
AF -218 |
|

.

| A COMPUTER SYSTEM

FOR

| TRANSFORMATIONAL GRAMMAR

by

JOYCE FRIEDMAN

| This research was supported in part by the United States Air Force

E lectronic Systems Division, under Contract F19628-C-0035.

STANFORD UNIVERSITY COMPUTER SCIENCE DEPARTMENT

| COMPUTATIONAL LINGUISTICS PROJECT

JANUARY 1968

"

— A COMPUTER SYSTEM FOR TRANSFORMATIONAI, GRAMMAR

Lo

ee

— by

:

- Joyce Friedman

L

|

_

|
L

p: AF ~ 21

a cs - 84 January 1968

- A Computer System for Transformational Grammar

Joyce Friedman

Abstract

2 A comprehensive system for transformational grammar has been designed
fe

3 and 1s being implemented on the IBM 360/67 computer. The system deals

| with the transformational model of syntax, along the lines of Chomsky's

K Aspects of the Theory of Syntax. The major innovations include a full

= and formal description of the syntax of a transformational grammar,

| a directed random phrase structure generator, a lexical insertion
—

algorithm, and a simple problem-oriented programming language in which

_ the algorithm for application of transformations can be expressed. In

: &1s paper we present the system as a whole, first discussing the

= philosophy underlying the development of the system, then outlining

the system and discussing its more important special features,
|

References are given to papers which consider particular aspects of

_ the system in detail.

L

i

L

1 Table of Contents

] Page

INtroduction + vv vv hh ee ee ee eee ee ee eee 1

E A metalanguage for transformational grammar 4

Bp Basic Concepts « « vv vv i hh hh ee eee eee eee ee 7

= Tree © © «ov tv i i i hh ee ee ee ee ee ee eee 7

ANAlySisS « «vv ee ee ee ee ee ee eee ee eee 9

Restriction . . . « « « «vt vv th hh ee eee eee 11

B " Analysis algorithm « «oo oo 0 0000000. 12
ee

Complex symbol « . . . +. . oe o os 6 o os o os s os o os o oo o 1)

| — Complex symbol operations . = s « o o o « « o o 0 o o o « o 14

: Components ce + eo + eo se eo ee eo eo ¢ o oe © © 0 ® 8 & 8 © eo oo eo oo oo 16
—

Phrase structure e © ea oo © © oo & 6 eo oo ee ee eo © oo 16

Lexicon o o o o © . ° LJ LJ © o o °] LJ o LJ ° LJ ® 17
-

| Transformations « oe o « os o« « o o « a os « oo o 18

- Component algorithms oe eo o o o « « os 0 os 0 o 0 o oo 19

Phrase structure generation « « « « o « « « « « o oo o « oo 19

Lexical insertion . . . +. . « oe o o o os os oa so o oo so oo o 20

L Control of transformations « « « « @ © @ @ @ © © « « « © « 22

} The Program . . . +. . «+ « «+ i + @ @ @ @ @ @ @ 2 @&@ DDD DDD 2k

— Directions for future work «+ + + «oo 0 0 0 ee. 25

Other transformational grammar systems 27

-
Acknowledgment « « + + + + 4 4 4 4 eee eee eee eee ee. 28

L References © « vv i i i hh de ee ee ee ee eee 29

—

= ii

| = INTRODUCTION

The computer system for transfcrmational grammar presented in this

- paper 1s the outcome of an attempt to write computer programs as aids
3 = to research in transformational grammar, 1n particular, as aids to

= writing grammars.

= In the course of this work 1t soon became apparent that an

Nu essential prior task was the formalization of a general and inclusive

Bg notion of transformational grammar. The basic model is that of Chomsky's

= Aspectsof the Theory of Syntax [3]; we have extended this model to fill

8 in the many missing details and have formalized 1% to make it precise.
aE

3 The system is implemented by a FORTRAN program on the IBM 360/67

computer. However, as a formal statement of transformational grammar,

2 1t can be considered independently of the program. We have therefore

= relegated to one section and to occasional fcotnotes all matters related
| directly to the program.

This paper may 'be considered as both a summary of and an introduction

N to the system. We have stressed the ways in which the system 1s new,

| and have left the details for other papers, which will be cited.

