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| The purpose of MPL 1s to provide a language for writing mathematical
programming algorithms that will be easier to write, to read, and to modify than

those written in currently available computer languages. It is believed that the
| writing, testing,and modification of codes for solving large-scale linear programs
~~ will be a less formidable undertaking once MPL becomes available. It is hoped that
| by the Fall of 1968, work on a compiler for MPL will be well underway.
{

The language proposed,is standard mathematical notation. This, at
least, has been the goal. (Whether or not there is such a thing as a standard

| notation and whether or not MPL has attained it, jg yp to the reader to decide.
—

-

: The Manual to MPL comes in three parts |

|

PART I: A SHORT INTRODUCTION

. PART II: GENERAL DESCRIPTION

] PART III: FORMAL DEFINITION

|
L-
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L
FORWARD

Mathematical programming codes for solving linear programming problems

L in industry and government are very complex. Although the simplex algorithm (which |
} is at the heart) might be stated in less than twenty instructions nevertheless error |
i checks, re-inversion, product-form'inverses for compactness, compacting of data, |

special restart procedures, sensitivity analysis and parametric variation are

} necessary for practical implementation. Twenty thousand instructions are not |
he uncommon. The cost to program such a system 1s several hundreds of thousands of

| .dollars.
( Recently, there has been much interest in extending mathematical

L programming codes. into the large-scale, nonlinear, and integer programming areas.
The large-scale mathematical programming applications are among the largest

| mathematical systems ever considered for practical solution by man. For example,
a system of close to a million variables and thirty five thousand variables has

| already been solved using the decomposition principle.
If large-scale dynamic linear programs could be successfully solved

L it would have enormous potential for industrial, nztional,and international
long-range planning.

L
| For this reason, there is considerable interest in solving large-scale

i dynamic systems. Many papers have been written on this subject and the number of
theoretical proposals now number in the hundreds. yery little in the way of

| empirical tests have been made. (Occasionally, a "soft-ware" company has dared to
: go from a theoretical proposal to a commercial program with inclusive results. It

| is like going from a drawing board to a battleship when all that has been built
- before has been a rwboat.

_ The need then 1s to be able to write elaborate codes for solving
mathematical programming systems; to test them out on sample problems; and to

3 compare them with competitive and modified codes. Present day computer languages
like FORTRAN, ALGOL, PL/1 are not in the same world as machine language of 0 1 bits.

Nevertheless, it is a formidable undertaking to read codes in these languages,

- particularly when they involve some twenty thousand instructions. The finding of

i
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- errors (debugging) 1s time consuming. It 1s often difficult for the author of a

program to decipher his own hierogliphics assuming he is available for consultation.

This difficulty becomes ever more acute when extended to proposals for solving

large-scale systems. It 1s one of the chief stumbling blocks to progress in getting

lL practical large-scale system codes. )

i For this reason, the chief effort of MPL has been directed towards
readability. The objective 1s not to invent a powerful new language but to have

ff a highly readable language, hence one easy to read, correct, and modify.

3 The Iverson Language 1s an example of a powerful language. With a

1 small amount of effort 1t could have been set up 1n standard mathematical notation
and made readable (to a non—-expert) as well. It 1s probably possible to implement

| MPL by using Iverson Language as a translator. This 1s not our plan.

1 It 1s possible to view MPL as nothing more than a beefed-up ALGOL or |
FORTRAN. The new programming language PL/1 is very powerful and could also be used

| to realize MPL. This 1s being considered. Moreover, recently there have become| avallable excellent compilers for compilers that make easier the job of |

developing a compiler that would directly translate MPL into machine language.

. We are seriously considering this as our approach for implementing MPL.

|
I
!
—
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|
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- COMPARATIVE MATH VS MPL NOTATION

| The short introduction (Part I) that follows 1s not a formal description
of the language. This 1s done in Part III; nor is it a general manual as Part II;

rather our purpose is to motivate the need for MPL and to provide a short comparision

— with standard mathematical notation. MPL notation assumes that a standard key-punch

| or 1ts equivalent 1s all that 1s generally available at present for program preparation.

“ This limits the alphabet to Capital Roman and replaces Ag 3 by its functional;

| equivalent A(I,J).
MATH MPL

' SUBSCRIPTS: A, | A(I,J)
1,]

i SUPERSCRIPT: AY 3 AK) (1,J)_ ?

MATRICES: A A |

| Matrix Addition A+B A+B

i Matrix Product AB or A.B A*BT

Transpose A' or A TRANSPOSE (A)

1 |
Inverse A INVERSE(A)

L

A=Matrix, K=5Scalar, L=Scalar A/K A/K

[ *L AK AxK

KA K%xA

| KL K*L

| Composing a matrix M from M= [A M := (A,B)#L submatrices A, B, C, D (® (C,D);

or M := (A,B)#(C,D) ;

Lo M=(A,B,C) M := (A,B,C);

| Column of a matrix A A A(x,J){ +5]

“ Row of a matrix A A(I,x)L

| Determinant |] DETERMINANT (A)
LC.

Array of Consecutive Integers (k, k+1l,...,2) (K,...,L)

L.
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-
MATH MPL

| OPERATORS:
-

Matrices or Scalars:

| Addition, Subtraction, +, -y +, -, %
Multiplication

1 Division by Scalar A/K A/K
Exponent a? Akxk2

il 1A INVERSE(A)

| Sign 2 ,+2,- 2 2 ,+2,- 2
| Substitution Operator(=) New value of A := B+C; (meaning:

A=value of B+C change the

l N value of A
on LHS to

equal the

i value ofB+C on RHS.)

| Logical Operators AND, OR, NOT AND, OR, NOT
-

MATH: If A>B, C>D, and not D = 0
|

Lo MPL: | FA> B AND C >= D AND NOT D = (0 THEN

MATH: If A>B o r C > D,

- MPL: IF A > B OR C >» D THEN

- Relational Operators =, <, >, >, <, =, <, >, >=, <=,
.

#, =,

| Set Operators AU B, A+B A OR B
—

AM B, AB A ANDB

|
L“. AN (not B), A AND NOT B

|

— or ANB |

j MAPPINGS, PROCEDURES, SUBROUTINES:

~- B, X, Y...Matrices, Sets, Scaldars Y = F(X) Y i= F(X);

: ’ Y = SIN(X) Y = SIN(X);
2

Y = 2BX Y t= 2%Bx(X*%2);
-1

| Y = B y := INVERSE (B);



g MATH MPL
I SYMBOL REPLACEMENT: Let W = f(x,y) LET W := F(X,Y);

(meaning do not compute

W but replace it by

F(X,Y) wherever W

appears later on.)

| SETS: (any set of elements) (Index sets only)

L Ss = {1,. co. 0} S = (1,0..,N);

| I € 8S I IN S
I e AUBUC I IN A OR B ORC

| I e ANBNC I IN A AND B OR C
I ACVB I IN A AND NOTB

i D = (AUB)NC. D :=(A Ok B) AND C; |

| Index Set or Domain of a vector A Domain of A DOM (A)
g Index Set of a matrix A Row Domain of A : ROW_DOM(A)

| Definimg of Set where P (I) a {1eR:P(I) = true) (I IN R|P(I) = TRUE)Boolean Expression or

property 1s true

| or  {IeR:P(I)} or (I IN R|P(I))
or  {ieR|P(I)}

i {1eR|A,> 0} (I IN R|AI) > 0)

| (i|a, > 0) (I IN DOM(A)|A(I) > 0)
Empty Set @, Null, Empty NULL

| SET FUNCTIONS:
Suppose S = (8150455) is a B= (A ,A ,...,A ) B := A(S);

. l-dimensional “array of 81 92 Sn
: integers and we wish to pick or B = (A(J) FOR J IN 9);

out column vectors A 2 7A
1 72 m or B := (A(S(I)) FOR I IN

to form a matrix B. (1,...,M))3

| However,
8 B i= (A(S(I)),...,

A(S(M))) is not
correct because

| (P,...,Q) means
3 (P,P+1,P+2,...,Q)in MPL



i MATH MPL
| SYMBOLS :

CAPS A, B, ——- A, B, ——-

| Lower Case a, b, — (not available yet)
( Greek a, By, ——— (not available yet)

-
Integers 0, 1,...,99, ——- 0, 1,...,99, —-

| Multi-Character Symbol:
as function name: PIVOT (M,R,S) PIVOT (M,R,S)

| . SIN (X) SIN (X)as variable name: (not used) B2, BASIS, X-S

| Brackets {} [] (not available yet)



L SYNTAX

i In general, a procedure has the form:

i PROCEDURE F (X,Y,2)
| Statement;

| —
Statement;

i FINI;

| Certain reserve words like FOR and IN can be interspersed in place of commas in
F(X,Y,Z) as in the example given below.

| Example Giyen an array of integers R, we wish to write an algorithm, called SUM,
that yields S = ) F(j) .

| jeR
| PROCEDURE SUM(F)

L "SET UP A STORAGE REGISTER S TO ACCUMULATE

| THE SUM OF TERMS. INITIALLY,"
| (1): S = 03 "LET S' BE THE UPDATED VALUE OF 8S. WE WANT

L TO STORE S' IN THE SAME PLACE AS S AND

| . THEREAFTER CALL IT S."
(2): SAME LOCATION(S,S');

| (3): S' t= 5 + F(1) FOR I IN DON(F); "ITERATIVELY ADDS F (1) TO S."
(4) : SUM := s; "SETS THE VALUE OF THE FUNCTION EQUAL TO S"

L (5) : RETURN; " 'RETURN' MEANS: RETURN TO MAIN ROUTINE."

i FINI; "" 'FINI* MEANS : END OF WRITE-UP."

i Onee the ) symbol, or rather SUM, 1s in the procedure library we can use
| it to write a statement like P = ) 12 in MPL.

| -1
LC P := SUM(Ixx2 FOR I IN T) WHERE T := (l,¢4.,N);

|



L
. The reference numbers like (1), (2),..., on the left are called labels. They

3 are not necessary 1n the above example and may be omitted. Labels can be a string
of characters or numbers like (1), (2). If the latter, they need not be consecutive.

3 Labels are used to locate a statement-'when a program branches. |

L A statement like the one with label (3) is called a substitution statement because
s':= SS + F(l); means: Substitute for the current value of S' on the left a new value

§ equal to the current value of S + F(l1) on the right.

| In general, A := B; means updated A = Current B.' A statement S t= S + F (1);

| looks like nonsense but means: Updated S = Current (S + F(l)). Hence a programmernot interested Ih readability would probably boil down the procedure SUM to two

| lines.
PROCEDURE SUM (F)

L = 0;
SUM := 0; SUM := SUM + F (J) FOR J IN DOM(F); RETURN; FINI;

LC

i



| There are several different types of statements that one can draw upon to

| write a procedure:

| Procedure Name If Define
Substitution For Release

L Let Same Location Fini

| Return Go to
and some words like "then", ''otherwise", "endif", "do", endfor" that indicate

| different parts of a compound "1f" or "for" statement.

| Procedure Name Statement: PROCEDURE F (X) PROCEDURE F("IN" X, "OUT" Y)
where X, Y represents a list of one or more

| symbols.

| Examples: PROCEDURE SIN (X)PROCEDURE PIVOT (A,R,S)

| PROCEDURE SIMPLEX (A,B,C, BV)
PROCEDURE ARGMIN(F(I) ror 1 IN T)

| "where ARGMIN finds the first index or argument

| where the minumum occurs."

| Substitution Statement: A := Arithmetic Expression;
Examples: S i= 0; M := ARGMIN(H(J) ror J IN R);

| A := PIVOT (A,R,S); G := INVERSE(MATRIY + H;

| S := ARGMINC(J) FOR J IN T).WHERE T := (1,...,N);

| Let Statement: LET A = Arithmetic Expression;
L

Examples: . LETA := Bj;

L LET T := (I IN DOM(B)|A(I,S) > 0);

LET R := ARGMIN(B(I)/A(I,S) FOR I IN T);
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If LET is used to simplify only one statement,

| a WHERE can be used instead using inverse order.
-

3 G : = INVERSE(B) WHERE B := TRANSPOSE (A);

. Return Statement: RETURN;

i If this statement 1s reached during execution of the subroutine,
the next step 1s to return to the main routine.

If Statement: IF P THEN statement ;...; statement;

i - OTHERWISE statement ;...; statement;

] ENDIF;
Example: IF R = NULL THEN GO TO (21); OTHERWISE

A := PIVOT (A,R,S); ENDIF;
-

§ All statements up to "OTHERWISE" are executed if proposition p is true and

| then sequence control skips to the statement following ENDIF. However, as in the
above example, there 1s a GO TO statement preceding the OTHERWISE then control

] skips to wherever GO TO directs. Ifp 1s not true, control skips to statements
following "OTHERWISE". For the case of several parallel conditional statements

| OR IF statements are available = see Part II and III. (OTHERWISE can be omitted if
immediately followed by ENDIF,

i For Statement: FOR I IN T DO statement ;...; statement; ENDBBR;
Example: FOR I Inv (1,...,M) DO

S' = 8S + F(1);

{

| T' = S' + G(1);
-

ENDFOR;

-

{

|
-



: Same Location Statement: SAME LOCATION(A, B) ;

| A and B will be assigned the same set of storage locations in the computer.

| An alternative way to accomplish the same thing would be to write: LETA i= B} por
psychological reasons, it seems best to separate the concept: "A is another symbol

i for B" from the concept "same storage location".

| Go to Statement:

| GO TO & (where % is a label). This means that control is to skip to the
statement that has £ as a label.

Define Statement:

Example: DEFINE B DIAGONAL M BY M;

| Used to define the size of storage array needed for a symbol whose value will be

| computed piecemeal later on.

| Release Statement:
To release a symbol and its storage assignment a release statement takes the

L form:
RELEASE A,B;

L Its purpose 1s to conserve storage and permit re-use of the same symbol for some

| other purpose. A special type of automatic release 1s available that allows release
of all symbols in a block of code.

L Release occurs automatically when a procedure returns to a main routine; all

{ symbols defined in the procedure and their storage are released except the output
symbols, which are treated as part of the symbols of the main routine,

Symbols used as dummies as G in the statement: Z := A+G WHERE G := INVERSE (M);

[
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are treated as local to the statement and are immedigtely released. The same applies

. to the running index 1n a compound For statement and to a dummy parameter in a Let
statement as I in : LET G(I):= B(I)/A(1,J); .

i

!

-

_

{

L

|

|
-

|
L

|

L
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| EXAMPLE: SIMPLEX ALGORITHM

g PROCEDURE SIMPLEX ("IN'! A,B,C,BV, "OUT" BV', B', Z', CASE);

i "WARNING: ALL INPUTS ARE MODIFIED IN THE COURSE OF CALCULATIONS."

[ "THE PROBLEM IS TO FIND MIN Z, X > 0 SUCH THAT:
AX-B, CX=27.

§ IT IS ASSUMED THAT:

| A IS IN CANONICAL FORM WITH RESPECT TO

i BV THE INITIAL SET OF BASIC VARIABLES.
B>0 ARE THE X VALUES OF BV, I.E. X(BV) = B.

i THIS INITIAL BASIC SOLUTION IS REQUIRED TO BE FEASIBLE,
I.E. B >0.

§ BV! IS THE OPTIMAL SET OF BASIC VARIABLES.
B' ARE THE X VALUES OF BV', I.E. X(BV') =B'.

_ Zz' = MIN Z

! CASE = FINITE OR UNBOUNDED.
BV', B', Z' REFER TO LAST BASIC SOLUTION IN THE CASE THAT

i | 'CASE = UNBOUNDED'."
"INITIALIZATION"

DEFINE CASE CHARACTER;

i (1): z 17 0; "PRIMES WILL BE USED FOR UPDATED VALUES OF VARIOUS SYMBOLS,
THESE WILL BE STORED IN THE SAME LOCATION."

L (2): SAME LOCATION (A, A'), (B, B'), (Cc, C'), (BV, BV'), (X,X"),(2, 2");

i "ITERATIVE LOOP"
"LET S BE COLUMN COMING INTO BASIS."

|
L
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(3): MIN-1("IN" Cc, "oUT" S, CS);

- n
MIN.1 IS A FUNCTION THAT RETUNS THE INDEX AND THE

5 MINIMUM COMPONENT OF A VECTOR, IN THIS CASE VECTOR = C."
"WE NOW TEST WHETHER X (BV) = B IS OPTIMAL."

_
(4): IF C.S = 0 THEN CASE := ‘FINITE' ; RETURN; OTHERWISE

ig "LET R BE THE INDEX OF THE BASIC VARIABLE DROPPING."

i (5) + MIN_1("IN" (B(I)/A(I,S) FOR I IN DOM(B))A(I,S) > 0), "OUT" R,Q);

i "IF ABOVE SET EMPTY, MIN.-1 RETURNS R = NULL, Q = o;
OTHERWISE THE INDEX' R AND THE MINIMUM RATIO, CALLED

i Q, IS RETURNED."

3 (6): IF R = NULL THEN CASE := JYUNBOUNDEDY ; RETURN; ENDIF; -

i "UPDATE EVERYTHING BY PIVOTING ON A(R,S), PRIMES WILL
BE USED FOR UPDATED SYMBOLS. THESE ARE STORED IN SAME

[ LOCATION, SEE (2)."

i (7):  B'(R) i= Q;

i (8): A'(R,%) := A(R,*)/A(R,S);
| "ROW_DOM(B) IS THE DOMAIN OF INDICES FOR B."

| (9) FOR I IN ROWDOM(B) |I = =R DO

i (10): B' (I) = B(1) = A(I,S) * Q;

| (11): A' (I,*%) := A(I,%x) - A(I,S) % A'(R,%); ENDFOR;
(12): C' := C = C(S) * A'(R,*); -

(13): z' = 7Z + C(S) %* Q ;
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(14) : BV' (R) = S;

| "THE REMAINING COMPONENTS OF BV ARE UNCHANGED AND

| SINCE BV AND BV! ARE STORED IN THE SAME LOCATION.
UPDATING IS COMPLETE, RECYCLE."

| (15) : GO TO (3); FINI;

|
—

i

|
—

L

-

L
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| MATHEMATICAL PROGRAMMING LANGUAGE
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i PART II

| GENERAL DESCRIPTION

. : March - 1968
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L
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ABSTRACT
4

|
~ The objective 1s to develop a readable language for writing experimental codes

to solve large-scale mathematical programming systems. Readability is defined as

-

| standard mathematical notation with minor adjustments reflecting current limitations

L of 1nput-output equipment. Thus symbols are restricted to those found on a standard

| keypunch; subscripts (or superscripts) like Ay 3 appearas A(I,J). Starting ini ’
Hh
— the Spring of 1967, several test algorithms written in the proposed language gave

{ evidence that readability was an achievable objective.

