
|

CS - 112

A CONTROL LANGUAGE FOR TRANSFORMATIONAL GRAMMAR

BY

Joyce Friedman and Bary W. Pollack

This research was supported in part by the United States Air Force
Electronic Systems Division, under Contract F196828-C-0035.

STANFORD UNIVERS ITY COMPUTER SCIENCE DEPARTMENT

COMPUTATIONAL LINGUISTICS PROJECT

AUGUST 1968

®

f AF - 35

A CONTROL LANGUAGE FOR TRANSFORMATIONAL GRAMMAR

.

L Joyce Friedman* and Bary W. Pollack

—

This research was supported in part by the United States Air Force

: Electronic Systems Division, under Contract F 196828-C-0035, at
I. Stanford University.

-

*¥ Present address: Computer and Communication Sciences Department

3 University of Michigan, Ann Arbor, Michigan

-

J

-

|
-

ABSTRACT

B
“

Various orders of application of transformations have been considered

L in transformational grammar, ranging from unorder to cyclical orders
involving notions of '"lowest sentence'* and of numerical indices on depth

of embedding. The general theory of transformational grammar does not

i yet offer a uniform set of '"traffic rules" which are accepted by most
‘ linguists. Thus, in designing a model of transformational grammar,

L it seems advisable to allow the specification of the order and point
| of application of transformations to be a proper part of the grammar.

In this paper we present a simple control language designed to

L be used by linguists for this specification.
In the control language the user has the ability to:

|
|_-—

1. Group transformations into ordered sets and apply transformations

Ig either individually or by transformation set.

3 2. Specify the order in which the transformation sets are to be
considered,

.

— 35. Specify the subtrees in which a transformation set is to be

i applied.
4. Allow the order of application to depend on which

L transformations have previously modified the tree.

L 5. Apply a transformation set either once or repeatedly.

| In addition, since the control language has been implemented as
-

part of a computer system, the behavior of the transformations may be

-
1

|
—

monitored giving additional information on their operation.

L In this paper we present the control language and examples of its

| use. Discussion of the computer implementation will be found in
Pollack [1].

—

L 11

L
The need for a language to express '"traffic rules”

L
The transformational component of a grammar consists primarily of

| a set of transformations; but it must also contain what Fillmore [2]

[has called "traffic rules'@ which specify the order in which the
transformations are to be applied. These rules may be considered

| either as part of linguistic theory -- in which case there is one set
of rules which applies to all grammars, or they may be considered as a

| proper part of a grammar. In this paper we take the position that the
traffic rules, or "control program'", of a grammar are a part of the

L transformational component. In doing so we do not wish to maintain
| anything at all about the possibility that a universal set of traffic

rules will someday be found. Our position reflects the fact that at the

| present time linguists disagree on what the traffic rules are. So we
start from the premise that each grammar contains its own set of traffic

L rules, and we define a language 1n which these rules can be expressed,
| The suggestion that the metatheory of grammars contains some complex

scheme for "traffic laws'" within a grammar, and a control unit which

| directs the order of application of rules, occurs in Lees [3] as one of
three alternative plans for rule ordering. The language proposed in

L this paper may be viewed as a proposal for Lees' '"complex scheme,
| The control language which we present was developed for a computer

program which accepts and manipulates transformation grammars —- we

| required some decision as to the order of application of transformations.
None of the specific plans which have been proposed seem to have any

L general acceptance. Thus we felt that our programs would be more

i
i

[
useful 1f the specification of the traffic rules were a user option.

L The programs may be used to investigate order of application of rules

{ as one of the open empirical questions about grammars.
We hope that the control language will also be of interest per se,

[independently of the programs.
| The control language operates by taking advantage of mechanisms

L which must already be in any system of transformational grammar. For

L example, the "IN-construct", used to determine the subtree for which a
| transformation 1s to be invoked, itself uses a transformation in this

l determination. Likewise, there 1s no provision for placing special
) indices on the sentence tree, but instead feature specifications, already

L in the system, are used. The decision to stay within the devices already

{ | available causes some difficulty in expressing some of the proposed
cycling orders, as is apparent in Example 3 below. However, the

{ alternative would be to program special devices specific to the various
| proposals in the literature, which we prefer not to do until some general
{ ideas can be abstracted from them.

[. The purpose of the control program is to determine 1n what order
and at what point a transformation is invoked. Thus, in the familiar

L control sequence: apply the cyclic transformations to the lowest
sentence, the control program must select the lowest sentence subtree

L and then invoke the transformations in order for that subtree.

{ In this presentation of the control language we first discuss the
transformation component as 1t relates to the control program, then

L what 1s meant by invoking a transformation -- this will be primarily a
discussion of the meaning of the parameters of a transformation. Then

L

L

| we shall discuss the control language itself and show how it providesa
- step-by-step selection both of the transformation to be invoked and the

L tree node which 1s to be the top of the subtree treated by the analysis
algorithm,

L ;

.

-

|

-

-

: The transformational component ofa grammar

The system with which we are working contains a formal metasyntactic

i description of transformational grammar. The metasyntax 1s described

i in {4). In this paper we will cite the formal descriptions, but will
in every case also spell them out in English. We can use the syntax

1 to show the position of the control program within the grammar:

| 0.01 transformational grammar::= phrase structure lexicon
transformations SEND

L
8.01 transformations ::= TRANSFORMATIONS 1list{transformation]

. CP control program . $END

| (Numbering here corresponds to the full syntax given in Appendix A.)
: The interpretation of these rules 1is:

a transformaional grammar consists of a phrase, structure
t

. followed by a lexicon followed by a set of transformations followed

L . by the terminator $END.
transformations, the transformational component with which we

— are here concerned, consists of the identifier TRANSFORMATIONS

| followed by a list of transformations, followed by the identifier CP

-

-

Tn

and a control program terminated by a period. The transformational
!

L component is terminated by SEND.

| The important point here 1s that the control program 1s a proper
part of transformations. It is needed to provide the ordering for the

L transformations.
q Identification of a transformation

The control program must be able to refer to individual transfor-

| mations and to recognize whether or not they are optional, and if and
how they are to be repeated. The information specific to a single trans-

L formation isprovided in the identification which is the first part of

| a transformation.

| 8.02 transformation ::= TRANS identification SD structural
description opt[SC structural change .]

{

C A transformation consists of the phrase TRANS, followed by an

| identification, followed by the phrase SD and the structural description,
followed optionally by the phrase SC , a structural change, and a period.

|) (The reason for allowing the structural change to be optional will be
] seen below in the discussion of the IN-construct.)
}

~ 8.03 identification ::= opt [integer] transformation name
{

L opt [list [parameter]] opt [keywords].

1 The identification of a transformation consists of an optional
hnteger, followed vy the transformation name, followed optionally by a

-

-

-

g
list of parameters and optionally by keywords. The integer 1s for ex-

| L ternal identification only; within the grammar a transformation is
: referred to by its transformation name.

| —
8.04 parameter::= group number or optionality or repetition

C

There are three types of parameters: the group number (a roman

i numeral) identifies the transformation as part of a group. The group
number may be used to refer to all of the transformations in the group.

