CS-84
AF -218

A COMPUTER SYSTEM
FOR
TRANSFORMATIONAL GRAMMAR

by.
JOYCE FRIEDMAN

This research was supported in part by the United States Air Force
E lectronic Systems Division, under Contract F19628-C-0035.

STANFORD UNIVERSITY COMPUTER SCIENCE DEPARTMENT
COMPUTATIONAL LINGUISTICS PROJECT
JANUARY 1968




r—

r—

— r— 1 r*;*

—

A COMPUTER SYSTEM FOR TRANSFORMATIONAI, GRAMMAR

by

Joyce Friedman




? AF - 21
if cs - 84 January 1968
—
o A Computer System for Transformational Grammar
by
Joyce Friedman
t Abstract

A comprehensive system for transformational grammar has been designed

, and is being implemented on the IBM 360/67 computer. The system deals
E_ with the transformational model of syntax, along the lines of Chomsky's
i Aspects of the Theory of Syntax. The major innovations include a full
- and formal description of the syntax of a transformational grammar,
L’ a directed random phrase structure generator, a lexical insertion
, algorithm, and a simple problem-oriented programming language in which
L_ the algorithm for application of transformations can be expressed. In
: &is paper we present the system as a whole, first discussing the
- philosophy underlying the development of the system, then outlining
‘ the system and discussing its more important special features,
-

References are given to papers which consider particular aspects of
“ the system in detail.

r



Table of Contents

Page

Introduction . . . . v . u e e e e e e e e e e e e e e e e 1

L A metalanguage for transformational grammar . . . . . . . . . . 4

Basic concepts . . . v v v i b e e e e e e e e e e e e e e 7

- Tree . . v v i i i e e e e e e e e e e e e e e e e e e e 7

Z Analysis v v v v v v e e e e e e e e e e e e e e e e e 9
-

Restriction . . . . o v v o o o 00000 d e e e e e e 11

i_ " Analysis algorithm . . . . . . ¢ . . o oo 000 . 12

Complex Symbol « . . . . . o o o o o s o s s o o s o o o o 13

- Complex symbol operations . « o« « o « o « « o o o o « o « o 14

COMPONENtS + & + v + v v v v v v o o o o o o o o s o o o oo o« 16

P

Phrase structure . . . . . o o e s s o o o« o s« o o« o o o o 16
' LeXiCOn . v v v v v v v v . o s o s s e o o o o s s o s s 17
-
. Transformations . . . . . . o o o o o « o o o o o o a o o & 18
- Component algorithms . . . . . . o « ¢« ¢ o « o« o o s o o o o o « 19
! Phrase structure generation « « « o o o« o ¢ o o« o o o o « « 19
L

Lexical insertion . . . . . o o o o o s o o s o s o s o s o 20

Control of transformations « « « « @ @ « @ © © © = = = = « 22

r—

The Program . . . « v v v v v v v @ @ 0 0 0o o oo sssssaa 4

e

Directions for future work . . . . . . ¢ ¢ ¢ ¢ . v v e e e e 25

Other transformational grammar systems . . . . . . . . . . . . . 27

r—

Acknowledgment . .« « « + + ¢ 4 4 4 4 4 e e e e e e e e e e oL 28

L_ References . v v v v v v i e e e e e e e e s s s s s s o0

-

r—

ii




- INTRODUCTION
L The computer system for transformaticnal grammar presented in this
| paper is the outcome of an attempt toc write computer programs as aids
= to research in transformational grammar, in particular, as aids to
_ writing grammars.
- In the course of this work it soun became apparent that an
- essential prior task was the formalization of a general and inclusive
notion of transformational grammar. The basic model is that of Chomsky's
- Aspects of the Theory of Syntax [3]; we have extended this model to fill
: in the many missing details and have formalized it to make it precise.
—
' The system is implemented by a FORTRAN program on the IBM 360/67
fi_ computer. However, as a formal statement of transformational grammar,
- it can be considered independently of the program. We have therefore
- relegated to one section and to occasional fcotnotes all matters related
directly to the program.
- This paper may 'be considered as both a summary of and an introduction
— to the system. We have stressed the ways in which the system is new,
and have left the details for other papers, which will be cited.
~ In developing the system our primary examples have 'been the MITRE
grammar- [18], the IBM Core Grammar [13] and the UCLA work on syntax [l?]%/
- However, we have not limited the system to matters treated in these
;_ examples, but have tried to be comprehensive.
. l/The UCLA work has kindly been made available to us in its preliminary
— stages through unpublished working papers and memoranda. We wish also
to thank Barbara Hall Par-tee of UCLA for numerous discussions which
: have helped to clarify our ideas about transformational grammar.
~—
C 1
-