L

L A task group in the latter part of 1967 began to define the proposed language in
) BACKUS Normal Form with the intent of using a special compiler's compiler to

en implement the language.

|S

|
|_—

Po
|
—

1

{
|
-

|

-

—
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1.0 INTRODUCTION

: This paper describes recent work on a computer programming language for
| the implementation of mathematical programming algorithms on a digital computer
~—

the objectives of the language are:
]

!
\.

y a) to facilitate programming an algorithm from
3 theoretical form to computer code in as short
— a time as possible, and

b) to enable other mathematical programmers to

ce understand and modify an existing code with

a minimum of effort. The present efforts are
being directed toward the coding of experimental

L mathematical programming algorithms rather than
commercial techniques. By and large, the first
report (Mathematical Programming Language, June

i 1967) represented the thinking of persons withmathematical programming backgrounds. Since

then, several computer scientists contributing

to the project have brought the language much

_ closer to 1mplementation.

|

= The purpose of this report 1s to explain the use and the reasons for the

concepts being developed in MPL. This part of the Manual attempts to explain the
-

reasons for using the specific concepts of MPL while the third part developed

.

L under the guidance of David Gries gives a formal definition of the language 1n a

modified form of BACKUS Normal Form. Part III is primarily the work of Stephen

1 Schuck, who, since joining the project last summer, has been a driving force behind

the implementation of MPL. His work in turn uses several concepts develpped by
-

Rudolf Bayer and Christoph Witzgall of the Boeing Scientific Research Laboratories.

L At present, the BACKUS Normal Form is used to describe the legal programs, not the
phrase structure of the language.

-

David Gries of Stanford University 1s currently developing a technique of

C

writing compilers, called the Kompiler Implementation System (KIS), which, it is

planned will be used in the implementation of the Language. Many of the concepts |
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presented herein, are the same as or similar to those found in existing compiler

i languages (ALGOL, FORTRAN, COBOL, PL/1, etc.). One of the difficulties
encountered thus far in writing a formal definition of MPL is that mathematical

1 notation depends upon the context for its meaning. (By aeeesPy) may mean
(P,, Pos PysecesPy) or it may mean. (Pl, P1 + 1, Pl + 2,0005P0). This is defined

C in MPL to mean the latter.

There are certain concepts planned for MPL that have not yet been set down in

- BACKUS Normal Form. In particular, the representation of index sets has not been

completely formalized; the ability to operate with matrices whose elements are

L matrices (useful for example in the decomposition principle) has not yet been fully

| developed. Procedure parameters need more work. Input-output statements have not
yet been defined, nor storage commands that would reflect the variable size and

| speed of different memory locations.

I

-

|

—

|

—

f
—

\—e
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2.0 MPL LANGUAGE ELEMENTS

L The set of characters upon which MPL is built is the character set found

| on standard key-punches (such as the IBM 029 key-punch). For convenience, we
shall group these characters into the categories of letters, digits, and special

| characters. The letters are A through Z, the digits are 0 through 9, and

| the special characters are as follows:

| O <> , «+ = % / + 3 ~=" 1 _#@ % & |

[ and a blank. Elementsof MPL are defined to be one of the following four constructs-
variable, constant, operator, or reserved word. Let us now delve more deeply into

L each of the above elements.

| 2.1 VARIABLES

| Variables are symbols which represent those data values which may change
during the execution of the program. There are several types of variables -arithmetic,

[ logical, set and character.

| For example, 1fC 1s a row vector and Q a scalar both previously defined
then

| D := (C, SIN(Q));

| sets up a new row vector D with one more component than C. The function sin (x)
1s a reserve word and "sin" cannot be used as symbol for a variable on the left hand

| side of an equation.

| A variable may have zero, one, or two dimensions. A zero-dimensfonal variable
1s a scalar, a one-dimensional variable a vector, a two-dimensional variable a matrix.
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In the remainder of this report, an array refers to any variable whose dimension

| 1s greater than zero. Each matrix has associated with it a structure shape
—

commonly used in mathematical programming algorithms. These shapes are rectangular,

o diagonal, upper triangular, lower triangular, and sparce (meaning few non-zero

elements). The concept of structure shape is useful 1n conserving memory space

—- CL
and execution time. An example of the use of shape matrices 1s 1n the storage and

3 multiplication of two diagonal matrices of size nxn. Storing them as diagonal
|

in the computer requires only n memory words for each (as opposed to n’ for a

- rectangular matrix), and the multiplication of two diagonal matrices requires

i only n elementary multiplications as opposed to ns for rectangular matrices.
— Vectors have the shapeof row or column; this distinction is required for

multiplying vectors by vectors or matrices. An additional feature of MPL is that
—

the elements of an array may be arrays. This construct 1s helpful in coding algorithms

w such as the decomposition principle. Another variable allowed is an index set

: variable. This consists of an ordered set of integers. Examples of index sets are:
{

. /
|

| (1,...,M)
“-

SET (1, 3, -4, 3, 12)

(I IN (1, . . .,M |A(L,S)>0)
~~

More will be said about how to define and use variables later on.
I

[_—

| The symbols which constitute variables have two parts, the variable name and

an optional subscript. The variable name alone completely identifies the variable

§

| under consideration 1f that variable 1s a scalar or an entire storage structure
(vector, matrix, etc.). If the variable represents a subset (element, row, column,

— etc.) of a larger array, the variable-name part only identifies the larger array,

subscripts being needed to specify the particular subset. Variable names always

oT begin with a letter, but the characters which follow it may be any number of letters,

g
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. digits, or underscores. Reserved words (defined in Section 2.4) may not be used

i as variable names.

Examples of variable names are .
—

1 A
OBJECTIVE-1

3 KEY-SET
ha BASIS-INVERSE

L However, variable names with blanks like KEY SET are not allowed. Subscripts

i are elther scalar arithmetic expressions or the symbol * . Scalar arithmetic
expressions (defined in Section 3.2) are automatically bounded to the nearest

L integer value when used as a subscript. The subscript %* refers to an entire
dimension of a storage structure. Thus

|

> th
A(x, J) refers to the J column while

| th
L A(I, x) refers to the I row of the matrix A .

The following examples 1llustrate the use of subscripts:
-

M(B + Cc, 3)

L

B_INVERSE(1l, *)

|

X_VALUE (BASIS_LIST(I)).
|N_-—

| 2.2 CONSTANTS
. ~ONo ANTS

Constants are of four types-—arithmetic, logical, set and character. The
-

type of a constant determines how the number will be stored in the machine and used

CL in calculations.
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L ARITLMETIC CONSTANTS may be either integer or real.

INTEGER ARITHMETIC CONSTANTS are written as a string of digits without

i .a Jecimal point, examples 1, 10, 10090. = .

L REAL ARITHMETIC CONSTANTS may or may not have an exponent. An exponentless
i real number 1s a sequence of digits containing a decimal point, Examples: 1: * tH

1.0, +3925, 102.34. The exponent form of the real constant allows writing the
{

L constant in modified scientific notation. This form consists of an exponentless
real number followed by an E (meaning 10 to the power) followed by an optionally

— signed string of digits.

| Examples: |
7 x 2

2.5E02 (25.%10 = 2500.)

| -2

| 1.0E~-02 (1.0%10 = ,01)

| . 8E03 (.8x10° = 800.)
}

" 9.1E+05  (9.1¥10° = 910000.)

- LOGICAL CONSTANTS are TRUE and FALSE.

-
A SET CONSTANT is NULL.

-

CLARACTER CONSTANTS are any string of characters enclosed by single quotes (')

- Examples:

' TABLEAU’

-

' PRICES ARE’
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1 2.3 OPERATORS

i Operators are the connecting elements which allow the grouping of variables
and constants into larger language phrases called expressions. Operators are of

| .

— five classes:

L a) arithmetic operators-unary: + and - ;

| and binary: + (addition), — (subtraction),
* (multiplication), J (division), and

| *% (exponentation).

i b) logical operators-unary: NOT ;
| and binary: AND, OR.

i
c) relational operators == (equal),

| —1= (not equal), >= (greater than or
-

equal) , <= (less than or equal),

3 > (strictly greater than),

| < (strictly less than).
-

d) concatenation operators (for building

] up matrices from elements) : a

| comma (,) is used for horizontal
— []

concatenation; anumber sign (#) is

{

L used for vertical concatenation.

e) set operators = OR (union),
-

AND (intersection), AND NOT (relative

i complement) .
|
Lo The use and meaning of the first three operators 1s quite similar to operators

in existing languages  (ALGOL) while the concatenation operator may be new to the

-



J reader. This operator is used to build larger storage structures from smaller
. ones. For now an example of concatenation operators will be given; the detailed
=

— explanation of their use being presented in Section 3.2.3. Suppose A, B, C, and D

| .are matrices of the same dimensions. Then M.:= (A, B)#(C,D)} represents a
oo larger matrix of the following form: M [A 2 . If the programmer writes
L M := (A, B)#(C, D); partly on one punch card and partly on the next it takes the

form M:= (A, B)¥# .

il (C, D);

i : To resolve ambiguities which can develop In forming combinations of elements,
each operator has an associated precedence. In the absence of parenthesis to

| dictate the meanings of such combinations, the meaning will be given by the
precedence of the operators, with those having higher precedence being first.

i Operators of equal precedence will be performed from left to right as one would
( expect. Section 2.5.2 in Part III Interprets the operator @®  ymbolr in order of
a

~ decreasing precedence. A # before an operator indicates that its precedence 18 the

| same as the preceeding operator. The following examples show the meaning of
|

precedence.

L
A-B/C+D is Interpreted u A= (B/C) +D

| . (A, B)#C is Interpreted u (A, B)
— Cc

B + C/D an BeA is interpreted as B + ((C/(DaaE))2A)

—

Ambiguous notation in two of the examples can be avoided, of course, by use

[ of parentheses.

C
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g 2 . 4 Reserved Words

LL Reserved words in MPL fall into the qjteqgories of keyword symbols or

| standard function names such as sin(x) and procedure names. Recall that
| - reserved words may not be used as variable pac. Keyword symbols (such as

1 FOR, IN, END, GO TO ) will be discussed in Section 4e2e3e

| Functions:

L ) A standard, function name identifies a Btandard function. It is hoped

| that extensive use of standard functions will lead to ease in programming andBhhance the readability of the resulting codes. presented in Section 5, Part III

| is a list of standard: functions, which hopefully will grow as MPL developes.
-

Reference to a standard function is of the form V t= F(P) where V represents

L the value of the function, F represents the name of the function, and P
represents one or more arguments which we will refer to as a parameter list.

i Depending upon the function, the value may be integer or real, scalar, vector, or
matrir,and if matrix, it may have any structure shape. :

g / ! These properties as well
as the properties of the parameter list are described in Part III. Following are

f

u 8 few examples of the use of standard functions. let C and X be vectors 4

| A a matrix, and T an index set all previously defined:

| L sm SUM(C(I)#X(I)FORI IN T) ;
|

- R := ARGMIN (B(I)/A(I,S) FOR I IN T|P(1,8)>0);

|
- 2.5 Comment Statements (Quote Symbols)

L In the algorithms coded thus far by the MPL group, it has been

| found that comments are essential for readability of computer codes. Comments may

hn be placed between any two sentences and are separated from the program by quote



_ marks before and after the comment. Example:

. SAME LOCATION (COUNT, COUNT');
A :=8 + c;

_ "A IS THE SUM OF B AND CC"
FOR I IN SETL_1, COUNT! := COUNT + 1;

-

"WHERE COUNT' IS THE UPDATED VALUE OF

il COUNT WHICH IS STORED IN THE SAME
LOCATION AS COUNT AND REFERRED TO HERE-

L AFTER AS COUNT."

| The general objective of MPL 1s readability. It is however, doubtful that
: a program will be readable unless liberally interlaced with comments statements

L whereby the programmer explains to the reader why he 1s doling the various steps.

i In experiments with mathematical programming reutines, almost two lines of comments
are needed on the average to explain an executable line of code. Comment statements

can consist of one or several lines set off at the beginning and end by quote makes.- g g

| "PIVOTING WILL BE DONE ON THE FULL
—

MATRIX D WHICH INCLUDES A, THE

8 RHS B, AND COSTS C."

D := (A, B)#
—-

(C, 0);

as "WE NOW INCREMENT COUNT AND RECYCLE'."

1 COUNT' := COUNT + 1; GO TO (21);

-



L 3.0 Expressions

) Variables, constants, and operators are combined into larger language

[ phrases called expressions. Expressions are either arithmetic, logical, set or
character. In addition, the value of an arithmetic expression has a shape

. (rectangular, diagonal, lower triangular, upper triangular, sparce). The
following sections explain the use and meaning of some of the special features

L of MPL expressions.

3.1 Logical Expressions

L A logical expression, having the value of TRUE or FALSE,1s a comparison

[- between two arithmetic expressions. Two arithmetic expressions which are compared
by a relational operator must be identical in type, form and shape. Following

[ are examples of logical expressions:

i A>B
NOT (X(I) > Y(I))

[ (Zz > M) AND (B + C < A + D)

i (H(I) = Z(I)) OR (M =Q)
When A and B are scalars and p is a relational operator, then the interpretation

a of A p B is clear. However, in the case of arrays, the meaning ofA > B can

differ by author. Table 1 below defines precisely what is meant by the relational

operators in MPL.

-

1

—

L
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| -
TABLE1

- In this Table, A and B are arrays identical in type, form, and shape. |

Als B, refer to elements of A and B.
’

—

MPL Statement Mathematical Meaning

Co A=3B A, =B, ¥
Hl i i i
—

A<B A, <B V
- i— "i 1

i A < B A, < B ¥
L i i i

A> B A, >B,4,
i1— i 1

- A> B A>
— 1 7B ¥

A —=B A :i ¥ B. for some 1
—

3.2 Arithmetic Expressions

—

Arithmetic expressions are any combination of the following types—-

computational expressions, function references, and array builders.
|—

- 3.2.1 Computational Expressions

) Computation expressions are of the structure 'left-operand'-'operator'
—

'right-operand'. If the left operand is missing, the operator 1s unary (one

— operand) = Example:~A,+ (o-z/B). If both operands are present, they are

connected by a binary operator (two operands) =~ Example: A+B, C**D . At execution
—

time the expression will be evaluated to produce a result. In addition to being

defined, an operation can only be performed if the operands conform to the
—

conventional restrictions of matrix algebra (for example = M and N are matrices
’

- then MaN has meaning if and only 1f the number of columns of M equals the

number of rows in N). Section 2.5 of Part III describes these relationships in

— detail.
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L 3.2.2 Function References

L A function reference expression involves the use of predefined functions

| as set forth in Section 2.4. Examples of function references used with
| computational expressions to form new arithmetic expressions are given below.

L XxSUM(Y)

i A*TRANSPOSE (B)
BASIC_COSTS*INVERSE(BASIS)

We shall see further use of function references in array builders in the next

L section.

1 3.2.3 Array Builders

| There are two types of array builders-~-concatenahors and array designators.

| A concatenator 1s a notational device for constructing vectors and matrices
by concatenation. The rules for the use of a concatenator will be given followed

i by several examples.

L | Operations within a concatenator are horizontal concatenation (denoted by |
| a comma) and vertical concatenation (denoted by a number sign). Horizontal |

L. concatenation has precedence over vertical concatenation and 1s performed first

i whenever both operations appear. Two structures being concatenated must conform,
|

= l1.e., have the same number of rows for horizontal concatenation and the same

| number of columns for vertical concatentition. Both of the structures being
concatenated must be of the same type, all arrays must be rectangular and the

s

L result 1s also rectangular. As an example of the use of &rray constructors,

| consider the following: ’
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L A has M rows and N columns (matrix)
B has M rows and 1 column (column vector)

—
C has 1 row and N column (row vector)

= T
{ (B, TRANSPOSE (C)) has M rows and 2 columns: (B C)

i

o (A,B) or A,B has M rows and N+1 columns: (A B)

- (A)#(C) has M+1 rows and N columns 2cl
N (A,B)#(C,0) has M+l rows and N+1 columns AB
Lo Cc oO

i The above examples of correct usage of the array constructor while the
following examples display incorrect usage because of the incompatability of the

{

L rows and columns,

1

| (A, C)
(A #B)

An array designator is used to horizontally concatenate several matrices

— D(J) for J in some index set L. For example L might be a list of basic

. columns L(1l), L(2)y...,L(M). Then the basis B is given by

- B := (A(x,J) FOR Js I~ L);
| .
|W—

| Alternatively, it can be written

er |
| B := (A(x, L(I)) FOR I IN (1,...,M));

— however, it should not be written

— B := A(%,J) FOR J IN LIL;

i because without the concatenation symbol 1t 1s equivalent to

FOR J IN L DO
-

B = A(*, J);

ENDFOR
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[ which 1s quite different. (Nor should it be written

| B i= (A(*, L(1))ye. . rau. LM):

| because this does not define the running index and (k,...,%) in MPL means

i (k, k+l,...,0). Still simplier we can write

| B I= A(x, L);

i
3

L

{
|

=
f

* |

.

i

"

i"

-~
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4.0 Statements

L All statements in MPL are categorized first by whether or not they are
| preceeded by a label. All statements are ended by the terminator semi-colon (3).

| 4.1 Labeled Statements

| A label is a means of providing a specific location 1n a program to which
execution control may be transferred. Labels are either a string of digits enclosed

| in parentheses or can have a name like a variable. pa j13beled statement consists of a

[ label, followed by a colon followed by an "unlabeled statement" (defined in 4.2) and
may be used only once as a label within each storage block. , label can only be

[ referred to later in GO TO statements. Examples:
VAR := x + Y;

[ UPDATING: ITERATIONS':= ITERATIONS + 1;

[ GO TO UPDATING;

[ 4.2 Unlabeled Statements

| Unlabeled statements are of three types——-assignment statements, procedure |
call statement8, and keyword statements.

‘ 4.2.1" Assignment Statement

Assignment statements are used for transferring data values between data

| storage locations. The form of a substitution statement is V:= AE; where V
1s any varlable as defined in Section 2.1 and AE 1s any arithmetic expression

{ as defined 1n Section 3.2. Examples:

| A = B+C;

| S := ARGMIN(¥);
L

A(I,%):= B+C — 3%D;
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4.2.2 Procedure Call Statement

&

L A procedure call statement transfers execution control to a procedure. When

| the execution of theprocedure is completed, control returns to the statement
—

followingthe procedure reference. More will be said about procedures in Section 5.1.

{ Examples:

| PIVOT (M,R,S);
SIMPLEX("IN" A,B,C, "our" Z, BV, X.BV);

| 4.2.3 Keyword Statements
Much of the power of MPL lies in the use of keyword statements. Formally,

1 a keyword statement is one which begins with reserve words such as DEFINE, FOR,

| IF, GO TO, LET, ENDIF, RELEASE, RETURN. The complete-list will be found in 3.2.4
in Part III. The keyword indicates to the computer and the programmer what type

| of action 1s desired. Some of the keyword statemnts will be discussed here, the
remainder being discussed in Chapter 5 (Statement Blocks).

| 4.2.3.1 GO_TO Statement
A GO TO statement is used to alter the normal sequential flow of contrél

L during the execution of a program. The form is GO TO % ; where £ is any label

| as defined in Section 4.1. Example:
ITERATE: I': =1 + 1;

| GO TO ITERATE;

| 4.2.3.2 Simple Conditional Statement (IF)
A simple conditional statement enables one to execute a single statement only

|
—



if certain conditions hold, and skip it otherwise. The form is

L s IF le;
I where le 1s any logical expression as defined in Section 3.1 and s 1s an

I assignment statement. Examples:
S = 0 IF A(* J) = B;

i R = S+T IF Z = 03

| ) K :=RIFU = 0;
L :=S IF V > 0;

L If the logical expressions le 1s true, the program is executed with s replacing

[ the entire conditional statement. If not true, the program goes to the next
statement.

