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ABSTRACT

Various orders of application of transformations have been considered
in transformational grammar, ranging from unorder to cyclical orders
involving notions of '"lowest sentence'* and of numerical indices on depth
of embedding. The general theory of transformational grammar does not
yet offer a uniform set of '""traffic rules" which are accepted by most
linguists. Thus, in designing a model of transformational grammar,
it seems advisable to allow the specification of the order and point

of application of transformations to be a proper part of the grammar.

In this paper we present a simple control language designed to
be used by linguists for this specification.

In the control language the user has the ability to:
1. Group transformations into ordered sets and apply transformations
either individually or by transformation set.

2. Specify the order in which the transformation sets are to be

considered,

3. Specify the subtrees in which a transformation set is to be

applied.

4. Allow the order of application to depend on which

transformations have previously modified the tree.

5. Apply a transformation set either once or repeatedly.

In addition, since the control language has been implemented as

part of a computer system, the behavior of the transformations may be



monitored giving additional information on their operation.
In this paper we present the control language and examples of its
use. Discussion of the computer implementation will be found in

Pollack [1].

r

L{

r— r— r—

ii



~ - r—

ol ol G S S S e G

The need for a language to express '"traffic rules”

The transformational component of a grammar consists primarily of
a set of transformations; but it must also contain what Fillmore [2]
has called "traffic rules'@ which specify the order in which the
transformations are to be applied. These rules may be considered
either as part of linguistic theory -- in which case there is one set
of rules which applies to all grammars, or they may be considered as a
proper part of a grammar. In this paper we take the position that the
traffic rules, or "control program'", of a grammar are a part of the
transformational component. In doing so we do not wish to maintain
anything at all about the possibility that a universal set of traffic
rules will someday be found. Our position reflects the fact that at the
present time linguists disagree on what the traffic rules are. $So we
start from the premise that each grammar contains its own set of traffic
rules, and we define a language in which these rules can be expressed,

The suggestion that the metatheory of grammars contains some complex
scheme for "traffic laws'" within a grammar, and a control unit which
directs the order of application of rules, occurs in Lees [3] as one of
three alternative plans for rule ordering. The language proposed in
this paper may be viewed as a proposal for Lees' '"complex scheme”.

The control language which we present was developed for a computer
program which accepts and manipulates transformation grammars —— we
required some decision as to the order of application of transformations.
None of the specific plans which have been proposed seem to have any

general acceptance. Thus we felt that our programs would be more
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useful if the specification of the traffic rules were a user option.
The programs may be used to investigate order of application of rules
as one of the open empirical questions about grammars.

We hope that the control language will also be of interest per se,
independently of the programs.

The control language operates by taking advantage of mechanisms
which must already be in any system of transformational grammar. For
example, the "IN-construct", used to determine the subtree for which a
transformation is to be invoked, itself uses a transformation in this
determination. Likewise, there is no provision for placing special
indices on the sentence tree, but instead feature specifications, already
in the system, are used. The decision to stay within the devices already
available causes some difficulty in expressing some of the proposed
cycling orders, as 1is apparent in Example 3 below. However, the
alternative would be to program special devices specific to the various
proposals in the literature, which we prefer not to do until some general
ideas can be abstracted from them.

The purpose of the control program is to determine in what order

and at what point a transformation is invoked. Thus, in the familiar
control sequence: apply the cyclic transformations to the lowest
sentence, the control program must select the lowest sentence subtree
and then invoke the transformations in order for that subtree.

In this presentation of the control language we first discuss the
transformation component as it relates to the control program, then
what is meant by invoking a transformation -- this will be primarily a

discussion of the meaning of the parameters of a transformation. Then




we shall discuss the control language itself and show how it providesa

:
y

step-by-step selection both of the transformation to be invoked and the
tree node which is to be the top of the subtree treated by the analysis

algorithm,
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The transformational component of a grammar

—

The system with which we are working contains a formal metasyntactic
i description of transformational grammar. The metasyntax is described

in [4). 1In this paper we will cite the formal descriptions, but will

r—

in every case also spell them out in English. We can use the syntax

to show the position of the control program within the grammar:

0.01 transformational grammar :i= phrase structure lexicon

—

transformations S$END

r—

8.01 transformations ::= TRANSFORMATIONS list[transformation]

CP control program . $END

—

(Numbering here corresponds to the full syntax given in Appendix A.)

The interpretation of these rules is:

—-

a transformaional grammar consists of a phrase, structure

followed by a lexicon followed by a set of transformations followed

by the terminator $END.

r— r—

transformations, the transformational component with which we

'

are here concerned, consists of the identifier TRANSFORMATIONS

followed by a list of transformations, followed by the identifier CP

r—r— — r—

r—
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and a control program terminated by a period. The transformational

component is terminated by $END.

The important point here is that the control program is a proper

part of transformations. It is needed to provide the ordering for the

transformations.

Identification of a transformation

The control program must be able to refer to individual transfor-
mations and to recognize whether or not they are optional, and if and

how they are to be repeated. The information specific to a single trans-

formation is~provided in the identification which is the first part of

a transformation.

8.02 transformation ::= TRANS identification SD structural

description opt[SC structural change .]

A transformation consists of the phrase TRANS, followed by an

identification, followed by the phrase SD and the structural description,

followed optionally by the phrase SC , a structural change, and a period.

(The reason for allowing the structural change to be optional will be

seen below in the discussion of the IN-construct.)

8.03 identification ::= opt [integer] transformation name

opt [list [parameter]] opt [keywords].

The identification of a transformation consists of an optional

bhinteger, followed vy the transformation name, followed optionally by a
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list of parameters and optionally by keywords. The integer is for ex-

ternal identification only; within the grammar a transformation is

referred to by its transformation name.

8.04 parameter ::= group number or optionality or repetition

There are three types of parameters: the group number (a roman

numeral) identifies the transformation as part of a group. The group

number may be used to refer to all of the transformations in the group.

Optionality (OB or OP) has the usual interpretation, obligatory
or optional. Repetition includes four possibilities (AC, AACC, ACAC
and AAC) ——\thch are more general than those which have previously been
considered and will be discussed in detail below.

Although the list of parameters is optional, each transformation
is in fact specified for group number, optionality and repetition, since
for each there is a null option. If no group number is specified, it
will be taken to be the same as that of the previous transformation

(or I for the first transformation). The null option for optionality

is obligatory (OB) and for repetition AC .