L Optionality (OB or OP} has the usual interpretation, obligatory
L or optional. Repetition includes four possibilities (AC, AACC, ACAC

and AAC) which are more general than those which have previously been

\ considered and will be discussed in detail below.
Although the list of parameters 1s optional, each transformation

— 1s 1n fact specified for group number, optionality and repetition, since

for each there 1s a null option. If no group number is specified, it

= will be taken to be the same as that of the previous transformation
L (or I for the first transformation). The null option for optionality
() 1s obligatory (OB) and for repetition AC .
g

Invoking a transformationSHVORLHY do LIallolOfMHat 101

L By invoking a transformation we mean (in the simplest case of an

OB AC transformation) that the analysis algorithm will be applied to

L determine if the structural description 1s met, and that if so, the

1 structural change will be applied. However, this description is not
yet complete, for the analysis algorithm 1s not always to be applied to

g the full sentence tree. It is certainly necessary to be able to specify

~ 6

L

that the analysis algorithm 1s to be applied to a specific subtree.

L Therefore, we modify the definition above to state that in invoking a

i transformation, the analysis algorithm will be applied to a specifiedsubtree.

| Optionality and repetition

t We have defined above what 1t means to invoke a transformation
with optionality OB and repetition AC . In the tables below we

L extend the definition to cover the full range of cases for these para-
meters; 1n each case a single specification of the subtree is implicitly

L_ assumed. -—-.

| The repetition parameter has four possible values, with mnemonics
composed of the letters A (for "analyze") andC (for "change").

1 These mnemonics AC, ACAC, AACC, AAC were invented because the phrases
"cyclic", "noncyclic", "iterative", "recursive" etc. have by now had so

{

LC many different interpretations that confusion can easily arise.

-

L

L

A

-

To

Repetition To invoke the transformation

| AC The analysis algorithm 1s applied to find the
first match for the structural description;

| the structural change 1s then carried out 1f
one 1s found.

| ACAC The process just described for AC 1s repeated

{ until no further match 1s found.
AACC The analysis algorithm is applied to find all

{ possible matches for the structural descrip-

L tion; the corresponding structural changes are

| then carried out.
AAC The analysis algorithm is applied to find all

[possible matches for the structural descrip-
tion; one of these 1s selected at random and

| the appropriate structural change applied.

| Table I

I Invoking an obligatory (OB) transformation

L . In the case of a control program which must run without human in-
tervention, the natural way to decide in optional cases 1s by random

L choices; 1f the program interacts with an on-line user then the decisions
in optional cases may be made by the user. (Our implementation of the

- control language 1s 1n an off-line environment; therefore a random

choice 1s made. This is a characteristic of the implementation, not of

= the control language, which could be used in either type of environment.)

3 Table II shows the process of invoking an optional (OP) transformation.

— 8

—

8 Repetition To invoke the transformation
AC Decide. If yes, proceed as for OB case.

| ACAC (0) Decide. If yes, proceed as for OB AC
case. Repeat (from @) until either a negative

| decision 1s reached, or no match 1s found.
AACC The analysis algorithm is applied to find

1 all possible matches for the structural
| description. For each, a decision 1s made

L and 1f yes the corresponding change 1s applied.
AAC Decide. If yes, proceed as for OB case.

LL -

i Table II
Invoking an optional (OP) transformation

The repetition parameter AAC
|

_ The tables above define the meaning of the four possible repetition

| parameters. Some discussion is now 1n order to defend our choice of
values for repetition. AC, ACAC and AACC are all cases which are

[-

| commonly found in the literature, although some arguments have been given

to show that ACAC 1s unnecessary. The case AAC is new and is suggested

_ by difficulties found in the literature. Consider for example, the WH-
Attraction transformation of Rosenbaum and Lochak [5], which we give

—

here in their notation:

I- In the notation of our system, WH-Attraction would be written:

TRANS 10 WHA "WH-ATTRACTION" I OB AAC .

L SD# % ART S/< 4 NP % 6 (* < PREP NP/< WH % > >, NP/< WH % >) % > % #.
SC 6 ALESE I 4.

All variables are replaced by % . Substructures are indicated by angle
brackets. (A,B)is a choice. * is any one node. 2A full description
of the format of structural description is given in [6].

L 9

|
10 WHAT WH-Attraction OB

L PREP+[WH Xp
| ¥ U ART [NP W Ylg 2 #

1 2 3 L 5 6 7 8 9 ===>

L 1 2 3 6th 5 p 7 8 9

i The structural description above contains a choice; but notice that if
the sentence 1s analyzable as the upper choice, then it 1s also analyzable

L as the lower one, The intention 1s that in the case where both structural
L descriptions can be matched, either one of the analyses is acceptable.

This is precisely what the AAC parameter specifies. The same situation

| arises for their Question transformation.
We have also found the parameter AAC useful in the WH-Question

i transformation of Traugott's grammar of 0ld English [7]. There the
| problem 1s somewhat more difficult, since more than one element at a

time may be questioned. The desired solution was achieved by the following

L palr of transformations:

L | TRANS WHA "WH-QUESTION* AACC OP.
sb % 1 Q %2 NP %.

L SC WH ALESE 2, ERASE 1.

| TRANS WHA2 "WH-QUESTION*" AAC OB.
sD % 1 Q % 2 NP %

L SC WH ALESE 2, ERASE 1.

L

L ’

L

|
The first of these transformations optionally inserts WH as the

L left sister of zero or more NP's in the sentence. If at least one
WH 1s inserted the Q 1s erased so that WHAZ will fail. If no WH 1is

I inserted by the first transformation, then the OB transformation WHAZ

L will insert exactly one WH as left sister of a randomly selected NP .
The possibility of creating a speclal parameter so that this case

{ could be handled by a single transformation was considered but was re-
jected since 1t seemed too special.

L Keywords
| The optional list of keywords which appears in the transformation

identification 1s simply a technical device used to bypass applications

L of the analysis algorithm. Whenever a node 1s to be specified as the
I top of a search by the analysis algorithm it is first verified that all

of the keywords are dominated by that node; 1f they are not, the analysis

I 1s assumed to have been tested and to have failed.
This completes the discussion of what is meant by invoking a trans-

L formation for a specified top node. We now discuss the specification

| of the top node for an analysis.

|

i

L 1/ This device was first used by Friedman in the SYNN programs at
MITRE [8]; it was also used by IBM [5].

i

L 11

L

[Specifying the top node for an analysis
The analysis algorithm which determines 1f the sentence tree

I matches the structural descriptionof a transformation 1s described
in [6]. Before the analysis algorithm is applied, the control program

L must have determined both the transformation to be invoked and the top

[node of the subtree in which it 1s to be invoked.
Default option for top node

L The sentence symbol (S) plays a special role in the specification

[of the top node. Unless the control program specifically calls for a top
node which has some other label (which may be done using the IN-construct

1 described below), the top node will always be a sentence symbol.

[To illustrate this specification of top node, consider first a
very simple control program consisting of one instruction:

(1) TRANL

This program simply consists of the transformation name TRAN1. It is

interpreted to mean that the transformation TRAN1 is to be invoked.

L Each time 1t 1s invoked the top node 1s (by default) a sentence symbol.