. r""“'f

r—

—

r— r— r r -

r—

A transformational grammar may be skeichily described as follows.
The components of a transformational grammar are phrase structure
rules, a lexicon, and a set of transformations,, The process of generating
a sentence consists first of the generation of a base tree using the
phrase structure rules. Lexical items are then attached appropriately
by a lexical insertion algorithm. Finally, the base tree with its lexical
items is mapped by application of the transformaticns in some order into
a surface tree. The terminal string of the surface tree represents the
sentence.

From the outset we have felt that it was essential to consider a
transformational grammar as a whole. A rule of a grammar may behave
as intended in isolation, but in the grammar its interaction with other
rules is crucial. It is precisely these interrelations which are most
difficult to control, and we believe it is here that a computer system
can be most helpful,

We did not wish to try to guess the exact amount of power
required to describe the syntax of natural language, nor to be normative
in our approach. Our aim is to handle as uniformly and simply as we
can the sorts of things which do appear in the current work on
transformational grammar. The formalism has been made general enough
so that most of the formal grammars and rules which we have seen can be
expressed naturally. On the other hand, there are some devices in the
literature which appear to us to be so different in character from the
rest of the material as to be unacceptable in anything like their present

form, and we have not included them.g/

g/AS an example we might cite the distance measure included in the Identity
Erasure Transformation of [13]. This appears to us to be more properly
considered as a linguistic rule, which should be expressible, but which
should not appear as part of a particular transformation. Further
comments on linguistic rules of this type appear below.

2



It is quite likely that at least some linguists will feel that
the generality of the system is excessive. But there is no need for any
one user to employ its full power. 1In the metalanguage of this system,
- a linguist may easily define his own subset of the syntax; we 'believe
such formalization will make it easier for him to adhere to his conventions,
Although we have not done so, it would be possible to provide user-

oriented subroutines to verify that the user's additional constraints

-
are not violated.
— The traditional description of a transformational grammar can be
given an alternative presentation in terms of basic concepts, components,
L and component algorithms. The basic concepts of a grammar are trees,
E analyses, restrictions, and complex symbols, with their corresponding
L .-

algorithms. The components are phrase structure, lexicon, and

r““;

transformations. The component algorithms are phrase structure genera-
tion, lexical insertion and control of transformations. Viewing a
grammar in this way, we are able to see more clearly the basic problems

to be treated. It is this breakdown which will be used in the subsequent

—

description.

We assume that the reader is familiar with transformational grammar.

The presentation is incomplete; we omit standard items and emphasize the

-~ ways in which this system differs from others. While the discussion
below is largely informal, it is important that it is based on the
o
completely formal syntax of [21].
e
-
.



-

A METALANGUAGE FOR TRANSFORMATIONAL GRAMMAR

To describe the syntax of a transformational grammar one must
first choose a metalanguage, The usual choice by linguists has been
English. The metalanguage used here is a modification of Backus Naur
Form (BNF), familiar to computer scientists as the language used
in the description of Algol 60, As we will use the symbols |,
< and > in transformational grammars, we modify the usual BNF by

replacing angular brackets by underlining, e.g. "transformation"

"t

rather than "<transformation>", and using "or" in place of "|".
For linguists unfamiliar with BNF it should suffice to say that

(1) the modified-BNF production " A ::= B C or D or E “
B C

expresses the context-free rewriting rule " A = ( D ",
E

(2) the nonterminal symbols of modified-BNF are denoted by the

underlined name of the construct;, viz. transformational grammar ::=

phrase structure lexicon transformations (3) symbols not

underlined are used autonymously, and (4) juxtaposition in the
object language is indicated by juxtaposition in the metalanguage.

