
|

cs -111

ANALYSIS IN TRANSFORMATIONAL GRAMMAR

BY

JOYCE FRIEDMAN AND THEODORE S. MARTNER

This research was supported in part by the United States Air Force

Electronic Systems Division, under Contract FI96828-C-0035.

STANFORD UNIVERSITY COMPUTER SCIENCE DEPARTMENT
COMPUTATIONAL LINGUISTICS PROJECT

AUGUST [968



L AF - 34
cS ~- 111

| ANALYSIS IN TRANSFORMATIONAL GRAMMAR

r

L or

Joyce Friedman* and Theodore S. Martner

[

Present address: Computer and Communication Sciences Department,

University of Michigan, Ann Arbor, Michigan.

L This research was supported in part by the United States Air Force
Electronic Systems Division, under Contract F196828-C-0035, at Stanford

I University.



|

L ABSTRACT

[ In generating sentences by means of a transformational grammar,

[ it is necessary to analyze trees, testing for the presence or absence
of various structures. This analysis occurs at two stages in the

[ generation process -- during insertion of lexical items (more precisely,
in testing contextual features), and during the transformation process,

L when individual transformations are being tested for applicability.

[ In this paper we describe a formal system for the definition of
tree structure of sentences. The system consists of a formal language

[ for partial or complete definition of the tree structure of a sentence,
plus an algorithm for comparison of such a definition with a tree. It

§ represents a significant generalization of Chomsky's notion of "proper

[ analysis", and 1s flexible enough to be used within any transformational
grammar which we have seen.

L

L

[ .

L

L

L
,

L

L

[ -



L TABLE OF CONTENTS

.
Introduction ce ee ee ee eee eee ee eee eee ee 1

[ Underlying Concepts « « « « « « To oo oo ee ee ee eee. 1
Structural Description + « « + « = + ¢ «+ ee ee 00000. D

i ANalyzability «+ + = + + « + + « «+ + 4 4 0 4 ee ee eee ee.
| Restrictions . . +. «vv vv vv vv ee ee eye eee... . 8

Analysis Algorithm . . . . +. +. . +. + + + + + + «+ + oo «10

| Structural Change . . . . . . + +. + + oo 0 0 0 0 ee... 13
Comparison With Other Notations « + « « = « « « « « « « « « « « 1D

L Future Directions Eo

L

i

L

L

[ .

L

_

-

.

L
¢

L

_



L
| Introduction

| The notion of analysis described here 1s an outgrowth of a project
which had as its primary goal the Writingof a computer system to aid

L transformational grammarians [3]. Early in this project we realized that
L certain aspects of transformational grammar theory had never received the

sort of formalization necessary for computer applications; this paper is

lL essentially a description of our attempt to correct this situation in one such
: area. It should be noted that rigorous formalization 1s not simply an

L ad hoc matter in order to be able to use the computer; questions of the
| relative simplicity of grammars are realistically answerable only when

the grammars have been placed in a precise system of notation, and, more

| important, a transformational generative grammar cannot be said to have
succeeded 1n defining a language unless 1t 1s possible to generate

L sentences by using the grammar without any appeal to intuition.
| In the first part of this paper we: define our notion of a structural

description of a sentence, and define the conditions under which a sentence

| may be said to be analyzable as such a structural description; later we
| discuss our implementation of these concepts, 1n particular the algorithm

L which determines in what order the various possible analyses of a sentence
| are produced.

| Underlying concepts
We begin the discussion of structural description by explaining some

L underlying concepts and giving definitions of certain key terms. This
1s 1n line with one of the major goals of our project, namely uniformity,

| clarity, and precision of expression.

A transformational- generative grammar 1s a device for generating

L | |

i



b

sentences in a language. Note that this 1s a characterization rather than

1 a definition; the only definition of transformational grammar given in this
paper will be in terms of its three components: phrase structure,

L transformations, and lexicon. )

{ The phrase structure component 1s a phrase structure grammar. One
may commence with a sentence symbol (the letter S) and expand it by means

{ of the grammar into a base tree which has the node labeled S as its top
, (root) node. In this tree, each nonterminal node (node with branches

L below 1t) corresponds to some phrase-structure rule in the sense that its
[ label 1s the lefthand side of the rule and the labels of the nodes

immediately below 1t are the symbols of the righthand side of the rule in

L the same left-to-right order. The labels of terminal nodes of the tree
| are terminal symbols of the grammar; the list of labels of terminal nodes,

L taken from left to right, 1s the terminal string of the tree. Nonterminal
[ nodes of the tree are labeled with nonterminal symbols of the grammar.