= In developing the system our primary examples have 'been the MITRE

: grammar— [18], the IBM Core Grammar [13] and the UCLA work on syntax 71

a However, we have not limited the system to matters treated in these

- examples, but have tried to be comprehensive.

k L/ The UCLA work has kindly been made available to us 1n its preliminary
| stages through unpublished working papers and memoranda. We wish also

3 to thank Barbara Hall Par-tee of UCLA for numerous discussions which
2 have helped to clarify our ideas about transformational grammar.
FL —

A transformational grammar may be sketchily described as follows.

| The components of a transformational grammar are phrase structure

rules, a lexicon, and a set of transformations,, The process of generating

_ a sentence consists first of the generation of a base tree using the

| phrase structure rules. Lexical items are then attached appropriately

= by a lexical insertion algorithm. Finally, the base tree with its lexical

; items 1s mapped by application of the transformaticns in some order into
|—_—

a surface tree. The terminal string of the surface tree represents the

LL sentence.

: From the outset we have felt that it was essential to consider a

— transformational grammar as a whole. Arule of a grammar may behave

| as intended in isolation, but in the grammar its interaction with other
|

rules 1s crucial. It is precisely these interrelations which are most

L difficult to control, and we believe it 1s here that a computer system

can be most helpful,

— We did not wish to try to guess the exact amount of power

1 required to describe the syntax of natural language, nor to be normative
in our approach. Our aim 1s to handle as uniformly and simply as we

:

: can the sorts of things which do appear in the current work on

; transformational grammar. The formalism has been made general enough

pe so that most of the formal grammars and rules which we have seen can be

expressed naturally. On the other hand, there are some devices 1n the
.

literature which appear to us to be so different in character from the
{

L rest of the material as to be unacceptable in anything like their present
2/form, and we have not included them.

_
As an example we might cite the distance measure included in the Identity

: Erasure Transformation of [13]. This appears to us to be more properly
considered as a linguistic rule, which should be expressible, but which

— should not appear as part of a particular transformation. Further
comments on linguistic rules of this type appear below.

|

L 2

— It 1s quite likely that at least some linguists will feel that

the generality of the system 1s excessive. But there is no need for any

one user to employ its full power. In the metalanguage of this system,

- a linguist may easily define his own subset of the syntax; we 'believe

such formalization will make 1t easier for him to adhere to his conventions,

Although we have not done so, it would be possible to provide user-

| oriented subroutines to verify that the user's additional constraints

= are not violated.

- The traditional description of a transformational grammar can be

given an alternative presentation in terms of basic concepts, components,

. and component algorithms. The basic concepts of a grammar are trees,

| analyses, restrictions, and complex symbols, with their corresponding

. algorithms. The components are phrase structure, lexicon, and

L transformations. The component algorithms are phrase structure genera-
tion, lexical insertion and control of transformations. Viewing a

“ grammar 1n this way, we are able to see more clearly the basic problems

| to be treated. It is this breakdown which will be used in the subsequent
description.

| We assume that the reader 1s familiar with transformational grammar.
The presentation is incomplete; we omit standard items and emphasize the

L ways 1n which this system differs from others. While the discussion

L below 1s largely informal, it is important that it is based on the
completely formal syntax of [21].

1

L

g
L

= A METALANGUAGE FOR TRANSFORMATIONAL GRAMMAR

| - To describe the syntax of a transformational grammar one must
| | first choose a metalanguage, The usual choice by linguists has been
| ” English. The metalanguage used here 1s a modification of Backus Naur

~ Form (BNF), familiar to computer scientists as the language used
in the description of Algol 60,As we will use the symbols |,

= < and 2» in transformational grammars, we modify the usual BNF by

2 replacing angular brackets by underlining, e.g. "transformation"
| - rather than "<transformation>", and using "or" in place of "|".

- For linguists unfamiliar with BNF it should suffice to say that

(1) the modified-BNF production " A ::= B C or D or E ©

| expresses the context-free rewriting rule "A - (: J ,
— (2) the nonterminal symbols of modified-BNF are denoted by the

underlined name of the construct;, viz. transformational grammar ::=

- phrase structure lexicon transformations (3) symbols not

3 underlined are used autonymously, and (4) juxtaposition in the
| object language 1s indicated by juxtaposition in the metalanguage.

We refer to the constructs of the metalanguage as "formats",

| because they are in fact the free-field formats of the computer system.

| We have carried the underlining of format names into the text of the

. paper.
re

3 . Basic to the syntax are the two formatswdrd and integer.
Fy

L word 1s a contiguous string of letters and digits beginning with a

i letter; integer 1s a contiguous string of digits, Except in these two
| — formats, spaces may be used freely.