L In section 5.4 a compound conditional form is discussed. Its form 1is

IF le THEN Sq... 8

[ “OR IF le THEN Se#1’ Sm
OTHERWISE Sh+1° 0%,

[ ENDIF;

4.2.3.3 Sinple Iterated Statement (FOR)

A simple iterated statement 1s used to perform a given statement several

| times in such a manner that during each execution an iteration index 1s changed
according to a predetermined pattern. The form 1s

s FOR v IN set;

C.
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L where Vv 1s any variable name as defined in Section 2.1, got is any index set
- variable as defined in Section 2.1 and s 1s a statement. s i; general depends

on v . The first part of the conditioned statement (the FOR phrase) states that

3 the values of an iteration index (Vv are to range over set). The first cycle
through s is executed with the first value of v in set; tne second cycle is

L executed, the second value of v in set, and so forth until the last value of

| the iteration index has been used in the execution of s. Then control is passed
onto the next statement. Example:

L A(I) := B(I,J) FOR I IN (1,...,M);

L In Section 5.3 & compound iterated statement is discussed. Its form is

i FOR V IN set DO
SpreerS_

i ENDFOR;

| 4.2.3.4 Let Statement

| The let statement enables one to represent one symbol by another and was |

Co |

introduced into MPL to ehhance readability. This statement is similar to a MACRO- |
| It-causes modification of the program at compiler time instead of execution time*

The let statement will be explained by showing several examples of its use.

i a) LET M := MATRIX;
A := MxB;

1s equivalent to A := MATRIX * B;
-

b) LET L(1) := RHS(I)/A(I,S); LET T := (1,...,M);

— R := ARGMIN (L(T)):

| 1s equivalent to " R i= ARGMIN (L(J) FOR J IN T);

. or equivalent to R i= ARGMIN (RHS(I)/A(I,s) FOR I IN (1,...,M);
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c) LET BI := BASIS-INVERSE; LET BC := BASIC_COSTS;

| PI := BCxBI;
is equivalent to PI := BASIC_COSTS*BASIS_INVERSE;

| Note also in the first example that I is a dummy and that another symbol

| J was used 1n its place later on.. The form of a let statement is LET v := e
where v 1s a variable and e 1s an expression.

L In the case that let 1s only used to simplify a single statement, an inverted

I let or WHERE form can be used.

| R := ARGMIN(L(J) FOR J IN T)
h WHERE T := (1,...,M);

| 4.2.3.6 Define Statement
Before a variable name may be used in a program the type, structure and

| storage requirements of the values which 1t represents must be explicitly or

| implicitly defined. The only exception to this rule is that an undefined variable
may be used as a dummy iteration index or as a dummy variable in a let or where

| situation. The declaration may be done 1n two ways. One is to define the variable
but not give it any values:

) DEFINE V 1 BY M;

i The other is to define the variable and assign it values at the same time. In the
example below V is a new variable while A and B have been previously

—

defined.

V := A + B;

Let us now explore the details and meaning of the define statement.



9 The form of an explicit DEFINE statement is
SIZE

DEF INE Variable Type Shape Dimensions or Domain |
| name ARITHMETIC RECTANGULAR m BY n | |

DIAGONAL (m,5...,m,) BY (ny,...,m,)

| UPPER TRIANGULAR
LOWER TRIANGULAR

| SPARSE WITH K NONZEROS
|

| name LOGICAL

| name CHARACTER m

| name SET n

L Words "ARITHMETIC", "RECTANGULAR" will be understood if type, shape or size
| descriptors are omitted. Scalar 1s assured 1f size description 1s missing. Tet

symbols k, m, n, m, m, n,, n, be any previously defined integers or integer

| expressions. A matrix "SPARSE WITH K NON-ZEROS" means the matrix has at most

I k non-zeros. It will be stored as a sparse matrix. A list which has neither row
nor column interpretation may be indicated by "(m)'" where m is the number of

i elements. Examples:
| 1. DEFINE k M BY Nj;

| 2. DEFINE D, E DIAGONAL P BY Bj;
3. DEFINE D (L,...,M) BY (K,...,1);

| 4, DEFINE J;
5. DEFINE M SPARSE WITH P NONZEROS;

( 6. DEFINE cc 1 BY N;

- 7. DEFINE B M BY 1;

8. DEFINE L CHARACTER;

LC 9. DEFINE S SET;



i The form of a domain descriptor 1s SRL where SRL 1s a subscript range

| list, a series of subscript ranges separated by a BY- A subscript range
— 1s two arithmetic expressions separated by ,..., . Example of subscript range

list: (1,...,M) BY (M+N,...,K).Each subscript range determines the minimum and
I

maximum values of the array's subscripts. The number of subscript ranges in the

| subscript range list determines the number of dimensions of the storage structure.
y If the domain is of the form (1,...,M) BY (1,...,N) it is written in Dimension

— form M BY N or simply M for a one-dimensional list or set. The description

i shape and size descriptions may appear 1n any order 1n a define statement.

. The second énd most used) method of defining a variable 1s implicitly. The
form of an implicit define statement 1s vn <= ae; where vn 1s a

L variable name as defined in Section 2.1 and ae is an arithmetic expression as
defined in Section 3.2. In this version of the define statement the variable

-

name being defined 1s given the same form, type, and structure as the value of

1

the first arithmetic expression. Examples:
—

— M := (A, B)#

(C, D);

| B := (P(%, BL(I)) FOR I IN (1,...,M));

Co

) D := E + FXG; "WHERE E AND F ARE MATRICES"

—

—
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5.0 Statement Blocks

“ A program in MPL consists of a sequence of statements (defined in 4.0)

and statement blocks. A statement block 1s a sequence of statements with special

mn
oo initiating and terminating statements. There are four kinds of statement blocks-—-

|

: procedure blocks, storage allocation blocks, conditional blocks and iteration
—

blocks. The entire program is a procedure block. A block can have other blocks

i

- imbedded within 1t,or it may be imbedded in other blocks,but no two blocks

{ partially overlap.
C

|
5.1 Procedure Blocks

I. —

| A procedure 1s designed to carry out a specific sequence of operations which
{

-

may be required over and over again. Rather than rewriting the sequence of steps

each time, they may be written once in a form which can be utilized whenever needed.
|—

It is hoped that a library of procedures written in MPL will be developed, thereby

— enabling the work of one programmer to be available tb others. This will not only

speed up the writing of MPL codes, but will also enhance the readability. Later on

-

we will say how to call a procedure in a program.

If one wants to write a procedure (which will 3ater be called by some main

_ routine), the ° procedure is initiated by a procedure statement, contains a

statement sequence, and 1s terminated by a finistatement. A procedure statement

— consists of the reserved word PROCEDURE followed by a procedure identifier.

: The procedure identifier specifies both the procedure name and the local names of

— []
the input-output parameters. The form of a procedure identifier is a variable name

followed usually by a list of parameters enclosed in a pair of parentheses.

—

-
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_ The fini statement is used to mark the end of a procedure write up. In

contrast, RETURN 1s a signal during execution of a program that control is to

- be passed back to the main routine. This 31so terminates any storage allocation,

iteration, or conditional blocks which were initiated but not explicitly or

implicitly terminated within the procedure,

-
Control 1s paased to a procedure by either a function or a procedure

3 reference call. A procedure may have several return statements, each one may cause
—

termination during execution. vyalues are transferred to and from the procedure

- by means of substitution statements in the input-output section of the procedure

| identifier. In general, new variables for the main routine may be defined in the

— output section.

1 As an example of the use of the return statement in a procedure

consider the following routine for checking whether two column vectors are equal.

L

COMPARE := 0 means A = B.

-

PROCEDURE COMPARE(A, B)

_ (1) . IF ROW.DIM(A) == ROW-DIM(B) THEN

COMPARE := 1;

— RETURN;

" OTHERWISE

—

(2): FOR I IN ROW_DOM(A) DO

IF A(I) += B(1l) THEN
-_

COMPARE := 1;

- RETURN;

ENDIF;

ENDFOR;
_

COMPARE := 0;

(3) : RETURN;

ENDIF;

— FINI;



Lo Next suppose that in a program we have the following sequence of statements:

: IF COMPARE (X,Y)=0 THEN GO T0(21); OTHERWISE GO TO (23); ENDIF;
—

] thus 1f the vector X equals the vector Y in each component, control is

: transferred to the statement (21),if not, it goes to (23).

-

5.2. Storage Allocation Blocks, Release Statements

Storage allocation blocks are required for the efficient use of memory

| |

| core 1n a computer. To release a symbol and any storage for other use, the

statement takes the form:

- ~ RELEASE A, B;

B After much debate, 1t was decided that in writing mathematical programming codes,
L_

block storage allocation was preferable to continual re-allocation.

Release of symbols takes place automatically, however, with subprogram
—

blocks and special release blocks.

All symbols and storage except outputs, generated within a procedure are
ood

|

Lo released when the procedure returns to the main routine. Hence the same symbols
—

| outside the procedure can be used with entirely different meanings.

_ G i1n-the statement

Z ¢e= A + G WHERE G := INVERSE (M);

1s treated as a dummy variable locally defined within the block and immediately
—

released. However, in the situation

LET G := INVERSE (M);

, Z = A + G;

the release of GG 1s not possible until the end of a procedure unless by a special



L release statement

1 RELEASE Gj;

L 5.3 Iteration Blook

. An iteration block 1s a statement sequence which 1s repeated a number of

| times only with an iteration index changed between each execution. As such, this
1s a generalization of the iterated statement (Section 4.2.3.3). An iteration

| bloek is initiated by a for statement, contains a statement sequence, and is
terminated by an endfor statement. The for statement (very similar to the

8 for phrase of Section 4.2.3.3) governs the behavior of the iteration by specifying
the values Eor the iteration index. Iteration blocks do not release symbols and

i storage like a subroutine blocks. Example: The form is

i FOR v IN set DO

] S18,
ENDFOR;

FOR I IN (1,...,M) DO
-

X(I) := Y(I);

L J' = J+ 1;

A(x,I) := B(I);

L ENDFOR;

5.4 Conditional Blocks

-

Conditional blocks are constructions wherein the program selects between

— a set of mutually exclusive courses of action. A conditional block is initiated

by an if statement and terminated by an endif statement. Or if and otherwise

statements allow for the provision of multiple alternatives. This construct is a



|
fe generalization of the conditional statement (Section 4.2.3.2). Conditional blocks

do not release symbols generated within them. The form 1s:

| IF Le THEN 810 1%

OR IF le THEN So+1° m

» o » @» S
| OTHERWISE 8, qs¢++sS
-

ENDIF;

IF A = B THEN GO TO (7);

- OR IF A = C THEN GO TO (8);
—

OTHERWISE

_ - B i= A%

! ENDIF;
| The OR IF and OTHERWIBE are optional in a conditional block. For example
|
-

: IF le THEN S198) ENDIF,
!

-

—

| .
-

4

-

a
I.



2/28

oe 6.0 Examples of MPL Procedures

|
kL PROCEDURE SUM (F)

3 "SUMS A VECTOR F OVER ITS DOMAIN"
"ACCUMULATE THE RUNNING SUM IN S."

(1): s := 0;

_ (2) + SAME LOCATION (S', 8S);

"S' WILL BE THE UPDATED VALUE OF S TO BE STORED IN THE SAME

3 LOCATION AS S AND THEREAFTER REFERRED TO AS S."

| (3): 8" = 3s + F(1) FOR I IN DOM(F);

]

|
= "ITERATIVELY ADDS F (1) TO S"

—

(4): SUM := Ss;
§

L (5): RETURN; FINI;

— PROCEDURE ~~ MIN_1("IN" F, "OUT" K, M)

"K IS THE FIRST INDEX I WHERE F (1) TAKES ON ITS MINIMUM
LL

VALUE M OVER DOMAIN OF F."

| "INITIALIZE K AND M"
-

| (1): K := DOM(F) (1); "I.E. THE FIRSTCOMPONENT OF THE SET DOM(F)"

- (2): M i= F(K);

| (3): SAME LOCATION (kK, K'), (M, M'");
-

"K', M', ARE UPDATED VALUES OF kK, M"
—_

|



L (4): FOR I IN DOM(F) DO
L$

| IF F(l) < M THEN

L K':= 1;
_ M' = F(I); _

- ENDIF;

i ENDFOR ;
: (5): RETURN; FINI;

| PROCEDURE COL_PIVOT (A,P,R);

- "WARNING - MODIFIES A AND STORES THL RESULT A' IN THE

| SAME LOCATION AS A."
} "PIVOTS (A, P) ON P(R) WHERE A IS A MATRIX AND PA

L COLUMN VECTOR, AND RETURNS A', THE MODIFIED A PART ONLY."

i
(1): SAME LOCATION (A', A);

L (2): M := ROW_DIM(A);
(3y: LET T := (1,...,M) AND NOT R;

- 4): A(R, *) := A(R, *)/P(R);

; (5): A'(I, x) := A(I, r) - A'(R, *) * P(1) FOR I IN T;
-

(6): COL_PIVOT := A';

L (7): RETURN; FINI;

_ PROCEDURE REVISED_SIMPLEX2 ("IN" A,D,C,BvV, "ouT" STATUS,X,Z,K);
[ "REVISED _SIMPLEX_2 IS JUST PHASE 2.

L A = MATRIX, C = COSTS, D = RHS, BV = BASIC VARIABLES,

| X = BV VALUES, Z = OBJECTIVE VALUE, K = ITERATIONS"
"THE PROBLEM IS TO FIND MIN 7, X > 0, AX =D, CX = Z.

3 IF MIN Zz IS FINITE, STATUS = FINITE, OTHERWISE STATUS =

1 INFINITE, IT IS ASSUMED THAT BV IS A BASIC FEASIBLE SET
OF VARIABLES."
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i "INITIALIZATION"

L (1): K := 0;
(2): STATUS := 'FINITE';

L [

| "THE FIRST STEP IS TO SET UP THE INITIAL BASIS WHICH CONSISTS
OF THE SET OF BASIC VARIABLE COLUMNS, BV, OF A. THUS

L BASIS := A(BV). LET G BE THE INVERSE OF THE BASIS.
WE ARE INTERESTED IN COMPUTING G AND LATER UPDATING IT."

I (3): G := INVERSE(BASIS) WHERE BASIS := A (BV);

L "ALSO X, THE VALUES OF THE BASIC VARIABLES, ARE INITIALLY"

L (4): x = G * DB;

| "ITERATIVE LOOP"
"THE COSTS ASSOCIATED WITH BASIC COLUMNS ARE C (BV) = HENCE

-
THE SIMPLEX MULTIPLIERS P ARE GIVEN BY"

| (5): P := C(BV) * G;
~ |

| "LET S DENOTE THE INDEX OF THE COLUMN OF A COMING INTO THE
BASIS AND C.8 = C(S)."



L (6): MIN_1("IN" Cc-P * A, "our" S, CS) ;

L "WHICH IS THE INDEX (ARGUMENT) OF THE SMALLEST COMPONENT
L OF THE VECTOR OF RELATIVE COSTS C-P * A."

| "TEST FOR FINITE MIN Zz"

1 (7): GO TO (lo) IF C_S > 0;

L "LET Y BE THE REPRESENTATION
TERMS OF THE BASIS."

| (8): v t= Gh A(*, 5);

L "LET R DENOTE THE INDEX OF THE COLUMN IN THE BASIS TO BE
REMOVED"

LETT := (I IN DOM(Y) |Y(I) > 0);

[ IF T = NULL THEN
STATUS := 'INFINITE';

[ GO TO (16);

L ENDIF; ,

L (9): MIN_I("IN" (X(I)/Y(I) FOR I IN T), "OUT" R, Q);

| "UPDATE X, G, K, BV DENOTED BY X', G', K', Bv' "

| (lo): saME LOCATION (X, X'), (Gg, G'), (K, K'), (BV, BV');

| (11): K' = K + 1; }



L (12): x' = X-Y * Q;

L X'(R) = Q;
i} (13): G' := COL_PIVOT(G,Y,R);

"COLPIVOT PIVOTS (G,Y) ON Y(R) AND RETURNS MODIFIED G

L PART."

| (14): BV'(R) := S;

_ "CHANGE R-TH BASIC VARIABLE TO S."

| _. "UPDATING COMPLETE, RECYCLE"

| (15): GO TO (8);

[ "TERMINATION"

L (16): Z = C(BV) * x;
[ . (17)1 RETURN;

(18): FINI;

L
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L 0-1 ABSTRACT
| COMMUNICATION WITH A DIGITAL COMPUTERIS A PROBLEM WHICH HAS

L OCCUPIEDMANY PEOPLE FOR A LONG TIME. IN OKDERTO ALLOW THE- COMPUTER TOBE MOREWIDELYUSED AS A COMPUTATIONAL TOOL MUCH OF

THIS EFFORT HAS GONE INTO OEVELOPING SYSTEMS THROUGH WHICH 4

PERSON ‘MAY COMMUNICATE HIS DESIRES EVEN THROUGH HEIS NOT FAMILIAR

1D WITHTHE SOPHISTICATED ANDHIGHLYOETAILEDPROGRAMMINGLANGUAGE S
| AVAILABLES THE MATHEMATICAL PROGRAYM ING LANGUAGE IS ANOTHER

ATTEMPT TO PROVIDE A LANGUAGE IN WHICH THE NON-PROGRAMMER MAY

[ WRITE PROGRAQS. THEVALUEOF THIS WORKLIES IN THE FACTTHAT ITIS ORIENTED DIRECTLY TOWARD MATHEMATICAL PROGRAMMING. CONSEQUENTLY

CONSIDERABLE EFFORT HASBEENMADETIOMAKE YPLLOOKAS MUCHLIKF

L STANDARD MATHEMATICAL NCTATION ASPOSSIBLE.
ITISHOPED THAT THIS WORK WILL PRODUCE A RIGOROUSLYDEFINED LANGUAGE

IN WHICH MATHEMATICAL PROGRAMMERS CANDESCRIBE ALGORITHMS WHICH

[ WILLATTHE SAME TIMEBEEASILY UNDERSTOOD BYOTHERMATHEMATICAL
PROGRAMMERSAND MEANINGFUL 4NDVALIOCOYPUTEQ PROGRAMS.

