CS 110

ALGOL W (REVISED)

LANGUAGE DESCRI PTI ON
ERROR MESSAGES
NUMBER REPRESENTATI ON

DECK SET- UP

GRAMVATI CAL DESCRI PTI ON

pp. 1 to 65
pp. 66 to 75
Pp. 76 to 89

pp. 90 to 91

pp. 92 to 103

COMPUTER SCIENCE DEPARTMENT
STANFORD UNI VERSITY

SEPTEMBER 1969

ALGOL W

LANGUAGE DESCRIPTION

by

Henry R. Bauer

Sheldon Becker

Susan L. Graham
Edwin Satterthwaite

"A Contribution to the Development

of ALGOL" by Niklaus Wirth and C+ A. R.

1)

Hoare™’ was the basis for a compiler de-
veloped for the IBM 360 at Stanford Univer-
sity. This report is a description of the
implemented language, ALGOL W. Historical
background and the goals of the language

may be found in the Wirth and Hoare paper.

) Wirth, Niklaus and Hoare, C. A. R., "A
Contribution to the Development of ALGOL",
Comm. ACM 9, 6(June 1966), pp. 413-431.

2

CONTENTS

TERMINOLOGY, NOTATION AND BASIC DEFINITIONS... .- :wseeea® . . 4.6

1.1. Notation . . « « « « vesss Ceeearesaas RN S 6
1.2. Definitilons . & tiivitviavonooeroonssrensnssos voeersb

SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES. ..eee v entesessss

2.1, Basic Symbols ...ueieiieenrntienriierninnanraieiass

2.2, Syntactic Entities....eeeeerenonoessones neeannes .10
IDENTIFIERS .+ ¢t vvevvennn G e e s e e s eo e as a0t ea e et 11
VALUES AND TUFES.......... v e, e e 14
4.1, Numbers N b e e .15
4.2. Logical ValuesS eeoceecavensvss e e e s e e e .16
4.3. Bit SEQUENCES .+ ttoernovsennsosnsaonss et 16
Lh. Strings « « cevienaneronons e eeeaasee a0 a e 17
4.5, References «secesessrvens et e 18
DECLARATIONS .. covu s N Goee s aas v e 18
5.1. Simple Variable Declarations . . «eoseevssn eceesan 18
5.2. Array Declarations «...... Y 10)
5.3. Procedure Declarations .i.eeeeevsnsovoas -
5.4” Record Class Declarations eansieaas ceiesed25
EXPRESSIONS +oovevncennss <)
6.1. Variables ..oveeses cisseess - {4
6.2. Function Designators «seoeeesess e e ce. 08

CONTENTS (cont.)

6.3. Arithmetic EXPreSSIONS vvvveeernnernneenneenns o 29
6.4. L0gical EXPreSSIONS evveeereeereneeeneeeneeenns 33
6.5. Bit EXPIrESSIONS tuvvrvuernnernneeeneenneeennenns 35
6.6. String EXPreSSioNnsS ...ueeeeveernrnneneenenneennn 36
6.7. Reference EXPressSions ..uueeeeieieeiiennnnnnnnnn. 37
6.8. Precedence of Operatorsccuvvueninne... .58
STATEMENTS & o 39
7.1, BLOCKS ..ot 39
7.2. Assignment Statementsiiiiiiinan.n. k0
7.3. Procedure Statementsciiiiiiiiiiinrinenennn Lo
7.4. Goto Statementscieiiiiiiiiiiiiiiiiieiiieens 44
7.59 If Statementsiiiiiiiiii e 45
7.6. Case StatemMentst 46
7.7. Iterative Statements *LAR 47
7.8. Standard Proceduresiiiiiiiiiiiiii 49

7.8.1. The Input/Output System 50

7.8.2. Read Statements 52

7.8.3. TWrite Statements cevucvvsvscose 53

7.8.4. Control Statements 54
STANDARD FUNCTIONS AND PREDECIARED IDENTIFIERS 55
8.1. Standard Transfer FUNCLIONS +ivvrvrvrirnrnnnnnn)
8.2. Standard Functions of Analysis BT

8.3. Time Functionciiiiiniiiiniinnninnnnn. 59

8.4. Predeclared Variablescvvvunnnnnn 59
8.5. Exceptional Conditions 60
APPENDIX

CI-IARACTERmCODING ----------- ‘.‘.‘...lll...‘l...“..65

1. TERMINOLOGY, 'NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure language, defined by
a formal metdlanguage. This metalanguage makes use of, the notation and
definitions explained below. The structure of the language ALGOL W

is determined by:

(1) V¥, the set of basic constituents of the language,
(2) U, the set of syntactic entities,- and
(3) P, the set of syntactic rules, or productions.

1.1. Notation
A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form
> = x

where <A&> is a member of W, x is any possible sequence of basic con-
stituents and syntactic entities, simply to be called a “sequence”.

The form
< i=x|y| ...]z

is used as an abbreviation for the set of syntactic rules

<A ::=X
<A =
<A 1=z

1.2. Definitions

1. A seguence x is said to directly produce a sequence y if and

6

only if there exist (possibly empty) sequences u and w, so that
either (i) for some <A» in U, x = WKOW,.y = uww, and <& i:=
v is a rule in P; or (ii) x = uw, Yy = uvw and v is a "comment"

(see below).

2. A sequence x 1is said to produce a sequence y if and only if
there exists an ordered set of sequences 8[0], s(1], ..., s[n],
so that x = s[0], s[n] = y, and s[i-1] directly produces s{i] for

alli=1, . . ., n.

3. A sequence'x 1s said to be an ALGOL W program if and only if
its constituents are members of the set 'If, and x can be produced

from the syntactic entity <program>.