3 If a BNF description 1s to elucidate a language, 1t should not

= introduce names for intermediate formats which do not have meaning.

In order to avoid additional formats where possible, and to simplify

{ — the description, we have introduced into the metalanguage the five

= operators list, clist, opt, booleancombination and choicestructure.

oT In each case the operand is given within square brackets following the

operator. Only the first three of these operators are used in this
SE

3 paper, They are:

_ a ::= list [integer |]

3 allows a to be

 — 1 2 6 9171 3 20

— 2. clist (comma list)

1 a t:= clist[integer]

allows a to be

: Ly, 2, ¢, 9171, 3, 20
p=

3 5. opt (option)
—

| a = opt [integer] word

| allows a to be either

3 NP or NP

_ It 1s clear that any occurrence of an operator in a production

- could be deleted by the introduction of intermediate formats and

corresponding additional productions, This would not change the object
-

language.

L A full description of the syntax of transformational grammar 1s

| given in [21]. In this paper we shall give only a few of the productions,
—

as needed to describe special features of the system,

—

{

|
—

|

-

L

J

L

f
b

— BASIC CONCEPTS

Lo Each of the basic concepts 1s used throughout a grammar; they

| are defined recursively in terms of one another.

Tree

he

The format for a tree 1s

N tree ::= node opt | complex symbol] opt [< list [tree] >]

where

~— node :!:= word or sentence -symbol or boundary symbol

| The optional list of trees 1s the list of daughter sub-trees of the
——

node in left-to-right order. For example, the tree— E—

n S <NP<N>VPKV >> represents:

: S

-

Because a bracketed representation of a tree can easily become

. cumbersome and unreadable, a substitution capability is provided by

. the production:

— tree specification::= tree/ opt [,clist[word tree]]

A occurrencead and then searched for an of the first word_
|—-—

in the list. Then the tree following the word is substituted for that

_ occurrence of the word. The process is repeated until the list is

exhausted. For example, the tree specification S < S81 S2 >,

- Sl NP<N >, S2 VP<X >, XV results in the same tree shown

] above.

- 1/
In this and other similar substitutions for a word, it is intended
that the word have exactly one occurrence in the tree.

-

I
f

.

xe
as

= Occasionally a tabular representation of a tree 1s preferable,

| | and one 1s avallable in the system. It 1s used for inputs to the

» random generation routine, and as the output format.

— For a detailed discussion of internal and external formats

for trees used in the system see [26].

= Tree operations

F The basic operations for trees are comparisons and changes.

= The. basic tree comparison is equality. The test for equality of trees

| | can be combined with a test for either equality or nondistinctness of

their corresponding complex symbols (see below). Trees may also be

2 tested to see 1f they include a specified node (dominance).

As Changes to trees include the elementary operations of the

MITRE grammar and the IBM Core grammar. They also include the operation
-

1 (tree) SUBST word which substitutes the tree for an occurrence of

. word. This can be used to allow a change to refer to a node inserted

[by a previous change in the same set.

I.

|.

—

L/_ The MITRE programs [5] and Londe and Schoene [10] handle this same
problemin other ways.

~
8

|

Analysis

- Analyses occur 1n two places in the grammar: in the structural

B description for a transformation and as contextual features.

| The syntax for an analysis 1s a strong generalization of the

a notion of proper analysis originally given by Chomsky. A proper

analysis 1s given by a list of nodes which are to occur in a left to

— right cut across a tree. The syntax of an analysis here is fully

recursive; the terms of the analysis are not simply nodes but structures

oT which may contain further analyses.

LL analysis ::= list [opt [integer] term]

8 Note that this labelling of terms of an analysis allows the linguist

= to number only those terms to which he will refer.

3 term : := structure or ekip r (choice)
] choice ::= clist [analysis |]

nN Any member of the clist will satisfy the choice.

| structure : := element opt | complex symbol]
opt [opt [=] opt [/]< analysis >]

g A structure 1s an element which may optionally have a complex symbol

= and may optionally have a further analysis. The analysis of the

N element may be negative ("not analyzable as", denoted by -1). The
3 optional slash indicates that the analysis 1s not necessarily immediate.

1. Its absence indicates an immediate analysis.

BH element ::= node or * or
L

An element may be a specific node (see definition above) or simply an

~ unspecified single word indicated by the definite node * . The
Bp underline symbol occurs only in analyses which are contextual features,

|N_

9

-

| and indicates the location Or j.yjc3]1 insertion. A complex symbol

g in an analysis always directly pq13ouqc an element.