[ SINCEJYPL IS A LANGUAGF INTENDED FOR COMMUNICATIONBOTHWITHOTHERINDIVIDUALS-ANDWI THCOMPUTERSy ITS DEVELOPMENT IS AN EFFORT TD

PROVIDEA *READABLE! PROGRAMMING LANGUAGE. HOWEVER, FORA PROGRAM

TOBE READABLE (AN EASYTO USE AND RAP10 METHODFOR TRANSFERRIYG

[ INFORMATION) ITMUST BEBOTH ‘UNDERSTANDABLE’ (THE NOTATION IS
FAMILIAR OR SELF-EXPLANATORY WITHIN ITS CONTEXT)AND *COMPREHENDABLE?

(THE PAKTS OF A PROGRAM MUSTINTERRELATE IN A MEANINGFUL MANNER

[ FOR THE PROGRAM READER)a IN ‘THIS RESPECT THE EMPHASIS OF MPL
IS UPOY PROVIDING ANUNDERSTANDABLE LANGUAGE. COMPREHENDABILITY

( WILLSTILLBETHE USER'S RESPONSIBILITY.
L
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1 C-2 TABLE OF CONTENTS (CONTINUED)
4 I NPUT/0UTPUT STATEMENTS

-

5 LIBRARY PROCEDURES

5) PROGRAM FORMAT1 ON MECHANICS

6-1 CARD FORMAT

6-2 US EOF BLANKS

| 6-3 : COMMENTS
-

7 RESUME OF DEFINITIONS

re 8 SAMPLE PROGRAM

0-3 .MPL LANGUAGE DESIGN PHILOSOPHY

be —-

THE PHILOSOPHY BEHIND THE DESIGN Of THE MATHEMATICAL PROGRAMMING

LANGUAGE (HEREAFTER CALLED MPL) IS TO PROVIDE A MAXIMUM OF

. READABILITYTO THE UNINITIATED. THUS IT C A NHOPEFULLYB E
ASSUME3 THAT THE USER HASONLY A FAMILIARITY WITH THENOTATON

OF CURRENT MATHEMATICAL LITERATURE, ASA RESULT THE LANGUAGE

| DEFINITIONATTEMPTSTOAVOID ABBREVIATIONS WHICH MAY BE
~ OBSCURE, TODKEEPTHE NUMBER OF SPECIAL SYMBOLS TOAMINIMUM,

AND TO PROVIDE THEMOSTFAMILIARNOTATIONAND FORMATION,

-— AS YPL DEVELOPED IT BECAME OBVIOUS THAT MANY USEFUL STRUCTURES

WERE AVAILABLE IN EXISTING LANGUAGES, AS A RESULT THE READER

WHOIS FAMILIARNWITHALGOL, FORTRANGPL/IZETC.9OWILLENCOUNTER

oO FAMILIARFORMS AND PHILOSOPHIES. NO ATTEMPT HAS BEEN MADE
TOPARALLEL ‘ANY SINGLESUCHULANGUAGE, BUT WHERE APPLICABLE

, T ODEVELIP THEBESTTHATWAS AVAILABLE.

| -

—

-

-
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i 0-4 USEOF THE MANUAL
THE FOLLOWING DISCUSSION IS ORGANIZED SO THAT THE READER MAY

FOLLOW THE CONSTRUCTION OF MPLFROM THE MOST ELEMENTARY

UPTHRIUGH THE BROADEST CONCEPTSs THE FINAL SECTIONIS A RESUME

QF THE FORMAL DEFINITIONS SO THAT THIS PAPER MAYBE USEDBOTH

FODRINSTRUCTIONAND AS A REFERENCE MANUAL. EXAMPLFS WILL BE

| LIBERALLY SPRINKLED AMONG THE. DESCRIPTIONS.
THEDEF INITION OF YPL WHICH’ APPEARS HERE IS AIDEDBY THE

L USE OF A YETALINGUISTICORLENGUAGE-DESCRIBING LANGUAGE WHICHHAS SEVERAL SPECIAL SYMROLS.,

A < > A PAIR OF BROKEN BRACKETS DELIMITSA PHRASENAME.
.

LI A PAIR OF PRIMES DELIMITS 4 CHARACTER STRING WHICH

APPEARS IN A PHRASE EXACTLY ASIT APPEARS WITHIN

| ) THE PRIMES.
12= READTHISSYMBOL “IS DEFINED AS", IT SEPARATES THE

- PHRASE NAME ON THE LEFT FROMTHE PHRASE DESCRIPTION

- OK. THE RIGHT.

KEAD THIS SYMBOL "OR", IT SEPARA’TES MUTUALLY EXCLUSIVE

| DESCRIPTIONS.

i EXAMPLE METALINGUISTIC STATEMENTS
<CHARACTER>:s=<LETTER>|LCKDIGIT>| <SPECIAL CHARACTER>

| THIS METALINGUISTIC STATEMENT READS “A CHARACTERIS DEFINED AS
A LETTERORADIGIT OR A SPECIAL CHARACTER.”

l <I TERATEDSSTATEMENT: :=1F'<EXPRESSIOND?!' ,*<KSTATEMENT>
THIS READS “ANITERATED STATEMENT IS DEFINED AS THE CHARACTERS

l . ‘ITF* FOLLOWED BY AN EXPRESSION FOLLOWED BYA COMMA FOLLOWEDBY 4STATEMENT,®

|
-

_

_

h_

{

|

-



1 1-1 AN ORGANIZATIONAL OVERVIEW
THE MPL LANGUAGEIS DESIGNED TO FACILITATE THE COMMUNICATION

OF MATHEMATICALPROGRAMMI NG ACGORI THMSe THE COMPLETE STATEMENT

L OF AN ALGORITHMINMPL IS A ‘PROGRAM’* A PROGRAMIS COMPOSEDi}
NNE OR MORF ‘PROCEDURES’, EACH OF WHICHI S ASEQUENCEOF SEVERAL
"STATEMENTS'e EACH STATEMENTIS MADE UP OF'RESERVED.....AND

i | . @EXPRESSIONS’ 9 THERASIC BUILDING BLOCKS Of MPLes THESE, FINALLYoo ARE COMPOSED OF ‘CHARACTERS’.

- 1-2 THE MPL CHARACTER SET

{ THE CURRENT VERSION OF MPL ISBASED UPON THECHARACTER SET OF
ig THEIBM 029 KEYPUNCH. FOR CONVENIENCE THESE cosrscriens A RE

GROUPEDINTOTHE CATEGORIESNF LETTERS,DIGITS, ANDSPECIAL
CHARACTERS.

- KCHARACTERDtt =<LETTERD|I<KDIGIT>|<SPECIAL CHARACTER>

3 WHERE ...SPECIFIC CHARACTERSIN EACH CATEGORY ARE GIVENBY:
<LETTER>::=%A |B [ICI |*DY [EV |OFO|oGe|sH|oejoge]oegejope

| MYON jeg eps jeQe joe jeSejaTejeyyrjeyejogejexsjeye]jeye

KSPECIAL CHARACTERD:zs=0(0) 0) jroo de|o nfo njegnjosfoxejeye
L : jeso ovo frerje 0 Vege jee ogres spre] efrege

TWO OTHER CHARACTERS ARE AVAILABLE ON THE 029 KEYPUNCH,BUTARE

. NOT INCLUDED IN THE ABOVE CATEGORIES DUETOTHEIR SPECIAL USAGE
| NMPLe THESE CHARACTERS ARE

| "30 STATEMENT TERMINATOR
— vres COMMENT DELIMITER

L 1-3 SOME ELEMENTARY PHRASES
( CHARACTER STRINGS::=" (CHARACTER STRING><XCHARACTER>

— . <DIGIT STRING>::=<DIGIT>I<DIGIT STRING><DIGIT>

| CNULL PHRASED: i= |<NULL PHRASE >"!
THESE PHRASES ARE USED IN SEVERAL PLACES THROUGHOUT THE MANUAL.

{ THE CHARACTER AND OIGIT STRINGS ARE JUST STRINGS OF CHARACTERS

L OR DIGITS AS THEIR NAMES IMPLY. THENULL PHRASE INDICATES THAT
THFPHRASE WHICH IT DESCRIBES MAYBE OMITTED.

-
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1 2 EXPRESS [ONS
<EXPRESSION>::=Y(*<EXPRESSION>?Y)?

| <NUMBERD

[ | * TRUE | *FALSE?
| NULL’

J YP (CHARACTER STRING)?®

| | <VARIABLED )| <PROCEDURE CALL
| <COMPUTATIONAL EXPRESSION

| <DOMAIN ITEM

L | KCONCATENATORD
| <ARRAY CONSTRICTOR>

[ | <SUBSET SPECIFIER>
EXPRESSIONS 4RE ELEMENTS OF MPL WHICH HAVE ‘VALUE’. THEY USUALLY

DERIVE THEIR VALUES FROM MANIPULATIONS OF VALUES OF CONSTITUENT

PARTS, THE MOSTBASIC EXPRESSIONS ARE CONSTANTS WITH FIXED

VALUES AND VARIABLES WITH VALUES WHICH MAY CHANGE DURING PROGRAM

-OPERATION. EACH CONSTANT AND VARIABLE, AND CONSEQUENTLY EACH

EXPRESSION, HAS AN ASSOCIATED SET OF ATTRIBUTES WHICH DESCRIBE THE

| PROPERTIES Of THE VALUE OF THE EXPRESSION.

| 2—1 EXPRESSION ATTRIBUTES
TYPE’ MPL ALLOWS THE USER TO MANIPULATE VALUES WHICH ARE ARITHMETIC

| QUANTITIES, LOGICAL OR BOOLEANQUANTITIESy SETS, OR CHARACTER STRINGS«CONSEQUENTLY THE POSSIBLE VALUES FOR THE TYPE ATTRIBUTE ARE ARITHMETIC,

LOGICAL, SET, AND CHARACTER. INITIALLY NO ATTEMPT IS BEING

YADE Vi) IMPOSE THE ‘FLOATING POINT AND *INTEGER?®* SUB-CLASSIFICATIONS

| OF THE ARITHMETIC TYPE ON MPL USERS, INSTEAD IT IS HOPED, PERHAPS
INVAINy THAT THESE HARDWARE IMPOSED CONVENTIONS MAY BEBYPASSEDa,

| * FORM’ IF A VALUE HAS TYPE ARITHMETIC, THENIT YAYBEEITHERA SCALARQUANTI TY, A VECTOR QUANTITY, ORA MATRIX QUANTITY" CONSEQUENTLY THE

POSSIBLE VALUESFOR THE FORM ATTRIBUTE ARE SCALAR, VECTORy ANDMATRI X«

| ‘SHAPE’ IF A VALUE HAS TYPE ARITHMETIC, ITSFORM USUALLY HASA RELATED
SHAPEATTRIBUTE WHICH PROVIOFS ADDITIONAL INFORMATION ABOUTTHE VALUES

DORGANTI ZATION A SCALAR FORM HAS NO SHAPE ATTRIBUTE, A VECTOR YAY

L BE EITHER AROW VECTOR ORA COLUMNVECTORSO ITS POSSIBLESHAPFS ARE
ROWA Y D COLUMN, MATRICES, NORMALLY RECTANGULAR, ARE GIVEN SHAPES TO
CONSERVE STORAGE SPACE BY STORING ONLY SUBSETS OF ELEMENTS. POSSIBLE

| MATRIX SHAPES ARE RECTANGULAR, UPPER TRIANGULAR, LOWER TRIANGULAR,DIAGONAL, AND SPARSE.

]

|
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| 2.2 CONSTANTS
| A CONSTANT ISANEXPRESSION WHICH HAS AFIXED VALUE DETERMINEO BY

THE NAME OF THE CONSTANT. THEREARE CONSTANTS OF EACH TYPE.

-

‘2-2 NUMBERS :

<NUMBE 3>3:=<KNUMBER BASED |<KNUMBER BASED<EXPONENT>

- <NUMBER BASE>: :=<DIGIT STRING>
| <DIGIT STRING>“.’

[%« *<DIGIT STRING> \

w IKDIGIT STRING"* DIGITS TRING >

<EXPONENT>::="E*<XDIGIT STRING>

L [EV40 ¢DIGIT STRING
| "E¢Y__<DIGIT STRING

ESSENTIALLY A NUMBERIS ADIGIT STRING(1-3), POSSIBLY CONTAINING A

— SINGLEDEC IMAL POINT, IF THENUMBER HAS A VERYLARGEOR AVERY SMALL

VALUE SO THATWRITING IT REQUIRES MANY ZEROS, IT BECOMES WORTHWHILE
TO USE THE ABBREVIATED ‘SCIENTIFIC NOTATION’ PROVIDED BY THE EXPONENT.

{| HERE'E* MEANS ‘TIMES TENTO THE POWER". THE SYMBOL** INOICATES
THAT THESIGN FOLLOWING THE'EY]IS OPTIONAL.

EXAMPLE NUMBERS

2 13.6 2e 54 16325 156 6E-03 2ES «006

-

2-2-2 LOGI CAL CONSTANTS

LOGICAL, BOOLEANy OR TRUTH VALUEO EXPRESSIONS RESULTMOSTLYFROM TESTS
ON OTHER QUANTITIES WHICHYIELD THE VALUES TRUE OR FALSE. SINCE

THERE ARE ONLY TWO POSSIBLE VALUES FOR ANY LOGICAL EXPRESSION

THEREARE ONLY TWO POSSIBLE LOGICAL CONSTANTS, ‘TRUE’ ANO ‘FALSE’.

- 2-2-3 SET CONSTANTS

SETSINMPL ARE INTENDED PRIMARILY FOR INDEXING OVER ROWS ORCILUMNS OF

MATRICES, ITERATION. LOOPSs ETC. AS A RESULT, SET ELEMENTS HAVE WHOLE

NUMBER VALUES,, THERE ARE NO OUPLICATE ELEMENT VALUES IN, SETS.

HOWEVER, SINCE SETSMAY, CONTAIN A VARIABL'E NUMBER OF ELEMENTS,y THEY
HAVE AN ASSOCIATED SIZE OR NUMBER OF ELEMENTS. THE SINGLE MOST

IMPORTANT TESTON ASETIS THEREFORE WHETHERIT IS EMPTY. THUS THE

THE SETCONSTANT ‘NULL’ IS PROVIDED TO FACILITATE THESE TESTS AND

FOROTHER USES.
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g 2.2.4 CHARACTER CONSTANTS

CHARACTER CONSTANTS HAVE THE FORM “‘<CHARACTER STRING>’ "%,

. CHARACTER CONSTANTS WERE ORIGINALLY PROVIDEDIN MPCFOR CONVEYING FORMAT
INFORMATION TO THE INPUT AND OUTPUTROUTINESe HOWEVER, WITH ONLY SLIGHT
DEVELOPMENT A VERY POWERFULMANIPULATINGCAPABIL ITY APPEARED. 4

8 CHARACTER CONSTANTIS ANYSTRING OF CHARACTERS DELINEATEO RY A
A PRIME (SINGLE QUOTEYONEACH ENO. A PRIMEWITHINACHARACTER

STRING MUS TBEREPRESENTEDBY TWO AOJACENT PRIMES'IT.E."* (AS

L OPPOSEDTO A DOURLEQUUTE ‘Or
EXAMPLE CHARACTER CONSTANTS

1 '1H-4 25E1346"
| 'HELP,HELP?

‘THIS ISTHE JONES” HOUSE?

L 2-3 VARIABLES

L : <VARIABLE>:: =<VARTABLENAMED>| <KVARIABLED>? (*<SUBSCRIPT LIST> “)’
VARIABLES REPRESENT VALUES. JUST AS A VARIABLE NAMEIS USFOTN
REPRESENT AN ENTIRE MATRIX OR VECTOR, VARIABLE NAMES WITH SUBSTRIPTS

[ REPRESENT SPECIFIC ELEMENTS OR SETS OF ELEMENTS OF THESE FORMS,
MPLVARIABLES CAN REPRESENT VALUESINDIRECTLYe FOR INSTANCE, IFA
REPRESENTS A MATRIX’ THEELEMENTS OF THE MATRIX COULD BE NUMBERS,

i ORTHEYCOULD HE POINTERS TO OTHER MATRICESs INTHE LATTER MANNERACI, J) (KyL) WOULD PICK FROMA(I43J)THEPOINTER TOSOME MATRIX FROM

WHICH THE{(KyL)TH ELEMENT WAS ACTUALLY DESIRED. THE POWER HERE

IS THAT THE ELEMENTS OF AN ARI THMETIC MATRIXOR VECTOR NOW MAY BE

OTHER ARITHMETIC QUANTITIES, LOGICAL QUANTITIES, SETS, OR CHARACTER
STRINGS.

L 2-3-1 VARIABLE NAMES

| _<VARIABLE NAME>: t=<LETTER>| cVARIABLE NAMEDSLETTERD

| <VARIABLE NAMEDSDIGIT>

| |<VARIABLE NAME>",’
|<VAIRABRLE NAMED?¢?

: A VARIABLE NAME NAMES A ‘STORAGE STRUCTURE AND THEREBY HAS
L ALL Of THE ASSOCIATED PROPERTIES OF THE STRUCTUREe IF THE STRUCTUREHASTYPE ARITHMETIC ITS ELEMENTS MAY BE POINTERS TO OTHER STRUCTURES

HAVING OTHER TYPES. A VARIABLE NAME ALWAYS BEGINSWITHA LETTFR

| WHICH YAYBEFOLLOWED BY ANYNUMBEROF LETTERS’ DIGITS, UNDERSCORES,
L ORPRI YES.

EXAMPLE VARIABLE NAMES

g 4 A’ ALPHAS36 THIS_IS_A_VARIABLE_NAME OBJECTIVE_FUNCTION
i

!

L
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- 2- 3.2 SUBSCRIPTS
SUBSCKIPTS ARE SUBSCRIPTLISTS ENCLOSED IN PARENTHESES.

- CSUBSCRIPT LISTD>::=¢SUBSCRIPTELEMENT>

| CSUBSCRIPT LIST>' 9*<SURSCR IPT ELEMENT»
f

L '<SUBSCRIPTELEMENT>2:="#¢| EXPRESSION
SUBSCRIPTS ARE USED TO ACCESS SUBSETS OF ELEMENTS OF ARITHMETIC

DATA STRUCTURES. THENUMBER(OF SUBSCRIPT ELEMENTSIN .SUBSCRIPT

LIST MUST BE EQUALTO THE NUMBER OF DIMENSIONS OF THE DATA STRUCTURE.