The sets V -and U are defined through enumeration of their members
in Section 2 of this Report (cf. also 4.4.). The syntactic rules are
given throughout the sequel of the Report. To provide explanations
for the meaning of ALGOL W programs, the letter sequences denoting
syntactic entities have been chosen to be English words describing
approximately the nature of that syntactic entity or construct. Where
words which have appeared in this manner are used elsewhere in the
text, they refer to the corresponding syntactic definition. Along
with these letter sequences the symbol T may occur. It is understood
that this symbol must be replaced by any one of a finite set of English
words (or word pairs). Unless otherwise specified in the particular
section, all occurrences of the symbol T within one syntactic rule

must be replaced consistently, and the replacing words are

integer logical

real bit
long real string
complex reference

long complex

For example, the production
<T term> ::= <J factor> (cf. 6.3.1.)

corresponds to

<integer term> ;= <integer factor>
<real term> :. - <real factor>

<long real term> :v= <long real factor:,
<complex term> : ¥~ <compiex factor>
<long complex term> : := <long complex factor>

The production

<TO primary> ::= long <Tl primary> (cf. 6.3.1. and
table for long
corresponds to 6.3.2.7.)
<long real primary> ::= long <real primary2
<long real primary> »+= long <integer primary>

1

<long complex primary> :: long <complex primary>

Tt is recognized that typographical entities exist of lower order
than basic symbols, called characters. The accepted characters are
those of the IBM System 3Q EBCDIC code.

The symbol comment folilowed by any sequence of characters not
containing semicolons, followed by a semicolon, is called a comment.

A comment has no effect on the meaning of a program, and is ignored

during execution of the program. An identifier (cf. 3.1.) immediately

following the basic symbol end is also regarded as a comment.

The execution of a program can be considered as a sequence of
units of action. The sequence of these units of action 1s defined as
the evaluation of expressions and the execution of statements as de-
noted by the program. In the definition of the implemented language
the evaluation or execution of certain constructs is either (1) de-
fined by System 360 operations, e.g., reai arithmetic, or (2) left
" undefined, e.g., the order of evaluation of arithmetic primaries in

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

alslc|p|E|F|G|H]
Qlr|s|rlulv]w]|x]

olxrf2a|3|s]s|6]7]8]9]

true|false|"|&ll|#|"|

-

skl |M|N|]o]|P]

<
N

integer | real | complex | logical | bits | string |

reference | long real | long complex | array |

procedure I record |-

sl 51 <] -1(])1 begin 1 end | if | then | else |
caselofl+|-|*|/|**|div|rem|shr|shlI_:_'L_§|
absllonglshortlandlg_r_l-\|||~:|—1=|<|
<=|>]>=1::]

:-|goto|gLo_t£|f_oglsteplu&t_:_'g_]_:_|c_1_o_|while|

comment I value I result

All underlined words, which we call 'reserved words”, are repre-
sented by the same words in capital letters in an actual program, with

nc intervening blanks

Adjacent reserved words,

no blanks and must be separated by at least one blank space.

identifiers (cf. 3.1.) and numbers must include

Otherwise

blanks have no meaning and can be used freely to improve the read-

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter list>
<actual parameter>

<bit factor>

<bit primary>

<bit secondary>

<bit sequence>

<bit term>

<block body>

<block head>

<block>

<bound pair list>

<bound pair>

<case clause>

<case statement>

<control identifier>
<declaration>

<digit>

<dimension specification>
<eﬁpty> see page 34
<equality operator>
<expression list>

<field list>

<for clause>

<for list>

<formal array parameter>
<formal parameter list>

<formal parameter segment>

7.3
7.3
6.5
6.5
6.5
4.3
6.5
7.1
7.1
7.1
5.2
5.2
6

7.6
3.1
5

3.1
5.3

6.4
6.7
5.4
T
T
2.3
5.3
5.3

10

<formal type>

<go to statement>

<hex digit>
<identifier list>
<identifier>

<if clause>

<if statement>
<imaginary number>
<increment>

<initial value>
<iterative statement>
<label definition>
<label identifier>
<letter>

<limit>

<logical element>
<logical factor>
<logical primary>
<logical term>
<logical value>

<lower bound>

<null reference>
<procedure declaration>
<procedure heading>
<procedure identifier>
<procedure statement>

<program>

5.3
7.4
4.3
3.1
3.1

7.5
4.1
TeT
77
77
7.1
3.1
3.1

6.4
6.4
6.4
6.4
4.2
5.2
L.5
5.3
5.3
3.1
T3

<proper procedure body7 5.2 | <subscript list> 6.1
<proper procedure o <substring design'fltor> 6.6
declaration> 53| T 3HE Seetenarons 61
<record class declaration> 5.4 <T array identifier> 3.1
<record class identifier> 3.1 <T assignment statement3 7.2
<recoicil8‘cc:iass identifier 52 <T expression 1list> 6
<record designator> 6.7 <J expressior> 6
<relatior> 6.4 <T factor> 6.3
<relational operator> 6.4 <T field designator> 6.1
<scale factor> 41 <T field identifier> 3.1
<sigr> b1 <J function designator> 6.2
<simple bit expressior> 6.5 < function identifier> 3-1

<simple logical expression> 6.4 <J' function procedure body> 5.3

<simple reference <T function procedure

expressiom> 6.7 declaratiorn> 5.3
<simple statement> 7 <J left part> 7.2
<simple string expression> 6.6 <3 number> b1
<simple T expressiorn> 6.3 < primary3 6.3

. . T subarray designator>
<simple T variable < y g 7.3
. P 6.1 < term> 6.
<simple type> 2.1 | < variable> 6.1
<simple variable <JT varisble identifier> 3.1

declaratiom> 5.1 | <unscaled real> 4.1
<statement list> 7.6 | <upper bound> 5.2
<statement> 7 <while clause> T.7
<string primary=> 6.6
<string> I
<subarray designator list> 7.3
<subscript> 6.1
3. IDENTIFIERS
3.1. Syntax
<identifier> :: = <letter> | <identifier> <letter> |<identifier><digit>