Invoking a transformation

By invoking a transformation we mean (in the simplest case of an
OB AC transformation) that the analysis algorithm will be applied to

determine if the structural description is met, and that if so, the

structural change will be applied. However, this description is not

yet complete, for the analysis algorithm is not always to be applied to

the full sentence tree. It is certainly necessary to be able to specify
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that the analysis algorithm is to be applied to a specific subtree.

Therefore, we modify the definition above to state that in invoking a

transformation, the analysis algorithm will be applied to a specified

subtree.

Optionality and repetition

We have defined above what it means to invoke a transformation
with optionality OB and repetition AC . In the tables below we
extend the definition to cover the full range of cases for these para-
meters; in each case a single specification of the subtree is implicitly
assumed. --.

The repetition parameter has four possible values, with mnemonics
composed of the letters A (for "analyze") and C (for "change").
These mnemonics AC, ACAC, AACC, AAC were invented because the phrases
"cyclic", "noncyclic", "iterative", "recursive" etc. have by now had so

many different interpretations that confusion can easily arise.



r— r— r

r

Repetition

AC

ACAC

AACC

AAC

To invoke the transformation

The analysis algorithm is applied to find the
first match for the structural description;
the structural change is then carried out if

one is found.

The process just described for AC is repeated

until no further match is found.

The analysis algorithm is applied to find all
possible matches for the structural descrip-
tion; the corresponding structural changes are

then carried out.

The analysis algorithm is applied to find all
possible matches for the structural descrip-
tion; one of these is selected at random and

the appropriate structural change applied.

Table I

Invoking an obligatory (OB) transformation

In the case of a control program which must run without human in-

tervention, the natural way to decide in optional cases is by random

choices; 1f the program interacts with an on-line user then the decisions

in optional cases may be made by the user. (Our implementation of the

control language is in an off-line environment; therefore a random

choice is made. This is a characteristic of the implementation, not of

the control language,

which could be used in either type of environment.)

Table II shows the process of invoking an optional (OP) transformation.
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Repetition To invoke the transformation
AC Decide. If yes, proceed as for OB case.
ACAC (a) Decide. If yes, proceed as for OB AC

case. Repeat (from @) until either a negative

decision is reached, or no match is found.

AACC The analysis algorithm is applied to find
all possible matches for the structural
description. For each, a decision is made

and if yes the corresponding change is applied.

AAC Decide. If yes, proceed as for OB case.

Table II

Invoking an optional (OP) transformation

The repetition parameter AAC

The tables above define the meaning of the four possible repetition
parameters. Some discussion is now in order to defend our choice of
values for repetition. AC, ACAC and AACC are all cases which are
commonly found in the literature, although some arguments have been given
to show that ACAC is unnecessary. The case AAC is new and is suggested
by difficulties found in the literature. Consider for example, the WH-
Attraction transformation of Rosenbaum and Lochak [5], which we give

here in their notation:}/

;/In the notation of our system, WH-Attraction would be written:
TRANS 10 WHA "“WH-ATTRACTION" I OB AAC
SD# % ART S/< L NP % 6 ( * < PREP NP/< WH % > >, NP/< WH % >) % > % #.
SC 6 ALESE I k4.

All variables are replaced by % . Substructures are indicated by angle
brackets. (A,B) is a choice. * is any one node. A full description
of the format of structural description is given in [6].

9
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10 WHAT WH-Attraction OB
PREP+[WH X]
¥ U ART [NP W vy, z  #
[wH X]NP
1 2 3 L5 6 7 8 9 ===
1 2 3 6th 5 p 7 8 9

The structural description above contains a choice; but notice that if
the sentence is analyzable as the upper choice, then it is also analyzable
as the lower one, The intention is that in the case where both structural
descriptions can be matched, either one of the analyses is acceptable.
This is precisely what the AAC parameter specifies. The same situation
arises for their Question transformation.

We have also found the parameter AAC useful in the WH-Question
transformation of Traugott's grammar of 0Old English [7]. There the
problem is somewhat more difficult, since more than one element at a
time may be questioned. The desired solution was achieved by the following

pair of transformations:

TRANS WHA “WH-QUESTION® AACC OP.
sD % 1 Q $2 NP % .

SC WH AILESE 2, ERASE 1.

TRANS WHA2 “WH-QUESTION" AAC OB.
sD % 1 Q@ % 2 NP %

SC WH AIESE 2, ERASE 1.

10
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The first of these transformations optionally inserts WH as the

left sister of zero or more NP's in the sentence. If at least one

WH is inserted the Q is erased so that WHA2 will fail. If no WH is

inserted by the first transformation, then the OB transformation WHA2

will insert exactly one WH as left sister of a randomly selected NP
The possibility of creating a special parameter so that this case

could be handled by a single transformation was considered but was re-

jected since it seemed too special.

Keywords

The optional list of keywords which appears in the transformation

identification is simply a technical device used to bypass applications
of the analysis algorithm.é/ Whenever a node is to be specified as the
top of a search by the analysis algorithm it is first verified that all
of the keywords are dominated by that node; if they are not, the analysis
is assumed to have been tested and to have failed.

This completes the discussion of what is meant by invoking a trans-
formation for a specified top node. We now discuss the specification

of the top node for an analysis.

;/ This device was first used by Friedman in the SYNN programs at

MITRE [8]; it was also used by IBM [5].

11
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Specifying the top node for an analysis

The analysis algorithm which determines if the sentence tree
matches the structural descriptionof a transformation is described
in [6]. Before the analysis algorithm is applied, the control program
must have determined both the transformation to be invoked and the top

node of the subtree in which it is to be invoked.

Default option for top node

The sentence symbol (S) plays a special role in the specification
of the top node. Unless the control program specifically calls for a top
node which has some other label (which may be done using the IN-construct
described below), the top node will always be a sentence symbol.

To illustrate this specification of top node, consider first a

very simple control program consisting of one instruction:
(1) TRAN1

This program simply consists of the transformation name TRAN1 . It is

interpreted to mean that the transformation TRAN1 is to be invoked.
Each time it is invoked the top node is (by default) a sentence symbol.
The termination of the top node proceeds as follows:

1. A list is made of all the sentence symbols in the tree (see
Diagram 1); this is the list of "marked S's". (If there are none, the
program terminates.)