THE* USED A SASUBSCRIPTELEMENT REFERENCES AN ENTIRE ROW O R

| COLUMN OF AN ARRAY. THUS A(%*s%) _- A AND B(*)=B WHERE A AND B
- ARE AMATRIXAYO A VECTOR RESPECTIVELY. VALUES OF EXPRESS IONS

USED AS SUBSCRIPT ELEMENTS MUST HAVE EITHER ARITHMETIC OR SET

TYPEse IF THE EXPRESSIONIS ARITHMETICIT MUST BE EITHERA SCALAR

i OR 4 VECTOR. A SCALAR ACCESSES ASINGLE ELEMENT WHILE A VECTOR
ACCESSES A SET Of ELEMENTS, ANYFRACTIONAL PART OF A VECTOR OR
SCALAR ELEMENT VALUESIS DROPPEDAND ANY’ VALUESOUTSIDE THE RANGE

L OF THF SUBSCRIPTELEMENT ARE IGNORED.
| EXAMPLE VARIABLES

. A(3%A+3,() At{I,J) B(1) At(],%) A(ROW_SET,COL_SET)
AS YENTIONEOIN(2-3) THE ELEMENTS OF AN ARITHMETIC DATA STRUCTURE

(VECTOR OR MATRIX! MAY ALSO POINT TDOTHER SUCH QUANTITIES. HENCE

8 'MATRIX_LIST(K) (IJ)? ACCESSES THE(IsJ)THELEMENT INTHE MATRIX
INDICATED BY THE(K)THELEMENTI N *MATRIX_LIST's THIS PROCESS MAY

i BECONTINUED TO ANY LEVEL, RUT WITH CARE.
2-4 PROCEDURE CALLS

_ “PROCEDURE CALL>: :=<VARIARLE NAME>
| KVARIABLE NAMED? (*CEXPRESSION LIST>®)?

YEXPRESSION LIST>:: =<EXPRESSIOND>|<KEXPRESSTION LISTO>® ,¢CEXPRESSION>

| A PROCEDURE CALL CALLS A PROCEDURE FROM WITHIN AN EXPRESSION. IT

L IS ASSUMED THAT THE CALLEDPROCEDURE RETURNS A VALUE WHICH CANBEUSFEDTO EVALUATE THE EXPRESSIONINTHECALLING PROCEDURE.

| WHEN A PKOCEOUREIS DEFINED(3) ANY VALUES WHICH WILL BE PASSED FROM
L THE CALLING PROCEDURE AT THE TIMEOFTHECALL ARE REPRESENTED BY

VARIABLE NAMES IN THE VARIABLE NAME LIST FOLLOWING THE PROCEDURE

NAMEIN THE DEFINITION. THESE VARIABLES TAKE THE VALUES OF THE

EXPRESSIONS IN THE PROCEOURE CALL EXPRESSIONLIST IN THE OROER IN

L WHICH THEY OCCUR.

THEVALUE OF 4 PROCEDURE IS DETERMINED IN AN ASSIGNMENT STATEMENT

i WITHIN THE PROCEDUQEIN WHICH THE NAME OF ‘THE PROCEDURE APPEARS
ONTHELEFTOF THE ASSIGNMENT SYMBOL {(3=2=-21,

g EXAMPLE PROCEDURE CALLS
PIVOT (A+A' , Bt, 142,J4¢R~-3)

SuUBs(8)



§ 2(5)
2.5 COMPUTATIONAL EXPRESSIONS

CCOMPUTATIONAL EXPRESSICN>::='+*<CEXPRESSION>

| '~9<EXPRESSIOND

L |*NIT @<EXPRESS[ON>
| J CEXPRESSTOND+ *<CEXPRESSI OND

| CEXPRESSIOND'=*<EXPRFSSIOND>

~ | CEXPRESSTIONDY %#¢ CEXPRESS LOND© | CEXPRESSINNDY/8 CEXPRESSIOND

| CFXPRESSIOND%%¢ CEXPRESSIOND

| | KEXPRESSINN>Y#1 <CEXPRESSTOND
L | <EXPRESSION>" AND ‘<EXPRESSION>

| CEXPRESSIOND! (CR ‘<EXPRESSION>

| | CEXPRESSTOND>* IN ‘<EXPRESS[ON>

| | <CEXPRESSIODN>D®* AND NOT ‘<EXPRESSION>
| CEXPRESSIOND*=*<CEXPRESSION>

| | <EXPRESSION>’ ~=*<EXPRESSION>

i | CEXPRESSIOND* DY CEXPRESS OND| CEXPRESSIOND* C*<CEXPRESSIOND
| CEXPRESSIOND'D=t EXPRESSION

[ . | KEXPRESSINONDY<C='<EXPRESSION>
‘OPERATORS’ MODIFY ORC CONNECT "OPERAND*EXPRESSINNSINCOMPUTATIONAL
EXPRESSIONS, ALL COMPUTATIONAL EXPRESSIONS HAVE ONE OF TWO

[ GENERAL FORMS:
UNARY SOPERATORD<CR-NPERANDD>

BINARY KL=0PERANNDDCNPERATORDCR-IPERANDD

-

2-5-1 OPERATOR CLASSES AND ALLOWABLE CONFIGURATIONS

i EACHOQOPERATOR HAS 4 UNIQUE CONTEXT IN YHICHIT MAYBE USED. THE
CONTEXT IS DETERMINEDBY THE TYPES OF THE ASSOCIATED OPERANDS.

AS A RESULT JPERATORS ARE CLASSED AS ‘ARITHMETIC’, ‘SET’,

[ ARITHMETICTEST? * SETTEST*, A N D*LOGICAL'a
THE FOLLOWING TABLEDETERMINES THE TYPES OF OPERANDSALLOWABLE

§ WITHEACHC L A S SOF OPERANDS,
L=JPERAND OPERATOR R-OPERAND RESULT

[ TYPE CLASS TYPE TYPE
| ARITHMETIC ARITHMETIC ARI THM ET IC ARITHMETIC

_ SET SET S E T SET

i ARITHMETIC ARITHMETIC TEST ARI THMET IC LOGICAL
SET SET TEST SET LOGICAL

[ LUSICAL LOGICAL LOGICAL LOGICAL

|



2-5-2 OPERATOR DEFINITIONSAND PRECEDENCES

—_
THE OPERATORS WHICM FALL INTQ THESE CLASSES AND THEIR MEANINGS

ARE SHOWNINTHEFOLLOWINGTABLEs SO THAT THE ORDER OF COMPUTATION

IN ANY COMPLICATED EXPRESSION WILL BEUNAMBIGUUOUS, EACHOPERATOR

= MAS A PRECEDENCE (INDICATED BY A PRECEDENCE NUMBER) AND OPERATIONS
WITHTHE HIGHFSTPRECEDENCE (NUMBER) AREPERFORMEDFIRST,
OPERATORS WITH THE SAME PRECEDENCE NUMBER HAVE EQUAL PRECEDENCF

— AND ARE PERFORMED FROM LEFT TO RIGHT.

- OPERATNRIOEFINIT ION TABLE

g OPERATUR PRECEDENCE USE INTERPRETATION
bo

ARITHMETIC OPERATORS

| "4 70 BINARY VERTICAL CONCATENATION
— "40 65 UNARY NOEFFECT

'— 65 UNARY NEGATION

: "ak? 60 BINARY EXPONENTIATION

. EY _55 BINARY MULTIPLICAT ION
A 50 RINARY DIVISION

"4 45 BINARY SUM

L "1 45 RINARY DIFFERENCE
SET OPERATORS

| * AND ? 40 BINARY SETINTERSECTION

- * OR 35 RINARY SET UNION
* AND NOT * 30 BINARY SET RELATIVE COMPLEMENT

- ARITHMETIC TEST OPERATORS
t= 25 BINARY IS EQUAL TO

EY 25 BINARY IS NOT EQUAL TO

' = 25 BINARY IS GQEATER THAN OR EQUAL TO

— 1 25 BI NARY ISLESS THANOR EQUAL TO

1 25 BINARY IS STRICTLY GREATER THAN

Co . ' 25 RINARY IS STRICTLY LESS THAN
-

SET TEST OPFRATORS

' IN 2¢C + BINARY IS CONTAINEDIN (IS A SUBSET OF)

= | LOGICAL OPERATORS
'NOT 15 UNARY LOGICAL NEGATION

* AYD 10 BI NARY LOGICAL INTERSECTION

— * OR 5 BINARY LOGICAL UNION



L 2-5-3 SEMANTICS

L EACH CJIMPUTATIONAL EXPRESSION HAS THE FORM
CL=0OPERAND>XOPFRATOR><CR~-OPERAND>

i THIS SECTION DESCRIBES THE RESTRICTIONS PLACED UPON EACHOPERAND AND SOME ADDITIONAL PROPERTIES OF THE RESULTS,

.
ARITHMETIC OPERATORS

A THE CURRENT VERSION OF MPL RESTRICTS ARITHMETIC DATA STRUCTURES
- TOTWODIMENSIONS. THISRESTRICTIONALLOWSCONSIDEQARLEIMPLICIT

COMPUTING POWER WITHCUT BEING OVERLY RESTRICTIVE FOR MATHEMATICAL

| PROGRAMMING APPL ICATIONMSe THUS ALL ARITHMETIC DATA STRUCTURES{EVENT HECIONSTANT 15)CANRBEVISUALIZED AS MATRICES.

L (JPERAT(OR PART CHARACTERISTICS “
ry L-OPERAND ANVYARITHFMETIC QUANTITY.

- R-NPERAND AN ARITHMETIC QUANTITY WITH THE SAME NUMBER

OF COLUMNS AS THEUL-OPERAND,

| RESULT THE VERTICAL CONCATENATION OF THE TWO OPERANDS.| IT HAS THE SAMENUMBEROf COLUMNS ASEACH

OPERANDANDTHENUMBEROFROWSEQUALTO THE

i SUM OF THE NUMBERSOF ROWS INEACHOPERAND.
‘eo L-OPERAND NONE.

| R-OPERAND ANYARITHMETIC QUANTITY.

1 RESULT . SAME AS R-OPERAND.,
'— L-OPERAND NONE.

R-OPERAND ANYARITHMETIC QUANTITY.

RESULT THER-OPERAND WITHALL ELEMENT VALUE SIGNS

REVERSED.

| Fy L-0OPERAND ANYARITHMETIC QUANTITY WITH THE SAME NUMBER OF
- ROWS AND COLUMNS. THUS THE L-OPERAND MAY

BEEITHER.ASQUAREMATRIXO RA ‘SCALAR’.

i R-OPERAND MUST BE A SCALAR (ONE ROW ANO ONE COLUMN)| WITH A NON-NEGATIVE VALUE»

RESULT THE L-OPERAND YILTIPLIED BY ITSELF THE NUMBER

Of TIMES SPEGCIFIEDBYTHE R-OPERAND,

| IF THE L-OPERAND HAS MORE THAN ONE ROW AND
COLUMN ANY FRACTIONAL PORTION OF THE R-OPERAND

| WILL BE DROPPEDe OTHERWISE THEL-OPERANDIS A

L SCALAR AND ANY POSITIVE VALUES FORTHE R-OPERANDARE ALLOWED.



i 2-5-3 SEMANTICS (CONTINUED)
OPERATOR PART CHARACTERISTICS

L "x L-0OPERAND ANY AR I TFMETIC QUANTITY,
| R=0PERAND ANY ARITHMETIC QUANTITY WITH THE SAMENUMBEROF

| ROWS ASTHE L-OPERAND YAS COLUMNS EXCEPT THAT

| EITHFR OPERANNDMAYBE A SCALAR.
er RESULT A NARI THMETICHMJANTITYWITH THE SAME NUMBER

DFROWSASTHE L-OPERAND AND THE SAME NUMBER .

OFCOLUMNS AS THE R-OPERAND, ELEMENT VALUFS ARE

_ THF RESULT OF CONVENTIONAL MATRIX MULTIPLICATION.
IFEFITHERNPFERANDIS 4 SCALAR THE RESULTH2S

| THE S A ME NUMBER OF ROWSAND COLUMNS AS THE OTHER

1 OPERAND,
| '/ L-CPERAND ANYARITFMETIC QUANTITY.

| R=0OPFRAND ANY SCALAR ARITHMETIC QUANTITY,
a SE SULT HAS ALL THE PROPERTIES OF THE L-OPERAND

EXCEPT THAT ALL ELEMFYT VALUES HAVE BEEN

L DIVIDED BY THE R=(PERAND,
FY L-OPERAND ANY Al? | TEMETIC QUANTITY,

R-0PFRAND A NVYARITHMETICQUANTITYMWITHT HE SAME NUMBER

| OF ROWS A ND COLUMNSAS THE L-OPERAND.RESULT AN ARITHMETIC QUANTITY WITH THE PROPERTIES

OF THEUL=-OPFRAND, ALL POINTERS ARE SET TO 2ERQe

L ¢— SAME ASY+'( BINARY)

L SET OPERATORS
| OPERATOR PART CHARACTERISTICS
-

¢ AND * |L-OPERAND ANY SET,

R-=PERAND ANYSFT.

“ RF SULT A SET CONTAINING ONLY THOSE ELEMENTS WHICH
APPFAREDINBOTHTHEL-OPERANDAND THE R-OPERAND,

{

* JR ¢ L-0OPERAND ANYSET,

\. R-OPERAND ANY SET,
| RESULT A SET CONTAINING ALL ELEMENTS WHICH APPEARED

IN EITHER THE L-OPERAND, THE R-OPERAND ORBOTH,
“

"AND NOT

L—OPERAND ANY SET,

ig R-OPERAND ANY SET.
RESULT A SET CONTAINING ALL ELEMENTS WHICH APPEARED

: INTHE L-OPERAND BUT NOTIN THE R-OPERAND.

L
|

|

-

_



L ARI THMETIC TEST OPERATORS
ARITHMETIC TE S TIOPERATORSIMPOSETHREEOIFFERFNTREQUIREMENTS
ONT H EIRTWOOPERANDS, TO SATISFY THESE REQUIREMENTS BOTHOPER ANDS

L ARFTREATEDAS MATRICES. THESEREQUIREMENTSARF:
| 1) TY FTWO UPERANDS H A V E THE SAME NUMRER OF RNWNSe

| 2) THFTWI OPERANDS HAVE THE SAMENUMBERNF COLUMNS.

L 3) THE SPECIFIED RELATINNSHIP HOLDS WITHINEACHPAIROFCORRESPONDING (L-0OPERAND,R~-OPERAND) ELEMENTS.

| OPERATIR PART CHARACTERISTICS
I= L-0PERAND ANY4RITHMETICQUANTITY,.

p R-OPERAND ANYARITHMETIC QUANTITY.
Ho RESULT A LOGICAL QUANTITY WHICH IS TRUE ONLY IF
— REQUIREMENTS 1)42), ANO3)ARESATISFIEO

WITH THE EQUALITY RELATIONSHIP.

L URE L-OPERAND A NVYARITHEMETIC QUANTITY,
R=NPERAND ANVYARITHKMETIC QUANTITY,

RESULT a LOGICAL QUANTITY WHICH IS FALSE ONLY| F

3 ) _ REQUIREMENTS 1)y 2)y AND3) ARE SATISFIED
| USINGTHF EQUALITY RELATIONSHIP,

1 ">=! L-OPERAND ANYARITHMETIC QUANTITYSR=(0OPERAND ANYARITHFMETICJJUANT ITY,
RESULT A LOGICAL QUANTITY WHICH IS TRUE ONLY IF

i REQUIREMENTS 1%, 2)y ANO3) ARE SATISFIED
L USINGTHF GREATER THANOR EQUAL RELATIONSHIP.

A NERRORCONDITIONEXISTS IFFITHERO F

iq REQUIREMENTS1I)IA N 02)Y1 S NO TSATISFIED.
— | 0=1 SAW as'™=' EXCEPT THAT THE RELATIONSHIP FOR REQUIREMENT

| 3)IS LESS THANJR EQUAL.

pu. DY SAME A$'">=! EXCEPT -THAT THE RELATIONSHIP FOR REQUIREMENT
3) IS STRICTLY GREATER THAN.

{

. ' SAME AS *>»=' EXCEPT THAT THE RELATIONSHIP FOR REQUIREMENT
3) 1S STRICTLY LESS THAN,

(



2-5-3 SEMANTICS (CONTINUED)

.
SET TEST OPERATORS

| APERATOR PART CHARACTERISTICS
'* IN ' L=-0UPERAND ANY SET.

{ R-0PFRAND ANYSFTs.
L RESULT A LOGICAL QUANTITY WHICH IS TRUE ONLYIF ALL

ELEMENTS OF Tn eL-OPERAND ARE ALSO ELEMENTSO F

. THER-OPER AND,
q LOGICAL OPERATORS

L OPERATOR PARTY CHARACTERISTICS

| ‘NOT*' L-OPERAND NONE,R=OPERAND ANY LOGICAL QUANTITY.

RESULT A LOGICAL QUANTITY WHICH IS FALSE IF THE

R-OPERAND IS TRUE ANDIS TRUEIF: THE R=-OPERAND

l ) IS FALSE.
"AND'L-OPERAND ANY LOGICAL QUANTITY.

| R=OPERAND ANYLOGICAL QUANT ITY,RESULT ALOGICAL QUANTITY WHICHIS TRUE ONLYIF BOTH

THE L-OPERAND AND THE H-OPERAND VALUES ARE TRUE.

L * OK L-0OPFRAND ANY LOGICAL QUANTI TY.
R-OPERAND ANY LOGICAL QUANTITY,

RESULT A LOGICAL QUANTITY WHICH IS FALSE ONLY IF

L BOTH THE C-OPERAND AND THE R-OPEQAND VALUES ARE
FALSE.

“

L

-



L 2(11)

b 2-6 OTHER EXPRESSIONS
MPLCONTAINSCONSTRUCTIONSWHICH ARE NOT PROPERLYciieoeo ss

COMPUTATIONAL EXPRESSIONS, BUT WHICH ARE USED TO COMBINE VARIABLES,

L CONSTANTSy PNR MORE COMPLICATED EXPRESSIONSINTO sneer exrncssions.

L | 2-6-1 DOMAIN ITEMS .
<DOMAIN ITEMDI:=2(tC EXPRESSIOND® 3e0e¢ + "<EXPRESSIOND>')?

| DOMAIN ...HAVE VALUESWHICHARE SETS. THE SETS ARE SPECIFIEO
BY SPECIFYING THE LOWEST AND HIGHEST VALUED ELEMENTS ANDASSUMING

| THATALL INTERMEDIATE VALUED ELEMENTS ARE IN THE SET. ROTH

il EXPRESSIONS SHOULD HAVE SCALAR ARITHMETIC VALUES AND ONLY THE
WHOLENUMBERPARTSNFTHESEWILLBE USED. THE VALUE OF THE

FIRST EXPRESSION SHOULDBELESS THAN THESECOND, IF THE EXPRESSION

L ~ VALUESAREEQUALTHE SET WILL CONTAIN ONE ELEMENT. IF THE FIRSTEXPRESSIONIS GREATER THAN THE SECOND THE SET WILLBFEMPTY.