The nodes immediately beneath a given node are its daughters, and the

{ given node immediately dominates them; a node dominates its daughters,
- the daughters of its daughters, etc. A tree node may have an associated

[ complex symbol (see below); this complex symbol 1s not a daughter of the
L node, but 1s rather an adjunct to the label of the node. This tree 1s

also known as the constituent structure of the sentence.

[ The transformational component contains transformations anda state-
| ment of the order in which these transformations are to be applied. A

L transformation consists primarily of a structural description and a

{ structural change; 1t essentially makes the statement: "If the tree
currently has this (given) structure, then change its structure in this

{ manner."
2

L



i The lexical component contains a list of vocabulary words, each
L of which has an associated complex symbol. A complex symbol is a

collection of feature specifications which describe both the inherent

L characteristics of the word (e.g+, Noun or Verb, +HUMAN or -HUMAN
(or neither), etc.) (inherent features), and the sort of sentence

L environment 1nto which it can be inserted (contextual features).
t Lexical insertion attaches vocabulary words to the terminal nodes of

a tree in positions where all of their feature specifications are met.

L | It inserts their complex symbols into the tree at the same time.
Since both the contextual feature and the structural description of

L a transformation ask the question "Does the tree we are working with have
L this structure?", they can be treated in the same manner for most purposes.

| | We will say 1n both cases that the sentence tree 1s analyzable as the

L structural description 1f the answer to the above question is affirmative.
The process of answering the question 1s _analysis; a matching of nodes in

L the sentence tree with their counterparts in the structural description
{ will be an analysis of the sentence tree as the structural description.

L ) Structural description
- We have defined the formats for writing transformational grammars

{ in our system in a modification of the Backus-Naur form (BNF) used to de-
| fine computer programming languages [5]. In BNF, the definition of a

[ structural description anda contextual feature description are:

| structural description ::= structural analysis opt[ ,WHERE restriction].
| contextual feature description ::= ( structure opt[ ,WHERE restriction] )

| structural analysis ::= list] term ]
term = opt] integer ] structure or opt[ integer] choice or skip

| ’



L structure ::= element opt | complex symbol ]
L opt{ opt[ =] opt [ / 1] (structural analysis) |

element ::= node or ¥ or _

L choice ::= ( clist|[ structural analysis 1)

This definition can be thought of as a procedure for checking whether

| a string of characters is one of the underlined items. The ri=may be
read "is a" . The operator opt[ ) means that whatever is between the

L brackets may or may not be present. The notation A or B is obvious.

[ The operator list[ ] means that one or more of whatever is between the
brackets should be present; for example, list[A or B] could be

L A or Bor AAor ABor ABBAA etc. The operator clist | Ik
| resembles list{ ], but separate occurrences of whatever 1s between

L the brackets are separated by commas; for example, clist[ A or B ]
could be A or B or A,A or A,B or A,A,B,A,B etc. All other

L symbols which are not underlined mean themselves. There are four items
{ left undefined by the above; these are restriction, which will be discussed

| later, complex symbol, which 1s defined in [4], integer, which 1s any

L positive integer, and node, which may be any string of letters and
T digits starting with a letter or may be a boundary symbol ( # ).

L . For example, % 1(EN,ING) 2(HAVE,BE)$ . is a structural description which
L 1s the structural analysis % 1(EN,ING) 2(HAVE,BE) 4 followed by a

. 3 this structural analysis is a list of the terms % , 1(EN,ING) ,

| 2(HAVE,BE) , % ; the first and last of these terms are skips, each of
~ which is the symbol 4, while the second and third are the choices (EN,ING)

L

( ! "clist" is pronounced see-list, and is a noun of the same type as "herd".
L 1

L



L and (HAVE,BE) preceded by the integers 1 and 2; each choice consists

L of a ( followed by aclist of structural analyses EN,ING and HAVE,BE
followed by a ) ; each structural analysis here 1s a list of exactly

L one term, which is a structure without any preceding integer; each of
- these structures 1s an element without any of the optional items, and

L each element 1s a node.
l The above description has not in any way explained the meaning of

these items; 1t has simply defined how to write them., The meaning of

L structural description and contextual feature description can be best
. explained in terms of analyzability and analysis, since thelr purpose 1s