! skip ::= % opt [< structure > |]
 - The use of skips rather than variables follows the MITRE grammar.

2 It may be noted that a tree is simply a subcase of structure

; - in which no integers and none of the special symbols (,) , -1, /
: ’
= ¥, and __ occur.

| —-—

-—

| 10

_

¢

CL

Restriction

t

L A restriction may occur only in association with an analysis.

It may be a proper part of a transformation, or may be part of a
— BE ————————————

contextual feature or 1t may define the 1.st for a conditional change
. - —_ ee eg

L in the structure change of a transformation.

if

C

f

¢

|

(.

.

11

§
Analysis algorithm

. The analysis algorithm will be described in detail in [24]. The
[one linguistic rule so far incorporated in the system occurs here. A

search 1s not allowed to go below a sentence symbol unless either the

| analysis 1s part of a transformation which has the parameter which

| specifically allows this, or the analysis itself contains a sentence
symbol for which a further analysis 1s given. Thus there are two ways

L to specify the depth of a search.
Another interesting feature of the analysis algorithm 1s the

I provision for handling the associated restriction, A three-valued
logic 1s used and the value of the restriction is "undefined" until

I the search has proceeded far enough to determine a value of "true"
I or "false" for the whole restriction. As the search proceeds or

backtracks the value of the restriction 1s continually set and unset.

L

|

|

|

L

L

|

L
12

)

: Complex symbol

| Complex symbols occur in trees, in analyses and restrictions, in

the structural change of a transformation, and in the lexical entries

B and the redundancy rules of the lexicon.
- We distinguish between a feature specification and a feature:

| feature specification ::= value feature

— Feature specifications occur only 1n complex symbols.

. A complex symbol 1s a list of feature specifications enclosed in

vertical bars and 1s interpreted as a conjunction, A lexical entry

L contains a list of complex symbols which 1s interpreted as a disjunction.

Only the three values + , - and * are allowed, L/ Following

— UCLA [17] a feature specification with the indefinite value * peans
that the feature 1s "marked", without specifying whether it is

| t* or - . The value * never appears in a complex symbol in a tree,

5 and 1s never used with a contextual feature.

| A contextual feature is an analysis structure which contains
= precisely one underline symbol __ and whose head element is a node.

It optionally has an associated restriction. The underline indicates

- the Aode wheres the lexical iwserhionowill cgcurd h ee rr ee s
to Chomsky's "principle of strict local subcategorization" will use

| as the head element of each contextual feature the node which immediately
t

. dominates the one for which the lexical insertion is to be made, Auser

L who disavows the principle may choose any dominating node for the head
element, Contextual features appear only in the lexicon and are used

LL solely 1n the lexical insertion process.

Yeross [6] allows arbitrary words to be declared as values.
-

: 13

L

3 Complex symbol operations

= The basic operations for complex symbols are comparisons and

¥ changes.

| The comparisons are for equality, non-distinctness, and two

i. types of inclusion. The result of the comparison of two feature

» specifications A and B is shown in the tables below, where T

| — represents true and F represents false and abs indicates that the

feature 1s absent altogether. For the test to be true for complex
—

symbols 1t must be true for all their feature specifications.

-— EQUALITY NONDISTINCTNESS INCLUSION-1 INCLUSION-2

| AE PANES CT PNET PARE|

+ | TFF F + | T FT 7 +l] TFT F| T|T F F F

FTF F -|lF TT 7 F T T F FTFF

* FET EF *® T T T TT * T T T F * FET F

: as| FFF T|abs| TT T Tab TT TT |abs TT TOI— — —

L The basic changes of compiex symbols include merging A into B

, moving the features of Ato B , erasing all the features of Afrom B ,

“ 'and saving in B only the feature specifications which are included-1

inA . The results of these operations are shown 1n the tables below.
—

It 1s to be expected that other operations will be added later as

L required.

L gn

= MERGE ERASE SAVE

2 Co B
Ep | \

» + + + + + + abs - - abs + + abs + abs

oo. + abs + abs - | abs - - abs
* + = x ¥ ¥ | abs abs abs abs * + - * abs

3 abs + - ¥* abs abs + * abs abs| abs abs abs abs

| o A redundancy rule A => C applies to a complex symbol B only

: if A is included-1 in B.« If so, then C is merged into B .