2. No special order is guaranteed for the marked S's.

3. Find the first marked S which dominates all the keywords

of TRANI .

12
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4. Invoke TRANl using this S as top node.
5. Then, without repetition of any marked S , repeat this process

until all marked S's have been used.

This completes the application of the control program (1).

#15 14 le6 VPl9 #21
b b b
s

For this tree the list of "marked S's is:

{Sl 812}

The list of "marked S's" in Diagram 73 (below is:

{sl 8, 35}

Marked Sentence Symbols

Diagram 1

13
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Invoking groups of transformations

We have seen above a program which invokes the single transfor-
mation TRAN1 . We now show how groups of transformations may be in-
voked.

The simplest way to invoke more than one transformation is to

invoke a group of transformations by group number:

(2) 11

The control program (2) will invoke all of the transformations which
have group -number II. The identical effect is achieved by control

program (3), where the transformations of group II are listed by name:

(3) TRANS ; TRANG; TRAN7

and no other transformations belong to group II.
The determination of the top node is done one transformation at
a time. Thus if there are two sentence symbols Sl and SQ, the order

of application will be:

Invoke TRANS at Sl;
Invoke TRANS at 825
Invoke TRAN6 at 8
Invoke TRAN6 at 855
Invoke TRAN7 at S.;

Invoke TRAN7 at S..

1k
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The IN-construct

The simple specification of top node described above is of course
inadequate in many cases. It must be possible to select as top node
sentence symbols with special characteristics; such as lowest sentence,
next-to-lowest sentence, top sentence, and so on. The facility for
doing this is provided by the IN-construct. The basic idea of the IN-

construct is that the analysis algorithm itself can be used to determine

the specification of top nodes.

The form of the IN-construct is given by:

9.06 IN-instruction ::= IN transformation name (integer)

DO < control program>

The transformation name which occurs here may be the name of a special

transformation which is invoked only for this purpose. (In th4is case

it need not have a structural change.)

As an example, consider the control program:
() IN LOWESTS (1) DO < TRANL >
where the transformation ILOWESTS is given by:

TRANS 0 LOWESTS III.

SD 1 Sa/<#%s<#%#>%#> , WHERE 1 DOM # .

The structural description of LOWESTS will be matched if the tree
contains an S which dominates a boundary symbol (#) , but which

does not ( = ) dominate another S which dominates boundary symbols.

15
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(This corresponds exactly to the definition of lowest sentence given in
Rosenbaum and Lochak [5].) The integer 1 can now be used to refer to
this lowest snetence. Notice that LOWESTS has been given the group
number IITI -- this is chosen to be different from all other group
numbers in the transformations so that LOWESTS will never be invoked
except in the IN-construct.

The control program (4) operates as follows:

First, LOWESTS is invoked (with top node determined as in the
case of the control program (1) above). If the analysis is successful,
the node designated by 1 is taken as the sole marked S for applica-
tion of the sub-control program TRANL . After this sub-control program
is completed, LOWFSTS is again invoked. For each repetetion a new lowest
sentence must be found to correspond to the integer 1 . If a new lowest
sentence is found, the sub-control program is repeated. The control
program (4) terminates when no new lowest sentence is found.

Notice that the application of TRANL may change the tree so that
sentence symbols which did not previously satisfy LOWESTS now do so.

When the IN-construct is applied to a group of transformations

as in:
(5) IN TRAN1(1) DO < TRAN2; TRAN3; TRAN4 >

The single top node determined by TRAN1 is used for the subsequent
three transformations. Note that the effect is not necessarily the

same as the sequence of instructions:

16
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(6) IN TRAN1(1) DO < TRAN2 >;
IN TRAN1(1) DO < TRAN3 >;

IN TRAN1(1) DO < TRANL >

In (5) TRAN1 is invoked once, and the node corresponding to the integer
1 is taken as the top node for the three subsequent transformations,
even though after TRAN2 the structural description of TRAN1 may no
longer be satisfied by the tree. Thus the IN-construct allows us to
select a top node on the basis of the tree structure at a particular

time, and to continue to use this top node although the tree structure

changes.

17



Example 1. The IBM Core Grammar

With the instructions which have been discussed so far we are able
to construct a control program which corresponds to i(yo 1BM Core Grammar
of Rosenbaum and Lochak [5, pages 28-32]. We first quote from the
reference the description of the pattern cycling:

The transformational component of the Core Grammar contains
an ordered set of cyclic and post-cyclic transformational rules.

The cyclic rules apply to a Iowest senftence. A lowest sentence

is an S boundary and X is a variable which does not contain #.
In the diagram (73), 35 meets the conditions of a lowest S

(713) - S

The cyclical transformational rules apply in sequence to
lowest 8's. Consider, for instance, the following set

of cyclic rules in which the symbol X is a variable ranging
over any structure at all.

(Th) a. # n x #
1 2 Yoo
1 p 3 &
b. # x #
1 2 5 Hf——>

18



== &

Applying cyclically, the rules in (74) operate on 85 in
the P-marker given in(73) producing, sequentially,
the P-markers(75) and (76).

(75) S,

A B C

2\

E
53

3TN

(76) S

As the result of the application of the rules in.(?l;),s2
now meets the conditions of a lowest S and the cyclic
rules apply again yielding the P-markers(77) and (78).

19
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After this cycle S1 now meets the conditions of the

lowest S and the cyclic rules apply once again yielding

(79) and (80).

(79) s
"/
\
E 5
i c
E/ | 3
- C
(80) S
B c
B

This application of the rules leaves a P-marker in which
no S qualifiesas a lowest S . Hence, the transfor-
mational cycle is terminated.

The P-marker produced by the rules of the transfor-
mational cycle is the input to the post-cyclic trans-
formational rules. A possible rule might be that in (81),
which deletes every assistant of C in (80), thus generating
the derived P-marker (82).

21
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(81) X ¢ Y
1 2 3 ===
p 3
(82) 5

H=

The post-cyclic rules are ordered. The derivation is terminated
after the applicability of the last post-cyclic rule has been
tested.

The simple transformational component used in this example could

be written in our system as:

TRANSFORMATIONS
TRANS 0 LOWESTS III.

SD 18—/ <#¥%s<#%#>%4#>, WHERE 1 DOM #.