EXAMPLE DCMAINITEYS

L (lyases M)
(I+J-Kyosorl-1)

1 (HEREyoeoe 9 THERE)
| 2-6-2 CONCATENATOR

L SCONCATENATOR>::=? (‘<EXPRESSION LIST>?®)?
A CUNCATENATOR HAS AN ARITHMFTIC VALUE,, ITALLOWS THE CONSTRUCTION

[ OF ARITHMETIC DATA STRUCTURES BY ‘THEEXPLICIT HORIZONTAL CONCATENATION
(ADJACENTPLACEMENT) OF SEVERAL SMALLFR STRUCTURES WITH THE SAME
NUMBER OF ROWS. THEINDICESOFTHE RESULTING STRUCTUREBEGIN

[ A TONEsw VEKTICAL CONCATFNATION IS ACCOMPLISHED USINGTH EOPERATIAR © #¢,

| EXAMPLE CONCATENATORS

{1939498,10C)

(3%] 45%Ky2%J43,144,13,69)

{

|
-

-



| Z-6-3 ARRAY CONSTRUCTOR
CARRAY CLONSTRUCTORD>$2= ( *CEXPRESSION>' ‘"<FOR PHRASE>")’

) | AN ARRAV CONSTRUCTOR HAS AN ARITHMETIC VACUE. IT ALLOWS THE
~ CONSTRUCTION O FARITHMETIC DATA STRUCTURES BY THEIMPLICIT HORIZONTAL

CONCATENATION OF SEVERAL EXPRESSINONVALUES, THUS ALL EXPRESSIONS

i ‘BEING CONCATENATED MUST HAVE THE SAME NUMBER OF ROWS. THE
FOR-PHRASE(3-2-5-2)GOVERNS THE |ITERATIV EPRNCESSWHICHPROVINES
VALUESTO BECONCATENATED.

L EXAMPLE ARRAY CONSTRUCTORS
(A{(%,I)+B FOR | TNS)

y (BIIYFOR | IN(lyeseoN))
is (C(J) FOR J IN S|F(J) >= D)

2—6~4 SUBSET SPECIFIER

{

I. SUBSET SPEC IFIERD>::=?('<VARIABLENAMED®* IN ‘<EXPRESSION>
* | *<EXPRESSIOND>)?

lL SUBSET SPECIFIERSPRODUCE SETS. THEY FORM SETS FROM LARGER
SETS BY SELECTING ELEMENTS WITH A GIVEN PROPERTY. THE VARIABLE

. NAME REPRESENTS ELEMENT SSELECTED F RO MTHE*PARENT*SET SO THAT

L THEY YAVBE TESTED FOR THE PROPERTY. THEFIRST EXPRESSIONDETERMINES THE PARENT SET AND MUST BE SET VALUEDe THE SECOND

EXPRESSION TESTS THE PROPERTY AND MUST’ BE LOGICAL VALUED. ONLY

THOSEELEMENTS IN THE PARENT SET FOR WHICH THE LOGICAL EXPRESSION

8 IS TRUE ARE INCLUDED IN THENEW SFTe

EXAMPLE SUBSET SPECIFIERS

1 (JI NSIA(J,K)<=R)
(J IN S |J>=D AND J==Y)

! -

—

.

-

|!

‘

L



3 PROGRAM CONSTRUCTION

i. <PROGRAM>::=* PROCEDURE ‘<PROCEDURE IDENTIFIER>
<STATEMENT SEQUENCE>’ FI NI’ ¢3¢

| | <PROGRAMD> PROCEDURE *CPROCEDURE IDENTIFIER
w CSTATEMENT SEQUENCED FINI 0

(PROCEDURE IDENTIFIFR>: : =<VARIABLENAME>

3 [<VARIABLE NAME>? (*<VARIABLE NAME LIST>?)¢
| <VARTABLENAMELIST>::=<VARIARLE NAME>

L | CVARTABLE NAME LISTD','<CVARIABLE NAME>
A PROGRAMTI NMPL I S A COMPLETE sTA TEM ENT ofFA NALGORITHMA ND

| I SMADEU PQOFONENRMORF PROCEDURE DEFINITIONS. TIS ASSUMED
L THAT THE PROGRAM BEGINS WITH THE FIRST PROCEDURE SO DEFINED,

IN THE CURRENT VERSION OF THE LANGUAGE PROCEDURE DEFINITIONS

MAYN{T BE “JESTED (APPEAR WITHIN OTHER PROCEDURE DEFINITIONS)

u = ALTHOUGH PROCEDURE CALLS MAY BE NESTED TO ANY OEPTH (PROCEDURE ACALLSPROCEDUREBWHICHCALLSPROCEDURE CyETC.)e

i PROCEDIJRE DEFINITIONS BEGINWITH THE KEYWORD ‘PROCEDURE’ ANDE N DWITH THE. KEYWORD FINI, NOTE THAT PROCEDURE DEFINITIONS
HAVE THE SAME GENERALFORMAS ACOMPLEXKEYWORD STATEMENT (3-2-5),

| THEPROCEDURE IDENTIFIERPROVIDES NAMESFORTHEPROCEDUREAS WELL
ASFORTHE INFORMATION WHICH WILL BE PASSEDTO THE PRNCEDUREB Y

| A CALLING PROGRAM¢ WHEN THEPROCEDIREISCALLED THE PARAMETER

EXPRESSIONS (SEE PROCEDURE CALLS (2=4)) ARE EVALUATED AND THESE
- VALUES ARE USED IN THE CALLENDPROCEDURE WHEREVER THEIR REPRESENTATIVE

NAMES JCCUR,

L EXAMPLE PROGRAM COMPOSED OF TWO PROCEDURES
PROC EDURE PROG

| 20»
SUBtJ,K)

e MO

L . FINISSPROCEDURE SUB(EF)

| RETURN;
HE . 208

: FINIS:

-

3-1 STATEMENT SEQUENCES

L <STATE MENT SEQUENCE>: :=<STATEMENT>| <STATEMENT SEQUENCE><STATEMENT>
A STATEMENT SEQUENCE IS A SEQUENCE OF ONEOR YORE STATEMENTS.

THIS CINCEPT IS USEFUL FORDEFINING PROGRAMS (3) AND COMPLEX

= KEYWORD STATEMENTS (3-2-5),

| -



3 3-2 STATEMENTS
KSTATEMENTD::=<LABELD':*<STATEMENT>

| | CASSIGNMENT STATEMENTIg | <CPROCEDURE CALL STATEMENT
| <KEYWORD STATEMENT>

L STATEMENTS INMPL DETERMINE THE SEQUENCE OFQPERATIONS WHICHMAKES4 PROGRAM MEANINGFUL.,

. 3-7-1 LABELS

1 CLABEL>::=<VARIABLENAMED| (*<NIGIT STRINGY)?
LABELS ARE EITHER VARIABLE NAMES ORSTRINGS OF DIGITS ENCLOSED

| NPARENTHESESe SINCFMPLIS WRITTENINA FREE FORMAT, A LABEL

3 MUSTRESEPARATED FROM THEFOLLOWING STATEMENT BYACOLON?®z2?,LABELSMAY ONLY B E REFERENCFECBY'GOTO*STATEMENTS (3-2-4-2).

EXAMPLE LABELED STATEMENTS

LABEL: VARI=EXP

LOCATION_B: VAR2:=EXP2;

| (13): VAR3:=EXP3;
| 3-2-7 ASS | GNMENY STATEMENTS
L <ASSIGNMENT STATEMENT > 2: =<VARIABLE>*:=*<EXPRESSICON>®3¢

(<VARIABLE>’ :="<EXPRESSINN>' *<FOR PHRASE>';?
 SVARTIABLED® :=*<CFXPRFSSIONDY "IF '<EXPRESSION>3?

L | <VARIABLE>’ s="<EXPRESSION>D'*WHERE'®'<SYMBNL SUBSTITUTERD>?;?

( ASSIGNMENT STATEMENTS ALTFR THE VALUES OF VARIABLES. THE VARIARLE
! ON THE LEFT OF THE ASSIGNMENTSYMBOL TAKES THE VALUE OF THE
- EXPRESSIONNAN THE RIGHT. THIS EXPRESSIONMUST HAVE THE SAME TYPE

AS THE VARIABLE.

i EXAMPLE ASSIGNMENT STATEMENTS
A N_Wge

| MATR IX:=(A,B)H
L (CoC)

: YES_OR_NO:=MATRIX~=INVERSE(A)
SET1:=SET2ANDSET30 RESETS;

|

-

“.

|

1



| 3-2-2 ASSIGNMENT STATFMENTS (CONTINUED)
_-

THE ASSIGNMENTSTATEMENT HAS SEVERAL MODIFIED FORMS WHICH ARE

| PROVIDED TO MAKE YPLA MORE ‘NATURAL’ LANGUAGE.
.

THE ITERATED ASSIGNMENT STATEMENT

L THEITERATEOQO ASSIGNMENT STATEMENTPROVIDES AMETHOD FOR ITERATIVELY
PERFORMING 4N ASSIGNMENT,, THIS FORM |S EQUIVALENTT OTHE SHORT

FORM ITERATED STATEMENT (3-2-5-2), FOR PHRASES ARE ALSO DISCUSSED

| N(3=2=5=2),

3 EXAMPLE ITERATED ASSIGNMENT STATEMENTS
Co A(P_ROW3 J) :=A(P_ROW,J)/A(P_ROW,P_COL)FORJ | NCOLDOM(A);
— A(T %)2=A(T,%)=A(I,P_COL)*A(P_ROW,*)FOR 1 | NROWDOM(A)|

| I -=P_R0OW;
CONDITIONEDASSIGNMENT STATEMENT

| THE CONDITIONED ASSIGNMENT STATEMEYT ALLOWS THE SPECIFICATION IF
A CONDITION UNDERWHICH ANASSIGNMENTWILLOCCURs T HI SFORMIS

EQUIVALENT TOTHE SHORTFORM OF THE CONDITIONED STATEMENT (3-2-5-1)e

L EXAMPLE CONDITIONED ASSIGNMENT STATEMENTS
B:=B-A(*,J)1 FX(J)=1;

| B{I):=R(I)I FR(I>=0;
be

THE ASSIGNMENT STATEMENT WITH SYMBOL SUBSTITUTION

— THE ASSIGNMENT STATEMENT WITH SYMBOL SUBSTITUTION ALLOWS’ THE
! USER TO REDUCE THE APPARENT COMPLEXITYOFEXPRESSIONS BY USING

| 4 SINGLE SYMBOLTO REPRESENT A LARGEAND COMPLEX STRING OF
i CHARACTERS AS DEFINED BY THE SYMBOL SUBSTITUTOR FOLLOWING

THE'WHERE? (SEE (3-2-4-1) FORA DEFINITIONOFSYMBOLSUBSTITUTORS),
: UNLYA SINGLE SUBSTITUTIONIS ALLOWED SINCE THE YSY*STATEMENT

— TERMINATOR ALSO TERMINATES THE STRING TOBESUBSTITUTED. THIS
FORM IS SIMILARTO USING A ‘LET’ STATEYENT EXCEPTTHAT THE

| ( SYMBNL yCHARACTER STRING) EQUIVALENCE ONLY HOLDSWITHINTHE
L ASSIGNAENT STATEMENT DEFINING IT,,

EXAMPLE ASSIGNMENT STATEMENTS WITH SYMBOL SUBSTITUTION

R:=P+Q WHEREP:=INVERSE((A,B)#(C,0))

IMPLICIT DEFINE STATEMENT

3 IF A VARIABLE FIRST APPEARS AS LEFT MEMBER OF AN ASSIGNMENT STATEMENT WITHOUT ITS
TYPE STRUCTURE AND STORAGE REQUIREMENTS HAVING BEEN PREVIOUSLY DECLARED BY A DEFINE

STATEMENT (3-Z-4-4) THESE REQUIREMENTS ARE DETERMINED BY THE EXPRESSION THAT APPEARS

AS RIGHT MEMBER. THE IMPLICIT DEFINE CONCEPT IS UNDER DEVELOPMENT AND WILL NOT BE

— DISCUSSED FURTHER.



L 3-2-3 PROCEDURE CALL STATEMENT
: <PROCEDURE CALL STATEMENT>: :=XPROCEDURECALL>;"

L A PROCEDURE CALL STATEMENT CALLS A PROCEDURE WHICHDOES NOT RETURN
A VALUE (VSs THE PROCEDURE CALL WHICH CALLS A PROCEDURE FROM WITHIN

- ‘AN EXPRESSION Ve SINCE THFPROCEDURE CALL STATEMENT APPEARS3 ALONE{(NOT IN ANEXPRESS IONJ)y ANY VALUE RETURNED BY THE PROCEDURE
IS LOST.

3 EXAYPLE PROCEDURE CALL STATEMENTS
PIVOT{(A,P_ROW,LP_COL)

| PROC1(A4ByCyD)

th PROC2 (14J=3%K,J=2 , WHAT_NOW, (A,B,C) ) 3

i 3-2-4 KEYWORD STATEMENTS
CKEYWORD STATEMENT>:: =<LET STATEMENT>

1<6GOTD STATEMENT>

| | CRETURN STATEMENT
| | KDEF INE STATEMENT

| KRELEASE STATEMENT>

| |<CONDITIONED STATEMENT>| ITERATED STATEMENT
| <BLOCK STATEMENT>

I. EACHKEYWORD STATEMENT BEGINS WITH AN MPL KEYWORDs THESE
STATEMENTS ARE DIVIDED INTOSIMPLE AND COMPLEX STATEMENTS. COYPLEX

STATEMENTS HAVE SPECIAL BEGINNING AND ENDING SYMBOLS AND CONTAIN

| CTHERSTATEYENTSWITHIMTHEY. THISSECTIONDISCUSSESONLY THE
SIMPLE KEYWORD STATEMENTS*

- A= =f | LET STATEMENT

{ LET STATEMENT>: s=%1L ET *<SYMROL SUBSTITUTERD>? 3

L | SAME LOCATION *'(*<VARTABLE NAME>@ 9*<VARIABLE NAME>" )**;?

<SYMBULSUBSTITUTERD::=XVARITABLENAMED*: = {CHARACTERS TRING >

i (KVARIABLE NAMED" ('<VARIABLE NAME LISTD>D®)*e:=¢ CHARACTER STRING>
LET STATEMENTSDIFFERFROMOTHER MPL STATEMENTS BY MODIFYING

THEPRIOGRAM AT TRANSLATION TIME INSTEAD OF EXECUTION TIME. THEY

- CANMAKEA PROGRAM EASIER TOWRITE AND/OR MORE READABLE BY
ALLOWING THF PROGRAMMEP TO REPRESENT CHARACTER STRINGS BY SYMBDLS.

L THE TWJPARTSOFASYMBOLSUBSTITUTER ARE THE CHARACTERSTRING (1-3)TO THE-
RIGHTIF THE ASSIGNMENT SYMBOL AND THE IDENTIFIER TO THE LEFT,

| THE IDENTIFIER PROVIDES A NAME FOR THE CHARACTER STRING AND,

OPTIONALLY, NAMES FOR PARAMETERS. IF THESTRING NAME IS DEFINED

- WITHOUJTPARAMETFRS EVERY OCCURRENCEOF THE NAME IN THE FOLLOWING

TEXT WILL BE REPLACED BY THE CHARACTER STRING. THE PARAMETERS



3=2-4-1 LET STATEMENT (CONTINUED)

— ALLOWAOOD IFICATION OF THE CHARACTER STRING AT THETIME OF REPLACEMENT
WHEN OCCURRENCES OF THF PARAMETER NAMES IN THE CHARACTER

STRING ARE REPLACED WITHTHE CHARACTER STRINGS PROVIDED A S

— PARAMETERSWITHTHE STRING NAME. IF COMMAS MUST APPEAR WITHIN
THESEPARAMETER CHARACTER STRINGS, TWO MUST BE USED FOR EVERY

‘INTENDED SINGLE OCCURRENCE. THUS(AyB)A S APARAMETERCHARACTER

-— STRING INALET STATEMENT MUST BE WRITTEN(Ay yB)s WHICH ISTO AVOID
HAVING THE COMMA TREATED AS-A PARAMETER SEPARATOR. THESEMICOLON.

TERMINATESTHE CHARACTFRSTRINGAND SD MAY NUT OCCUR WITHIN IT,

= AS 4 RATHEREXTREME EXAMPLE,THE STATEMENT
LETA(C,I)Y = BUIVXC(J);

FOLLOWEDB Y

— NIK)s=A(R+F4N);

YIELDS

DIK) :=B{(N)XR+F(J);

- WHILETHE STATEMENT |
LETLAOOP{VARSTARTZ,INCySTOP):=FORVAR:2=START STEP INC UNTIL

. STOP D013

C FCLLOW=D BY _
LOOP(I ¢3%¥M+K4315,N} A(I):=B(I); ENDFOR

YIELDS

FOR I :=3%J4KS TEP 15UNTILN D OA(I}2=B(I)3ENDFDR;
-

CERTAINLY THESE ARE RATHER OBSCURE USESINA MATHEMATICAL

PROGRAMMING LANGUAGE, BUT THEYAREINCLUDEDTOGIVETHE READER
INIDE4 OF THE POWER WHICH IS INHERENT IN THIS CONCEPT.

| NA MORE CONVENTIONAL USAGE THESTATEMENT

LETB{T):=A(Ty%x)%X3

FOLLOWED BY

IF B8(1I)>0, GO TO(S5);
YIELDS

- | FALL ,%)%X>C,G0T 0O{(5);

THE FORM USING THE KEYWORD *SAME LOCATION?" INDICATES AN EQUIVALENCE

o RETWEENTHE TWO SYMBOLS WITHINTHE PARENTHESES.
A SHORT FORM OF LET STATEMENT USING INVERTED WORD ORDER WITH 'WHERE' INSTEAD OF

'"LET', IS DISCUSSED UNDER (3-2-2).

— 3= 2/4 = 2 GO TO STATEMENT

<GOTU STATEMENT): ¢=*GO TO ‘<LABEL>"}"

GOTOSTATEMENTS 4LTER THE NORMAL SEQUENTIAL FLOW OF PROGRAM

EXECUTIONBY TRANSFERRING CONTROLTOD THE POINT IN THE PROGRAM

Co INDICATED RYT H ELAREL (3-2-1),

FXAMPL=GODTO STATEMENTS

GOTOLOCS3;

GO TO(23);



8 3=2=4=13 RETURN STATFMENT
CRETURN STATEMENT,: s=tRETURN® 0

LL THF RETURN STATEMENT RETURNS CNNTROL FROM A CALLEDPROCEDURE
TOITS CALLINGPROCEDURE

| EXAMPLEUSEO FTHERETURNSTATEMENT. IN A PROCEDURE
— PROCEDURE EQUAL({A,B)

| FDOM(A)-~=DCM(B)YTHEN

i EQUAL s=FALSF;RETURN3

ENDIF;

N FNRI NDOM(A),
IF A(I)-=B(I)THEN

EQUAL :=FALSE;

RETURN3

- ENDIF;

- EQUAL :=TRUE
RETURN;

| FINT

3-2-4-4 OEF INE STATEMENT

— <DEFINESTATEMENTD>: :='DEFINE ‘<VARIARLFE NAME L | ST>XTYPE PHRASE>
<SHAPE PHRASEDCSIZE PHRASE>

<TYPEPHRASE>::="  ARITHMETIC*{*LOGICAL’'|*SET’|*CHARACTER’
| <NYLL PHRASE>

<SHAPE PHRASE>: :t ='RECTANGULAR*|*DIAGONAL'I'"UPPERTRIANGULAR’

|" LOWER TRIANGULAR’'!"’ROW!*|* COLUMN’{’ SPARSE WITH?
<EXPRESSION>" NONZEROS|I<NULL PHRASE>

—

CSI7Z7EPHRASED>:2=CEXPRESSICON>*BY ‘<EXPRESSION>

; | EXPRESSION]KNULL PHRASE>
—

REFOREAVARIARLE NAME MAY BEUSED IN A PROGRAM THE TYPE,

STRUCTJUREy ANDSTORAGE REQUIREMENTS OF THE VALUES WHICHIT

_ REPRESENTS MUSTH EDECLAREDa THE ONLY EXCEPTIONSARE THE VARIABLES
USEDINITERATED STATEMENTS {3-2-5-2) ANDARRAYCONSTRUCTORS (2-6-3),

AND SETELEAENT REPRESENTORS USED INSUBSET SPECIFIERS (2-6-4).
SEE IMPLICIT DEFINE ASSIGNMENT STATEMENT UNDER 3-2-2.