L

: COMPONENTS

The three components of a transformational grammar are

1 phrase structure, lexicon, and transformations.

| Phrase structure
-

| The phrase structure of the system is a conventional context-
~ free grammar. Complex symbols do not appear in the phrase structure:

| they .are introduced during lexical insertion (see below). Rules are
-

accepted in a linearization of the standard linguistic form and are

1 \L immediately expanded. For example, the rule
MV (NP))

L AUX
NP \ »

cop ({ 5 })LAP

| vp - (ADV)
L

| ;

| is represented as
| VP = (AUX (MV NP),COP((NP,AP;)),S)(ADV)

{ The expression of rule schemaslty use of the Kleene star *¥ has not
- 2

| been iicruded.?
-

=~ Blair [1] also expands from a compact form.

{

Po 2/1 onde [10] accepts the Kleene star.

8 16

_

= Lexicon

: — A lexicon contains a preliminary part, or prelexicon, which
g contains feature definitions and redundancy rules. The feature
3 definitions include a list of categurys1n the order of lexical insertion.

_ One may also give names to contextual features to avoid having fo write
| them in full in the lexical entries., A redundancy rule is of the form:

- redundancy rule ::= complex symbol = > complex symbol

H The interpretation 1s that 1f a complex symbol includes all the
3 feature specifications of the complex symbol to the left of the

_ arrow (= >) of a redundancy rule then it implicitly contains those

’ of the complex symbol to the right of the arrow, Explicit expansion

| of complex symbols by the redundancy rules can be carried out in the

: system.

B In a lexical entry the set of possible complex symbols for a

mn vocabulary word are given. If several vocabulary words have the identical

set of complex symbols, the vocabulary words appear in a single lexical

= entry, Each complex symbol corresponds to a sense of the word. The set

| of complex symbols 1s regarded as a disjunction. Since the complex symbol
—

itself 1s a conjunction of feature specifications this 1s in effect a

~ normal form, Thus the system has the same power as one which allows
arbitrary boolean combinations of features, (see Lakoff[7]), without

~ their complexity. For example, to say that a verb must have both an

1 animate subject and an 1nanimate object, one may use either one or two
feature specifications in the same complex symbol. To say that it must

have either an animate subject or inanimate object, two complex symbols

| are needed,

17

t

-

_ Transformations

] — The final component of a grammar cosists of a list of transformations

= and a control program. The discussion of the control program will be

i deferred to the section on the algorithm for control of transformationg.

LL A transformation consists of a transformation identification,

= a structural description, and (optionally) restrictions and structural

i -- change, The transformation identification may include, in addition to

: the transformation name, a group number and various parameters. A
 -— EE —

transformation may 'be referenced either-by the transformation name or by
¥ _—mm

EL the group number. The parameters indicate whether or not the transforma-

= tion 1s optional, whether (and how) it is to be repeated after a

— successful application, and whether or not the analysis algorithm may

x search below an unmentioned sentence symbol. Keywords are also given
here.

- The structural change is expressed, as in the MITRE grammar [18],

E by a list of operations. A new feature of the system is the
B

— conditional change.

B conditional change ::= IF < restriction > THEN
—

< structural change > ELSE

_ < structural change >

The basic operations for trees and complex symbols have already 'been

— discussed.

!

L

-

—
18

-

iS
:

| - COMPONENT ALGORITHMS

_ The three main algorithms of a transformational grammar correspond

g to the three components and are phrase structure generation, lexical

| — insertion and control of transformations, Our implementation of the
2 first process 1s designed to be useful in the testing of a grammar,

3 The second has not previously been fully described and we give for the
N first time an explicit algorithm. Various proposals have been made

; for the third algorithm; rather than choosing one of them we include the

~ specification of the algorithm as part of the grammar.

_ Phrase structure generation

|
The system can be started with a base tree input by the user.

: However, 1t also has the capability of "directed random" generation of

— trees from the phrase structure grammar. This scheme, which 1s described

| in detail in [20], allows the user to specify a "skeleton" around which

- a tree 1s generated at random. The skeleton may also bear constraints

1 of dominance, nondominance and equality, The scheme was designed to
make 1t possible for the user to generate trees which are "interesting"

— rather than simply random; 1n particular, which will test a specific

] transformation. It should be noted that there is a restriction on the
—

phrase structure grammars which can be handled by the algorithm:

the rules must be ordered so that no symbol 1s introduced below the

(rule-which expands it, with the exception of course of the sentence
L symbol.