"CYCLIC TRANSFORMATIONS"

TRANSAT.

sD # 2 A % #.
SC ERASE 2.
TRANSBI.

sD 1 # % 3 #.

SC ERASE 1, ERASE 3.

22
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“POST-CYCLIC TRANSFORMATION"
TRANS C II.
sb % 2 c %.
SC ERASE 2.
CP  '*CONTROL PROGRAM"
IN LOWESTS (1) DO < I >; II

$END "END OF TRANSFORMATIONS"

When LOWESTS is invoked for (73) the top nodes Sl and SQ will fail

to yield a §pccessful analysis. 85 will qualify as a lowest S
Transformation A produces (75); transformation B then produces (76).
IOWESTIS is then invoked again for each of Sl which fails and then

for S2 which this time is successfully analyzed as a lowest S
Transformation A produces (77), transformation B produces (78),
LOWESTS is again invoked for § and fails. It is invoked again for

3

Sl and succeeds because S1 is now the lowest S . Transformation A
produces (79) and transformation B produces (80). Then LOWESTS
is invoked for 82 and S3 and fails both times. LOWESTS is finally
invoked for each of the three S's but no successful analysis is found.
Hence the execution of the first instruction terminates.

The second instruction causes each of the transformations of
group II (in this case there is only one) to be invoked once for each

of the S's in the tree. Each time transformation C is invoked, one

occurrence of C is deleted. The result is (82).

23
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Order of instructions in a control program

In the example above it was sufficient to do the instructions in
order without any branching in thélprogram. The instructions are simply
carried out in the order listed. It is clear, however, that one would
like to be able to choose the next instruction on the basis of what has
happened so far in the application of the control program. This

facility is provided by if-instructions, go-instructions and labels.

CO-instructions and labels

The simplest change in the linear flow of control is provided by
allowing transfer to a labeled instruction. Any instruction in the control

program can be labeled by preceding it with a word (i.e., any sequence of

letters and digits beginning with a letter) followed by a ":* . Control

can be transfered to the instruction labeled say DOl by a go-instruction

GOTO DOl. Thus, in the control program:
FIRST: TRAN1; TRAN2; GOTOFIRST; TRAN3

The order of execution is TRAN1, TRAN2, TRAN1, TRAN2, TRAN1, .
This program is not recommended because it contains an infinite loop,

but go-instructions can be combined with if-instructions to create

sensible programs.

Conditional instructions

The form of a conditional instruction of if-instruction is given by:

9.07 if-instruction ::= IF instruction THEN go-instruction

opt [ELSE go-instruction]
2k




L
L

=

4

= &= &e=— =/ M &=

or

IF TRAN2 THEN GOTO EMB ELSE GOTO CONJ

where EMB and CONJ are labels and TRAN1 and TRAN2 are
transformation names.

The instruction between the IF and the THEN may be of any type.
With each type of instruction there is an associated value. The simplest
case is an instruction which is a transformation name: the value is

true, 1f the transformation has been invoked and it applies (that is, the

transformation's structural description is ﬁmt); the value is false

otherwise.

Table III below gives the value corresponding to each instruction
type. (Some of these types have not yet been introduced.) The
interpretation of an IF-instruction is that first the instruction
(between the IF and the THEN ) is performed. If the resulting value
is true the GO-instruction after the THEN is performed, otherwise the
GO-instruction after the ELSE is performed. (Just as in AIGOL.)

In using an IF-instruction it is important to note that in
IF T1 THEN T2

Tl will first be invoked for all of the current 8's, and if it is
successful at least once then T2 will be invoked for all current S's.
Normally what is wanted is not the above, but conditional application

within a given S . This can be achieved by using the IF-instruction

25
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within an IN-construct, for example:
IN NEXTS(1) DO < IF Tl THEN T2 >

where the structural description for NEXTS is simply
sD $1 s %.

In this case the sentences will be considered one at a time, and the
invocation of T2 in a particular sentence will be conditional on

the previous success of Tl in that sentence.

A note on tree-pruning

Ross' "tree-pruning'" [9] is an example of a general convention for
grammars which one might want to test in a computer system for transfor-
mational grammar. One way to handle tree-pruning is to include in the
language an instruction which gives the list of node names for which it
applies, as has been done by Gross [10]. If tree-pruning were to become
generally accepted we would probably follow Gross' treatment of it. In
the present system the tree-pruning convention can be simulated by
c onstructing tree-pruning transformations, and inserting their calls at
appropriate points in the control program, probably as conditional

instructions as:

IF Tl THEN TREEPRUNEL

.26
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Example 2. A grammar of Swahili

In "A transformational grammar of Swahili" [11], Klevansky uses a

control program in which each transformation is called by transformation

name. The transformations QNANI, QNINI and QLINI are optional;
conditional instructions are used to insure that at most one of them will

be successfully applied.

CP  INSERTKU; FIXNEGCOP;
PREAGV;
NEGSUB;
RELl; REL2;
ANPRE1; ANPRE2;
PREAGAV; FIXCOP;
IF QNANI THEN GOTO E;

IF QNINI THENGOTO E;

IF QLINI THEN GOTO E;

L 27
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Example 3. Zwicky's proposal for control of cycling

Zwicky [12] has considered the following method of control of
cycling:

a. Instances of S in a base tree are indexed as follows:

(1) Any instance of S that does not dominate an S
receives the index 1

(2) Any instance of S that dominates other instances
of S receives the index N+1 if (a) every dominated
S is indexed, and (b) the maximum index of a dominated
S 1is N.

th .

b. On the N pass through the rules all subtrees dominated
by an S with index N are operated upon, and no other
subtrees are operated upon.

This control program can be expressed only with difficulty in our
control language. The problem is that we have no convenient wayv of
marking indices. The following program is an inelegant but accurate
expression of Zwicky's scheme -- it uses inherent features
INDEX1l,..., INDEXN to mark indices. The maximum possible depth of
a tree must be known beforehand; the program below works only up to
depth 4

Four transformations are used to insert indices; four more are

used in IN-constructs. Transformations INDEXl, . . . . INDEX4 insert

feature specifications which correspond to the indices above:
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TRANS INDEX1

SD % 1S %, WHERE 1 NDOM S
SC |+ INDEX1| MERGEF 1

L
L

TRANS INDEX2
sp %18 / < % S|+ INDEX1| % >
SC |+ INDEX2| MERGEF 1

e

r— r— r— r— r— r— r— r—-

TRANS INDEX3
sD %18/ < % s|+ INDEX2 | % > .
SC |+ INDEX31 MERGEF 1 , |+ INDEX21 ERASEF 1

TRANS INDEX4
spD %18 / < % S|+ INDEX31 % >
SC |+ INDEX41 MERGEF 1, |+ INDEX3 + INDEX2| ERASEF 1

Transformations FIRST, SECOND, . . . . FOURTH will associate the

integer 1 with the appropriately indexed S's.