‘<J variable identifier> ::= <identifier3

1

<J array identifier3 ::= <identifier>

<procedure identifier> ::= <identifier>

<T function identifier> ::= <identifier>

<record class identifier> ::= <identifier>

<T field identifier> ::= <identifier>

<label identifier> ::= <identifier>

<control identifier> ::= <identifier>

<letter> ::=A|B|lc|D|E|F|G|H|I|J|K|L]|M]|
N|o|P|Q|R|s|T|U|V]|Ww]|x]Y]|z

<digit> ::= o] 1|2 | 3|4k |5]|6]|7]|8]9

<identifier list> ::= <identifier> | <identifier list> , <identifier>

3.2. Semantics
Variables, arrays, procedures, record classes and record fields
are saild to be quantities. Identifiers serve to identify quantities,
or they stand as labels, formal parameters or control identifiers.
Identifiers have no inherent meaning, and can be chosen freely in the
reference language. In an actual program a reserved word cannot be
used as an identifier.
Every identifier used in a program must be defined. This is
achieved through
(a) a declaration (cf. Section 5), if the identifier identifies a
quantity. It is then said to denote that quantity and to be a
T variable identifier, J array identifier, T procedure identifier,
T function identifier, record class identifier or J field iden-
tifier, where the symbol T stands for the appropriate word re-
flecting the type of the declared quantity;

(b) a label definition (cf.7.1.), if the identifier stands as a

12

label. It is then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 53.. It is then
salid to be a formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7.7).
It is then said to be a control identifier;

(e) its implicit declaration in the language. Standard procedures,
standard functions, and predefined variables (cf. 7.8 and 8)may be

considered to be declared in a block containing the program.

The recognition of the definition of a given identifier is

determined by the following rules:

Step 1. If the identifier is defined by a declaration of a

quantity or by its standing as a label within the smallest block

(cf. 7.1) embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a
procedure heading (cf. 53.)or a for clause (cf. 7.7.) is considered

to be a block.

Step 2. Otherwise, 1if that block is a procedure body and if the
given identifier is identical with a formal parameter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, 1if that block is preceded by a for clause
and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered.

13

If either step 1 or step 2 could lead to more than one definition,

then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a con-
trol identifier is the set of statements in which occurrences of an
identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.3. Examples

I

PERSON
ELDERSIBLING
x15, X20, x25

4. VALUES AND TYPES

Constants and variables (cf. 6.1.) are said to possess a value.
The value of a constant is determined by the denotation of the con-
stant. In the language, all constants (except references)'have a
reference denotation (cf. 4.1.-b.k.). The value of a variable is the
one most recently assigned to that variable. A value is (recursively)
defined as either a simple value or a structured value (an ordered set
of one or more values). Every value is said to be of a certain type.
The following types of simple values are distinguished:

integer: the value is a 32 bit integer,
real: the value is a 32 bit floating point number,
long real: the value is a 64 bit floating point number,

complex: the value is a complex number composed of two
numbers of type real,

14

tomqmp lex : the value is a complex number composed of two
long real numbers,

logical: the value is a logical value,
. bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256 char-
acters,

reference: the value is a reference to a record.

The following types of structured values are distinguished:'

array: the value is an ordered set of values, all of identi-
cal simple type,

record: the value is an ordered set of simple values.

A procedure may yield a value, in which case it is said to be a
function procedure, or it may pot iyield a. value, in which case it is
called a proper procedure. The value of a function procedure is de-
fined as the value which results from the execution of the procedure
body (cf. 6.2.2.).

Subsequently, the reference denotation of constants is defined.
The reference denotation of any constant consists of a sequence of
characters. This, however, does not imply that the value of the de-
noted constant is a sequence of characters, nor that it has the pro-
perties of a sequence of characters, except, of course, in the case

of strings.

4 .1. Numbers

4.1.1. syntax

<complex number>L

<long compiex number> i
<complex number> ::= <imaginary number>

<imaginary number> ::= <real numbeﬁ>I| <integer number>I

15

<long real number> : : = <real numbeﬁ>L| <integer number>L
<real number> : := <unscaled real> | <unscaled real> <scale factor>
<integer number> <scale factor> | <scale factor>
<unscaled real> ::= <integer number> : <integer number>
*<integer number> I <integer number>.
<scale factor> : := ‘<integer number> |'<sigd> <integer number>
<integer number> : := <digit> | <integer number> <digit>

<sign> ::= +| -

4,1.2. Semantics

Numbers are interpreted according to the conventional decimal
notation. A scale factor denotes an integral power of 10 which is
multiplied by the unscaled real or integer number preceding it. Each
number has a uniquely defined type. (Note that all <J number>s are

unsigned.)

4.1.3. Examples

1 .5 11
0100 1'3 0.671
3 .1416 6.02486'+23 1IL

2.718281828459045235360287L 2.3'-6

L.2. Logical Values e

‘hoaolosyntax

true, | false

<logical value> :

4.3.Bit Sequences

4.3.1. syntax

<bit sequence> : := # <hex digit>| <bit sequence> <hex digit>
<hex digit> =0 |1 2|3 |4]|5]6]7|8|]9]a]lB]
C|p|E|F

16

Note that 2 |... | F corresponds to 250 | 135,

4.3.2. Semantics

The number of bits in a bit sequence is 32 or 8 hex digits. The
bit sequence is always represented by a 32 bit word with the specified
bit sequence right justified in the word and zeros filled in en the

left.

4.3.3. Examples

#MF = 0000 0000 0000 0000 0000 0000 0100 1111
#9 = 0000 0000 0000 0000 0000 0000 0000 1001
4.4, Strings

L.4.1. syntax

<string> ::= '"<sequence of characters>"

4.42. Semantics
Strings consist of any sequence of (at moat 256)charactersac-’

1"

cepted by the System 360 enclosed by ", the string quote. If the

string quote appears in the sequence of characters it must be imme-
[J
diately followed by a second string quote which is then ignored. The

number of characters in a string is said te be the length of the

string.
4.4.3. Examples

"JOHN"

""" is the string of length 1 censiating of the string

quote.

