actions which need to be performed:

1) getting the address of Jth element of the list;

2) using the address of Jth element to get its wvalue: the value

is the second element in the register pair.

Let us suppose that L = address of the first elements of the list,
and each pointer element of the list contains the following auxiliary
information: f=Iy, N=0-

define the following memory configuration:

Register P c(p) i Ef EP
K 1 + 1 K1
X1 L Iy K2

K2 J Iy 0 -

Then
V(K) = B(L,K) = V(B(0,K))
B(0,K) = 1+V(K1)

v(B(V(K2),K1))

J

V(B(J,K1)) = VJ(B(O,Kl))

B(0,K1) = Ly V(K1) = v'(L)

NPut'V(M) = C(Mg, for each M = the first element of list pair
V(K1) = c'(L) = ccc -- ¢(L)

J times

[}

so we get that
V(K) = V(1 + CJ(L))
which is the value of the Jth element of list.

re

-

—

EX 3:

Notice that if the second register was not an operand whose
value was the contents of the register -then the recursive iteration
would continue. If the second register was itgelf a pointer to a
list structure, we could, for instance, get the value of the Ith

element of the Jth sublist.

Let us consider the accessing of a LISP data structure (a binary tree)

by an arbitrary string of CAR'S and CDR'S.

]
E

Q.
A < b
\Y)

L s e
e A e

SEPIPSTEIR |

Performing a CAR operation at a node means to take the left branch while
a CDR operation takes the right branch. If we have a sequence of these'
instructions, we then have a sequence of left and right branchings
starting at the top node. Let us represent each node as in (EX 2),
where the content of, the first register is now a pointer to the left
node,. and that of the second register a pointer to the right node. Let

theauxiliary information at the Mth level of the free be the following:

£ = + = =M+ D
fM B NM 0, FM
Then if at the M level we want to perform a CAR or CDR we set:
= 0 CAR
Vv (M +D
() = 1,CDR

Then we can perform a string of N CAR'S and CDR'S on any LISP data
structure by specifying L - the position of the first node -, setting

the V(M + D) appropriately, and setting up the following memory con-

figuration:

‘
+

e

—

Register P c(P) L N, EE
K L + K1 D
K1 N Iy

Limitations

The basic limitation in the value generation mechanism is that it "cannot"*
be used to express data-accessing procedures which contain in some form the
concept of conditional branching. An example of a data structure which cannot

be accessed efficiently is that of a symmetric matrix:

. > o
if I2 7, C(BASEA+I><DA+J)

if1<J, C (BASEA+JXDA+I)

AlI,J] =

There is no way to define this data-accessing mechanism without comparing I with
J and making a decision on the comparison or without using an extremely large
amount of excess storage which defeats the whole purpose.

We could program accessing of a symmetric matrix by the algorithm described
above, but the main computational program would have to make the decisions
about which data-accessing mechanism should be activated. There is a way of
adding conditional branching to the value generatidﬁ mechanism, but this addition
is dependent on using the auxiliary information required by the name generation
scheme. Therefore, a discussion of this new addition will be delayed until the

name-generation mechanism is introduced.

B. Name Generation

The concept of a name generation mechanism has appeared in many higher
level languages. Language formalism such as the FOR statement in AIGOL, the
generator function in IPL-V, and the mapcar function in LISP are examples
of the implementation of the concept of name generation. This section describes.

one way in which the facility of name generation can be incorporated into a

¥ Cannot is a little too strong here since in many cases conditional branching,
may be replaced by the use of pre-stored data in the memory. The trouble is
that in most cases the extra storage is so prohibitively large th&t this
approach is ruled out.

10

computer organization and be combined with the value generation mechanism pre-
viously described. The mechanism of name-generation gives the programmer the
definitional capability to specify the operands for the computation (including
the operands to contain the result). Implicit in the above definitional capa-
bility is the ability to specify the number of operands.

The name-generation mechanism is especially advantageous in a microprogram
computer where macro instructions involving non-binary operators are easily
constructed, In addition, it would be unnecessary to have variability in a
macro-instruction format since information concerning data-accessing is not
part of the instruction format: there is no need for complex decoding of the
instruction format. Pipeline computers also provide a place where name-genera-
tion-can be employed advantageously since creating streams of operands is very
useful in this type of computer organization.

In the introduction, it was discussed how separating data-accessing from
the computation allowed for greater economy of representation (higher code
density) in the program for the computation. This statement can be verified
by considering the use of the name generation mechanism in a conventional
computer organized around binary operations. It has been found that for most
problems it is unnecessary to have the three operands for a binary operation
explicitly specified in the instruction. Therefore, in order to increase code
density, instruction formats have been developed in 'which one or more of the
operands are implicitly specified: no address instructions for stack computers,,
and single address instructions for computers with accumulators. The incorpor-
ation of a name generation mechanism gives the programmer the ability to specify
the names of the operands implicitly rather than as part of the instruction.
Therefore, the programmer can construct (simulate) through the name generation
mechanisms the instruction format or formats which give the highest code density

for the particular problem.