— VARIABLENAMELISTSARFDEFINED UNDER PROGRAMS (3),

THE TYPE PHRASF DETERMINES WHETHER THE VALUE OF THE VARIABLE I S

TOBETREATEDA SA NARITHMETIC, LOGICAL, SET, OR CHARACTER

QUANTI TV,, IF THIS PHRASE IS OMITTED THE VALUE IS ASSUMED TOBE
ARITHMETIC,

THE SHAPE AdRASE MAY ‘ONLYBEUSED WHENDEFINING ARITHMETIC

QUANTITIES AND DETERMINES THE STRUCTURE OF SPACE REQUIRED FOR
STORING THEDATAA SWELLASITS ORGANIZATION, IF THE SHAPE



i 3=2=4=4% DEF INF STATEMENT ( CONT | NUED)
PHRASE IS OMITTED THEDODtFAULTASSUMPTIONSARE:

L DIMENS ION DEFAULT SHAPE
2 RFC TANGULAR

| COLUMN

| 0 NONE
gy

| THEMUDIFIERS ‘RECTANGULAR’, ‘DIAGONAL’, "UPPER TRIANGULAR’,AND
. *LOWFR TRIANGULAR®* A REUNLYMEANINGFULWHEN DEFININGTWIODIMENSIONAL

AUANTITIES(MATRICES)WHILETHE MODIFIERS'ROW*AND ‘COLUMN’

| ARE MEANINGFULONLY WHENDFFININGNONE DIMENSIONAL QUANTITIES

1 (VECTORS)s THEMODIFIFR ‘SPARSE CAN CONSERVE STORAGE WHEN
THERE IS 4 PREDOMINANCE OF ZERO ELEMENTS IN THE ARRAY, THE

EXPRESSIONINTHESPARSE MODIFIERMUSTBEA SCALAR VALUED

1 ARITHMETIC EXPRESSION IN THAT ITINDICATES THENUMBER OF ELEMENTS(JF THE SPARSE ARRAY WHICH ARE ACTUALLY TOBEKFPT

THE SIZE PHRASE SPECIFIESTHENUMBER OFDIMENSIUONSOF THEVARIABLE

L ASWELLAS THE RANGESOFTHE INDICESONEACH OF THESE DIMENSIONS,
THEEXPRESSIONSINTHESIZE PHRASEMUSTBE EITHER DOMAIN ITEMS

(2-6-1)OR SCALAR 4R1T THMETICEXPRFSSIONS. DOMAINITEMSGIVE

L ROTH THE UPPERANDLOWERB{OUND ON THE RANGE OF THE SUBSCRIPT WHILESCALARARITHMETICEXPRESSTOYSNETERMINEONLY THE UPPER BOUND

ON THE SUBSCRIPT RANGE ANDA LOWER ROUND OF ONEIS ASSUMED.

§ THETYPEPHRASE, SHAPE PHRASF, AND SIZE PHRASE MAY APPEAR INANY ORDER IN 4 DEFINESTATEMENT,

EXAMPLE DEFINE STATEMENTS

( DFFINE Jy ARITHMETIC:
DEFINFSET1,SET2,SET3S ET:

DEFINE STRINGL CHARACTERS

| DEFINE A (lyesesM) BY (lyseesN)3
- DEFINEAM BY N:

DEFINE C N ROW:

i DEFINESPARSE-AMBYN SPARSE WITHI%®NNONZEROS
3-2-e-5 RELEASE STATEMENT

— RELEASE STATEMENT>::=*RELEASF ‘<VARIABLE NAME LIST>":"

: THERELFASE STATEMENT EXPLICITLY RELEASES THE STORAGE ALLOCATED

- BY O RAFTER T H ECORRESPUNDING DE FI NESTATEMENT(3=2=4~4),I T
| SIMPRUOPERTO RELEASE AVARIABLEFWHICH WASDFFINEDOUTSIDE

OF THE CURRENTBLNCK(3-2-5-3), RELEASE STATEMENTS REFERENCEING

_ VARI ABLENAYES WHICH HAVE NOT BEEN DEFINED OR HAVE ALREADY BEEN
RELFASSDA R EIGNUREDe THE RELEASE STATEMENT ALSOIMPLICITLY

RELEAS=S ALL STORAGE WHICHWAS DEFINED AFTER ANY VARIABLE IN

| THENA4FLIST (SEE(3=-2=-5=3) FOR AN EXAMPLE).

EXAMPLE RELEASE STATEMENTS

RELEASE A: ’
- RELEASE A¢ByCeDyR,T;
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g 3-2-5 COMPLEX KEYWORDSTATEMENTS
THE FOLLOWING SECTIONDI SCUSSESCOMPLEXKEYWORD STATEMENTS.

THESE STATEMENTSA L L HAVFTHEF O R M

— CINTRODUCT ION><STATEMENT SEQUENCE>KTERMINATIOND

L 3=-2-5-1 CONDITIONED STATEMENT
| SCONDITIONED STATEMENT>:e=*|F ‘<EXPRESSION>‘, “<STATEMENT>
- IIF <EXPRESSION>’ THEN ‘<STATEMENT SEQUENCE>

<ORIF SEQUENCED<OTHERWISEPHRASED"ENDIF ¢3?

on <OR IF SEQUENCE» ::=<NULL PHRASE»
| ISOR TIF SEQUENCE>'ORIFYCEXPRESSION>DY THEN

<STATEMENT SEQUENCE>

L COTHERWI SE PHRASE>2: =? OTHERWISE ‘<STATEMENT SEQUENCE| NULL PHRASE>

[ A CONDITIONED STATEMENT ALLOWS THE USER TO SELECT CONDITIONS

q UNDER WHICH STATEMENT(S)WILL BEEXECUTEDs TYF SHORT FORM IS
USED IONLYWHEN A CONDITION GOVERNS THE EXECUTIONOF A

SINGLE STATEMENT, THE LONGFORY ALLOWS THE TESTING OF SEVERAL

_ MUTUALLY EXCLUSIVE CONDITIONS, WHEN A CONDITION IS SATISFIED THESTATEMENTS FOLLOWING THE TESTAREEXECUTED AND CONTROL PASSES

TO THE ENDO F THE STATEMENT, THE EXPRESSIONS FOLLOWING THE
KEYWORD TF! AND THE KEYWORD ‘OR IF 4RELOGICAL VALUED.

Ce SPECIFICALLY THELOGICATL EXPRESSIONFOLLOWING THE ‘IF? IT S

EVALUATED AND IFTRUETHEFOLLOWING STATEMENT SEQUENCE IS EXECUTED

ANDCONTROL THEN PASSES TO THE ENDIF, IF THE EXPRESSION IS

| FALSE THE EXPRESSION IN THENEXT FOLLOWING ‘ORF? IS) EVALUATED
WITHTHE SAME ACTIONS. TF AN ‘OTHERWISE’ IS ENCOUNTERED ALL

: STATEMENTS IMMEDIATELY FOLLOWING THE ‘OTHERWISE’ ARE EXECUTED.

— EXAMPLE CONDITIONED STATEMENTS

| [F 2~=0 ,G OT ONDN_ZERO;
| | FA(%R,J)=B, Al%,d)s=A(%,K);
a IF A=BTHEN

G0TO A-EQUAL-D:

! ORIFA=C.T HEN

1 50T OA_NE_B_BUT_EQC3
AR IF J==K ANDN>3IRTHEN

| Rs= N;
| OTHERWISE
— 33=A;

Ce=A:

GOTO NO-GOOD;

. ENDIF;

| SEE ALSO CONDITIONED ASSIGNED STATEMENT UNDER (3-2-2) WHERE A SHORT-IF FORM IN
INVERTED ORDER IS DISCUSSED.



[ 3-2-5-2 ITERATED STATEMENT
<I TERATED STATEMENT>: ¢=<FORPHRASFD? « _.STATEMENT>

[ | <FOR PHRASE>’ DO ‘<STATEMENT SEQUENCE>*ENDFR¢ 0
{FOR PHRASED:s='FOR'<CVARIARLE NAME>’ IN ‘<EXPRESSION>

| *FOR *<VARIABLE NAMED>?® [N ‘<EXPRESS ION>' | “<EXPRESSION>

i ] FOR ‘<VARIABLENAMED®:=¢EXPRESSIOND*'STEP"| CEXPRESSIOND>® UNTIL Y<EXPRESSION>

[ THE FOR PHRASE GOVERNS THE INDEXING OF AN ITERATION, ONE OF THETWO FORMSINDICATESAN INDEXING OVER ELEMENTS OF A SET, NAMFS THE

INDEX, SPECIFIES THE SET, ANDALLOWS ELEMENTS OF THE SET TORE

| SELECTIVELY DISCARDED, ON EACH CYCLEOFTHEITFRATIONTHEINDEX
it TAKESONA NEW VALUE FROMTHE SET, THIS INDEX MAY BE USEDTD

AFFECT STATEMENTS WITHINTHE SCOPE Of THE ITERATION. SELECTIVE

DISCARD INGOFELEMENTS IS PERFORMED BY THE OPTIONAL EXPRESSION

[ FACLOWING THE ‘SUCH THAT’ sYymMBoL({(*'{*)s HENCE THE INDEX VARIABLEAND FI RST EXPRESSION MUSTRE SCALAR ARITHMETIC QUANTITIES, THE
SECOND EXPRESSIONMUSTBE SET VALUED, ANDTHEQOPTIONAL THIRD

[ EXPRESSIONMUSTRE LOGICAL VALUED.
THE SECOND FORMSPECGCIFIES THE INDEXING INA MORE CONVENTIONAL
MANNERIN WHICHTHE INDEXISGIVEN A STARTING VALUEFORTHEFIRST

| CYCLE ANDTHAT VALUE IS INCREMENTED BY THE STEP ON EACH SUCCESSIVE
CYCLE, THE TERMINAL CONDITIONISTESTEDON EVERY CYCLE BEFORE

ANY FNCLOSED STATEMENTS ARE EXECUTED, EXECUTIONO FTHESESTATFMENTS

[ OCCURSAS LONG AS THE CONDITION IS NOT SATISFIED. THUS THE VAR TABLENAMEANDTHEFIRSTTWO EXPRESSIONS MUSTBESCALAR ARITHMETIC

QUANTITIES WHILE THE TERMINAL CONDITION EXPRESSION MUST RE LOGICAL

VALUED, THIS SECONDFORMDOESNOT PROVIDE AN ADDITIONAL TEST FOR

[ SCREFNING INDICES.
: EXAMPLE ITERATED STATEMENTS

_ FOR I IN (lyeee oM)y A(T)2=B(I,J);
FORI IN SET1|I-=P,F O RJIN SET2, AlI,J):=043
FOR | IN SET2 ORSFET3|B( I )>=0 NO

[ B(I):==B(I)3R:=R+1:

ENDFOR3:

[ FOR K:=1 STEP 2 UNTILK>=N,A(K):=B(K);
SEE ALSO ITERATED AssIeNMENT sTaTeMENT UNDER (3-2-2) WHERE THE ABOVE FIRST (SHORT)
FORM IS DISCUSSED IN INVERTED ORDER.

—

-

—

]

|
—
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[ 3-L-5-3 BLOCK STATEMENT
<BLOCK STATEMENT>::='BLOCK ‘<STATEMENT SEQUENCE>D'ENNBLOCK®?;?

i

§ ALLOCATION AND HANDLING OCF STORAGE IS 4 MAJORPROBLEMINMPLSINCE IT
WILL, BE USED TO SOLVE PROBLEMS INVOLVING LARGE AMOUNTS OF DATA,

THEBLIJCK STATEMENT ALLOWS THE PROGRAMMER TODIVIDEHIS PROCEDURES

| INTOBLOCKS WITHIN WHICH HE CAN ALLOCATE (DEFINE {3=2-4-4}))STORAGE, THIS SPACE IS AUTOMATICALLY RELEASFD WHEN CONTROL

LEAVES THE BLOCK. | NADDITICNSTORAGEMAYBE EXPLICITLY

8 RELEASED ( 3-2=4-5) ELSEWHERE IN THEBLOCK INWHICHIT WASDEFINED, RUT INNOOTHE RBLOCKS, IN THIS CASE STORAGE IS RELEASED

IN ANJRDEROPPOSITETHAT OF DEFINITION, THUS THE SEQUENCE

I DEFINE A:

i DEFINE B3
LJ J *

RELEASEA

i CAUSES B/THB AND A TO BE RELEASED IN THATORDERe NOTICE THATA PROCEDURE IS AN IMPLIED BLOCK STATEMENT.

EXAMPLE BLOCK STATEMENTS

. BLOCK _
DEFINE MATRIXM+1B YN+1:;

MATRIX:=(A,B)#

3 (Cel);
ENDBLOCK: “EVEN THOUGH IT IS ASSUMED THAT A,B,C,

ANDZAREDEFINED OUTSIDE THEBLOCK,y THIS

L STATEMENT PRODUCES NO USABLE RESULTS”

_

L
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| 4 INPUT /Z OUTPUT
VERY LITTLEWORKHASYETBEEN DONEOGNTHIS SECTION. If IS
CURRENTLY THROUGHT THAT MANY IDEAS WILL BE ADOPTED FROM LANGUAGES

SUCH ASALGOLy, FORTRAN, ORPL/1.
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5 L IRRARY PROQCENURES

THIS SECTION DESCRIBESTHFE USE Of SEVERAL PROCEDURES WHICH ARE

PROVIDEDIN THEMPL LIBRARY. REFERENCES TO THESE PROCEDURESALL

HAVE THE FORM F(P) WHEREF REPRESENTS THE NAMEOF THE PROCEDURE

AND P REPRESENTS ALIST OF PARAMETERS. WHEREINDICATED THESE

PROCEDURES RETURN VALUES WITH TYPE, SHAPE, AND FORM AS DESCRIBED BELOW.

ht ARGMAX{ VECTOR)
VECTOR AN ARITHMETIC EXPRESSIONWITH A VECTOR VALUE.

VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRST OCCURRING MAXIMUM

- VALUED ELEMENTOF ‘VECTOR’,

ARGMIN( VECTOR)

| VECTOR ANY VECTOR VALUED ARITHMET IC EXPRESSION.
VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRSTOCCURRING MINIMUM

VALUED ELEMENT OF ‘VECTOR’,

i COLDIM(MATRIX)
MATR | X ANY ARITHMETIC EXPRESSION.

| VALUE .THE SCALAR ARITHMETIC NUMBER OF ELEMENTS IN THE RANGE OF

| THESECOND SUBSCRIPT OF ‘MATRIX’. THIS FUNCTIONIS
INTENDED FOR FINDING THE NUMBER OF COLUMNSINA MATRIX,

| S OIf MATRIX’ IS AVECTOROH SCALAREXPRESSION,V 2=1,
DIM(VECTOR)

VECTOR ANY ARITHMETIC EXPRESS ION.

| VALUE THESCALARARITHMETIC NUMBER OF ELEMENTS IN THE RANGE OFTHE FIRSTORONLY SUBSCRIPTOF'VECTOR?Y, IF “VECTOR I S

MATRIX VALUED THIS PROCEDURE IS EQUIVALENT TO ROWDIM,

i | F*VECTOR? |S SCALAR VALUED, Vi=l,

~ IDENT ITY(RANK)
| RANK THE SCALAR ARITHMETIC RANK OF THE SQUARE IDENTITY MATRIX

3 WHICHISTHE VALUE GF THE PROCEDURE,
b VALUE A NIDENTITY MATRIX WITH ‘RANK’ROWS AND COLUMNS,

INVERSE (MATRIX)

: MATR | X A SQUARE yNON-SINGULARy MATRIX VALUED ARITHMETIC EXPRESSION.
VALUE THE INVERSE OF ‘MATRIX’.

MAX{ VECTOR)

VECTOR: A VECTORVALUED ARITHMETIC EXPRESSION*

VALUE THE SCALARARITHMFTIC VALUE OF THE MAXIMUM VALUED ELEMENT
O F'*VECTOR?',

MIN{ VECTOR)
VECTOR ANY VECTOR VALUED ARITHMETIC EXPRESSION.

VALUE THE SCALAR ARITHMETIC VALUE OF THE MINIMUM VALUED ELEMENT

O F*™™MATRIX'e ALLPOINTERS ARE IGNORED.
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8 5 LIBRARY PROCEDURES (CONTINUED)
ONES(RIWSyCOLUMNS)

| ROWS THE SCALAR ARITHMETIC NUMBER OF ROWS INVe
COLUMNS THESCALARARITHMFTIC NUMBEROFCOLUMNSIN V.

| VALUE A MARTIX OF ONESWITH *ROWS’ ROWS AND ‘COLUMNS’ COLUMNS.

L ROWDIM{MATRIX)
MATRIX ANY ARITHMETIC EXPRESSION,

VALUE THE SCALAR ARITHMETIC NUMBER OF ELEMENTS INTHE RANGE

| OF THE FIRST SUBSCRIPTOF ‘MATRIX’. THIS PROCEDUREIS
INTENDED FOR FINDING THE NUMBER OF ROWS INA MATRIX,

n BUT ISEQUIVALENTT ODIM(VECTOR)IF ‘MATRIX'ISACTUALLY

1 , VECTORVALUEDs | F'MATRIX®* IS SCALAR VALUED, V:=1,
SUM( VECTOR)

L VECTOR A VECTOR VALUED ARITHMETIC EXPRESSION*VALUE THE SCALAR ARITHMETIC SUM OF THE ELEMENTS OF ‘VECTOR’,

TRANSPIOSE(MATRIX)

i MATRIX A N YARITHMETICEXPRESSION,
VALUE THE TRANSPOSE OF ‘MATRIX’, IF 'MATRIX*'HAS'M'ROWS AND

| *NY COLUYNS THENV HAS *N'ROWS AND 'M? COLUMNS.
UNIT(SIZE, INDEX)

SIZE THE SCALAR ARITHMETIC NUMBER OF ELEMENTSIN VECTOR'V?,

| INDE X THE SCALARARITHMETIC SUBSCRIPT OF THE SINGLE ONE VALUEDELEMENT IN'V?' HERE] <=INDEX<K=SIZE.