TRANS FIRST .
SD % 1 s |+ INDEX1| % .
SC |+ INDEX1| ERASEF 1

—

TRANS SECOND .
. sD % 1 s |+ INDEX2| % .
SC |+ INDEX21 ERASEF 1

TRANS THIRD
SD % 1 s |+ INDEX3| % .
SC |+ INDEX3| ERASEF 1

r—

—

TRANS FOURTH
SD % 1 S |+ INDEX4| % .
SC |+ INDEX41 ERASEF 1

—
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L
L
L
L
L
L
L
L
L
L
L
L
L

If IT is the group number for the embedding transformations, the control

program can then be expressed as:

INDEX1; INDEX2; INDEX3; INDEXL;
IN FIRST (1) DO < II >
IN SECOND (1) DO < II >;
IN THIRD(1) DO < II >
IN FOURTH(1l) DO < II >,

Note that the indices are erased when used; this will prevent them from

interfering with other tests on features.

If we apply this to Zwicky's example:

/\/\

man # 8, # man is eager for to Sg#\

NP VP NP VP
VANRVAN Q .
the man is tall man goes

NP
the man is tall

the effect is as follows:
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INDEX1 merges the feature specification + INDEX1 into the complex

symbols associated with 82 and Sh .

INDEX2 merges the feature specification + INDEXZ into the complex

symbols for Sl and S3 .

INDEX3 succeeds for Sl only. It merges the feature specification

+ INDEX3 into the complex symbol and erases the feature + INDEX2

INDEX4 fails.

After these first four transformations the tree is (schematically):

S, . ..[+ INDEX3]
S, /[+IN/DEXZL]\ Sy ..[+ INDEX2]

“g - .. [+ INDEX1]

The remaining instructions will now invoke the embedding transfor-
mations for 82, Sh’ S5 and Sl , as desired, and will delete all

occurrences of the index features.
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FIAG-instructions

FLAG-instructions provide a means for remembering
which transformations and which groups have applied (i.e., which
transformations and which groups have value true), In general, whenever

a transformation name or group number appears the corresponding transfor-

mation or group is invoked and some value is produced. If the transfor-
mation or group appears within an IF-instruction this value may be tested,
but the value is then discarded. The same holds true for the instructiocns
within a RFT-instruction; the value 1is determined, the RPT-instruction

is terminated or is continued, and the value is discarded. 1In order to

e able to change the course of execution of the control program by
remembering which transformations and which groups have the vaive true

one FLAG's the appropriate transformations and groups.

The form of a FLAG-instruction is given by

flag instruction

= flag name transformation list

flag name ::= FLAG opt [integer,]

transformation list ::= transformation element or < sclist
[transformation elementl >

transformation element ::= transformation name or group number

Flags are considered to be variables which may take on the values

true and false. These variables are numbered from zero up. (Within

the implementation of the control language ten flags numbered from
zero to nine are provided.) Two type of FLAG-instructions exist: those
with an integer following FLAG and those without. FLAG-instructions

without an integer are taken to refer to FLAG 0.
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The FLAG-instruction is interpreted as:

1. Discard any previous value or definition this flag may have

had.

2. Define the named flag as consisting of the named transformations

and/or groups.

3. Set the flag's value to false.

A flag's value remains false until one of the transformations which it
represents or some transformation in one of the groups it represents is
invoked. Thfn if the invoked transformation's structural description is
met (and any structural changes are made) the flag's value is changed to
true. The flag's value will remain true until the flag is redefined.
For example, a flag (say Flag 5)which represents the transformations

TRAN1, TRAN2 and TRAN3 might be defined by:

FIAG 5 < TRAN1 ; TRAN2 ; TRAN3 >

Flag 5is set to false at the time this instruction is executed.

Thereafter, *if.any of the above three transformations are invoked and do

| apply (that is, 1f any of the three transformations are invoked and their

structural descriptions are met) Flag S5will be set to true. Flag Swill
retain the value true until it is redefined. (If Flag 5is redefined as
TRAN1, TRAN2 and TRAN3 then its value is Jjust reset to false.)

A flag which represents every transformation in group II and the

transformation TRANA might be defined by:

FIAG 3 < II ; TRANL >
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Flag 3is set to false when this instruction is executed. Thereafter,

if any transformation in group II or if TRAN4 is invoked and does apply

Flag 3will be set to true.

A flag which only represents the transformation TRANS is defined by:

FIAG 2 TRAN5

The value of a flag may be tested at any time through the use of

an IF-instruction. For example,

IF FLAG 7 THEN GOTO LABL3 ELSE GOTO LABL4

-

If Flag 7 has value true then a transfer to IABL3 will be made; if

Flag 7 has value false then a transfer to LABL4 will occur instead.
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The RET-instruction

In order to repetitively invoke a transformation, group of trans-

L formations or control program one-may use a RFT-instruction. Two forms
) of RPT-instructions are provided: the first specifies a fixed maximum
L number of times the following instructions are to be executed; the
second will continue to cycle through the instructions until each has
.
the value false.
9 The form of the RPT-instruction is:
| RPT opt [integer] < control program >
)| ) -~
A RPT-instruction with an integer is interpreted as follows:
L/
r 1. Set the RPT counter to the value of the integer.
- 2 Execute each element of the control program in the angular
brackets in the normal manner.
- 3. If at least one of the elements had the value true, then
9 decrease the RPT counter by one and if it is still greater than
zero, go back to step 2.
- 4. If no element of the control program had the value true (or if
[ the RPT counter has a value less than 1) terminate the RET-
- instruction.
B For example:
- RPT 5 < TRAN1 ; TRAN2 ; III >
- will repeat the sequence: 1invoke transformation TRAN1, invoke transfor-
mation TRAN2, invoke every transformation in group III, until either
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none of them apply or five iterations of the sequence have occurred.