[The termination of the top node proceeds as follows:
1. A list 1s made of all the sentence symbols in the tree (see

Diagram 1); this 1s the list of "marked S's". (If there are none, the

program terminates.)

L 2. No special order is guaranteed for the marked S's.

I 5. Find the first marked S which dominates all the keywords
of TRAN] .

12

4. Invoke TRAN1 using this S as top node.

§ 5. Then, without repetition of any marked S , repeat this process

[until all marked S's have been used.
This completes the application of the control program (1).

1

AN.
f # NP AUX? VP #| nN ,

i il gl
we /INNL 1 14 16 1 21

#7 UX vPro #

L FE
v5 gl

PRES

I For this tree the list of "marked S's 1s:
1 12

{s™ s77}

L The list of "marked S's" in Diagram 73 (below is:

I (s, s, 5.)

| Marked Sentence Symbols
Diagram 1

I o

—

[Invoking groups of transformations
We have seen above a program which invokes the single transfor-

[mation TRAN1 . We now show how groups of transformations may be in-
voked.

L The simplest way to invoke more than one transformation is to

i invoke a group of transformations by group number:

. (2) II
The control program (2) will invoke all of the transformations which

L have group -number II. The identical effect is achieved by control

[program (3), where the transformations of group II are listed by name:

. (3) TRANS; TRANG; TRANT
and no other transformations belong to group II.

L The determination of the top node 1s done one transformation at

[a time. Thus if there are two sentence symbols S51 and S,, the order
of application will be:

g Invoke TRANS at S,3
Invoke TRANS at So)

1
Invoke TRANG at S13

| Invoke TRANG at SPY
—

Invoke TRAN7 at 5.3

L Invoke TRANT at S,-

|
-

- 1h

-

EE

i The IN-construct
The simple specification of top node described above 1s of course

inadequate 1n many cases. It must be possible to select as top node
LS

sentence symbols with special characteristics; such as lowest sentence,

L next-to-lowest sentence, top sentence, and so on. The facility for

| doing this 1s provided by the IN-construct. The basic idea of the IN-
construct 1s that the analysis algorithm itself can be used to determine

I the specification of top nodes.
The form of the IN-construct 1s given by:

9.06 IN-instruction ::= IN transformation name (integer)

| DO < control program>

| The transformation name which occurs here may be the name of a special
transformation which 1s invoked only for this purpose. (In this case

I 1t need not have a structural change.)

1 As an example, consider the control program:

I (L) IN LOWESTS(1) DO < TRANL >
where the transformation LOWESTS is given by:

TRANS 0 LOWESTS III.

[SD 1 S=/<#%s<#%#>%#> , WHERE 1 DOM # .

| The structural description of LOWESTS will be matched if the tree
contains an S which dominates a boundary symbol (#) , but which

,

| does not (=) dominate another S which dominates boundary symbols.

L 15

oY

:

[
: (This corresponds exactly to the definition of lowest sentence given 1in

L Rosenbaum and Lochak [5].) The integer 1 can now be used to refer to
L this lowest snetence. Notice that LOWESTS has been given the group

number III —-- this 1s chosen to be different from all other group

[numbers in the transformations so that ILOWESTS will never be invoked
- except 1n the IN-construct.

L The control program (4) operates as follows:
[First, LOWESTS is invoked (with top node determined as in the

case of the control program (1) above). If the analysis 1s successful,

[the node designated by 1 is taken as the sole marked S for applica-
a tion of the sub-control program TRAN1 . After this sub-control program

L 1s completed, LOWFSTS 1s again invoked. For each repetetion a new lowest
[sentence must be found to correspond to the integer 1 . If a new lowest

sentence 1s found, the sub-control program 1s repeated. The control

[program (4) terminates when no new lowest sentence 1s found.
Notice that the application of TRAN1 may change the tree so that

L sentence symbols which did not previously satisfy IOWESTS now do so.

[- When the IN-construct 1s applied to a group of transformations
as in:

L
(5) IN TRAN1(1) DO < TRAN2: TRAN3; TRAN4 >

L The single top node determined by TRAN1 1s used for the subsequent

[three transformations. Note that the effect is not necessarily the
same as the sequence of instructions:

L

L ’

L

] (6) IN TRAN1(1) DO < TRAN2 >;

L IN TRAN1(1) DO < TRAN3 >;

[IN TRAN1(1l) DO < TRANk >
, In (5) TRAN1 is invoked once, and the node corresponding to the integer

L 1 1s taken as the top node for the three subsequent transformations,
even though after TRAN2 the structural description of TRAN1I may no

longer be satisfied by the tree. Thus the IN-construct allows us to

[select a top node on the basis of the tree structure at a particular
time, and to continue to use this top node although the tree structure

L changes.

l

L

L

L

L

L

L

L

|

| .

i

i”

[Example 1. The IBM Core Grammar
With the instructions which have been discussed so far we are able

L to construct a control program which corresponds to the IBM Core Grammar

[of Rosenbaum and Lochak[5, pages 28-32].We first quote from thereference the description of the pattern cycling:

L The transformational component of the Core Grammar contains
an ordered set of cyclic and post-cyclic transformational rules.

. The cyclic rules apply to a Iowest sentence. A lowest sentence

[is an S boundary and X is a variable which does not contain #.
In the diagram (73), Ss meets the conditions of a lowest S .

L (73) - A
L | ¥ “A Cc #

A A Cc

[¥~ A Cc #

[: The cyclical transformational rules apply 1n sequence tolowest S's. Consider, for instance, the following set
of cyclic rules in which the symbol X 1s a variable ranging

[over any structure at all.
(74) a. # nn x #

[1 2 3 hb o>
1 pp 3 k

L bh. # x #
[1 2 JO mm——>p22 fp

L 18

Applying cyclically, the rules in (74) operate on Ss in{ the P-marker given in(73) producing, sequentially,
the P-markers (75) and (76).

L (75 S_
| PeL ~ #7 A B Cc 4

L PN
L oo CA '

E S

PNL - # Cc #

6

[¥~ A B Cc #4

[{5

ES

I’L

[As the result of the application of the rules in (74), So
now meets the conditions of a lowest S and the cyclic

[rules apply again yielding the P-markers (77) and (78).

L

L N

{ (77) S,
| IN
L A

[C

L (78) s,
L NY

A
L AN
i]

L

L

L

L

L

L 2

L

. After this cycle S1 now meets the conditions of the

{ lowest S and the cyclic rules apply once again yielding
(79) and (80).

(79) S

A

3

- C

| B C
xL B N\

L /\,
I

This application of the rules leaves a P-marker in which

[no S qualifiesas a lowest S . Hence, the transfor-mational cycle 1s terminated.

The P-marker produced by the rules of the transfor-

I mational cycle 1s the input to the post-cyclic trans-
formational rules. A possible rule might be that in (81),
which deletes every assistant of C in (80), thus generating

I the derived P-marker (82).

(81) X CY

1 0 3

82

[(82) 31
A

L oo : oo B

L The post-cyclic rules are ordered. The derivation is terminated
after the applicability of the last post-cyclic rule has been

[tested.