L precisely-to test trees for analyzability and to provide analyses of

L trees. Although a structural description contains a structural analysis
| and a contextual feature description contains a structure, the recursive-

L ness of their definitions makes them very similar. The difference stems
from the fact that when transformations are being applied the position

L of the top node of the current tree 1s known, while during lexical

| insertion only the terminal node at which insertion 1s being attempted
is known. For this reason, the contextual feature must specify the label

L ) of a node somewhere above the insertion node which can serve as tree top.
In the following discussion, whenever a structural description 1s referred

L to, we will mean either a structural description or a contextual feature

L description.
Analyzability

L We will define analyzability in two phases; first we will consider
| a structural analysis or structure without any associated restriction,

and then we will consider how the presence of a restriction modifies the

L

i



{ |

L
definition.

L If a structural description 1s simply a list of elements,
| analyzability is similar to Chomsky's notion of "proper analysis" [1].

L A tree 1s analyzable as a structural description of this form if a

L one-to-one match of certain tree nodes with all of the structural
description elements can be found such that:

L l. Each terminal node in the tree is, or 1s dominated by, exactly
} one node in the match.

L 2. Left-to-right order of elements corresponds to left-to-right

L order of matching tree nodes.
Ja. For cach element which is a node, the label of the matching tree

L node 1s the same as the node.
3b. For each element which is a __ , the matching tree node 1s the

L node at which lexicon insertion 1s currently being attempted.

L (Note that a * will thus match any one tree node, regardless of its
label.)

I A complex symbol following an element requires that a corresponding
complex symbol be attached to the matching tree node. "Corresponding" |

L has a different meaning for lexicon insertion than for transformations;

{ in the case of lexicon insertion the test 1s compatibility (roughly, no
conflicting feature specifications; see [4] fora precise definition),

[ while for transformations the test 1s inclusion (that 1s, the complex
symbol in the tree contains every feature specification of the one

L in the structural description).

| A skip (the % symbol) matches not a single node, but any string
of adjacent terminal nodes. It may match a string of zero nodes, 1n

L which case it is said to be null. The "range'of a skip is defined in |
6

i



!

{ terms of the elements on either side; 1t 1s the set of tree nodes which

L dominate (or equal) the nodes matching the skip and do not dominate
the nodes matched by these elements. In other words, the range of a

| skip 1s precisely those tree nodes which would have to be deleted if the
skip were not present in order to have the analysis of the tree as the

| structural description be the same as before.
| The matching of a choice is somewhat more complex. The procedure

{ depends on whether the clist within the choice has only one structural
| analysis, or more than one. If there 1s only one structural analysis,

it 1s regarded as optional; that is, the tree 1s analyzable either if

L it 1s analyszable as a similar structural description without the
parentheses of the choice, or if it 1s analyzable as a similar structural

L description without any of the choice being present. If there 1s more
1 than one structural analysis in the clist, a tree 1s analyzable 1f it

1s analyzable as a similar structural description with some one of

{ the structural analyses in place of the choice. (Note that the only
requirement here 1s that at least one structural analysis will work;

L 1f several different ones could be analyzably substituted; it merely
L means that the tree 1s analyzable as this structural description in

several ways.)

[ A structural analysis within angle brackets following an element
represents a "subanalysis". The analysis of the whole tree as the

L structural description 1s unchanged, but in order that the tree be

L analyzable, there 1s a further requirement on analyzability of the
subtree headed by the node matched to the head element of the angle-

| bracketed structural analysis. The exact requirement depends on the
presence of the optional modifiers — and / . If only a / 1s

L

L



L present, this sub-tree must be analyzable in the usual sense, with the minor
| exception that the top node of the subtree is not allowed to match any

element in the structural analysis. If neither modifier is present,

L the subtree must be analyzable in the above sense, with the further

{ restriction that any element in the structural analysis must match a
| tree node which 1s immediately dominated by the top node of the subtree.