An example of a RPT-instruction without an integer is:

RFT<II ; TRAN3 >

This instruction will invoke every transformation in group II and then
invoke transformation TRAN3 and repeat until none of the transformations
in group II apply and TRAN3 does not apply. Then the REP-instruction
will terminate. Note that it is possible to create infinite loops with
RPT-instructions.

RPT-instructions may include any arbitrary control program, and in

-

particular they may include other REP-instructions, So,

RPT 4 < IIT ; RPT <IV > ; TRAN4 >

will invoke the transformations in group III, then invoke all transforma-
tions in group IV repetitively until none apply, then invoke transformation
TRAN4, and this sequence will be repeated at most four times.

It is occasionally the case that transformations cannot be explicitly
ordered. The following example is taken from Menzel, et. al. [13].

"The sentence John and Mary ran and will walk tomorrow, and sang and will

dance tomorrow respectively. requires a derivation where secondary conjunc-

tion must precede the (conjunction transformation) schema, whereas John

saw a movie and ate pizza and will run tomorrow. requires a derivation

where the processes take place in the other order, the schema first
and then secondary conjunction." The RF&instruction provides a
means to specify both possibilities. If the conjunction schema is

called group I and the secondary conjunction transformations are called
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group II, then the following instruction will achieve the desired result:
RPT < I ; IT >

This instruction will invoke all transformations in group I and then
all transformations in group II aq? then will repeat the process until
no transformations from either group apply. The linguist must insure,
however, that the transformations in the two groups interact in such a
way that if for a particular sentence the transformations in group II

are to apply first, then no transformation in group I will apply.
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The STOP-instruction

The STOP-instruction terminates the execution of a contrwl program.

L STOP-instructions may appear at any point. In our implementation of the
control language a STOP-instruction forces an output of the final tree,

- lists the transformations which have applied in the order in which

il they were invoked and reports how many instructions were executed.

- A STOP-instruction need not appear within a control program —-

g when the terminal period of the control program is encountered the same

effect is achieved.

38
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Determining the value of an instruction

Each instruction of the control language has a value: true or false.

These values are summarized in Table III below. In general, a value of
true means that some change has been made to the tree (although not
necessarily) .

The simplest instruction is the name of a transformation. Such an

instruction has value true if the structural description of the

transformation is met at least once in the current tree and is false

otherwise. If the transformation has a structural change, then a true
value impli€s that this change has been made at least once.

Group numbers denote sets of transformations. The value of a group
number is true if at least one of the transformations in its set has
value true and is false otherwise.

Transformations and group numbers may be grouped together into a

transformation list by enclosing them in angular brackets (see the syntax

in Appendix B) . Transformation lists may be used as the instruction

part of an IF-instruction, for example. The value of a transformation

list is true if any transformation or group number within the list 1is
true and is false otherwise.

Control lists are lists of control instructions; their values are

determined similarly to transformation lists: if any instruction within

the list has value true then the control list also has value true, and

the value is false otherwise.

CO-instructions, TRACE-instructions and STOP-instructions have no
values. Within the computer implementation of the control language these

instructions are given the value false.
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REP-instructions take the wvalue of the control program within them:

if any instruction within the RPT-instruction is true then the value of

the RPT-instruction is true, and it is false otherwise.

An IN-instruction takes the value true if the transformation named

after the IN is true and is false otherwise. ©Note that this is equivalent

to saying that an IN-instruction takes the value true if the list of
instructions following the DO is executed at least once.

The FLAG-instruction has no value unless it is used within an
IF-instruction. Then the value of the FLAG-instruction is the value of
the flag denoted (see above).

The value of a control program is true if any instruction within

the control program has value true and is false otherwise.
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TRANSFORMATION ELEMENTS

transformation name
true if the structural description of the transformation is met
false if the structural description is not met

group number N
true if any transformation within the group is true
false if all transformations within the group are false

transformation list
true if any transformation or group number within the angular
brackets is true
false if all transformations and group numbers within the
angular brackets are false

CONTROL ELEMENTS

repeat instruction
true if any -instruction within the angular brackets is true

false if all instructions within the angular brackets are false

in instruction
true 1if the transformation following the IN is true
false if the transformation following the IN is false

if instruction
true if any instruction between the IF and the THEN is true
false if all instructions between the IF and the THEN are false

flag instruction
has no value unless it is between the IF and THEN of an
IF-instruction, then
true 1if the denoted flag currently has value true
false if the denoted flag currently has value false

go instruction
has no value

trace instruction
has no value

stop instruction
has no value

control program
true if any transformation element or control element within
the list is true
false if all transformation elements and control elements
within the list are false

TABLE III

Determination of the value of an instruction

41
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Monitoring the application of transformations

Thus far the description of the control language has included
only instructions which actually contribute to the determination of the
output of the transformational component in the linguistic sense. The
control language has been implemented as part of a computer system for
transformational grammar; it therefore also contains instructions which
monitor the application of transformations and control the amount and

fpe of computer output which is produced.

Trace instructions

~

The simplest monitoring instruction is the trace-instruction TREE

which causes the tree to be output. For example, if the control program

for the IBM Core Grammar is changed to:

IN LOWESTS(1) DO < I ; TREE > ; II

the tree will beoutput after group I has been invoked for a lowest S
The results in the extended example given above will be that trees
(76), (78) and (80) are output. (Tree (82), the final result, is
automatically output without special instructions.) If we had wished
to see only the final result(80) of the cyclic transformations, we

could have written:

IN LOWESTS (1) DO < I > ; TREE; II

In testing a transformational grammar, one frequently is more
interested in some transformations than in others. The language provides

instructions which will-enable transformations and groups of
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transformations to be "traced", so that more information is provided on
— their operation. The trace-instruction TRACE is followed by a
transformation name or a group number and by a trace-specification which
= must be BEFORE TEST or AFTER FAILURE or AFTER SUCCESS or AFTER CHANGE.
g The trace begins when the TRACE is encountered and it is terminated at
a corresponding UNTRACE. Whenever a transformation which is being
o traced is to be invoked, the corresponding trace-specification is
examined and the sentence tree is output at the appropriate point in
-

the invocation process.

TRACE %FFORE TEST will output the current tree after invoking the
named transformation and after satisfying all specified keywords but
before testing the structural description.