We refer to the constructs of the metalanguage as "formats",

because they are in fact the free-field formats of the computer system.

We have carried the underlining of format names into the text of the
paper.
. Basic to the syntax are the two formats whrd and integer.

word is a contiguous string of letters and digits beginning with a

letter; integer is a contigquous string of digits, Except in these two

formats, spaces may be used freely.



e

r—

-

If a BNF description is to elucidate a language, it should not
introduce names for intermediate formats which do not have meaning.
In order to avoid additional formats where possible, and to simplify
the description, we have introduced into the metalanguage the five
operators list, «clist, opt, booleancombination and choicestructure.
In each case the operand is given within square brackets following the
operator. Only the first three of these operators are used in this

paper, They are:

1. list

a ::= 1list [ integer ]
allows a to be

1 2 6 9171 3 20

2. clist (comma list)
a t:= clist [ integer ]
allows @ to be

1, 2, 6, 9171, 3, 20

3. opt (option)

a .:= opt [ integer ] word

allows a to be either

3 NP or NP

. It is clear that any occurrence of an operator in a production
could be deleted by the introduction of intermediate formats and
corresponding additional productions, This would not change the object

language.



{.
-

A full description of the syntax of transformational grammar is

given in [21]. 1In this paper we shall give only a few of the productions,

r—

asneeded to describe special features of the system,

r— r— r—

r

r— rm— r



=

BASIC CONCEPTS

o Each of the basic concepts is used throughout a grammar; they

are defined recursively in terms of one another.

~—
Tree
S
The format for a tree is
o tree ::= node opt [ complex symbol ] opt [ < list [ tree ] > ]
where
— node ::= word or sentence -symbol or boundary symbol
f The optional list of trees is the list of daughter sub-trees of the
-
node in left-to-right order. For example, the tree
‘ _ B
‘_ S <NP<N>VP<V >> represents:
: S
— NP VP
N v
-
Because a bracketed representation of a tree can easily become
L_ cumbersome and unreadable, a substitution capability is provided by
. the production:
- tree specification ::= tree/ opt [,clist [ word tree ]]
' A occurrencead and then searched for an e;/ of the first word
—
in the list. Then the tree following the word is substituted for that
o occurrence of the word. The process is repeated until the list is
exhausted. For example, the tree specification S < 81 S2 > ,
— S1L NP <N >, S2 VP<X >, XV results in the same tree shown
: above.
= 1
—/In this and other similar substitutions for a word, it is intended
that the word have exactly one occurrence in the tree.
-

7




Occasionally a tabular representation of a tree is preferable,
and one is available in the system. It is used for inputs to the

random generation routine, and as the output format.

For a detailed discussion of internal and external formats

for trees used in the system see [26].

Tree operations

The basic operations for trees are comparisons and changes.
The. basic tree comparison is equality. The test for equality of trees
can be combined with a test for either equality or nondistinctness of
their corresponding complex symbols (see below). Trees may also be
tested to see if they include a specified node (dominance).

Changes to trees include the elementary operations of the

MITRE grammar and the IBM Core grammar. They also include the operation

( tree ) SUBST word which substitutes the tree for an occurrence of

word. This can be used to allow a change to refer to a node inserted

by a previous change in the same set.;/

i/The MITRE programs [5] and Londe and Schoene [10] handle this same
problem in other ways.



Analysis

Analyses occur in two places in the grammar: in the structural
description for a transformation and as contextual features.

The syntax for an analysis is a strong generalization of the
notion of proper analysis originally given by Chomsky. A proper
analysis is given by a list of nodes which are to occur in a left to
right cut across a tree. The syntax of an analysis here is fully
recursive; the terms of the analysis are not simply nodes but structures
which may contain further analyses.

analysis ::= 1list [ opt [ integer ] term ]

Note that this labelling of terms of an analysis allows the linguist

to number only those terms to which he will refer.

term : := structure or ekip r ( choice )
choice ::= clist [ analysis |

Any member of the clist will satisfy the choice.

structure : := element opt | complex symbol ]
opt [ opt [ =] opt [ /1< analysis > ]

A structure is an element which may optionally have a complex symbol

and may optionally have a further analysis. The analysis of the
element may be negative ("not analyzable as", denoted by -1). The
optional slash indicates that the analysis is not necessarily immediate.
Its absence indicates an immediate analysis.

element ~:= node or * or __
An element may be a specific node (see definition above) or simply an

unspecified single word indicated by the definite node ¥ . The

underline symbol occurs only in analyses which are contextual features,




and indicates the location for 1oyji.a1 insertion. A complex symbol

in an analysis always directly foliows an element.

skip ::= opt [ < structure > ]

The use of skips rather than variables follows the MITRE grammar.