17

4.5. References
4.5.1. Syntax
<null reference ::= null

4.5.2. Semantics
The reference value null fails to designate a record; 1if a refer-
ence expression occurring in a field designator (cf. 6.1.) has this

value; then the field designator is undefined.

5. DECLARATIONS

Declarations serve to associate identifiers with the quantities
used in the program, to attribute certain permanent properties to
these quantities (e.g. type, structure), and to determine their scope.
The quantities declared by declarations are simple variables, arrays,
procedures and record classes.

Upon exit from a block, all quantities declared or defined within

that block lose their value and significance (cf. 7.1.2. and T.h.2.).

Syntax:

<declaratior> :!:= <simple variable declaratioﬁ>| <T array
declaration> | <procedure declaratiorn> |

<record class declaratiorn>

5.1. Simple Variable Declarations

5.1.1, Syntax

<simple variable declaratior> ::= <simple type> <identifier 1list>

<simple type> ::= hueger| real | long real | complex | long
complex | logical | bits | bits (32) |

18

string |string (<integer number>)| reference

(<record class identifier 1list>)
<record class identifier list> :i= <record class identifeﬁ>|
<record class identifier list> ,

<record class identifier>

5.1.2. Semantics

Each identifier of the identifier list is associated with a
variable which is declared to be of the indicated type. A variable is
called a simple variable, if its value is simple (cf. Section 4). If
a variable is declared to be of a certain type, then this implies that
only values which are assignment compatible with this type (cf. 7.2.2.)
can be assigned to it. It is understood that the value of a variable
is equal to the value of the expression most recently assigned to it.

A variable of type bits is always of length 32 whether or not
the declaration specification is included.

A variable of type string has a length equal to the unsigned
integer in the declaration specification. 1If the simple type is
given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to records of the
record classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

5.1.83. Examples

integer I, J, K, M, N
real X, Y, %

long complex C

logical L
bits G, H

19

string_ (10) S, T
reference (PERSON) JACK-; JILL

5.2. Array Declarations

5.2.1. Syntax

<7 array declaration> ::= <simple type> array <identifier list3
(<bound pair 1ist>)

<bound pair list> 3= <bound pair> |<bound pair 1ist>,<bound
pair>

<bound pair> := <lower bound :: <upper bound>

<lower bound> ::= <integer expression>

<upper bound> := <integer expressiort>

5.2.2. Semantics

Each identifier of the identifier list of an array declaration is

associated with a variable which is declared to beof type #rray.

variable of type array is an ordered set of variables whose type is the

the number of entries in the bound pair list,

Every element of an array. is identified by a list of indices.
The indices are the integers between and including the values of the
lower bound and the upper bound. Every expression in the bound pair
list is evaluated exactly once upon entry to the block in which the
declaration occurs. The bound pair expressions can depend only on
variables and procedures global to the block in which the declaration
occurs. In order to be valid, for every bound pair, the value of the

upper bound must not be less than the value of the lower bound.

5.2.3. Examples

antagary H (1 : :100)
20

real array A, B{l::M, l::N
string (12) array STREET, TOWN, CITY (J::K + 1)

.2+ Procedure Declarations

5.3.1. Syntax

<procedure declaration> ::= <proper procedure declaratioﬁ>|
<I function procedure declaration>
<proper procedure declaration> ::= procedure <procedure heading> ;
<proper procedure body>
<¥ function procedure declaration> ::= <simple type> procedure
<procedure heading>;
<¥ function procedure body>
<proper procedure body> ::= <statement>
<T function procedure body> :3= <J expression> l <block body>
<J expression> end
<procedure heading> ::i= <identifier> | <identifie:x> (<formal
parameter' list>)
<formal parameter list> ::i= <formal parameter segment>|
<formal parameter list> ; <formal -
parameter segment?
<formal parameter segment> !:= <formal type> <identifier list>|
<formal array parameter>
<formal type> ::= <simple type> | <simple type>_z§;3g| <simple

- type> result | <simple type> value result

<simple type> pracedure IErocedure
<formal array parameter> :!:= <simple typé array <identifier
lists (<dimension specification>)

<dimension specification> ::= *I <dimension specification> , *

5.3.2. Semantics
A procedure declaration associates the procedure body with the
identifier immediately following the symbol procedure. The principal

21

part of the procedure declaration is the procedure body. Other parts
of the block in whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. Aproper procedure
is activated by a procedure statement (cf. 7.3.), a function procedure
by a function designator (cf. 6.2.). Associated with the procedure
body is a heading containing the procedure identifier and possibly a

list of formal. parameters.

5.3.2.1. Type specification of formal parameters. All formal para-
meters of a formal parameter segment are of the same indicated type,
The type must be such that the replacement of the formal parameter by
the actual. parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the symbols value and result appearing in &

formal type is explained by the following rule, which is applied to
the procedure body before the procedure is invoked:
(1) The procedure body is enclosed by the symbols hegin and end
if it is not already enclosed by these symbols;
(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

(a) a declaration followed by a semicolon is inserted after
the first begin of the procedure body, with a simple
type as indicated in the formal type, and with an iden-
tifier different from any identifier valid at the place
of the declaration.

(b) throughout the procedure body, every occurrence of the

22

formal parameter identifier is replaced by the identifier
defined in step 2a;

(3) If the formal type contains the symbol value, an assignment
statement (cf. 7.2.) followed by a semicolon is inserted
after the declarations of the procedure body. 1Its left part
contains the identifier defined in step 2a, and its expression
consists of the formal parameter identifier. The symbol
value is then deleted;

(4) If the formal type contains the symbol result, an assignment
statement preceded by a semicolon is inserted before the symbol
end which terminates a proper procedure body. In the case
of a function procedure, an assignment statement preceded
by a semicolon is inserted after the final expression
of the function procedure body. Its left part contains the
formal parameter identifier, and its expression consists of
the identifier defined in step 2a. The symbol result is

then deleted.

5.3.2.3. Specification of array dimensions. The number of "¥"'g
appearing in the formal array specification is the dimension of the

array parameter.