L In the case of contextual features, this corresponds to Chomsky's notion
of strict local subcategorization[2]. If a = modifier is present,

L it means that the sub-tree must not be analyzable in the sense defined

| above.
Integers do not directly enter into the analysis process. They

l are used to permit reference to tree nodes in a restriction or a struc-
tural change. An integer preceding a structure refers to the tree node

L which matches the element heading that structure. An integer preceding

[ a choice 1s handled exactly as 1f it had been written at the beginning
| of every structural analysis 1n the clist of the choice. Note that

L complex symbols are not numbered directly; the integer attaches to the
tree node and will refer to the complex symbol associated with that node in

L any context which requires a complex symbol.

| Restrictions
| If a structural description or contextual feature description

L has an associated restriction, analysis proceeds exactly as above,

L except that the analysis of the tree must also meet the restriction in
order for the tree to be analyzable. The BNF format for restriction is:

L

L

L



L
| restriction ::= booleancombination|[ condition ]

| condition ::= unary condition or binary condition
| unary condition ::= unary relation integer

L binary condition ::= integer binary tree relation node designator or

{ integer binary complex relation complex symbol designator
node designator ::= integer or node

L complex symbol designator ::= complex symbol or integer
where booleancombination|[ condition ] means any Boolean combination of

L conditions which can be expressed using the connectives & |

[ (not, and, or) and parentheses.
The conditions now 1n the system are:

(unary conditions) the match must be to a terminal/tree node; or

null (in the case of an option); also a special condition useful where more

L than one analysis is to be found, e.g. that the match in the current analysis

[ be to a different tree node than in any of the previous successful analyses.
(binary tree conditions) equality of trees (including identity of

{ corresponding complex symbol); dominance without searching below a sentence
symbol; unrestricted dominance; domination by a specified node.

L (binary complex conditions) inclusion of complex symbols; nondis-
tinctness of complex symbols; and compatibility of complex symbols

L (see [4]).
{ The restriction on a structural description 1s tested whenever a

new match is found for a structure with a corresponding integer. If the

L restriction fails, the structure does not match. In a conditional struc-
tural change, a restriction may be used to select one of two possible

L structural changes (see below).
L ;

L



L
Analysis Algorithm

L In this section we discuss the algorithm used to find a particular
analysis of a tree as a structural description. This algorithm has nothing

[, to do with the question of analyzability; 1t merely decides the order

{ in which several possible analyses are taken 1f a sentence tree can be
analyzed 1n more than one way as a particular structural description.

l This 1s particularly important 1f the transformation specifies that only
one analysis 1s to be found.

[ Analysis commences with a tree marker pointing to the top node of the

| tree and a structural description marker pointing to the first item in the
structural description. The procedure depends on the nature of this item.

l Integers and skips are skipped but remembered. For an element (i.e., the
| beginning of a structure), a match is attempted. A *¥ will match any

L tree node, a node will match a node with the same label, and a __

[ will match the current lexical insertion node. If there 1s not a match,
the tree marker 1s moved to point to the leftmost daughter of the current

l node, and matching is attempted again. If no match 1s found of a
| terminal node and no skip preceded the current element, the backup

L procedure 1s entered (see below). If a skip preceded, the tree marker
1s moved to the top of the tree branch just right of the current branch,

and matching is attempted again; 1n this case, the backup procedure 1is

t entered only if no match can be found for the rightmost terminal node of
the tree.

L If a match 1s found and a complex symbol follows the element, it

[ will be compared to the complex symbol attached to the matching tree
node for compatibility (in a contextual feature description) or inclusion

L "

L



L (in a structural description). If an integer precedes the element, any
{ conditions involving this integer are checked. In the case of a binary

condition, no checking 1s performed until both integers have been

[ matched. Failure of any of these ‘tests causes analysis to proceed as
1f the node had not matched the element.

L If the structural description marker 1s pointing to a choice instead
[ of an element, the procedure to be followed depends on whether the clist

of the choice contains only one structural analysis (an option), or

[ | more than one (a true choice). For an option, the ( of the choice
g is ignored; options affect only the backup procedure. For a true choice,

L a more complicated procedure is necessary. First, a list 1s made of
L all elements which could possibly be first in the choice, in left-to-

right order. For example, if the choice were (4, (B)(C,D),% E, % (F,G)) ,

| this list would be A-B-C=-D-E -F -G. The element-matching
procedure 1s then followed as above, but at each tree node all of the

L possible elements are tested for matches and for satisfactory complex
| Mymleolstandi inttegexs.1l 1 vy , only those elements which are preceded

by skips are tested after a terminal-node failure. When a satisfactory

i match has been found between a tree node and some element, analysis
proceeds along the associated structural analysis of the choice, at

L the end of which it continues following the choice.