TRACE AFTER SUCCESS will output the current tree after invoking the

— r— r—

named transfromation and finding the structural description (and keywords)

met.
-
TRACE AFTER FAILURE will output the current tree after invoking the
- named transformation and finding the keywords met but the structural
description not met.
— TRACE AFTER CHANGE will output the current tree after invoking the
named transformation and making the structural change (if one is
-
specified).
L Any number of transformations may be traced at one time, and any

combination of trace types may be on for a given transformation at one

time. For example,

TRACE TRANS AFTER SUCCESS

43
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will force an output of the current tree each time TRANS is invoked and
its structural description is satisfied. The output will be made just

before making the structural change specified within TRANS.

TRACE< I ;TRAN6 > BEFORE TEST ;

TRACE I AFTER CHANGE

will force an output of the current tree each time a transformation in
group I is invoked and each time transformation TRAN6 is invoked. The
output will occur just after the appropriate keywords are found but before
the structural description is tested. In addition, each time a
transformation in group I applies the current tree will again be output.

This output will occur Jjust after the structural change has been made.

44
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COMPLETE SYNTAX FOR TRANSFORMATIONAL GRAMMAR

TRANSFORMATIONAL GRAMMAR ::= PHRASE STRUCTURE LEXICON TRANSFORMATIONS $END
TREE SPECIFICATION ::= TREE opt{ , clist[ WORD TREE 1]

TREE ::= NODE optl COMPLEX SYMBOL ] opt[{ 1ist[ TREE 11]

NODE ::= WORD or SENTENCE SYMBOL or BOUNDARYSYMBOL

SENTENCE .SYMBOL ::= S

BOUND&Y SYMBOL ::= #

STRUCTURAL DESCRIPTION ::= STRUCTURAL ANALYSIS, opt[ , WHERE RESTRICTION ] .

STRUCTURAL-ANALYSIS ::= listl TERM ]
TERM ::= optl INTEGER ] STRUCTURFE or ontl INTEGE ] CHOICE or SKIP

STRUCTURE ::— ELEMENT optl COMPLEX SYMBOL ] optl opt[ = J opt{ / 1 { STRUCTURAL ANALYSIS)]
ELEMENT ::=_ NODE or ¥* or _
CHOICE ::= ( clist[ STRUCTURAL ANALYSIS ])
SKIP ::= %
RESTRICTION ::= booleancombination[ CONDITION ]
CONDITION ::= UNARY CONDITION or BINARY CONDITION
UNARY CONDITION ::= UNARY RELATION INTEGER
BINARY CONDITION ::= INTEGER BINARY TREE RELATION NODE DESIGNATOR or
INTEGER BINARY COMPLEX RELATION COMPLEX SYMBOL DESIGNATOR
NODE DESIGNATOR ::= INTEGER or NODE

COMPLEX SYMBOL DESIGNATOR ::s COMPLEX SYMBOL or INTEGER )
UNARY . RELATION ::= TRM or NTRM or NUL or NNUL or DIFP or NBIF
BINARY TREE RELATION ::= EQ or NEQ or DOM or NDOM or DOMS or NDOMS or DOMBY or NDOMBY
BINARY COMPLEX RELATION ::= INCl or NINCL or INC2 or NINC2 or CSEQ or NCSEQ or NDST

or NNDST or COMP or NCOMP
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4.01  COMPLEX SYMBOL ::= | list[ FEATURE SPECIFICATION ] |

4,02 FEATURE SPECIFICATION ::= VALUE FEATURE
4.03 FEATURE ::= CATEGORY FEATURE or INHERENT FEATURE or CONTEXTUAL FEATURE or RULE FEATURE
4.04 CATEGORY FEATURE ::= CATEGORY
4.05 CATEGORY ::= WORD
4.06 INHERENT FEATURE ::= WORD
4.07 RULE FEATURE ::= TRANSFORMATION NAME
4.08 CONTEXTUAL FEATURE ::= CONTEXTUAL FEATURE LABEL or CONTEXTUAL FEATURE DESCRIPTION
4.09 CONTEXTUAL FEATURE DESCRIPTION ::= ( STRUCTURE opt[ , “WHERE RESTRICTION ])
410 VALUE ::= + or - or * -
5.01 STRUCTURAL CHANGE ::= clist[ CHANGE INSTRUCTION ]
5.02 C H A NINSTRUCTION ::= CHANGE or CONDITIONAL CHANGE
5.03 CONDITIONAL CHANGE : := IF { RESTRICTION ) THEN (STRUCTURAL CHANGE )
optf ELSE { STRUCTURAL CHANGE )]
5.04 CHANGE ::= UNARY OPERATOR INTEGER or

TREE DESIGNATOR BINARY TREE OPERATOR INTEGER or
COMPLEX SYMBUL, DESIGNATOR BINARY COMPLEX OPERATOR INTEGER

or COMPLEX SYMBOL DESIGNATOR TERNARY COMPLEX OPERATOR INIGER T :NTEGER
5.05 COMPLEX SYMBOL DESIGNATOR ::= COMPLEX SYMBOL or INTEGER -
5.06 TREE DESIGNATOR ::= ( TREE ) or INTEGER or NODE

5.07 BINARY TREE OPERATOR ::= ADLAD or ALADE or ADLADI or AILADEI or ADFID or AFIDE or
ADRIS or ARISE or ADRISI or ARISEl or ADLES or ALESE or ADLESI . ATESET
or ADRIA or ARIAE or SUBST or SUBSE or SUBSTI or SUBSEI

5.08 BINARY COMPLEX OPERATOR ::= ERASEF or MERGEF or SAVEF

5.09 UNARY OPERATOR ::= ERASE or ERASE1

5.10 TERNARY COMPLEX OPERATOR ::= MOVEF
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6.01
6.02
6.03
6.04

7.01
7.02
7.03
7.04
7.05
7.06
7.07
7.08
7.03
7.10
7.11
7.12
7.13

§.01
8.0 2
3,03
8.04
a.05
8.06
8.07
8.08

9.01
9.02
9.33

9.04
9.05
9.06
9.07
9.08
9.09

-9.10

9.11

PHRASE STRUCTURE ::= PHRASESTRUCTURE llst{ PHRASE STRUCTURE RULE Y SEND

PHRASE STRUCTURE RULE ::= RULE LEFT = RULE RIGHT .
RULE LEFT ::= NODE

RULE RIGHT ::= _MODE or 1list¢ RULE RIGHT » or ( list€ RULE RIGHT » ) or ( clistf RULE RIGHT 2 )

LEXICON ::= LEXICONPRELEX!CONLEX!CAL ENTRIES $END
PRELEXICON ::= FEATURE DEFINITIONS opt¢{ REDUNDANCY RULES 2

FEATURE DEFIHNITIONS ::= CATEGORY DEFINITIONS opt€ JNHEREWNTDEFINITIONS » optf CONTEXTUAL DEFINITIONS 2
CATEGORY DEFIMITIONS ::= CATEGORY 11i st < CATEGORY FEATURE ».