Name Generation Mechanism

Based on the previous discussion the name generation must be able to gener-
ate a list of argument operand names and result operand names. In order to

generate a list of names, there must be a parameter which specifies the number

of operands, and a parameter which is modified after each name is generated to'

=

11

prepare for the generation of the next name. In addition, it is felt that the
mechanism should handle the degenerate case of the three address instruction
format, and inner product type calculations. The following name generation
mechanism was developed based on the above requirements, and the desire for
this mechanism to be similar to the value generation mechanism.

As in the value generation scheme, auxiliary information is attached to

each register K:

gk**— a function used in parsmeter adjustment after each cycle of iteration;

- a register which generates the name of the second operand;

Sk

Dk - a register which generates the name of the result operand;
1l 1 .

fk ,Fk - defined analogously to fk’Fk

Nkl - defines the number of operands generated by register K.

Let us define OP'(M) as the ith operand name (address) generated by the

1 e .
register M. If i > V(NlM), then the operand name OP @D 18 considered to be null..
Let the register K be accessed as the name of a computation, then the following

sequential string of names* is generated:
2 2
oP*(x), OP(s,), OP'(D,), OP(K), 0P (s,),
2 : i i i
0P"(D)s - « .« ., OP(K), OP (S,), OP"(D,)
where the string continues until
. 1 1
i = max (V(Y,), VOV), V(N)
k Sy Dk
We define OPl(K) in the following way:

o' (K) = Tl (K,C(K), v(c(K)), V(Fik))
k

** Note the 6 pieces of auxiliary information can be grouped into 2 groups
of 3, such that each group has the same format as value-generation infor-
mation.

* There is a difficult problem in deciding where the result operand names
appear in the generated list of names: intermixed or at the end of the
string. This really depends on the nature of the computations to be per-
formed on the argument operands. It is believed the best solutidon is for
the memory organization to generate a result operand name only when the
computation desires to store a result. For the sake of example, the
intermixed case is represented.

where after each stage

c(K)¢—T, (K,C(K), V(C(K)), V(K))
k
so that if C* is the original C(K) then

OPl(K) =T 1 (K,L,V(L), V(Fl))
fk K
where

_ i-1 * *
I = Tgk (K,cx,v(c*),V(K))

The name-generation scheme for one step is exactly the same as value-
generation where there is no indirection. Instead of using the parameter
N% to specify the level of indirectness it is used to specify the number of
operands to be generated. The contents of register K is the parameter which
is modified after each cycle, and is modified by the same scheme used to generate
the operand name at each cycle.
The following examples illustrate how the name-generation mechanism can
be used to generate the names of the operands of some commonly used computation-
al operations:
EX 1: A stack Address Mechanism. Let us define a stack by 2 registers.
The first register holds the contents of the top of the stack,
and the second contains the address of the second element of the
stack. (It is assumed the remaining stack entries are the se-
quential cells following the secbndidkmmnt). Consider the follow-

ing register configuration:

Reg P C(P) f N F
R ™ =2
K value of the top element of stack Iy 0
K1l address of the second element of stack Iy 0
Reg P S D f! N' F!
. % 2 2 2
K Iy K1 K Ix 1
K1 Pl Iy 1

Let us reference register K as the name of the computation; ther the

following operand names are generated:

e

r—

13

oP-(k) = 1 (K, c(K), V(C(K)), V(FH(K)) = K
X

c(k) =11 (X, ¢(K), v(c(X)), V(K)) = c(K)
y

OPl(Sk) = orl(m)

or'(K1) = T, (KL, C(K1), V(C(K1)), V(F' (K1))) = C(KL))
Y
OPl(Ki) = C(Kl) = address of second element of stack

c(k1) = Ty (K1, c(xa), v(c(kL)), v(k1)) = c(k1) + 1

address of third element of stack

it

C (K1)

OPl(Dk) = OPl(K) = K

We get that computation K is a binary operation in which its argument
operand names are K and the address of the second element of the stack, and the
result operand is also register K. If the value function is now applied to
the argument operands, we get V(K), V(address of second element of stack),
but V(K) = value of the top element of stack. The value of the second operand
cannot be predicted since we don't know the auxiliary information attached
to the second element of stack, but note that it could be itself an operand
name which points into a complex data structure: 1it' could be in the form of
the name of a matrix element, as discussed in example 1 in the value generation
section.