VALUE AN 4RITHMETIC COLUMN VECTOR WITH SUBSCRIPT RANGE

| (lyeeesySIZE) WHICH HAS ALL ZERO ELEMENTS EXCEPT FOR THE

| SINGLEONEELEMENT IN THEINDEX*'THPOSITION.
ZERUS(ROWS COLUMNS)

L ROWS THE SCALAR ARITHMETIC NUMBEROF ROWSIN *ve,COLUMNS THE INTEGER SCALARNUMBER OF COLUMNS IN'V?,

VALUE A YATRIXOf ZEROS WITH *ROWS®* ROWS AND ‘COLUMNS’ COLUMNS.

L aso
SIZE... SCALAR ARITHMETIC VALUED PROCEDURE FOR FINDING THE

NUMBEROF ELEYENTS IN A SET.

| SETeee SET VALUED PROCEDURE FOR CONVERTING ARITHMETIC
: QUANTITIES TO SETS,

DOMeee SET VALUED’ PROCEDURE FOR INDEXING OVER VECTOR ELEMENTS,

L ROWDOMeoseSET VALUED PROCEDURE FOR INDEXING OVERMATRIX ROWS.COLDOMees SET VALUED PROCEDURE FORINDHEXING OVER MATRIX COLUMNS.
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i 6 PROGRAM FORMAT | CN MEGHANICS

6 - | CARD FORMAT

1 YPL USES A ‘FREE FORMAT’ STYLE WHICH MEANS THATSTATEMENTS MAY
BESTRUNG ONE IMMEDIATELY AFTER THE OTHER, ONLY SEPARATED BY THE

' ; * TERMINATORSe THUSMUCHGCFTHE RESPONSIBILITY FOR AN AESTHETIC

§ ‘AND READABLE PROGRAM RESTS UN THE WRITER.
WHEN COMMUNICATING THEPROGRAMTOTHE COMPUTERONPUNCH CARDS

| THE PROGRAM ‘TEXT’ MUST BE CONFINED TO COLUMNS1 THROUGH724COLUMNS 73 THROUGHSC MAY BE USED FORIDENTIFICATION SINCETHEY

YILLB EIGNOREDse THIS IS ACOMMONPROGRAMMING CONVENTION.

L 6-2 USE OF BLANKS
. BLANKS ARE USED ASDELIMITERS IN MPL AND ARE REQUIRED WHERESPECIFIEDINTHEVARIOUS DEFINITIONS. IN ADDITION THEY MAYB E

INSERTED BETWEEN ANY TWO SYMBOLS (ITEMS ENCLOSED IN PRIMES IN

| THE METALANGUAGE DEFINITION) BUT MAY NOTAPPEAR WITHIN VARIABLE
NAMES DR KEY WORDS EXCEPT WHERE SPECIFIED.

WHEREVERA BLANK IS ALLOWED OR REQUIRED ANY NUMBER OF MULTIPLE

L BLANKSIS ALLOWED.

_ 6-3 COMMENTS
COMYEYTS MAY BE PCACED ANYWHERE INANYPL PROGRAM SINCE THEY ARE

| COMPLETELY IGNORED BY THE COMPUTER. THEY ARE DELIMITED ON BOTH
_ ENDS BY AQUOTE(®")(THISISNOTA DOUBLE PRIME(''))e OBVIOUS

CAREMUSTBE TAKEN TO INSURE THAT THE TERMINAL QUOTE APPEARS

| INITSPROPERPLACE,
|

/
-

¢

-

!
_

-

a

"
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7 RESUME OF DEFINITIONS
|

<ARRAY CONSTRUCTOR>::= (*<EXPRESSION>**<FOR PHRASE>")’
- Z-6-3

CASSIGNMENT STATEMENT >: :=<VARIABLED':='C¢EXPRESSIOND3?
JKVARIABLED*:=*<EXPRESSION>T' '<FOR PHRASE>*;?

— {KVARIABLED*:=¢<EXPRFSSIOND>! “|F ‘<EXPRESSION>‘:’
| | KVARIABLEDYt=" <FXPRESSIOND' WHFRE '<SYMBOL SUBSTITUTERD®;¢

3-2-7

_ <BLOCK STATEMENT>: :='BLOCK ‘<STATEMENT SEQUENCED'ENDBLOCK®*;?*3-7Z-5-3

<CHARACTER>:: =<LETTERD>|<KDIGIT>|<SPECI AL CHARACTER>

| 1-2
re <CHARACTER STRING>::=**'|<CHARACTER STRING>XCHARACTER>

| - 3

<COMPUTATIONAL EXPRESSION>: :="+Y<EXPRESSIOND>
| *- '<EXPRESSION>

hat |] ‘NOT ‘<EXPRESSION>
| CEXPRESSION>®+ "<EXPRESSION>

| J <EXPRESSIOND*-*<EXPRESSIOND
— |CEXPRESSIOND' %#Y CEXPRESSTOND>

| CEXPRESSIOND? /'<EXPRESSION>

| | CEXPRESSION>'%%¢ CEXPRESSIOND
Lo |<EXPRESSION>’ #'<EXPRESSIOND>

| KEXPRESSION>D®* AND ‘<EXPRESSION>

| <EXPRESSION>’ OR ‘<EXPRESSION>

| | <EXPRESSION>' IN ‘<EXPRESS ION>

— |<EXPRESSINND® AND NOT ‘<EXPRESSION>
| CEXPRESSIOND'=*<FXPRESSION
| CEXPRESSICND'=="<EXPRESSION>

- | CEXPRESSIOND*>'CEXPRESSIOND

| CEXPRESSIONDYC'CEXPRESSION

| CEXPRESSIOND>*>=¢<EXPRESSION>

_ | KEXPRESSIOND*<K=*<EXPRESSIOND
2-5

CCONCATENATORD2: =*{*<EXPRESSION LISTD>*)?

- 7-6-2

— <KCONDITIONED STATEMENT> ::='[F'<EXPRESSIOND?,*<STATEMENTD>
| IF ‘<EXPRESSION>’ THEN ‘<STATEMENT SEQUENCE>

CR| ff SEQUENCEDXOTHERWISE PHRASEDYENDIF9 30

ee 3-2-5-1

<DEF INE STATEMENT>::='DEFINE ‘<VARIABLE NAME LI ST><TYPE PHRASE>
<SHAPE PHRASED<CSIZE PHRASE>’ 3?

| 3-7Z-4-4

haar <KDIGIT>::=30 511120 |ev3sfjs40|s50fege|aTejege]eqs
1-2

<DIGIT STRING>::=<DIGITDICKDIGIT STRINGOCDIGIT>

- 1-3

<DOMA ITNT TEMD2:=9{* . EXPRESS ION>’ sees “<EXPRESSION> }?

2-6-1

L <EXPONENT>:: =<DIGIT STRING>
| YE* 40 DIGIT STRING

J1E** _<<DIGIT STRING>

2-2-1
_

-



( 7 RESUMEO FDEF INITIONS(CONTINUED)
{

— <EXPRESSION>::=% (*<CEXPRESSION>? )?
| <KNUMBERD

| | ‘TRUE’ | *FLASE?
— | NULL’

| ** * CCHARACTER STRINGY”

- | KVARIABLE>
SL | <PROCEDURE CALL>

| <COMPUTATIONALEXPRESSIOND

|<KDOMAIN ITEM>

i | CCONCATENATORD
| CARRAY CONSTRUCTOR»

IKSUBSETsPECIFIER)
| 2

- <EXPRESSION LIST>:: =<EXPRESSION>| <EXPRESSION LISTD',CEXPRESSION>
2-4

( <EQOR PHRASED>::='FOR '<VARIABLENAME>'* TIN ‘<EXPRESSION>
Lo | ‘FOR ‘<VARIABLE NAME>®' TIN *<EXPRESSIOND>'| ‘<EXPRESSION>

| ‘FOR ‘<VARIABLE NAME> :='<EXPRESSION>’ STEP?®

: , <EXPRESSION>’" UNTIL *<EXPRESSIOND
L 3-2-5-7

<GOTOSTATEMENT>::2='GO TO ‘<LABEL>‘:*

3-Z2-4-2

| <I TERATED STATEMENT>: 2=C(FORPHRASF>! , "{STATEMENT>| <FOR PHRASE>" DO ‘<STATEMENT SEQUENCED>*ENDFORY*3
3-Z-5-2

| CKEYWORDSTATEMENTD>:2=CLET STATEMENT>
L |<GOT OSTAGEMENT>

| <RETURN STATEMENT»
J<DEF INE STATEMENT>

\ | <RELEASE STATEMENT»
— (<CONDITIONED STATEMENT

| <ITERATED STATEMENT >

| <BLNCK STATEMENT>

. 3-2-4

CLABEL>::=<VARIABLE NAME>] * { *<DIGIT STRING>' })°

3-2-1

CLET STATEMENT>: s=¢ L E T*<SYMBOL SUBSTI TUTERD>
= | ‘SAME LOCAT ION **( «VARIABLE NAME>" » *<VARIABLE NAME>’ )v03?

3-2-4-]|

<LETTER>::=tAt|eBe]rCe sD] rErjsprjecejoejogele jeoge]eje
[ fro fen |oQejeprjeQejogejoSefjoTejoayrjeyrfegejexujoeynjrze

1-2

! <NULL PHRASE>: ¢=**| <NULL PHRASE>’*
[ 1-3

<NUMBERD>:: = CNIJMBER BASE> |<NUMBERBASE>XEXPONENT>
2-2-1

| KNUMBER BASE>: :=<DIGIT STRING>
— | <DIGIT STRING>'.!
| | *y *<DIGIT STRING>
{ IKDIGIT STRINGD' *<KDIGIT STRING>

L 2.-Z-|

_
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| 7 RESUME O FDEFINITIONS (CONTINUED)
CORIF SEQUENCEs>:2 =<NULL PHRASE»

| KOR IF SEQUENCED'ORI F* < Ex PR E S Si o n> 'THEN®

| <STATEMENT SEQUENGE> 3-2-5-|

<OTHERWISE PHRASE>::=*(OTHERWISE ‘<STATEMENT SEQUENCE>

| | <NULL PHRASE> :
| 3-2-5-|

| <PROCEDURE CALL>::=<VARIABLE NAME>

| I KVARIABLENAMEDY( <cEXPRESSIONLIST>")? 2-4

«PROCEDURE CALL STATEMENT> ::=¢PRNCFDURE CALL>":"

3-2-3

is <PROCEDURE IDENTIFIER>2: =<VARIABLE NAME>| KVARTABLENAMED * (*<KVARIABLE NaM ELIST>)¢
2-4

| <PROGRAM>::=' PROCEDURE *<PROCEDURF IDENT IFIER>

| STATEMENT SEQUENCED>*FIN[v3
| <PROGRAM> *PROCEDURE ‘<PROCEDURE IDENTIFIER>

STATEMENT SEQUENCED>*F INI? ;
3

— <RELEASE STATEMENT>::='RELEASE'<VARIABLEN A M ELISTD>:¢
3-7-4-5

| <RETURN STATEMENTD>::=*RETURN®? 3-7-4-3

<SHAPE PHRASE>:: =" RECTANGULAR’ |' DI AGONAL’ )* UPPER TRIANGULAR?
IY LOWER TRIANGULAR’! *ROW'|*COLUMN'|*"SPARSEWITH®

| <EXPRESSION>’ NONZEROS*|{<NULL PHRASE>
3-Z-4-4

<SIZE PHRASE>2 :=<EXPRESSION>*BY ‘<EXPRESSION>

| | CEXPRESSIONDI KNULL PHRASE> 3-Z-4-4

<SPECIAL CHARACTER ss=0 (fr) eer |eyrje sje osfjogu]o_n]exe]o se

| jos ovr fej jegrjeejegrjege|ereiege: 1-2

SSTATEHMENT> :2=<LABELD>?' ¢ ' <STATEMENT>

. | CASSIGNMENT STATEMENT

| | <PROCEDURE CALL STATEMENT
|<KEYWORD STATEMENT>

3-2

| CSTATEMENT SEQUENGCE>:: =<STATEMENT> | <STATEMENT SEQUENCE><STATEMENT>3-1

SUBSCRIPT ELEMENT >::=0%v| KEXPRESSIOND>
7-3-2

| <SUBSCR IPT LIST>: :=<SUBSCR IPT ELEMENT)
| <SUBSCRIPTLIST>' ,"'<SUBSCRI PT ELEMENT>

2-3-7

i <SUBSET SPECIFIER>: :=*{ <VARIABLE NAME)’ IN*<EXPRESSIOND>
" | Y<EXPRESSIOND?)? :

7-6-4 |

| <SYMBOL SUBSTITUTERD>::=<VARIABLE NAMED':=9 CHARACTER STRING| CVARTARLE NAMED (YCVARIABLEN A MELISTD>Y tev CHARACTER STRING |
3-7-4-1

| <TYPE PHRASE>::=" ARITHMETIC) "LOGICAL |*SET*|* CHARACTER’
§ | <NULL PHRASE>

3-Z-4-4
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| 7 RESUME OF DEFINITIONS (CONTINUED)
hn

<VAR | ABLE>: 3: =<VART ABLE NAME> |<KVARIABLED*(*'<SUBSCRIPT LIST>)
| 2-3

§ VARIABLE NAME>: :=ZLLETTER>
| KVARTABL E NAMEDCLETTERD

| CVARIABLF NAMEDZSDIGITD
| VARIABLE NAME> .

— I<VARIABLE NAMED1?

2-3]

<VARIABLE NAME LIST>:2=<VARIABLENAMED] >
[ <SVARIABLE NAMFLIST>',%<¢VARIABLE NAME>

3

3 THIS STATEMENTISN OT PARTO F THEFORMAL DEFINITION, BUTIS
~- INCLUDED FOR REFERENCE.

3 KKEYWORDD:2=* ARITHMETIC’“BLOCK?

I! BY *

| J* CHARACTER’
L | * COLUMN®

| "DEF INE *

|* DIAGONAL"

i | no| "ENDBLOCK?

| "ENDIF?

| | * ENDFQR?
“_ | FALSE’

| "FINI?

| | FOR
‘ ]

j* IN

| 'LET

— I* LOGICAL"

| LOWER TRIANGULAR’

. | "NULL?

_ I* NONZEROS’
| *OR IF

| ‘OTHERWISE?

| | YPROCEDURF
]* RECTANGULAR’

| "RELEASE '
"ROW"

— | "SAME LOCATION?

f*seET

| * SPARSEWITH

L | + STEP +
|* THEN

| ‘TRUE’

| J*UNTIL?
1 |"UPPER TRIANGULAR’

|* WHERE ¢ j
|

-

L
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| 8 SAMPLE MPL PROGRAMS
|

-

PROCEDURE REVISED SIMPLEX(MATRIXyCOSTSyRHSyBASIC_VARIABLES,
UNBOUNDED'URJECTIVE-VALUE, ITERATIONS)

i DEFINElyJ; “THESE AREINDICES LATER ON’
UNBOUNDED:= FALSE: ITERATIONS3=C:
LETP t= MATRIX:

. LET C ¢=COSTS: .LETQ 2= RHS:

LETBV $= BASIC_VARIABLES;
LETM = ROWDIM(P);

{ LET N 23=COLD1 MP);

J “WE ASSUME THAT BV CONSTITUTES A FEASIBLE SET

il NF BASIC VARIABLES GIVEN BY THEIR INDICES.
WF WISH TO FINDXD>=(0 SUCH THAT P*X = Q

WHICHMINIMIZES C*X= OBJECTIVE-VALUE. FIRST

| ; W E CALCULATE THE INVERSE OF THE BASES.«,OEF INE INV_B MB Y M3

I NV-BSs=INVERSE(P(*,RV));

i _ “THE CURRENT RIGHT HAND SIDE IS”
Q:=INV_B*Q;

| “THE CORRESPONDING COSTVECTORIS”
DEFINECB MROW:

CB:=C(BV);

— "SIS THEINDEX OF THEINCOMING COLUMN
RIS THEINDEX OF THE OUTGOING COLUMN.”

DEFINE SsR3

1 PRICING: BLOCK

| [TERATIONS:=ITERAT IONS +13
— “FIND THE SIMPLEX MULTIPLIERS *SMt»

DEFINE SMMROW;

. SM:=CR*INV_B;

-

“AND THE SMALLEST RELATIVE COSTFACTOR”

| ST=ARGMIN(C-SM%P}) 3

: : “TEST FOROPTIMACITY OF THE CURRENTBAS IS”
If C{S)I>D=SM¥P(%,SYTHEN

“WE HAVE FOUND THEOPTIMAL BASIS”

— OBJECTIVE_VALUE::=CB*(Q;
RETURN3

ENDIF:

L ENDBLOCK

“NOW COLUMNS IS INTRODUCED INTO THEBASIS,

| X PBIS THE REPRESENTATION OFP(%,S)IN TERMSOF
\- THE CURRENT BASIS?”

DEFINE PB M COLUMN:

PB:= INV_B*P(%,S5);
R:=03

R:=ARGMIN(Q(I)/P(1,S)F O R 11 N{losessM)!I P({I,LS)DO);

—
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| 8 SAMPLE MPLPROGRAM (CONTINUED)

"IFALLP(IZSIS=0yTHEN WE STILL HAVER=0AND

| A CLASSOF SOLUTIONS APPROACHING MINUSINFINITY
. EXISTS

| FR=Q0 THEN

UNROUNDED $=TRUE }

RETURN; :
a ENDIF;

“NOW UPDATE THE BASIC VARIABLELISTBV,THE COST

— ASSOCIATED WITH THE BASIS L

VECTORC RASSOCIATEDWITH THE BASIS, THE VALUES

Q OF THE BASIC VARIABLES, AN9 THE INVERSE

1 INV_.BOF THEBASIS."
BV(R):=S3

CB(R):=C(S);

L “UPDATE Q"
F O RJ | N(lyaaesMI|J>=RyQ(J)2= Q(J))-PB*(QIRI/P(R,S));

; RIR)Y:=Q(RIY/PB(R,S) 3
. “NOW UPDATE THE BASISINVERSE™®

| PIVOT( INV_B, PByR};
“NOW THE CYCLE IS COMPLETE AND WERETURN TO

CHECK THE OPTIMACITY OF THENEWBASIS+”

i GO TO PRICING:FINIS:

PROCEDURE PIVOT (MATRIX PIVOT_COL,PIVOT,ROW)

LC LET M 2=MATRIX ;
LET P 2:= pIVOT_COL;
LETR $=PIVOT-ROW:

| F OR | | NROWDOM(M)]I~=R, M{L,%):s=M{R,*)%(P(I)/P(R));
M{RyXxk)=M(R,%x)/P(R)3

| RETURN:

i . FINIS:

y

L