5.3.3. Examples
procedure INCREMENT; X := X+l

real procedure MAX (real value X, Y);

if X < Y then Y else X

23

procedure COPY (real array U, V(*,%); integer value A, B);
for T := 1 until A do
for 3 :=1 until B doU(I,J) := V(I,J)

N ;

real procedure HORNER (deal areayg & *); value

real value X);

begin real S; S := 0;
forI:=Ounti1N(_1_qS =S ¥ X + A(1l);

S

end

long real procedure SUM (integer K, N; long real X);
K := N;

begin long real Y; Y := 0;
while K> = 1 dc

begin Y := Y +X; K:=K -1

end;
Y

end

reference (PERSON)
begin reference (PERSON) P, M;
P := YOUNGESTOFFSPRING (rATHER (FATHER (R)));
while (P = = null) anucL_(—a MALE (P)) or
(P = FATHER (R)) do
P := ELDERSIBLING (P);
M :=YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));
while (M- =mull) and (- MALE (M) do
M := ELDERSIBLING (M);
i f nulPthen=M else
i £ nullMthem P else
if AGE(P) < AGE (M) then P else M

procedure YOUNGESTUNCLE (reference (PERSON) R);

end

2

5.4. Record Class Declarations

541. Syntax
<record class declaration> ::# record <identifier> (<field list>)
<field list> ::= <simple variable declaration> | <field list> ;

<simple variable declaration>

5.4.2. Semantics

A record class declaration serves to define the structural pro-
perties of records belonging to the class. The principal constituent
of a record class declaration is a sequence of simple variable declar-
ations which define the fields and their simple types for the records
of this class and associate identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) LEFT, riGuT)

record PERSON (string NAME; integer AGE; logical MALE;
reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING,

EIDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed
from existing ones. These new values are obtained by performing the
operations indicated by the operators on the values of the operands,
The operands are either constants, variables or function designators,

or other expressions, enclosed by parentheses if necessary. The evalu-

ation of operands other than constants may involve smaller units of

25

action such as the evaluation of other expressions or the execution
of statements. The value of an expression between parentheses is
obtained by evaluating that expression. If an operator has two operands,
then these operands may be evaluated in any order with the exception
of the logical operators discussed in 6.4.22. Several simple types
of expressions are distinguished. Their structure is defined by the
following rules, in which the symbol T has to be replaced consistently
as described in Section 1, and where the triplets TO’ Il’ 12 have to
be either all three replaced by the same one of the words

logical

bit

string

reference
or by any combination of words as indicated by the following table,

which yields T, given Tl and 3'2:

0
I2
1 integer real complex
integer | integer real complex
real , real real complex
-complex complex complex complex

T has the quality "long" if either both Tl and 12 have that quality,

or if one has the quality and the other is "integer".

Syntax:

<J expression> = <simple T expression> I <case clause>
(<T expression 1ist>)

<TO expression> ::= <ifelause> <Tl expression> else

<32 expression>

26

<T expression list> ::= <I expression>

<To expression list> ::= <Il expression list> , <32
<if clause> ::= if <logical expression> then
<case clause> ::= case <integer expression> of

The construction

<if clause> <71 expression> else <Te expression>

expression>

causes the selection and evaluation of an expression on the basis of

the current value of the logical expression contained in the if clause.

If this value is true, the expression following the if clause 1is

selected; if the value is false, the expression following else is se-

lected.

must have the same length. The construction

<case clause> (<T expression list>)

T T ' ' '
If 1 and , are simple type string, both string expressions

causes the selection of the expression whose ordinal number in the

expression list is equal to the current value of the integer expression
contained in the case clause.
defined, the current value of this expression must be the ordinal number

of some expression in the expression list.

all the string expressions must have the same length.

6.1.

Variables

6.1.1. Syntax

<simple T variable> ::= < variable identifier> |<T field designator>

J array designator>
< variable> ::= <simple J variable>
<string variable> ::= <substring designator>

< field designator> < Tfield identifier>

< array designator> < Tarray identifier>
<subscript 1list> ::= <subscript> |<subscript

<subscript> ::= <integer expression>

27

(<reference expression>)

In order that the case expression be

IfTis simple type string,

(<subscript list>)

list>,

<subscript>

6.1.2. Semantics

An array designator denotes the variable whose indices are the
current values of the expressions in the subscript list. The value of
each subscript must lie within the declared bounds for that subscript
position.

A field designator designates a field in the record referred to
by its reference expression. The simple type of the field designator
is defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

(cf. 5.4.).

6.1.3. Examples

X A(I) M(I+J, 1-J)
FATHER (JACK) MOTHER (FATHER (JILL))

6.2. Function Designators

6.2.1. Syntax

< function designator> ::= <J function identifier> |<T function

identifier> (<actual parameter list>)

6.2.2. Semantics

A function designator defines a value which can be obtained by a

process performed in the following steps:

Step 1. A copy 1is made of the body of the function procedure
whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

Steps 2, 3, 4, As specified in 7.3.2.

28

Step 5. The copy of the function procedure body, modified as indicated
in steps 2-4, is executed. Execution of the expression which constitutes
or is part of the modified procedure body consists of evaluation of that
expression, and the resulting value is the value of the function desig-
nator. The simple type of the function designator is the simple type

in the corresponding function procedure declaration.

6.2.3., Examples

MAX (x *% 2, Y %* 2)

SUM (I, 100, H(1))

SuM (I, M, SUM (J, N, A(I,J)))
YOUNGESTUNCLE (JILL)

SUM (I, 10, x(1) * Y(1))
HORNER (X, 10, 2.7)

6.3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol T
must be systematically replaced by one of the following words (or
word pairs):

integer
real

long real
complex

long complex
The rules governing the replacement of the symbols TO’Tl and 72 are
given in 6.3.2.