So we have seen that the correct operand names are generated for stack

operations,, and the addressing mechanism is set up properly for future stack

operations.

Ex 2: Let us generate the names of the elements of a vector A ¢f length N.
There are two ways that this can be done, one in which the bese
address of A is destroyed, and the other in which a cell must be
initialized to zero at the beginning of the procedure. Let us

consider the former case; consider the following register configur-

ations:

i

14

Register P
K

K1l
Register P
K

Then OPl(K)

remember C(K

SO

op* (K)

CgP! £ N 'F
“2 s 2
BASE
A

N Iy 0
5.9 S D ! N' o

4 2 s 2 =2 -2
Pl 0 ? Iy K1

1
- 11 (K, C(X), V(C(K)), V(F,))

= C(K) = BASEA

) = 1 (K, C(K), V(e(K)), V(K))

= C(K) + 1 =BASE, + 1

(K, T (K, C(K), V(C(K)), V(K)), V(C(K)), V(K))
Y

Tt (K, o(x), V(C(), V(K)
=C(K) + (1 -1)

= BASEA +1i -1

So we generate the names

BASE, ,

BAS?A + 1, .e..e BASEA + N -1

which are the elements of the vector A.

This examples is not exactly right since the string of names generated

does not include any names generated for the result operands. As mentioned in

a previous footnote, where the result operand names appear is a function of

the type of computation performed, and therefore in order to simplify th%

example they have been ignored.

EX 3:

Let us generate the names of the diagonal elements of a matrix A of

dimension N X N. Let A [I, J] = loc (BASEA + (I - 1) N+'J-1).

We then have A [I, I] = loc (BASEA + (1-1) X (N + 1)). For setting

up this computation there is a very important point which must be
considered: whether the quantity (N + 1) should be computed each

time, or whether it is a constant computed only once. This problem

i

-

r— r

r—

r— r— r—— r—

r—

r— r—

15

points up a limitation of the recursion computation capability

since there is no way to generate intermediate results and save them
for future steps in the computation, except for the contents of
register K, but if the value is changed at one step then it is
changed at all steps. It appears that for complex data structures
to be done efficiently the computational algorithm must interact
with the name generation mechanism to set up constants. Two
register confiqurations will be set up to illustrate both of the

ways the problem can be attacked:

Case 1: (N + 1) is defined previously
Register P c(P) f N F
= -2 2

K BASEA Iw 0 KN1

KN N Iy 0

KNl N+1 Iy 0
Register P S D £ N !
== & “p - o I

K + 0 ? Iy KW

We get OPl(K) = C(K) = BASEA

C

v

S0 C

C

The-on

Cc

f

(k) =T, =.C(K) + V(K)

(x) = T, = V(KNL) = (N'+ 1)
(K) =c® + o+ 1)

ase 2: (N + 1) is computed.
ly change is register KNl:
(KN1) =1

KN1 = +, NIGVl:O’IgNl:m

then V(XN1) = c(kN1) + V(KN) = (N + 1)

The problem of computing the names of a row of a matrix: A [I,,*] are

similar to the above problem since A [I, *] = loe of

(BASE,

need’

+ (I-1) N+J),J=1, . . N. The quantity (I - 1) X N would

to be pre-computed or generated at each stage.

e

re-

16

III. Computer Organization

The next sections are concerned with how the value generation and name
generation mechanism already discussed can be integrated into the framework of
a total computer organization. The first section discusses a possible technique
for adding the auxiliary information to a memory structure; the second section
discusses an instruction format which can advantageously use the value end name

generation mechanisms; the final section is concerned with possible extensions.

A. Memory Layout

Before discussing the instruction format, it is worthwhile to consider a

possible schema for the memory organization:

register K ¢ (x) i \~ P (X)
- \
f N P gL J2 J3
T
—— \\\f" ,

-

S

Attached to each register K, we have a pointer, P (K), which points to a table
|

entry which contains 3 additional pointers. . Each of'these pointers

(Jl, Jé, JB) b (X) points into table containing, for each entry, a function

and two operands. We then get that -

1 1
(f %x? le) F k) - (f’ N, F)JE, P(K)

(gk S, D) = (f: N, F)JB, P(K)

This double level technique for determining the auxiliary information has been
used since the 9 pieces of auxiliary information can be broken up into 3 groups,

each having the same format.

¢
;

rr-ro— r— rr— r— - [~

-

17

B. Instruction Format

The instructim formats have been designed to make full use of the implicit
name generation capability and therefore get high code density whenever possible,
There are three pieces of data which must be either implicitly or explicitly

stated in each instruction format:
1) OP - operation code;
2) K - the name of the cell generating the names of the operands;
3) J - the entry in the table (J1, 32, J3) which specifies the auxiliary
informat ion.