{ If a structural analysis within angle brackets follows an element
that has been satisfactorily matched, a record is made of relevant

| information about the current status of things, and analysis commences
again, using the angle-bracketed structural analysis and the subtree

L headed by the node matched to the element. If no / preceded, the tree

i 11

i



(
marker 1s only allowed to point to immediate daughters of the top node

{ during this analysis, instead of looking all the way down to terminal
| nodes. If a = preceded and the subtree 1s not analyzable, or 1f no

L — preceded and the subtree is analyzable, analysis continues following

l the angle-bracketed structural analysis; otherwise, analysis proceeds
as 1f the head element had not matched its tree node.

[ When a structure has been successfully matched, the tree marker
. 1s moved to point to the top node of the tree branch immediately

L to the right of the tree node matching the head element, and analysis

[ | proceeds. The tree 1s analyzable as the structural description 1f the
rightmost element not within angle brackets successfully matches a

{ tree node on the rightmost branch of the tree, or if the rightmost
| such element has been successfully matched in any way and a skip

[ follows it.

[ The backup procedure 1s entered when no tree node can be found
which successfully matches the current element or choice. It moves

1 the structural description marker backward to the left until it
| encounters a previously-matched element (in which case 1t pretends

L that this element did not match 1ts tree node and starts forward again),

{ or the ( of a one-structural analysis choice (in which case 1t hops
. to the ) of the choice and starts forward), or the lefthand end of the

{ structural description (in which case the tree 1s not analyzable as
| the structural description).

[ For certain transformations, all possible analyses of the tree are

[ required instead of just one. In this case, after each analysis 1is
found, the backup procedure is entered to find the next one, until it

L 12

L



]

L
finally claims unanalyzability.

L Structural Change
{ Because of the close relationship between the structural description

and structural change of a transformation, any comparison of our system

L with others requires that the whole concept of transformation be con-
sidered at once. For that reason, we now give a description of the

L structural change process. The BNF description of the form of a
[ structural change is:

structural change ::= clist[ change instruction ]

| change instruction ::= change or conditional change
conditional change :.'= IF ( restriction ) THEN

L ( structural change ) opt[ ELSE ( structural change )]
L change ::= unary operator integer

or tree designator binary tree operator integer

L or complex symbol designator binary complex operator
| integer

L or complex symbol designator ternary complex operator
[ . integere g e r

tree designator ::= (_tree ) or integer or .node

L complex symbol designator ::= complex symbol or integer
The operators are given by a list in the BNF form and are discussed

L below.

[ If the current sentence tree 1s analyzable as a structural des-
cription and the transformation 1s to be performed, each change

1 instruction in the clist 1s performed in the order of occurrence
in the clist. Tree nodes have been matched to integers by the analysis

_ -

_



A

|

L
process; a change modifies the tree structure at the nodes matched to

[ its integer (s).
The change operators currently in the system are:

L (unary operators) erasure of the node, all nodes dominated by it,

[ and all non-branching nodes dominating it,
(binary tree operators) left and right sister, daughter, and aunt

| adjunction, and substitution, with or without erasure of the original
occurrence of the copied node, and optionally with special treatment

[, of the non-branching nodes which dominate (as in [9]).

[ (binary complex operators) erasure of, merging of, or erasure of
all but, specified feature specifications 1n the complex symbol associated

| with the node,
(ternary complex operators) merging of specified features from

[ one node's complex symbol to another's

[ A conditional change causes the structural change following THEN
to be performed 1f the restriction 1s met; otherwise the structural

[ change following ELSE 1s performed, 1f there 1s one.
The change operators discussed above may be broken down into four

[ types: erasure, copying, moving and complex symbol manipulation.

[ Permutations are not given directly, since only one move can be made
at a time. The only transformation of this type that we have seen 1is

| PASSIVE , for which we require three changes (copy, move, erase) to
| interchange the subject and object.

L The structural change operators include all of those of the

| MITRE grammar [11] as well as those of the IBM core grammar [9].
The addition of "Chomsky-adjunction" is planned.