INHERENT DEFINITIONS ::= INHERENT 1list¢ INHERENT FEATURE 2 .

CONTEXTUAL DEFINITIONS ::= CONTEXTUAL ¢l ist{COMTEXTUAL DEF IN|TIOQND .,

CONTEXTUAL DEFINITIUN ::= CONTEXTUAL FEATURE LABEL = CONTEXTUAL FEATURE DESCRI PTION

CONTEXTUAL FEATURE LABEL : := WORD

REDUNDANCY RULES ::= RULES cl istf REDUNDANCY RULE 2 .
REDUNDANCY RULE COMPLEX SYMBOL => CONPLEX SYMBOL
LEXICAL ENTRIES ENTRIES list¢ LEXICAL ENTRY 2> .,

LEXICAL ENTRY ::= 1ist€ VOCABULARY WORD » 1 i st{ COMPLEX SYMBOL ?

VOCABULARY WORD := WORD

TRANSFORMATIONS : := TRANSFORMAT! ONS 1 is t€ TRANSFORMAT! ON » CP_CONTROL PROGRAM . $SEND
JIRAHSFORMAT] ON : := TRANS I DENT I F | CAT! ON SD_STRU 0l optf SC CHANGE
IDEY¥ZIFICATION opt ( | NTEGER » TRANSFORMAT 10N NAKE opt € 11 s t { PARAMETER 2> opt¢ KEYWORDS ?
PARAMETER ::= GROUP NUMBER or OPTI!OHALITY OR REPETITION

GROUP HUMBER : =1 or Il or Il or 1V or V or VI or Vi

OPTIONALITY ::= OB or OP
REP TION ::= AC or ACAC or AACC or AAC
1

= ( listf HODE )

CONTROL PROGRAM ::= sclist{ opt¢ LABFEL : > INSTRUCTION 2
LABEL :1= WORD
JHSTRUCTION ::= RPT INSTRUCTION or [N IidSTRUCTION or

E

HSTR

JE THSTRUCTION
or GO | HSTRUCT ! Gl or TRACE I WSTRUCT ION or STOP INSTRUCTION

or TINSTRUCTION O r < sclist€ INSTRUCTION 2 >

I__ISTRUCT L ON ::= TRANSFORIAT 104 NAME, or GROUP HUMBER
RPT | HSTRUCT tON : : = RPT opt € I KRTEGER » < CONTROL PROGRAL: >
IN THSTRUCTION = ¢

I N_TRANSFORIMATI ON WAME (_I NTEGER ) DO < CONTROL PKOGRAM >

IF BHSTRUCTION .:= F JHSTRUCTION THEN-GOJNSTRUCTION- opt€ ELSE GO INSTRUCTION 2
GU INSTRUCT I ON s & = GO TO LABEL

JRACE INSTRUCTI st= TRACE T INSTRUCTION T R A C FE SPECIFICATION or UWTRACE TINSTRUCTIGN or

E

W_::= BEFORE TEST or AFTER FA!ILURE or
STOP INSTRUCTION ::= STOP

AFTER SUCCESS or AFTER CHAWNGE

TREE



APPENDIX B

CONTROL PROGRAM SYNTAX

The syntax given below is purely descriptive (as is the syntax
given in Appendix A). However, the control program syntax has been
translated into a precedence syntax suitable for use by a parser. The
operation of the control program in our implementation is determined by

this translated syntax (see Pollack [1]).

CONTROL-PROGRAM ::= CONTROL-PROGRAM1
CONTROL-PROGRAM ::= SCLIST [ CONTROL-INSTRUCTION ]
CONTROL-INSTRUCTION ::= LABEL CONTROL-INSTRTJCTION OR
CONTROL-INSTRUCTION LABEL
INSTRUCTION
LABEL ::= WORD : LABEL
WORD :
INSTRUCTION ::= CONTROL-ELEMENT OR

TRANSFORMATION-ELEMENT OR
CONTROL-LIST

CONTROL-LIST ::= < SCLIST [ INSTRUCTION ] >

CONTROL-ELEMENT ::= REPEAT-INSTRUCTION OR
IN-INSTRUCTION OR
IF-INSTRUCTION OR
FLAG-INSTRUCTION OR
GO-INSTRUCTION OR
TRACE-INSTRUCTION OR
STOP-INSTRUCTION

TRANSFORMATION-ELEMENT ::= TRANSFORMATION-NAME OR

GROUP-NUMBER

RPT INTEGER < CONTROL-PROGRAM1 > OR

RPT < CONTROL-PROGRAM1 >

REPEAT-INSTRUCTION

49




IN-INSTRUCTION ::=

IF-INSTRUCTION ::=

FLAG-INSTRUCTION ::

FIAG-NAME ::=
GO-INSTRUCTION

TRACE-INSTRUCTION

SPECIFICATION ::=

STOP-INSTRUCTION

TRANSFORMATION-LIST

IN TRANSFORMATION-NAME ( INTEGER )
DO < CONTROL-PROGRAMI1 >

IF INSTRUCTION THEN GO-INSTRUCTION
OFT [ ELSE GO-INSTRUCTION ]

FLAG-NAME TRANSFORMATION-LIST

FLAG OPT [ INTEGER]

GO TO WORD OR

GOTO0 WORD

TRACE TRANSFORMATION-ILIST SPECIFICATION OR

UNTRACE TRANSFORMATION-LST OR

TREE

BEFORE TEST OR

AFTER SUCCESS OR

AFTER FAILURE OR

AFTER CHANGE

STOP OR

TRANSFORMATION-ELEMENT OR
< SCLIST [ TRANSFORMATION-ELEMENT ] >

>0
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