J -—

- 19

-

2 Lexical insertion

3 = The algorithm for lexical insertion 1s an interpretation of one

= of the two alternatives presented by Chomsky in Aspects,, Complex

symbols are introduced from the lexicon only after the phrase

structure generation of the base tree 1s completed. In order to

= formelize the process, we have had to make decisions on many points
| CL
: not treated explicitly by Chomsky. The details are presented in [22] ;

© we note here some of the salient features.
Xe

; A contextual feature 1s simply aspecial case of analysis; thus

much of the work 1n lexical insertion 1s done by the same analysis

EK algorithm used for transformations.

— Lexical insertion begins with the lowest embedded sentence, and

B pA
B works upward. Within a sentence the order of lexical insertion 1s

determined by the list ofcategorys in the prelexicon. This order may

N have considerable effect on the efficiency of the process, However,

from a formal point of view, all categories are alike.

- The basic criterion for lexical insertion 1s non-distinctness:

the tree may already contain a complex symbol; a word and its complex
—

symbol can be inserted only 1f the complex symbol 1s non-distinct from

_ the one already in the tree, But this is only a necessary condition;

. each feature specification for a contextual feature must be checked by

— the analysis algorithm. If the value is + the analysis algorithm

| must succeed, and 1f - it must fail.
- CL

/ Although complex symbols are not introduced in the phrase structure,
it 1s possible that a skeleton input to the phrase structure generation

- routine already contains some words of the lexicon, In this case,
the complex symbols for those words are looked up in the lexicon and

inserted prior to the process described here.

u
20

{

-

“

Once a vocabulary word and complex symbol have been selected (at

random from those meeting the above tests), one additional step 1s
|V—

necessary before lexical insertion takes place. The possible side

— effects of the contextual features must be taken care of. If, for

| example, a verb has been selected which takes animate subject and

S.

inanimate object, feature specifications may need to be added to the

complex symbols for the subject and object. Then contextual features

are dropped from the complex symbol, since they have served their

- function, a + or- value replaces the indefinite value * , and

the vocabulary word and complex symbol go into the tree.
I I —— —_——

-

-

-

SE

.

C

L

i

ee

21

]

J

Eo
!

-

: Control of transformations

§
-

Each transformational grammar that has discussed at all the matter

‘

! of order and point of application of transformations has presented a
—

slightly different algorithm, From the available examples, it was

“ possible to abstract the basic ideas involved and to write a simple

programming language 1n which the linguist can express the algorithm

for a particular grammar. The control program refers to transformations

either individually by transformation name or by group number, The
“— _— or eer

language contains a repeat-instruction which allows a list of control
{ TE EEEEEEEEEEEEEEEEEE—eex—, ——————————

!

C instructions to be repeated either for a fixed number of times or until

(they all fail. One innovation is the IN-instruction. The statement
}

- IN transformation name (integer) DO

| causes the integer-th term of the transformation to be used as the
—

starting point for the search algorithm. Such notions as "highest

> sentence”, "lowest sentence", etc. can be expressed by the IN construct.

The notion of keyword has also been implemented. &/

L The control language allows branching on the success or failure

| of a transformation, The use of this conditional instruction makes it
possible to write transformations with less attention to certain types

w of interaction, For example, suppose transformation T2 is to apply

f only if Tl has failed to apply, Then the instructions
“ ee

1/ 1n- addition to controlling the grammar, the control Language also

1 provides TRACE instouctions which govern the amount of output,
2/ keywords were first used in the MITRE programs [5]. They were

implemented in a slightly different form by IBM [9].
[

L 22

ke

Ei
EL

au
u IF T1 THEN GO TO A ELSE GO TO B,

A: T2,

] B: a 0 0

| — willl cause T2 to be bypassed if Tl fails., This instruction may

= be considered excessively powerful., Tt is available because the

alternatives frequently seem to be either to alter artificially the

| structural description of T2 or to include a restriction on T2
such as: "applies only if Tl has failed to apply". L/

= For a detailed discussion of the control language and examples

Ek of control programs see [23].
We have not attempted to deal with the notion of implicit ordering

EB of transformations.
—

—

“

-

- 1/ Co
The use of the conditional instruction will of course speed up the
processing of a tree.