<simple I expression> ::= <Tterm> | + <Tterm> | - <T term>

29

<simple TO expression> ::= <simple Tl expression> + <Zr2 term>

<simple Tl expression> - <72 term>

<T term> ::= <J factor>
<IO term> ::= <Tl term> ¥ <:r2 factor>
<YO term> ::= <Il term> / <72 factor>

<integer term> :: <integer term> div <integer factor>

<integer term> rem <integer factor>

<TO factor> ::= <To primary> |<3'l factor> ¥¥ <integer primary>
<IO primary> ::= a9§_<Il primary>

<TO primary> ::= lggg_<fl primary>

<TO primary> ::= short <Tl primary>

<J primary> ::= < variable> |§I function designator>

(< expression>) | <I number>

<integer primary> ::= <control identifier>

6.3.2. Semantics

An arithmetic expression is a rule for computing a number.

According to its simple type it is called an integer expression,
real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +, -, ¥, and / have the conventional meanings
of addition, subtraction, multiplication and division. In the relevant
syntactic rules of 6.3.1. the symbols TO’Tl and 12 have to be replaced
by any combination of words according to the following table which

indicates TO for any combination of Tl and 12.

Operators + |-

integer complex
integer integer real complex
real real real complex
complex complex complex complex

30

TO has the quality "long" if both Tl and T, have the quality

"long", or if one has the quality "long" and the other is "integer".

Operator *

Tl 12 integer real complex

integer integer long real long complex
real long real long real long complex
complex long complex long complex long complex

T, or 72 having the quality ‘long” does not affect the type of

1
the result.
Operator /
T .
Tl 2| . integer real complex
integer long real real complex
real real real complex
complex complex complex complex

TO has the quality "long" if both Tl and 72 have the quality
"long", or if one has the quality "long" and the other is "integer",

or if both are "integer".

6.3.2.2. The operator "-" standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type
of the result is the type of the operand. The operator "+" standing
as the first symbol of a simple expression denotes the monadic opera-

4

tion- of identity.
6.3.2.3. The operator div is mathematically defined (for B # 0) as

A div B = SGN (A X B) X D (abs A, abs B) (cf. 6.3.2.6.)

31

where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);
if A < 0 then -1 else 1;

integer procedure D (integer value A, B);
if AC B then 0 else D(A-B, B) + 1

6.3.2.4. The operator rem (remainder) is mathematically defined as
Arem B =A- (A div B) x B

6.3.2.5. The operator ** denotes exponentiation of the first operand
to the power of the second operand. [In the relevant syntactic rule of
6-5:1. the symbols TO and 3'1 are to be replaced by any of the follow-

ing combinations of words:

IO Tl
long real integer
real real
complex complex

To has the quality "long" if T does or if T is "integer".
6.3.2.6. The monadic operator abs yields the absolute value or modulus

of the operand. In the relevant syntactic rule of 6.3.1l. the symbols 3'0

and 3'1 have to be replaced by any of the following combinations of words:

T I T

0 | 1
integer integer
real real
real complex

If Tl has the quality "long", then so does To.
32

6.3.2.7. Precision of arithmetic. If the result of an arithmetic
operation is of simple type real, complex, long real, or long complex
then it is the mathematically understood result of the operation per-
formed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1. the symbols To and Tl'
must be replaced by any of the following combinations of words (or

word pairs) :

“ Operator long

TO :rl
long real real
long real integer

long complex l complex

Operator short

Ty I T
real long real
complex long complex

6.3.3. Examples

-C + A1) * B(I)
EXP (-X/(2 * SIGMA)) /SQRT (2 * SIGMA)

6.4. Logical Expressions

6:4.1. Syntax

In the following rules for <relation> the symbols To

either be identically replaced by any one of the following words:

and Tl must

33

bit
string

reference
or by any of the words from:

complex

long complex
real

long real

integer

and the symbols 3'2 or T3 must be identically replaced by string or

must be replaced by any of real, long real, integer.

<simple logical expression> ::= <logical element>| <relation>
<logical element> ::= <logical term>| <logical element> or_
<logical term>
<logical term> ::= <logical factor> | <logical term> and
<logical factor>
<logical factor> ::= <logical primary> |- <logical primary>

<logical primary> ::= <logical value>| <logical variable |

<logical function designator> |

(<logical expressior>)

<relatiom> ::= <simple TO expression> <equality operator>
<simple Tl expression>| <logical element3
<equality operator> <logical element> |
<simple reference expression> is
<record class identifier> |
<simple 3‘,_ expression> <relational operator>
<simple T, expressiorn>

<relational operator> ::=<|<=|>=]|>

<equality operator> si==| — =

6.4.2. Semantics

A logical expression is a rule for computing a logical value.

34

6.4.2.1. The relational operators represent algebraic ordering for
arithmetic arguments and EBCDIC ordering for string arguments. If two
strings of unequal length are compared, the shorter string is extended
to the right by characters less than any possible string character.

The relational operators yield the logical value true if the relation

is satisfied for the values of the two operands; false otherwise. TwoO
references are equal if and only if they are both null or both refer

to the same record. Two strings are equal if and only if they have

the same length and the same ordered sequence of characters. The operator
1s yields the logical value true if the reference expression designates a
record of the indicated record class; false otherwise. The reference

value null fails to designate a record of any record class.

6.4.2.2. The operators - (not), and, and or, operating on logical

values, are defined by the following equivalences:

- X .li X then false else true
X and Y iﬁ X then Y else false
X oryY iﬁ X then true else Y

6.4.3. Examples

PorQ

(X < Y) and (Y <Z)
YOUNGESTOFFSPRING (JACK) = = null
FATHER (JILL) is PERSON -

6.5. Bit Expressions

6.5.1. Syntax

<simple bit expression> ::= <bit term> | <simple bit expression>
or <bit term>

<bit term> ::= <bit factor> | <bit term> and <bit factor>
<bit factor> ::= <bit secondary>| - <bit secondary>
<bit secondary> ::= <bit primary> | <bit secondary> shl

<integer primary> | <bit secondary> shr
<integer primary>
<bit primary> ::= <bit sequence> | <bit variable> | <bit PAGE 35

function designator> | (<bit expression>)

6.5.2. Semantics

A bit expression is a rule for computing a bit sequence.
The operators and, or, and = produce a result of type bits, every

bit being dependent on the corresponding bit(s) in the operand(s) as

follows:
X Y - X Xand Y XorY
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

The operators shl and shr denote the shifting operation to the
left and to the right respectively by the number of bit positions
indicated by the absolute value of the integer primary. Vacated bit
positions to the right or left respectively are assigned the bit

value 0.