[The simple transformational component used in this example could

[be written in our system as:
| TRANSFORMATIONS

L TRANS 0 LOWESTS IIT.

[SD 18S—/<#%S<#%#>%#>,WHERE 1 DOM #.
"CYCLIC TRANSFORMATIONS"

[TRANSAT.
sD # 2 A % ¥.

) SC ERASE 2.

| TRANSBI.
sp 1 # % 3 #.

I SC ERASE 1, ERASE 3.

I 22

L
"POST-CYCLIC TRANSFORMATION"

L TRANS C II.
sp $2 Cc %. }

SC ERASE 2.

[CP '"*CONTROL PROGRAM"
) IN LOWESTS(1) DO < I >; II .

L $END "END OF TRANSFORMATIONS"

[-
When LOWESTS is invoked for (73) the top nodes S$, and §, will fail

to yield a successful analysis. Ss will qualify as a lowest S .
Transformation A produces (75); transformation B then produces (76).

L LOWESTS is then invoked again for each of 5, which fails and then

[for S, which this time 1s successfully analyzed as a lowest S .
Transformation A produces (77), transformation B produces (78),

[LOWESTS 1s again invoked for 53 and fails. It is invoked again for
S51 and succeeds because 5, 1s now the lowest S . Transformation A

| produces (79) and transformation B produces (80). Then LOWESTS

[. 1s invoked for 3, and S3 and fails both times. LOWESTS is finally
invoked for each of the three S's but no successful analysis 1s found.

[Hence the execution of the first instruction terminates.
The second 1nstruction causes each of the transformations of

[group II (in this case there is only one) to be invoked once for each

[of the S's in the tree. Each time transformation C 1s invoked, one
occurrence ofC is deleted. The result is (82).

|

:

|

1 Order of instructions in a control program
In the example above it was sufficient to do the instructions in

[order without any branching in the program. The instructions are simply

[carried out in the order listed. It is clear, however, that one would
| | like to be able to choose the next instruction on the basis of what has

[happened so far in the application of the control program. This
RE facility 1s provided by i1if-instructions, go-instructions and]gbels.

CO-instructions and labels

L The simplest change in the linear flow of control 1s provided by
allowing transfer to a labeled instruction. Any instruction in the control

L program can be labeled by preceding 1t with a word (i.e., any sequence of

[letters and digits beginning with a letter) followed by a ":"™ . Control
can be transfered to the instruction labeled say DOL by a go-instruction

[GOTO DOl. Thus, in the control program:

[FIRST: TRAN1; TRAN2; GOTOFIRST; TRAN3

| The order of execution is TRAN1, TRAN2Z, TRAN1, TRAN2, TRANI,
This program 1s not recommended because 1t contains an infinite loop,

[but go-instructions can be combined with if-instructions to create

| sensible programs.
Conditional instructions

[The form of a conditional instruction of i1f-instruction 1s given by:

[9.07 if-instruction ::= IF instruction THEN go-instruction
- opt [ELISE go-instruction]

L a

[

I .
IF TRAN2 THEN GOTO EMB ELSE GOTO CONJ

L
where EMB and CONJ are labels and TRAN1 and TRAN2 are

[transformation names.

[- The instruction between the IF and the THEN may be of any type.
With each type of instruction there 1s an associated value. The simplest

[case 1s an instruction which 1s a transformation name: the value is
true, 1f the transformation has been invoked and it applies (that is, the

L transformation's structural description 1s met); the value 1s false

[otherwise.
Table III below gives the value corresponding to each instruction

[type. (Some of these types have not yet been introduced.) The
interpretation of an IF-instruction 1s that first the instruction

i (between the IF and the THEN) is performed. If the resulting value

[] 1s true the GO-instruction after the THEN 1s performed, otherwise the
GO-instruction after the ELSE 1s performed. (Just as in ALGOL.)

I In using an IF-instruction it 1s important to note that in

| IF T1 THEN T2
Tl will first be invoked for all of the current S's, and if it 1s

| successful at least once then T2 will be invoked for all current S's.

I Normally what 1s wanted 1s not the above, but conditional application
within a given S . This can be achieved by using the IF-instruction

L e

|

I within an IN-construct, for example:

I IN NEXTS(1L) DO < IF Tl THEN T2 >
where the structural description for NEXTS is simply

SD $1 s %.

i In this case the sentences will be considered one at a time, and the
I invocation of T2 in a particular sentence will be conditional on

the previous success of Tl in that sentence.

A note on tree-pruning

I Ross' "tree-pruning'" [9] is an example of a general convention for
| grammars which one might want to test 1n a computer system for transfor-

L mational grammar. One way to handle tree-pruning is to include in the

I language an instruction which gives the list of node names for which it
applies, as has been done by Gross [10]. If tree-pruning were to become

I generally accepted we would probably follow Gross' treatment of 1t. In
the present system the tree-pruning convention can be simulated by

I c onstructing tree-pruning transformations, and inserting their calls at

I appropriate points in the control program, probably as conditional
instructions as:

L IF Tl THEN TREEPRUNEL

L 2

|
Example 2. A grammar of Swahili

i
In "A transformational grammar of Swahili" [11], Klevansky uses a

I control program in which each transformation 1s called by transformation
name. The transformations QNANI, QNINI and QLINI are optional;

L conditional instructions are used to insure that at most one of them will

| be successfully applied.
CP INSERTKU; FIXNEGCOP;

L PREAGV;
I NEGSUB;

RELL; REL2;

I ANPRE1l; ANPRE2;
PREAGAV; FIXCOP;

L IF QNANI THEN GOTO E;
I IF QNINI THENGOTO E;

IF QLINI THEN GOTO E;

L

L |

L

L

L

L or

L

-

Example 3. Zwicky's proposal for control of cycling

-

Zwicky [12] has considered the following method of control of
y

i cycling:

C a. Instances of S 1n a base tree are indexed as follows:
(1) Any instance of S that does not dominate an S
receives the index 1 .

3 (2) Any instance of S that dominates other instances
— of S receives the index N+1 if (a) every dominated

S 1s 1ndexed, and (b) the maximum index of a dominated
S 1s N.

th
b. On the N pass through the rules all subtrees dominated

| by an S with index N are operated upon, and no other

L subtrees are operated upon.

| This control program can be expressed only with difficulty in our
-

control language. The problem is that we have no convenient way of

- marking indices. The following program is an inelegant but accurate

expression of Zwicky's scheme -- 1t uses inherent features

:

= INDEXl,..., INDEXN to mark indices. The maximum possible depth of

a tree must be known beforehand; the program below works only up to
—

depth 4 .

L Four transformations are used to insert indices; four more are

used 1n IN-constructs. Transformations INDEX1, INDEX4 insert

— feature specifications which correspond to the indices above:

—

b

-

28

TRANS INDEX1

L SD % 1S %, WHERE 1 NDOM S .
SC |+ INDEX1| MERGEF 1 .

L TRANS INDEX2
sD % 18 / < % S|+ INDEX1|% > .

| L SC |+ INDEX2| MERGEF 1 .

fl TRANS INDEX3
| sD $18 / < % S|+ INDEX2| % > .