It may be noted that a tree is simply a subcase of structure

in which no integers and none of the special symbols ( , ) , -1, /

¥, and __ occur.

10




r— r—

L

r— r— r—

r

r-— r—

e . . rm rmrrmrrmT oo

Restriction

A restriction may occur only in association with an analysis.

It may be a proper part of a transformation, or may be part of a

contextual feature or it may define the rest for a conditional change

in the structure change of a transformation.

11



C

C

— — e= r— rMr~Mrcc - O e B e

Analysis algorithm

The analysis algorithm will be described in detail in [24]. The
one linguistic rule so far incorporated in the system occurs here. A

search is not allowed to go below a sentence symbol unless either the

analysis is part of a transformation which has the parameter which

specifically allows this, or the analysis itself contains a sentence
symbol for which a further analysis is given. Thus there are two ways
to specify the depth of a search.

Another interesting feature of the analysis algorithm is the
provision for handling the associated restriction, A three-valued
logic is used and the value of the restriction is "undefined" until
the search has proceeded far enough to determine a value of "true"
or "false" for the whole restriction. As the search proceeds or

backtracks the value of the restriction is continually set and unset.

12



.

-

o

r

r—

r

Complex symbol

Complex symbols occur in trees, in analyses and restrictions, in

the structural change of a transformation, and in the lexical entries

and the redundancy rules of the lexicon.

We distinguish between a feature specification and a feature:

feature specification ::= value feature

Feature specifications occur only in complex symbols.

A complex symbol is a list of feature specifications enclosed in

vertical bars and is interpreted as a conjunction, A lexical entry

contains a list of complex symbols which is interpreted as a disjunction.

Only the three values + , - and * are allowedcl/ Following

UCLA [17] a feature specification with the indefinite value * peans

that the feature is "marked", without specifying whether it is
t+ or - . The value * never appears in a complex symbol in a tree,
and is never used with a contextual feature.

A contextual feature is an analysis structure which contains

precisely one underline symbol _ and whose head element is a node.
It optionally has an associated restriction. The underline indicates
the Aode wheres the lexical iwserhionowill ogcurd h e r e s
to Chomsky's "principle of strict local subcategorization" will use

as the head element of each contextual feature the node which immediately

dominates the one for which the lexical insertion is to be made, Auser

who disavows the principle may choose any dominating node for the head

element, Contextual features appear only in the lexicon and are used

solely in the lexical insertion process.

}/Gross [6] allows arbitrary words to be declared as values.

13



r

Complex symbol operations

— The basic operations for complex symbols are comparisons and
é changes.
The comparisons are for equality, non-distinctness, and two
L_ types of inclusion. The result of the comparison of two feature
specifications A and B is shown in the tables below, where T
— represents true and F represents false and abs indicates that the
: feature 1is absent altogether. For the test to be true for complex
-
symbols it must be true for all their feature specifications.
.~ EQUALITY NONDISTINCTINESS INCLUSION-1 INCLUSION-2
B . ‘
| A + - ¥ abs| A B + - ¥ abs \k\s + -~ ¥ abs| A El+ -« abs
| -
) + TFF F + T FT T + T F T F - T F F
FTF F -|F T T T F T T F F F
* FFT F * T T T T * TTT F * F F
; gbs] F F F T|abs| T T T T|abs] T T T T |abs. T T T T
- : - —
L_ The basic changes of compiex symbols include merging A into B
. moving the features of Ato B , erasing all the features of A from B ,
.- 'and saving in B only the feature specifications which are included-1
i in A . The results of these operations are shown in the tables below.
-
It is to be expected that other operations will be added later as
L required.
e
L
- ik
L




MERGE ERASE SAVE
B

AB + - * abs AB + - *  abs B + - *  abs
— \

+ + o+ o+ o+ + | abs - - abs + +  abs +  abs
' - - - + abs + abs - abs - - abs
e

* + - * ¥ * | abs abs abs abs * + - *  abs
i abs| + - * abs abs| + - * abs abs| abs abs abs abs
- A redundancy rule A => (C applies to a complex symbol B only
if A is included-1 in B . If so, then C is merged into B .
-
. -
o
—
“




L

—

d

—

COMPONENTS

The three components of a transformational grammar are

phrase structure, lexicon, and transformations.