}

~ 23

9

§ THEPROGRAM

- The system 1s written as a collection of subroutines which can
4 be called in various orders. A table of the subroutine structure is
2 included in the Programmer's and User's Guide to the System [24].

| A MAIN program consists of a sequence of subroutine calls.,

Typically a run begins with a call to the initialization subroutine,

oT followed by calls to input routines for the components of the grammar.

N Then either a base tree 1s input, or a skeleton is input and the
3 generation routine called. Lexical insertion 1s optional at this

LC point. Then the transformation routine is called, and the program

| executes the user's control program, The process can be repeated with

- a new tree from the skeleton or with a new tree input.

MN Alternative MAIN programs to test individual components of the
i grammar can easily be constructed, For example, to test the phrase
~ structure one might simply generate trees at random, Or, to test

| lexical insertion one could start with base trees containing incomplete

| complex symbols and investigate how they were completed, Transforma-

HN tions can be tested beginning from base trees with (or without)
| lexical items already included,

. MAIN programs for a varietyof purposes are also given in [24].

The system is implemented in FORTRAN IV (H) on the IBM 360/67.

“- To the user, however, the system does not lonk like FORTRAN. All of

L the formats are free-field and, externally, words may be up to 40
characters long, See [19] for a description of the free-field

1 input/output subroutine package,

— oli

h
—

A DIRECTIONS FOR FUTURE WORK

= There are many ways in which the workwhich has been done can be

. extended, Some of these correspond to interesting open questions in

| the transformational theory of syntax., We mention here some areas 1n

which we plan to begin work soon, We think that the generality of the

= system will give us a strong starting point in these investigations.

Conjunction

A 1
| No means of handling transformational schemas such as conjunction

a has been provided. In the earlier programs at MITREa conjunction
|_-

| algorithm due to Schane [16] was included and we plan to carry this

— over 1nto the present system as its first version of conjunction. We

hope then to investigate the alternatives considered in the literature,

-

: Idioms

|.

} A common proposal for the treatment of idioms 1s that an idiom

— occurs as a tree in the lexicon. We foresee only minor difficulties

in incorporating idioms 1n this way, and plan to do so when time allows,

, Linguistic rules

“

The current trend in transformational linguistics includes a

- search for linguistic. rules which would apply to all grammars.

Ross [14 15], in particular, has been working along these lines. We
-

hope later to investigate this 'work 'by devising means of incorporating

{

i
£

-

!

. o5

2 proposed rules into the system. &/

1 Lexical derivation

| — The recent work byChapin[2] and Chomsky [4] on lexical

& derivation has opened up some interesting lines of investigation
=

: which we are now beginning to explore within the system, A preliminary

nN study of Chapin‘s early work was made prior to the development of the

3 system and is reported in [30].

3 Dependency grammars

= }
i Jane Robinson [12] has recently offered a proposal for transfor-

n mational grammars in which the underlying str-ucture 1s a dependency

2 grammar, The present system allows complex symbols to be associated

= with any node of a tree, but we do not now associate lexical words

2 with higher nodes as would be required by the "projectivity" of

dependency grammars.

_

|

N

“

-

L kos 's rule of tree-pruning has been incorporated by Gross [6].

L
26

—

[

. OTHER TRANSFORMATIONAL GRAMMAR SYSTEMS
:
- |

The earliest computer systems for transformational grammar were

L those of Petrick [11] and MITRE [18]. The system here is an outgrowth
and extension of this early work at MITRE. Naturally it embodies

C a more recent version of transformational theory.

The partial system of Lieberman and Blair [8,1] represents an

~ early attempt to deal with the model of Aspects, A lexicon was defined,

L and .phrase structure programs and some transformational programs were
, written.
L Systems developed concurrently with this one include the console-

[controlled grammar testers of Gross [6] and of Londe and Schoene 101.Y
The problems best treated by a system designed for immediate response

L to a user at a console differ from those appropriate to an off-line
| system such as ours. While there 1s some overlap in these systems,

| we believe ours 1s the first to cmsiderall phases of transformational

[grammar 1n a unified system,, For example, the three component algorithms
have no correspondents in other systems and neither has included a

L lexicon, Various differences 1n common areas have been noted above.

L

L

L

| 1/le wish to thank both Dave Londe and Lou Gross for many pleasantand fruitful discussions, and for a free exchange of ideas from
which our work has benefitted.

{ }
[

Lo
;
L

- ACKNOWLEDGMENT

Ia The system described in this paper was developed with Robert W.