6.5.3. Examples

G and H or #38

G and - (H or G) shr 8

6.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>
<string primary> ::= <string> | <string variable> | <string
function designator> ‘(<string expression>)
<substring designator> :i= <simple string variable>

(<integer expressiorns| <integer number>)

36

6.6.2. Semantics

A string expression is a rule for computing a string (sequence of

, characters).

6.6.2.1. A substring designator denotes a sequence of characters of
the string designated by the string variable. The integer expression
preceding the § selects the starting character of the sequence. The
value of the expression indicates the position in the string variable.
The value must be greater than or equal to 0 and less than the declared
length of the string variable. The first character of the string has
position 0. The integer number following the R indicates the length
of the selected sequence and is the length of the string expression,

-~ The sum of the integer expression and the integer number must be less

than or equal to the declared length of the string variable.

6.6.3. Example

string (10) S;
S (4U3)
s (I+Jw1l)

string (10) array T (1: :m,2::n);
T (%,6) (3W5)

6.7. Reference Expressions

6.7.1. Syntax

-<simple reference expression) ::= <null reference I <reference
variable> | <reference function
designator> | <record designator>

(<reference expressiod>)

37

<record designator> :i= <record class identifier> | <record
class identifier> (<expression list>)
<expression list> i= < expression>| <expression list>,

< expression>

6.7.2. Semantics

A reference expression is a rule for computing a reference to a
record.

The value of a record designator is the reference to a newly
created record belonging to the designated record class. If the
record designator contains an expression list, then the values of the
expressions are assigned to the fields of the new record, The entries
in the expression list are taken in the same order as the fields in
the record class declaration, and the simple types of the expressions must
be assignment compatible with the simple types of the record fields

(cf. 7.2.2.).

6.7.3. Example

PERSON ("CAROL'", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING
(JACK))

6.8. Precedence of Operators

The syntax of 6.3.1., 6.4.1., and 65.1. implies the following
hierarchy of operator precedences:

long, short, abs
shl, shr, ¥
|

*, /, div, rem, and

38

Example

A =Band C is equivalent to A = (B and C)

T. STATEMENTS

A statement denotes a unit of action. By the execution of a
statement is meant the performance of this unit of action,which may
consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements.

Syntax:

<progran> ::= <block>

<statement> ::= <simple statement>| <iterative statement>

<if statement>| <case statement>

<simple statement> ::= <block>| <¥ assignment statement> |
<empt$>| <procedure statement> |
<goto statement>

7.-1. Blocks

7.1.1. Syntax

° <bloc& ::= <block body> <statement> end
<block body> ::= <block head>| <block body> <statement>;
<block body> <label definitiom>
<block head> ::= begin ; <block head> <declaratior> ;
<label definition> ::= <identifier>

7.1.2. Semantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:

© 39

Step 1. If an identifier, say A, defined in the block head or
in a label definition of the block body is already defined at
the place from which the block is entered, then every occurrence
of that identifier, A, within the block except for occurrence in
array bound expressions is systematically replaced by another
identifier, say APRIME, which is defined neither within the

block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

Step 3. Execution of the statements contained in the block body
begins with the execution of the first statement following the
block head.
After execution of the last statement of the block body (unless
it is a goto statement) a block exit occurs, and the statement follow-
ing the entire block is executed.
7.1.5. Example

begin real U;
u :=x%; x :=Y; Y :=2z; z :=1u

end

7.2.- Assignment Statements

7.2.1. Syntax

In the following rules the symbols TO and Tl must be replaced by
words as indicated in Section 1, subject to the restriction that the

type Tl is assignment compatible with the type TO as defined in 7.2.2.

Lo

<Io assignment statement> ::= <IO left part> <Tl expression>
<IO left part> <Il assignment

statement>

<T left part> ::= < variable> :=

7.2.2. Semantics

The execution of a simple assignment statement

<IO assignment statement> ::= <JO left part> <Tl expression>:
causes the assignment of the value of the expression to the variable.
If a shorter string is to be assigned to a longer one, the shorter
string is first extended to the right with blanks until the lengths are
equal. In a multiple assignment statement

(<TO assignment statement> ::= <Io left part> <Il assignment

statement>)
the assignments are performed from right to left. For each left part
variable, the simple type of the expression or assignment variable immediately
to the right must be assignment compatible with the simple type of that
variable.
A simple type Tl is said to be assignment compatible with a simple
type IO if either
(1) the two types are identical (except that if TO and Tl are
string, the length of the TO variable must be greater than
or equal to the length of the Tl expression or assignment), or
(2) T, is real or long real, and Tl is integer, real or long

0

real or

(3) To is complex or long complex, and Tl is integer, real,

long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer
to a record of one of the classes specified by the record class identifiers

associated with the reference variable in its declaration.

ha

7.3,

7.2.3. Examples

z := AGE(JACK) := 28

X =Y + abs Z
C:=I+X+C
P:=X—1=Y

Procedure Statements

7.3.1. Syntax

<procedure statement> ::= <procedure identifier>|<@rocemue
identifier> (<actual parameter list>)
<actual parameter list> ::= <actual parameter> | <actual
parameter list> , <actual parameter>
<actual parameter> ::= <J expression> \<statement> |<I subarray
designator> | <procedure identifier>
< function identifier>
<T subarray designator> ::= <J array identifier> |<T array
identifier> (<subarray designator
list>)
<subarray designator list> ::= <subscript> |*| <subarray
designator list>,<subscript>

<subarray designator list>,*

7.3.2. Semantics

The execution of a procedure statement is equivalent to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose
procedure identifier is given by the procedure statement, and of
the actual parameters of the latter. The procedure statement is

replaced by the copy of the procedure body.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy 1is performed as specifiedby

L2

step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in an
undefined order as follows: If the copy is an expression
different from a variable, then it is enclosed by a pair of

parentheses, or if it is a statement it is enclosed by the symbols
begin and end.