Phrase structure

The phrase structure of the system is a conventional context-
free grammar. Complex symbols do not appear in the phrase structure:
they .are introduced during lexical insertion (see below). Rules are
accepted in a linearization of the standard linguistic form and are

1 .
immediately expanded.—7/ For example, the rule

MV (NP)

cor ({4 )

vp - 4 > (ADv)

AUX

is represented as

AN

VP = (AUX(MV NP),COP((NP,AP;)),S)(ADV) ~

e expression of rule schemasty use of the Kleene star * has not

2/

been included.

~’L/Blair [1] also expands from a compact form.

2/Londe [10] accepts the Kleene star.

16



r;L.

PEaN
'

Lexicon

A lexicon contains a preliminary part, or prelexicon, which

contains feature definitions and redundancy rules. The feature

definitions include a list of categurys in the order of lexical insertion.

One may also give names to contextual features to avoid having %o write

them in full in the lexical entries., A redundancy rule is of the form:

redundancy rule ::= complex symbol = > complex symbol

The  interpretation is that if a complex symbol includes all the

feature specifications of the complex symbol to the left of the

arrow ( = > ) of a redundancy rule then it implicitly contains those

of the complex symbol to the right of the arrow, Explicit expansion

of complex symbols by the redundancy rules can be carried out in the

System.

In a lexical entry the set of possible complex symbols for a

vocabulary word are given. If several vocabulary words have the identical

set of complex symbols, the vocabulary words appear in a single lexical

entry, ©Each complex symbol corresponds to a sense of the word. The set

of complex symbols is regarded as a disjunction. Since the complex symbol

itself is a conjunction of feature specifications this is in effect a

normal form, Thus the system has *the same power as one which allows
arbitrary boolean combinations of features, (see Lakoff [7]), without
their complexity. For example, to say that a verb must have both an
animate subject and an inanimate object, one may use either one or two

feature specifications in the same complex symbol. To say that it must

have either an animate subject or inanimate object, two complex symbols

are needed,

17



{-—w.-——.

Transformations

e The final component of a grammar consists of a list of transformations

and a control program. The discussion of the control program will be

deferred to the section on the algorithm for control of transformationg,

A transformation consists of a transformation identification,

a structural description, and (optionally) restrictions and structural

- change, The transformation identification may include, in addition to

the transformation name, a group number and various parameters. A

transformation may 'be referenced either-by the transformation name or by

the group number. The parameters indicate whether or not the transforma-

tion is optional, whether (and how) it is to be repeated after a

:;~ successful application, and whether or not the analysis algorithm may
search below an unmentioned sentence symbol. Keywords are also given
here.

The structural change is expressed, as in the MITRE grammar [18],

by a list of operations. A new feature of the system is the

i
!
— conditional change.

conditional change ::= 1IF < restriction > THEN

< structural change > ELSE

< structural change >

The basic operations for trees and complex symbols have already 'been

— discussed.

r

18

-



o

: rh;a

P—

—

COMPONENT ALGORITHMS

The three main algorithms of a transformational grammar correspond
to the three components and are phrase structure generation, lexical
insertion and control of transformations, Our implementation of the
first process is designed to be useful in the testing of a grammar,

The second has not previously been fully described and we give for the
first time an explicit algorithm. Various proposals have been made
for the third algorithm; rather than choosing one of them we include the

specification of the algorithm as part of the grammar.