. ]
i



i Comparisons with other notations
| In a transformation, our structural analysis plays essentially the

same role as the "structural description" and "structural analysis"

| which were first used by Chomsky. As an example, here 1s a transformation

| from Rosenbaum and Lochak [9]:
60. WHPD2 WH pronoun Deletion 2 OB

1 X ~~ WH + INDEF + (ever) <2], Y
1 2 3 TR

i ;

| In our system this would be written
TRANS60 WHPD2 "WH PRONOUN DELETION 2" OB II AACC .

| SD % WH  INDEF (EVER) 1 N |+PRO +SG| 4 .
SC ERASE1 1 .

| The first line gives the transformation identification and the

| conditions of applicability. In this case the transformation number
and name are followed by a comment and by parameters specifying that

L the transformation 1s obligatory (OB) , 1s in group II, and that it
1s to be applied by first finding all possible analyses and then

| performing the changes for each of them (AACC) . A full discussion
of the possible parameters is given in [6]. The second line is our

L structural description. As can be seen, the details of the

| representation are different, the major features are the same. We
chose the % symbol rather than X, Y, Z to represent variables

L because these letters are possible labels for nodes. This decision
reinforces the 1dea that a variable need not be a constituent. The

L standard use of parentheses for options 1s carried over into our no-
L tation; in addition, we reflect the use of curly brackets for a choice

15

L



i
by allowing a clist of structural analyses within parentheses. Our

[ notation for complex symbols resembles standard notation except for the
use of vertical bars in place of square brackets; see [4] for a complete

L discussion of complex symbols in the system. The most significant change

L is in our use of numbers, since we allow only constituents to be numbered,
and do not require numbering of items which are not referred to in either

1 the structural change or the restriction. This 1s a result of our treat-
| ment of transformations as changes of position of single constituents rather

| than rearrangements of the whole tree. In this we follow the approach

| taken in the MITRE grammars [11]; we have extended the approach to complex
symbol operations.

| Gross [7] and Londe and Schoene [8] have also developed notations
for transformations, in both cases for use with grammar testers. Both

L notations differ from ours in form and have less power in the structural

| description. For example, Gross does not include complex symbols;
neither allows any equivalent ofi; Londe and Schoene require that

[ immediate dominance be expressed as a restriction. However, both systems
contain more powerful notations than ours for structural change.

i
Future directions

[ The analysis algorithm was designed to correspond to the linguistic
theory based on Aspects [2]. Since that time there have been radical

L changes in the theory; the change of particular importance for analysis

L 1s the strong notion of general constraints on transformations,
following from the work of Ross [10]. Thus, if the system is to be

L extended and kept current with the theory, the first changes will need

to be tn devisipg notations and algorithms for the implementation of
L ) y

g



| TTT
general conditions on the applicability of transformations.

L

17



L REFERENCES

[ 1] Chomsky, N. and Miller, G. A. Introduction to the formal
analysis of natural languages. in Luce, R. D., Bush, R. R.,

[ and Galanter, E. (Eds.), Handbook of Mathematical Psychology,
Volume 1I Wiley (1963).

[ [ 2] Chomsky, N. Aspects of the Theory of Syntax. M.I.T. Press,Cambridge, Massachusetts (19695).

i [ 3] Friedman, J. A computer system for transformational grammar.
CS-84, AF-21, Computer Science Department, Stanford University
(January, 1968).

L [ 4] Friedman, J., and Bredt, T. H. Lexical insertion 1n transfor-
mational grammar. CS-103, AF-25, Computer Science Department,
Stanford University (June, 1968).

L [ 5] Friedman, J., and Doran, R. W. A formal syntax for transfor-
mational grammar. CS-95, AF-24, Computer Science Department,

[ Stanford University (March, 1968).
[ 6] Friedman, J., and Pollack, B. W. A control language for

transformational grammar. Computer Science Department, Stanford

[ University (September, 1968).
[ 7] Gross, L. N. A computer program for testing grammars on-line.

| mimeographed (1968).
[ 8] Londe, D. L., and Schoene, W. J. TGT: transformational grammar

[ tester. Systems Development Corporation (1967).
[ 9] Rosenbaum, R., and Lochak, K. The IBM core grammar of English.

In Lieberman, D. (Ed.) Specification and utilization of

L a transformational grammar. AFCRL-66-270 (1966).
[10] Ross, J. R. Constraints on variables in syntax. M.I.T. Thesis

[ (1967).
[11] Zwicky, A. M., Friedman, J., Hall, B. C., and Walker, D. E.

The MITRE syntactic analysis procedure for transformational

[ grammars. Fall Joint Computer Conference 27 (1965), 317-326.

L r