Doran (metalanguage, basic syntax, free-field input/output, analysis
a.

| algorithm), Thomas H, Bredt (lexicon and lexical insertion),

. Theodore S, Martner (analysis algorithm), and Bary Pollack (restrictions,

control language). We have worked closely and well together; while

the primary areas of responsibility are as shown above, there 1s no

partof the system that has not been helped by ideas from others in the
—

| group.

~

‘
:
—

-

1
f

a

L

e

4
—

28

ze
3 REFERENCES

[1] F. Blair, Programming of the grammar tester, in [9].

o [2] Paul Chapin, On the Syntax of Word Derivation in English,

» MIT Thesis, 1967.

: [3] Noam Chomsky, Aspects of the Theory of Syntax, M.I.T. Press,

1 _ Cambridge, Massachusetts, 1965.

& [4] Noam Chomsky, Nominalilization, to appear in Peter S. Rosenbaum

and Roderick Jacobs, eds., Readings in English Transformational

x Grammar, Blaisdell Publishing Co.
Ee

E [5] J. Friedman, SYNN, an experimental analysis program for

: transformational grammars, WP-229, The MITRE Corporation, 1965.

: - [6] L. N. Gross, On-line programming system user's manual,

g MIP-59, The MITRE Corporation, 1967.

[7] George Lakoff, On the nature of syntactic irregularity, NSF-16

_ The Computation Laboratory, Harvard University, 1965.

E [8] D. Lieberman, Design of a grammar tester, in [9].

[9] D. Lieberman, ed., Specification and Utilization of a

| Transformational Grammar, AFCRL-66-270, 1966.

[10] D. L. Londe and W. J. Schoene, TGT: Transformational Grammar
—

Tester, Systems Development Corporation, 1967.

. [11] Stanley R. Petrick, A recognition procedure for transformational

/ grammars, M.I.T. Thesis. 1965.

b

~

29

[12] Jane J. Robinson, A dependency-based transformational grammar,

: IBM Research Report RC-1889, Yorktown Heights, N. Y., 1967.
—

‘ [13] P. Rosenbaum and D. Lochak, The IBM Core Grammar of English,
|

= in [9].

L [14] John R. Ross, A proposed rule of tree-pruning, paper presented

; to the Linguistic Society of America, 1965.

[15] John R. Ross, Constraints on variables in syntax, M.I.T. Thesis,

; [16] Sanford A, Schane, A schema for sentence coordination, MTP-10,

The MITRE Corporation, 1966.

- [17] R. Stockwell, P. Schacter, B. Partee, et. al,, Working Papers

/ of the English Syntax Project, UCLA, 1967.

[18] A. M. Zwicky, J. Friedman, B. Hall, and D. E. Walker, The MITRE Analysis
t

. Procedure for Transformational Grammar, Fall Joint Computer

Conference 1965, 27, 317-326. See also MIP-9, The MITRE

— Corporation, 1965.

“

-

(. 30

L

[The following references are working papers and reports of the

- Computational Linguistics Project, Computer Science Department,

: Stanford University.

[19] Robert W. Doran, 360 0.S. FORTRAN IV Free-field Input/output

u Subroutine Package, CS-79, AF-1k4, October 1967.

x [20] Joyce Friedman, Directed Random Generation of Sentences, CS-80,
=

AF-15, October 1967 (submitted for publication),

= [21] Joyce Friedman and Robert W. Doran, A Formal Syntax for

: Transformational Grammar, AF- , forthcoming.

j [22] Joyce Friedman and Thomas H. Bredt, Lexical Insertion in

| Transformational Grammar, AF- , forthcoming,

B [23] Joyce Friedman and Bary Pollack, A Control Language for

Transformational Grammar, AF- , forthcoming,

- [24k] Joyce Friedman, ed., Users' and Programmers' Guide to a Transfor-

mational Grammar System, This document 1s not yet complete but

the following sections are available as working papers:

[25] J. Friedman, Subroutine Structure, AF-17, November 1967.

-[26] J. Friedman, Trees, AF-1, September 1966.

[27] J. Friedman, Input routine for transformations, AF-16,

“- October 1967.

. [28] J. Friedman, Input routine for structural change, AF-18,

: November 1967.

L [29] Bary Pollack, Routines for restrictions, AF-19, December 1967.

[[30] Joyce Friedman, Programming lexical grapho-morphemic analysis,

f AF-3, November 1966.
L 2