Let us define KI, and JI as registers which contain values for K and J,

respectively. There are four basic instruction formats:

1) OP - this instruction format is used when the name generation mechanism
is fixed like a stack address mechanism. 'The values of KI' JI

are used for K, J.

2a,b) OP-K - this instruction format is essentially a single address
instruction in which J = P(XK). There could be another variation
with J = JI.

3) OP-J-where K = KI, This instruction is advantageous when for one
instruction a different set of auxilié.ry information is desired:
this is useful when the contents of a register is to be altered,
and the value of the register is not its contents.

4) OP-K-J, The justification for this format is similar to that of
format 3.

There Will be other formats but they will be concerned with modifying

pointer variables P (K), KI, JI, entries (Jl,Jg,JB)*and(f,N,F)*.

Let us consider how the addressing schemes of conventional computers can

be represented in this computer organization.

* Tt'is really not necessary to modify these entries, therefore, they could
be located in a slow write fast read memory.

18

Ex 1: Stack computer - a computer where instructions are Jjust operation
codes and can be accomplished through the format OP, where Ki snd JI
point to a stack address mechanism previoug}y discussed.

Ex 2: Single address computer - in this organization one operand is
contained in the instruction and the second and result operands
are the accumulator. TLet us simulate this instruction format with

the format OP-K where J = JI' Let us define register A to be the

accumulator. Consider the following auxiliary information for every
register:
SK=A, DK'-:A gk=Iy
L — 1
= 9 = =
F e 7, NlK L £ K IX

then OPl(K) = T, (K, , ,) =K, first operand name
x

1 1 :
OP (Sk) = 0P (A) =TI (A, , ,)=A, second operand name

X

In a similar manner a computer with an instruction format of single address
plus increment can be implemented using the format OP-K-J. 'If, in most cases,
the index register associated with a variable is fixed, then the format
OP-K can be used. The format of the /360 with base registers can be accomplished
by using the format OP-J. The purpose of these examples is to show how .
programmer could structure the generation of the names of the operand of a
computation so as to be most efficient (high code density) for the particular

application.

IV. Extensions and Further Research

In the section on value generation a limitation of this mechanism was
discussed. This problem arises due to the inability to alter the value
generation algorithm based on the comparison between two operands.. It is
believed that this problem can be remedied if the auxiliary information tied
to the name-generation mechanism is used where comparisons are necessary. There
are 3 triplets of auxiliary information; let one of these triplets be used to
make the comparison, and, based on the comparison, use one of the two remaining

triplets to generate the value of the register.

r—

r— r

—

r—

r— r-

I

r— r— r r—

r—

r—

19

Another extension is oriented towards high code density. In the instruction
format previously mentioned the variable K which defined an address in memory
was assumed to be large enough so as to address all of memory. In the B5500,
it was shown that through the use of a program reference table, the operand
address in an instruction could be médde to be much smaller than the length of
memory, thereby increasing code density. The program reference table is an
address generation mechanism easily simulated in this organization. -Therefore
it would seem reasonable to have instruction formats where the size of K was
smaller than the length of memory. This smaller size K could also be used as
increment quantity which would allow a simulation of one of the IBM-360
instruction formats: RX.

There are two important questions so far ignored, whose answers will
eventually decide the utility of the concepts developed in this paper:

1) How can the name and value generation mechanisms be implemented
in computer hardware, and with what speed?

2) Can a compiler for a higher level language produce machine code
which takes ladvantage" of this data accessing mechanism?

Further research is intended to answer these questions.

-

r—

r——

—

-

r

r—-

-

Bibliography

1. McKeemen, W.M. Language directed computer design. AFIPS Cont Proc
1967 FJCC pp 413-417.

2. Iverson, K.E. A Programming Language Wiley 1962.

3.Holland, J.H. A Universal Computer Capable of Executing an Arbitrary
Number of Subprograms Simultaneously. Proc. EJCC (1959).

L. Murtha, J.C. Highly Parallel Information Processing Systems.
Advances in Computers, Vol. 7.

5. Standish, T.A. A Data Definition Facility for Programming Languages.
Ph.D Thesis, Department of Computer Science, Carnegie-Mellon University.

6. Barton, R.S., A New Approach to the Functional Design of a Digital Computer
Proc. WJCC 19, (1961) pp. 393-396.

T. Cheatham, T.E. The introduction of definitional facilities into higher
level programming languages Proc. AFIPS FJCC(1966), 623-637.

8. Galler, B. and Perles, A.J. A proposal for definitions in AIGOL
CACM 10(April 1967).