I SC |+ INDEX31 MERGEF 1 , |+ INDEX21 ERASEF 1 .
TRANS INDEX4

L SD % 18/ < % S|+ INDEX31 % > .
SC |+ INDEX41 MERGEF 1, |+ INDEX3 + INDEX2| ERASEF 1 .

g Transformations FIRST, SECOND, FOURTH will associate the
u integer 1 with the appropriately indexed 8's.

I TRANS FIRST .| sb % 1 S |+ INDEX| % .
| SC |+ INDEX1| ERASEF 1 .

TRANS SECOND .

& . sD % 1 S |+ INDEX2| % .
SC |+ INDEX21 ERASEF 1 .

L | TRANS THIRD
SD % 1 Ss |+ INDEX3| % .

_ SC |+ INDEX3| ERASEF 1 .
TRANS FOURTH

L SD % 1 S |+ INDEX| % .
SC |+ INDEX41 ERASEF 1 .

j

-

_ 29

-

If II 1s the group number for the embedding transformations, the control

[, program can then be expressed as:

| INDEX1; INDEX2; INDEX3; INDEX;
IN FIRST (1) DO < II >;

I IN SECOND (1) DO < II >;
IN THIRD(1l) DO < II >i

[IN FOURTH(1) DO < II >.

[_ Note that the indices are erased when used; this will prevent them from
interfering with other tests on features.

I If we apply this to Zwicky's example:

Pa
PN ~~

L man # 5S, # man 1s eager for PayI NP VP NP VP

the man is tall the | S), ¥ man goes

I NP VP

I the man 1s tall

[the effect 1s as follows:

L 30

INDEX] merges the feature specification + INDEX1 into the complex

| symbols associated with Sy and S) .

[INDEX2 merges the feature specification + INDEXZ into the complex
symbols for Sq and Sq

L INDEX3 succeeds for 8; only. It merges the feature specification

t + INDEX3 into the complex symbol and erases the feature * INDEX2
INDEX4 fails.

After these first four transformations the tree 1s (schematically):

S, . ..[+ INDEX3]

L S,rTSi + +o [+ TNDEX2]
L TER ..[+ INDEX1]

The remaining instructions will now invoke the embedding transfor-

[mations for Ss) S) Ss and Sq , as desired, and will delete all

[occurrences of the index features.

L 31

]
-

FIAG-instructions

FLAG-instructions provide a means for remembering

| which transformations and which groups have applied (i.e., which

transformations and which groups have value true), In general, whenever

a transformation name or group number appears the corresponding transfor-

. mation or group is invoked and some value is produced. If the transfor-
mation or group appears within an IF-instruction this value may be tested,

L i but the value 1s then discarded. The same holds true for the instructions
within a RFT-instruction; the value 1s determined, the RPT-instruction

- 1s terminated or 1s continued, and the value 1s discarded. In order to

| te able to change the course of execution of the control program by
= remembering which transformations and which groups have the vaiue true

i one FLAG's the appropriate transformations and groups.
The form of a FLAG-instruction 1s given by

lt

flag instruction :+v= flag name transformation list

LC flag name ::= FIAG opt [integer]

: transformation list ::= transformation element or < sclist

1) [transformation elementl >
transformation element ::= transformation name or group number

- |
Flags are considered to be variables which may take on the values

- true and false. These variables are numbered from zero up. (Within

the implementation of the control language ten flags numbered from

L zero to nine are provided.) Two type of FLAG-instructions exist: those

_ with an integer following FLAG and those without. FLAG-instructions
without an integer are taken to refer to FLAG 0.

- 32

i

i The FLAG-instruction 1s interpreted as:
1. Discard any previous value or definition this flag may have

| had.

| 2. Define the named flag as consisting of the named transformations
and/or groups.

| 3. Set the flag's value to false.

| A flag's value remains false until one of the transformations which it
represents or some transformation in one of the groups 1t represents 1s

L invoked. Then 1f the invoked transformation's structural description 1is
met (and any structural changes are made) the flag's value 1s changed to

L true. The flag's value will remain true until the flag 1s redefined.

L For example, a flag (say Flag 5) which represents the transformations
TRAN1, TRAN2 and TRAN? might be defined by:

L FIAG5 < TRAN1 ; TRANZ2 ; TRAN?>

L Flag 5is set to false at the time this instruction is executed.

| . Thereafter, ‘if.any of the above three transformations are invoked and do
| apply (that 1s, 1f any of the three transformations are invoked and their

L structural descriptions are met) Flag Swill be set to true. Flag Swill
| retain the value true until 1t 1s redefined. (If Flag Sis redefined as

L TRAN1, TRAN2 and TRAN? then its value is just reset to false.)

[A flag which represents every transformation in group II and the
transformation TRANA might be defined by:

L FIAG 3 < II ; TRAN4 >

L 33

Flag 31s set to false when this instruction is executed. Thereafter,

— 1f any transformation in group II or 1f TRAN4 1s invoked and does apply

| Flag 3will be set to true.
A flag which only represents the transformation TRANS is defined by:

L FIAG 2 TRANS
| The value of a flag may be tested at any time through the use of

| ~ an IF-instruction. For example,

i IF FLAG / THEN GOTO LABL3 ELSE GOTO LABL4
If Flag/ has value true then a transfer to IABL3 will be made; if

| Flag 7 has value false then a transfer to LABL4 will occur instead.

—

L

-

"

—

34

|
—

The RET-instruction

In order to repetitively invoke a transformation, group of trans-

L formations or control program one-may use a RFT-instruction. Two forms
of RPT-instructions are provided: the first specifies a fixed maximum

L number of times the following instructions are to be executed; the

| second will continue to cycle through the instructions until each has
the value false.

[The form of the RPT-instruction 1s:

[RPT opt [integer] < control program >

[A RPT-instruction with an integer is interpreted as follows:

[1. Set the RPT counter to the value of the integer.
2. Execute each element of the control program in the angular

L brackets in the normal manner.
3. If at least one of the elements had the value true, then

[decrease the RPT counter by one and if it 1s still greater than

| zero, go back to step 2.
4. If no element of the control program had the value true (or if

[the RPT counter has a value less than 1) terminate the RET-
instruction.

For example:

L RPT 5 < TRAN1 ; TRANZ2 ; III >
| wlll repeat the sequence: invoke transformation TRAN1, invoke transfor-

| mation TRANZ, invoke every transformation in group III, until either
39)

1

[

1
none of them apply or five iterations of the sequence have occurred.

[An example of a RPT-instruction without an integer is:

[RFT<II ; TRAN? >

[This instruction will invoke every transformation in group II and then
invoke transformation TRAN3 and repeat until none of the transformations

L in group II apply and TRAN3 does not apply. Then the REP-instruction
| will terminate. Note that it 1s possible to create infinite loops with

L RPT -instructions.
[RPT-instructions may include any arbitrary control program, and in

particular they may include other REP-instructions, So,

L
RPT 4 < III ; RPT <IV >; TRANS >

L will invoke the transformations in group III, then invoke all transforma-

L tions in group IV repetitively until none apply, then invoke transformation
TRANL, and this sequence will be repeated at most four times.