Phrase structure generation

The system can be started with a base tree input by the user.
However, it also has the capability of "directed random" generation of
trees from the phrase structure grammar. This scheme, which is described
in detail in [20], allows the user to specify a "skeleton" around which
a tree is generated at random. The skeleton may also bear constraints
of dominance, nondominance and equality, The scheme was designed to
make it possible for the user to generate trees which are "interesting"
rather than simply random; in particular, which will test a specific
transformation. It should be noted that there is a restriction on the
phrase structure grammars which can be handled by the algorithm:
the rules must be ordered so that no symbol is introduced below the
rule-which expands it, with the exception of course of the sentence

symbol.

19



ma——

r-

Lexical insertion

The algorithm for lexical insertion is an interpretation of one
of the two alternatives presented by Chomsky in Aspects,, Complex
symbols are introduced from the lexicon only after the phrase
structure generation of the base tree is completed. 1In order to
formelize the process, we have had to make decisions on many points
not treated explicitly by Chomsky. The details are presented in [22];
we note here some of the salient features.

A contextual feature is simply a sbecial case of analysis; thus

much of the work in lexical insertion is done by the same analysis
algorithm used for transformations.

Lexical insertion begins with the lowest embedded sentence, and
works upward.l/ Within a sentence the order of lexical insertion is
determined by the list of categorys in the prelexicon. This order may
have considerable effect on the efficiency of the process, However,
from a formal point of view, all categories are alike.

The basic criterion for lexical insertion is non-distinctness:

the tree may already contain a complex symbol; a word and its complex

symbol can be inserted only if the complex symbol is non-distinct from

the one already in the tree, But this is only a necessary condition;

each feature specification for a contextual feature must be checked by

the analysis algorithm. If the value is + the analysis algorithm

must succeed, and if - it must fail.

l'/Z-\lthough complex symbols are not introduced in the phrase structure,
it is possible that a skeleton input to the phrase structure generation

routine already contains some words of the lexicon, 1In this case,
the complex symbols for those words are looked up in the lexicon and

inserted prior to the process described here.

20



}‘

Once a vocabulary word and complex symbol have been selected (at

random from those meeting the above tests), one additional step is
necessary before lexical insertion takes place. The possible side
effects of the contextual features must be taken care of. 1f, for
example, a verb has been selected which takes animate subject and

inanimate object, feature specifications may need to be added to the

complex symbols for the subject and object. Then contextual features

are dropped from the complex symbol, since they have served their

function, a + or - wvalue replaces the indefinite value * , and

the vocabulary word and complex symbol go into the tree.

21



T

_—

e

r— r— r— r— r—-

r—

r—r— r— r—

a—

r

-

Control of transformations

Each transformational grammar that has discussed at all the matter
of order and point of application of transformations has presented a
slightly different algorithm, From the available examples, it was
possible to abstract the basic ideas involved and to write a simple
programming language in which the linguist can express the algorithm

for a particular grammar.é/ The control program refers to transformations

either individually by transformation name or by group number, The

language contains a repeat-instruction which allows a list of control

instructions to be repeated either for a fixed number of times or until

they all fail. One innovation is the IN-instruction. The statement

IN transformation name ( integer ) DO

causes the integer-th term of the transformation to be used as the
starting point for the search algorithm. Such notions as "highest
sentence", "lowest sentence", etc. can be expressed by the IN construct.
The notion of keyword has also been implemented.g/
The control language allows branching on the success or failure

of a transformation, The use of this conditional instruction makes it

possible to write transformations with less attention to certain types
of interaction, For example, suppose transformation T2 is to apply

only if Tl has failed to apply, Then the instructions

;/In— addition to controlling the grammar, the control Language also
provides TRACE instzuctions which govern the amount of output,

g/Keywords were first used in the MITRE programs [5]. They were
implemented in a slightly different form by IBM [9].

22



r—

—

-

IF T1 THEN GO TO A ELSE GO TO B,

A T2,

B: oo
will cause T2 to be bypassed if Tl fails., This instruction may
be considered excessively powerful., 1t is available because the
alternatives frequently seem to be either to alter artificially the
structural description of T2 or to include a restriction on T2
such as: "applies only if Tl has failed to apply“.l/

For a detailed discussion of the control language and examples

of control programs see [23].

We have not attempted to deal with the notion of implicit ordering

of transformations.

1
—/&he use of the conditional instruction will of course speed up the
processing of a tree.

23



THEPROGRAM

The system is written as a collection of subroutines which can
be called in various orders. A table of the subroutine structure is
included in the Programmer's and User's Guide to the System [24].

A MAIN program consists of a sequence of subroutine calls.,
Typically a run begins with a call to the initialization subroutine,
followed by calls to input routines for the components of the grammar.
Then either a base tree is input, or a skeleton is input and the
generation routine called. Lexical insertion is optional at this
point. Then the transformation routine is called, and the program
executes the user's control program, The process can be repeated with
a new tree from the skeleton or with a new tree input.

Alternative MAIN programs to test individual components of the
grammar can easily be constructed, For example, to test the phrase
structure one might simply generate trees at random, Or, to test
lexical insertion one could start with base trees containing incomplete
complex symbols and investigate how they were completed, Transforma-
tions can be tested beginning from base trees with (or without)
lexical items already included,

MAIN programs for a variety of purposes are also given in [2L].

The system is implemented in FORTRAN IV (H) on the IBM 360/67.

To the user, however, the system does not lonk like FORTRAN. All of
the formats are free-field and, externally, words may be up to 40
characters long, See [19] for a description of the free-field

input/output subroutine package,

2k



r—-r— r— r— r— r-

r——

r—

r r

r—

DIRECTIONS FOR FUTURE WORK

There are many ways in which the workwhich has been done can be
extended, Some of these correspond to interesting open questions in
the transformational theory of syntax., We mention here some areas in
which we plan to begin work soon, We think that the generality of the

system will give us a strong starting point in these investigations.

Conjunction

No means of handling transformational schemas such as conjunction
has been provided. 1In the earlier programs at MITRE a conjunction
algorithm due to Schane [16] was included and we plan to carry this
over into the present system as its first version of conjunction. We

hope then to investigate the alternatives considered in the literature,

Idioms

A common proposal for the treatment of idioms is that an idiom
occurs as a tree in the lexicon. We foresee only minor difficulties

in incorporating idioms in this way, and plan to do so when time allows,

Linguistic rules

The current trend in transformational linguistics includes a
search for linguistic. rules which would apply to all grammars.
Ress [1k, 15], in particular, has been working along these lines. We

hope later to investigate this 'work 'by devising means of incorporating

25




proposed rules into the system.i“/

Lexical derivation

The recent work by Chapin [2] and Chomsky [4] on lexical
derivation has opened up some interesting lines of investigation
which we are now beginning to explore within the system, A preliminary
study of Chapin‘s early work was made prior to the development of the

system and is reported in [301.

Dependency grammars

Jane Robinson [12] has recently offered a proposal for transfor-
mational grammars in which the underlying str-ucture is a dependency
grammar, The present system allows complex symbols to be associated
with any node of a tree, but we do not now associate lexical words
with higher nodes as would be required by the "projectivity" of

dependency grammars.

yR@ss‘s rule of tree-pruning has been incorporated by Gross [6].

26




L

r— r r—

r—

OTHER TRANSFORMATIONAL GRAMMAR SYSTEMS

The earliest computer systems for transformational grammar were
those of Petrick [11] and MITRE [18]. The system here is an outgrowth
and extension of this early work at MITRE. Naturally it embodies
a more recent version of transformational theory.

The partial system of Lieberman and Blair [8, 1] represents an
early attempt to deal with the model of Aspects, A lexicon was defined,
and.phrase structure programs and some transformational programs were
written.

Systems developed concurrently with this one include the console-
controlled grammar testers of Gross [6] and of Londe and Schoene [lO].i/
The problems best treated by a system designed for immediate response
to a user at a console differ from those appropriate to an off-line
system such as ours. While there is some overlap in these systems,
we believe ours is the first to cmsider all phases of transformational
grammar in a unified system,, For example, the three component algorithms
have no correspondents in other systems and neither has included a

lexicon, Various differences in common areas have been noted above.

l/We wish to thank both Dave Londe and Lou Gross for many pleasant
and fruitful discussions, and for a free exchange of ideas from
which our work has benefitted.