L It 1s occasionally the case that transformations cannot be explicitly
ordered. The following example is taken from Menzel, et. al. [13].

L "The sentence John and Mary ran and will walk tomorrow, and sang and will
dance tomorrow respectively. requires a derivation where secondary conjunc-

tion must precede the (conjunction transformation) schema, whereas John

saw a movie and ate pizza and will run tomorrow. requires a derivation

where the processes take place in the other order, the schema first

L and then secondary conjunction." The RF&instruction provides a

[means to specify both possibilities. If the conjunction schema is
called group I and the secondary conjunction transformations are called

L 56

L

group II, then the following instruction will achieve the desired result:

RPT <I ; II >

L This instruction will invoke all transformations in group I and then
[all transformations in group II and then will repeat the process until

no transformations from either group apply. The linguist must insure,

[however, that the transformations 1n the two groups interact in such a

[way that 1f for a particular sentence the transformations in group II
are to apply first, then no transformation in group I will apply.

L .

-

The STOP-instruction

The STOP-instruction terminates the execution of a control program.

| STOP-instructions may appear at any point. In our implementation of the
| control language a STOP-instruction forces an output of the final tree,

L lists the transformations which have applied in the order in which

| they were invoked and reports how many instructions were executed.
A STOP-instruction need not appear within a control program --

| when the terminal period of the control program 1s encountered the same

| effect 1s achieved.

L "

a|

[

L
Determining the value of an instruction

L
Each instruction of the control language has a value: true or false.

| These values are summarized in Table III below. In general, a value of
true means that some change has been made to the tree (although not

L necessarily).

i The simplest instruction 1s the name of a transformation. Such an
| instruction has value true 1f the structural description of the

| transformation 1s met at least once in the current tree and 1s false
| otherwise. If the transformation has a structural change, then a true

L value implies that this change has been made at least once.

| Group numbers denote sets of transformations. The value of a group
number 1s true if at least one of the transformations in its set has

| value true and is false otherwise.
Transformations and group numbers may be grouped together into a

L transformation list by enclosing them in angular brackets (see the syntax

L in Appendix B). Transformation lists may be used as the instruction
part of an IF-instruction, for example. The value of a transformation

L } list 1s true 1f any transformation or group number within the list is
true and 1s false otherwise.

L Control lists are lists of control instructions; their values are

| determined similarly to transformation lists: if any instruction within
the list has value true then the control list also has value true, and

| the value 1s false otherwise.
CO-instructions, TRACE-instructions and STOP-instructions have no

8 values. Within the computer implementation of the control language these

L instructions are given the value false.
39

L

on

i
REP-instructions take the value of the control program within them:

. 1f any instruction within the RPT-instruction 1s true then the value of
the RPT-instruction is true, and it is false otherwise.

L An IN-instruction takes the value true if the transformation named
| after the IN 1s true and 1s false otherwise. Note that this is equivalent

to saying that an IN-instruction takes the value true if the list of

lL instructions following the DO 1s executed at least once.
The FLAG-instruction has no value unless it 1s used within an

| IF-instruction. Then the value of the FLAG-instruction 1s the value of

| the flag denoted (see above).
The value of a control program is true if any instruction within

| the control program has value true and 1s false otherwise.

|

L

_

| .

3

—

L

g

L 40

|
—

le|

L TRANSFORMATION ELEMENTS

L transformation nametrue 1f the structural description of the transformation 1s met ,
false 1f the structural description is not met

. group number .true 1f any transformation within the group is true
false 1f all transformations within the group are false

| transformation list
true 1f any transformation or group number within the angular

brackets 1s true

i false 1f all transformations and group numbers within thef angular brackets are false

L CONTROL ELEMENTS
repeat instruction

true 1f any -instruction within the angular brackets 1s true

L false 1f all instructions within the angular brackets are false
in instruction

true 1f the transformation following the IN is true

| false 1f the transformation following the IN is false
if instruction

| true 1f any instruction between the IF and the THEN 1s true

L false 1f all instructions between the IF and the THEN are false
flag instruction

has no value unless it 1s between the IF and THEN of an

IF-instruction, then

true 1f the denoted flag currently has value true

false if the denoted flag currently has value false

L go instruction
has no value

| trace instructionhas no value

stop instruction

i has no value
control program

true 1f any transformation element or control element within

L the list 1s true
false 1f all transformation elements and control elements

within the list are false

—

L TABLE III
Determination of the value of an instruction

L 11

Monitoring the application of transformations

Thus far the description of the control language has included

[only instructions which actually contribute to the determination of the
output of the transformational component in the linguistic sense. The

L control language has been implemented as part of a computer system for

L transformational grammar; it therefore also contains instructions which
monitor the application of transformations and control the amount and

[type of computer output which 1s produced.

[Trace instructions
The simplest monitoring instruction 1s the trace-instruction TREE

L which causes the tree to be output. For example, 1f the control program

[for the IBM Core Grammar 1s changed to:

[IN LOWESTS(1) DO < I 3; TREE > ; II
the tree will be output after group I has been invoked for a lowest S .

[The results in the extended example given above will be that trees

[(76), (78) and (80) are output. (Tree (82), the final result, is
automatically output without special instructions.) If we had wished

[to see only the final result(80) of the cyclic transformations, we
could have written:

IN LOWESTS(l) DO < I > ; TREE; II

L In testing a transformational grammar, one frequently 1s more
[interested in some transformations than in others. The language provides

instructions which will-enable transformations and groups of

L 42

[

L
| transformations to be "traced", so that more information is provided on

L their operation. The trace-instruction TRACE is followed by a

g transformation name or a group number and by a trace-specification which
must be BEFORE TEST or AFTER FAILURE or AFTER SUCCESS or AFTER CHANGE.

i The trace begins when the TRACE 1s encountered and it 1s terminated at
a corresponding UNTRACE. Whenever a transformation which is being

L traced 1s to be invoked, the corresponding trace-specification 1is

| examined and the sentence tree 1s output at the appropriate point in
the invocation process.

. TRACE BEFORE TEST will output the current tree after invoking the
named transformation and after satisfying all specified keywords but

L before testing the structural description.

| TRACE AFTER SUCCESS will output the current tree after invoking the
named transfromation and finding the structural description (and keywords)

L met.
TRACE AFTER FAILURE will output the current tree after invoking the

8 named transformation and finding the keywords met but the structural

| description not met.
TRACE AFTER CHANGE will output the current tree after invoking the

- named transformation and making the structural change (if one 1is
specified).

L Any number of transformations may be traced at one time, and any

. combination of trace types may be on for a given transformation at one
time. For example,

g TRACE TRANS AFTER SUCCESS

"

_

[
will force an output of the current tree each time TRANS is invoked and

L its structural description is satisfied. The output will be made just

[before making the structural change specified within TRANS,

[TRACE< I ;TRAN6 > BEFORE TEST ; |
TRACE I AFTER CHANGE

will force an output of the current tree each time a transformation in |

[group I is invoked and each time transformation TRAN6 is invoked. The |
output will occur just after the appropriate keywords are found but before

[the structural description 1s tested. In addition, each time a

transformation in group I applies the current tree will again be output. |
L This output will occur just after the structural change has been made. |

L

L

L

L

l

L

t

L 44

L

[ACKNOWLEDGEMENT

| We wish to thank Thomas H. Bredt,.Robert W. Doran, Theodore S. Martner
and Barbara H. Partee for ideas which have been incorporated in the

[control language.

i i

MODIFIED 23 aveust 1968

COMPLETE SYNTAX FOR TRANSFORMATIONAL GRAMMAR

0.01 TRANSFORMATIONAL GRAMMAR ::= PHRASE STRUCTURE LEXICON TRANSFORMATIONS SEND

1.01 TREE SPECIFICATION ::= TREE opt{ , clist[WORD TREE]]
1.02 TREE ::= NODE optl COMPLEX SYMBOL] opt[[1ist[TREE]1]

. 1.03 NODE ::= WORD or SENTENCE SYMBOL or BOUNDARYSYMBOL
1.04 SENTENCE .SYMBOL ::= S

1.05 BOUND&Y SYMBOL ::= # B

2.01 STRUCTURAL DESCRIPTION ::= STRUCTURAL ANALYSIS, opt] , WHERE RESTRICTION |] . .
2.02 STRUCTURAL-ANALYSIS ::= listl TERM |] : : £2.03 TERM ::= opt] INTEGER] STRUCTURE or ontl INTEGER J CHOICE or SKIP
2.04 STRUCTURE ::- ELEMENT opt! COMPLEX SYMBOL] optl opt[= J optl / 1 { STRUCTURAL ANALYSIS)] 3
2.05 ELEMENT ::= NODE or * or _ td
2.06 CHOICE ::= (clist[STRUCTURAL ANALYSIS J) >
2.07 SKIP ::= %

&
3.01 RESTRICTION ::= booleancombinationl coNDITION]
3.02 CONDITION ::= UNARY CONDITION or BINARY CONDITION
3.03 UNARY CONDITION ::= UNARY RELATION INTEGER
3.04 BINARY CONDITION ::= INTEGER BINARY TREE RELATION NODE DESIGNATOR or

INTEGER BINARY COMPLEX RELATION COMPLEX SYMBOL DESIGNATOR

3,05 NODE DESIGNATOR ::= INTEGER or NODE
3.06 COMPLEX SYMBOL DESIGNATOR ::z COMPLEX SYMBOL or INTEGER }
3.07 UNARY. RELATION ::= TRM or NTRM or NUL or NNUL or DIFP or NBIF
3.08 BINARY TREE RELATION ::= EQ or NEQ or DOM or NDOM or DOMS or NDOMS or DOMBY or NDOMBY
3.09 BINARY COMPLEX RELATION ::= INCl or NINCl or INC2 or NINCZ or CSEQ or NCSEQ or NDST

or NNDST or COMP or NCOMP

h.c1 COMPLEX SYMBOL ::= | list[FEATURE SPECIFICATION] |
4,02 FEATURE SPECIFICATION ::= VALUE FEATURE

4.03 FEATURE ::= CATEGORY FEATURE or INHERENT FEATURE or CONTEXTUAL FEATURE or RULE FEATURE

4.04 CATEGORY FEATURE ::= CATEGORY - -
4.05 CATEGORY ::= WORD

4.06 INHERENT FEATURE ::= WORD

4.07 RULE FEATURE ::= TRANSFORMATION NAME

4.08 CONTEXTUAL FEATURE ::= CONTEXTUAL FEATURE LABEL or CONTEXTUAL FEATURE DESCRIPTION
4.09 CONTEXTUAL FEATURE DESCRIPTION ::= { STRUCTURE opt[, "WHERE RESTRICTION 1)
4.10 VALUE ::= + or - or * -

5.01 STRUCTURAL CHANGE ::= clist[CHANGE INSTRUCTION]
5.02 C H A NINSTRUCTION: : = CHANGE or CONDITIONAL CHANGE
5.03 ~~ CONDITIONAL CHANGE ::= IF{ RESTRICTION) THEN (STRUCTURAL CHANGE)

opt ELSE { STRUCTURAL CHANGE)]
5.04 CHANGE ::= UNARY OPERATOR INTEGERor

TREE DESIGNATOR BINARY TREE OPERATOR INTEGER or
COMPLEX SYMBUL DESIGNATOR BINARY COMPLEX OPERATOR INTEGER

he) or COMPLEX SYMBOL DESIGNATOR TERNARY COMPLEX OPERATOR INFGER TI :NTEGER
5.05 COMPLEX SYMBOL DESIGNATOR ::= COMPLEX SYMBOL or INTEGER So

5.06 TREE DESIGNATOR ::= (_TREE) or INTEGER or NODE
5.07 BINARY TREE OPERATOR::= ADLAD or ALADE or ADLADI or AILADEI or ADFID or AFIDE or

ADRIS or ARISE or ADRISI or ARISE1 or ADLES or ALESE or ADLEST or AILESEI
or ADRIA or ARIAE or SUBST or SUBSE or SUBSTI or SUBSET

5.08 BINARY COMPLEX OPERATOR ::= ERASEF or MERGEF or SAVEF
5.09 UNARY OPERATOR ::= ERASE or ERASE]
5.10 TERNARY COMPLEX OPERATOR ::= MOVEF

6.01 PHRASE STRUCTURE ::= PHRASESTRUCTURE listf€ PHRASE STRUCTURE RULE X SEND
6.02 PHRASE STRUCTURE RULE ::= RULE LEFT = RULE RIGHT .
6.03 RULE LEFT ::= NODE

6.04 RULE RIGHT :: NODE or list RULE RIGHT » or (list RULE RIGHT 2») or (clistf RULE RIGHT 2?)

7.01 LEXICON ::= LEXI CONPRELEX I CONLEX I CAL ENTRIES $END
7.02 PRELEXICON ::= FEATURE DEFINITIONS opt¢ REDUNDANCY RULES 2?
7.03 FEATURE DEFINITIONS ::= CATEGORY PREFINITIONS opt JHHERENTDEFINITIONS 2» opt€ CONTEXTUAL DEFINITIONS 2
7.04 CATEGORY DEFINITIONS ::= CATEGORY 11 st < CATEGORY FEATURE 1».

7.05 INHERENT DEFINITIONS ::= INHERENT list¢ INHERENT FEATURE } .
7.00 CONTEXTUAL DEFINITIONS ::= CONTEXTUAL cl ist{ CONTEXTUAL DEF INITLIONY ,
7.07 CONTEXTUAL DEFINITION ::= CONTEXTUAL FEATURE LABEL = CONTEXTUAL FEATURE DESCRI PTION
7.08 CONTEXTUAL FEATURE LABEL : := WORD

7.03 REDUNDANCY RULES ::= RULES cl istf REDUNDANCY RULE 2) .
7.10 REDUNDANCY RULE ::= COMPLEX SYMBOL => COMPLEX SYMBOL
7.11 LEXICAL ENTRIES ::= ENTRIES list¢ LEXICAL ENTRY 2» .