27



.

i

r—

r— r

r—

r-,

ACKNOWLEDGMENT

The system described in this paper was developed with Robert W.
Doran (metalanguage, basic syntax, free-field input/output, analysis
algorithm), Thomas H, Bredt (lexicon and lexical insertion),

Theodore S, Martner (analysis algorithm), and Bary Pollack (restrictions,
control language). We have worked closely and well together; while
the primary areas of responsibility are as shown above, there is no

part of the system that has not been helped by ideas from others in the

group.

28



—

P

—

-

r

[1]

(2]

(3]

(4]

(5]

(é]

[7]

(8]

(9]

[10]

[12)

REFERENCES

F. Blair, Programming of the grammar tester, in [9].

Paul Chapin, On the Syntax of Word Derivation in English,

MIT Thesis, 1967.

Noam Chomsky, Aspects of the Theory of Syntax, M.I.T. Press,

Cambridge, Massachusetts, 1965.

Noem Chomsky, Nominalization, to appear in Peter S. Rosenbaum

and Roderick Jacobs, eds., Readings in English Transformational

Grammar, Blaisdell Publishing Co.

J. Friedman, SYNN, an experimental analysis program for

transformational grammars, WP-229, The MITRE Corporation, 1965.

L. N. Gross, On-line programming system user's manual,

MIP-59, The MITRE Corporation, 1967.

George Lakoff, On the nature of syntactic irregularity, NSF-16

The Computation Laboratory, Harvard University, 1965.
D. Lieberman, Design of a grammar tester, in [9].

D. Lieberman, ed., Specification and Utilization of a

Transformational Grammar, AFCRL-66-270, 1966.

D. L. Londe and W. J. Schoene, TGT: Transformational Grammar

Tester, Systems Development Corporation, 1967.

Stanley R. Petrick, A recognition procedure for transformational

grammars, M.I.T. Thesis. 1965.

29



i’—

r—-

r-— r—— r—

e

r- r B

r..—v-vw-\

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Jane J. Robinson,

A dependency-based transformational grammar,

IBM Research Report RC-1889, Yorktown Heights, N. Y., 1967.

P. Rosenbaum and D. Lochak, The IBM Core Grammar of English,

in [9].

John R. Ross, A proposed rule of tree-pruning, paper presented

to the Linguistic Society of America, 1965.

John R. Ross,

1967.

Sanford A, Schane,

The MITRE Corporation, 1966.

Constraints on variables in syntax, M.I.T. Thesis,

A schema for sentence coordination, MTP-10,

R. Stockwell, P. Schacter, B. Partee, et. al,, Working Papers

of the English Syntax Project, UCLA, 1967.

A. M. Zwicky, J. Friedman,

B, Hall, and D. E. Walker, The MITRE Analysis

Procedure for Transformational Grammar, Fall Joint Computer

Conference

Corporation,

1965, 27, 317-326.

1965.

30

See also MIP-9, The MITRE



r-‘» o

-

-
The following references are working papers and reports of the
o Computational Linguistics Project, Computer Science Department,
Stanford University.
[19] Robert W. Doran, 360 0.S. FORTRAN IV Free-field Input/output
L Subroutine Package, CS-79, AF-1k, October 1967.
¥ [20] Joyce Friedman, Directed Random Generation of Sentences, CS-80,
-
AF-15, October 1967 (submitted for publication),
L [21] Joyce Friedman and Robert W. Doran, A Formal Syntax for
g Transformational Grammar, AF- , forthcoming.
-
[22] Joyce Friedman and Thomas H. Bredt, Lexical Insertion in
{
- Transformational Grammar, AF- , forthcoming,
f [23] Joyce Friedman and Bary Pollack, A Control Language for
—
Transformational Grammar, AF- , forthcoming,
- [24] Joyce Friedman, ed., Users' and Programmers' Guide to a Transfor-
1_ mational Grammar System, This document is not yet complete but
—
the following sections are available as working papers:
L [25] J. Friedman, Subroutine Structure, AF-17, November 1967.
-[26] J. Friedman, Trees, AF-1, September 1966.
[27] J. Friedman, Input routine for transformations, AF-16,
- October 1967.
. [28] J. Friedman, Input routine for structural change, AF-18,

November 1967.
[29] Bary Pollack, Routines for restrictions, AF-19, December 1967.

L [30] Joyce Friedman, Prqgramming lexical grapho-morphemic analysis,

AF-3, November 1966.

{ :