7.12 LEXICAL ENTRY ::= 1 ist€ VOCABULARY WORD » 11i st€ COMPLEX SYMBOL ?
7.13 VOCABULARY WORD : := WORD

§.01 TRANSFORMATIONS : := TRANSFORMATI 0S 1 is t€TRANSFORMAT! ON » CP_CONTROL PROGRAM . $END
§. 0 2 TRANSFORMATL ON ¢ := TRANS I DENT IF 1 CAT! ON SD STRUCTURAL DESCR IPT I OH optf SC STRUCTURAL CHANGE . ?
3.03 IDEYZIFICATION opt ¢ | NTEGER » TRANSFORMAT TON HAME opt € 11 s t { PARAMETER 2) opt¢ KEYWORDS » .

> 8.04 PARAIETER::= GROUP NUMBER or OPTI!OHALITY OR REPETITION
a.05 GROUP HUMBER : := 1 or 1 or 11} or IV or V or Vi or Vii
8.06 QPTIONALITY ::= OB or OP

8.07 REPETITION ::= AC or ACAC or AACC or AAC
8.08 KEYWORDS::= (list€ HODE 2»)

9.01 CONTROL PROGRAM ::= sclist¢ opt¢ LABEL =: >» INSTRUCTION 2»
9.02 LABEL ::= WORD

9.33 INSTRUCTION ::= RPT INSTRUCTION or [IN |HSTRUCTION or JF _lHSTRUCTION
- or GO {| HSTRUCT ! Oi or TRACE | HSTRUCT 104 or STOP INSTRUCTION

or TI KSTRUCTI! ON o r € sclist€ LWNSTRUCTION 2» >
9.04 IISTRUCTIONs:= TRANSFOR AT ION NAME or GROUP HUMBER
9.05 RPT | HSTRUCT ION : : = RPT opt € I RTEGER » < CONTROL PROGRAL: >
9.06 IN FASTRUCTION : := | N TRANSFORIATIE ON HAME (| NTEGER) DO <¢ CONTROL PKOGRAK >

9.07 IF LHSTRUCTION s:= IF JHSTRUCTION THEN—GOINSTRUCTION- opt€ ELSE GO [INSTRUCTION 2
9.08 GU INSTRUCT ION: 2 = GO TO LABEL
9.09 TRACE INSTRUCTION ::= TRACE T INSTRUCTION T R A C E SPECIFICATIONor UWTRACE TINSTRUCTION or TREE

. 9.10 [RACE SPECIFICATION ::= BEFORE TEST or AFTER FAILURE or AFTER SUCCESS or AFTER CHANGE
9.11 STOPINSTRUCTION ::= STOP

[APPENDIX B
CONTROL PROGRAM SYNTAX

L The syntax given below 1s purely descriptive (as 1s the syntax
I given in Appendix A). However, the control program syntax has been

translated into a precedence syntax suitable for use by a parser. The

I operation of the control program in our implementation 1s determined by

[this translated syntax (see Pollack [1]).
| CONTROL-PROGRAM ::= CONTROL-PROGRAM1 .

L CONTROL-PROGRAM ::= SCLIST [CONTROL-INSTRUCTION]
CONTROL-INSTRUCTION ::= LABEL CONTROL-INSTRTJCTION OR

[CONTROL-INSTRUCTION LABEL
INSTRUCTION

[LABEL ::= WORD : LABEL
WORD :

[INSTRUCTION ::= CONTROL-ELEMENT ORTRANSFORMATION-ELEMENT OR

CONTROL-LIST

[CONTROL-LIST ::= < SCLIST {[INSTRUCTION] >
CONTROL-ELEMENT ::= REPEAT-INSTRUCTION OR

| | IN-INSTRUCTION OR
IF-INSTRUCTION OR

FLAG-INSTRUCTION OR

GO-INSTRUCTION OR

[TRACE-INSTRUCTION OR| STOP-INSTRUCTION

TRANSFORMATION-ELEMENT ::== TRANSFORMATION-NAME OR

L GROUP-NUMBER
REPEAT-INSTRUCTION ::= RPT INTEGER < CONTROL-PROGRAM1 > OR

[RPT < CONTROL-PROGRAM1 >

L 49

L
IN-INSTRUCTION ::= IN TRANSFORMATION-NAME (INTEGER)

l DO < CONTROL-PROGRAM1 >
IF-INSTRUCTION ::= IF INSTRUCTION THEN GO-INSTRUCTION

| OFT[ELSE GO-INSTRUCTION |]
FLAG-INSTRUCTION ::= FLAG-NAME TRANSFORMATION-LIST

| FLAG-NAME ::= FLAG OPT [INTEGER]

L GO-INSTRUCTION ::= GO TO WORD OR
| GOTO WORD

l TRACE-INSTRUCTION ::= TRACE TRANSFORMATION-LIST SPECIFICATION OR
UNTRACE TRANSFORMATION-LST OR

| TREE
SPECIFICATION ::= BEFORE TEST OR

AFTER SUCCESS OR

h AFTER FAILURE OR

L AFTER CHANGESTOP-INSTRUCTION ::= STOP OR

L TRANSFORMATION-LIST ::= TRANSFORMATION-ELEMENT OR
| < SCLIST [TRANSFORMATION-ELEMENT] >

L

L

[

L

L

L

L

L .

L

L REFERENCES

[[1] Pollack, B. W. The Control Program and Associated Subroutines. m-28,
Computer Science Department, Stanford University (June 1968).

[[2] Fillmore, C. J. The Positionof Embedding Transformations in a Grammar.
Word, 19 (1963), 208-231.

[[3] Lees, R. B. A Grammar of English Nominalizations. Supplement to
International J. Amer. Linguistics, Baltimore (1960).

[[4] Friedman, J. and Doran, R. W. A Formal Syntax for TransformationalGrammar. CS-95, AF-24, Computer Science Department, Stanford
University (March 1968).

[[5] Rosenbaum, P. and Lochak, D. The IBM Core Grammar of English.
in Lieberman, D. (Ed.), Specification and Utilization of a
Transformational Grammar, AFCRL-66-270 (1966).

L [6] Friedman; J. and Martner, T. S. Analysis in Transformational Grammar.
AF-34, Computer Science Department, Stanford University (September 1968).

[[7] Friedman, J. Computer Experiments in Transformational Grammar II:
Traugott's Grammar of Alfredian Prose. AF-23, Computer Science

[Department , Stanford University (February 1968).
[8] Friedman, J. SYNN, an Experimantal Analysis Program for Transformational

| Grammars. WP-229, the MITRE Corporation (1965).

L [9] Ross, J. R. A Proposed Rule of Tree-pruning. NSF-17, Computation
Laboratory, Harvard University (1966), tv—1i-18.

| [10] Gross, L. N. A Computer Program for Testing Grammars On-Line.
Mimeographed (1968).

[} [11] Klevansky, L. Computer Experiments 1n Transformational Grammar VI:
Swahili. AF-32, Computer Science Department, Stanford University
(June 1968).

L . [12] Zwicky, A. M. On the Ordering of Embedding Transformations. Mimeographed
handout, meeting of the Linguistic Society of America (Summer 1966).

[[13] Menzel, P., Shopen, T., and Partee, B. H. Rule Ordering: Preliminary
Report. UCLA Working Paper #1 (October 1967).

L 2