Step 4. In the copy of the procedure body every occurrence of an
identifier identifying a formal parameter is replaced by the copy
of the corresponding actual parameter (cf. 7.3.2.1.). In order
for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

steps 2-4,is executed.

7.3.2.1. Actual-formal correspondence. The correspondence Dbetween
the actual parameters and the formal parameters is established as
follows: The actual parameter list of the procedure statement (or
of the function designator) must have the same number of entries as
the formal parameter list of the procedure declaration heading. The
correspondence 1is obtained by taking the entries of these two lists

in the same order.

7.3.2.2. Formal specifications. If a formal parameter is specified by
value, then the simple type of the actual parameter must be assignment
compatible with the formal type. If it is specified as result,.then the
formal type must be assignment compatible with the simple type of the

actual parameter. If it is specified by value result, both the above

43

conditions must be satisfied. 1In all other cases, the types must be

identical. If an actual parameter is a statement, then the specification

of its corresponding formal parameter must be mrocedure,

7.3.2.3. Subarray designators. A complete array may be passed to a
procedure by specifying the name of the array if the number of subscripts
of the actual parameter equals the number of subscripts of the
corresponding formal parameter. If the actual array parameter has
more subscripts than the corresponding formal parameter, enough subscripts
must be specified by integer expressions so that the number of *'s appearing
in the subarray designator equals the number of subscripts of the
corresponding formal parameter. The subscript positions of the formal
array designator are matched with the positions with *'s in the subarray
designator in the order they appear.

T.3.3. Examples

INCREMENT
COPY (A, B, M, N)
INNERPRODUCT (IP, N, A(I,*), B(*,J))

7.4. Goto Statments

7.4.1. Syntax

<goto statement> ::= goto <label identifier> go to (label

identifier>

7.4.2. Semantics

An identifier is called a label identifier if it stands as a

label.

44

A goto statement determines that execution of the text be contin-

ued after the label definition of the label identifier. The identif i«

cation of that label definition is accomplished in the following steps:

7.5.

Step 1. If some label definition within the most recently acti-
vated but not yet terminated block contains the label identifier,

then this is the designated label definition. Otherwise,

Step 2. The execution of that block is considered as terminated

and Step 1 is taken as specified above.

If Statements

7.5.1. Syntax

<if statement> ::= <if clause> <statement> |<if clause>
<simple statement> else <statement>

<if clause> : := 1if <logical expression> then

7.5.2. Semantics

The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical ex-

pressions . An if statement of the form

<if clause <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true., then the statement
following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

45

An if statement of the form

<if clause> <simple statement> else <statement>

is executed in the following steps:

- 7.6.

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of step 1 is true, then the simple state-
ment following the if clause is executed. Otherwise the state-

ment following else is executed.

7.5.3. Examples

if X = Y then goto L
if X <Y then U := X else if Y < Z then U := Y else V :=12Z

Sdsatements

7.6.1. Syntax

<case statement> ::= <case clause> begin <statement lists end
<statement 1list> '::= <statement> | <statement list> ; <statement>
<case clause> ::= case <integer expressior> of

7.6.2. Semantics

The execution of a case statement proceeds in the following

steps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list
is equal to the value obtained in Step 1 is executed. 1In order
that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some

L6

statement of the statement list.

, 7.6.5. Examples

7.7.

case I of
begin X := X + Y;
Y =Y + z;
Z =z X

end

case j of

begin H(I) := -H(I);

begin H(I-1) := H(I-1) + H(1); I := I-1 end;
begin H(I-1) := H(I-1) x H(1); I := I-1 end;
begin H(H(I-1)) := H(1); I := I-2 end
end
Iterative Statements
7.?,1, Syntax
<iterative statement> ::!: <for clause> <u* *ement> | <while

clause> <statement>

<for clause> ::= for <identifier> := <initial value>

step <increment> until <limit> do[for

<identifier> := <initial value> until <limit>
do f for <identifier> := <for list> do

<fcr list> <integer expression> | <for list> , <integer

expression>
<initial wvalue> : := <integer exXxpressiom>
<increment> ::= <integer expressiocr>
<limit> ::= <integer expression>

<while clause> ::= while <logical expression> do

7.7.2. Semantics
The iterative statement serves to express that a statement be

bt

executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause
or the while clause always acts as a block, whether it has the form of
a block or not. The value of the control identifier (the identifier
following for) cannot be changed by assignment within the controlled
Statement.

(a) An iterative statement of the form

for <identifier> := El step E2 until E3 do <statement>

is exactly equivalent to the block

begin <statement-0>; <statement-1> . . . ; <statement-I>;
; <statement-N> ggg

in the Ith statement every occurrence of the control identifier
is replaced by the value of the expression (E1 + I x E2).

The index N of the last statement is determined by
N < (E3-E1) / E2 < N+1. If N < 0, then it is understood that
the sequence is empty. The expressions El, E2, and E3 are
evaluated exactly once, namely before execution of <statement-0>.

Therefore they can not depend on the control identifier.
(b) An iterative statement of the form

for <identifier> := El until E3 do <statement>
is exactly equivalent to the iterative statement

for <identifier> := E1 step 1 until E3 do <statement>

(c) An iterative statement of the form
for <identifier> := El, E2, . . . , EN do <statement>

is exactly equivalent to the block

48

begin <statement-1>; <statement-2> . . . <statement-I> ;

<statement-N> end
when in the Ith statement every occurrence of the control identifier

is replaced by the value of the expression EI.

(d) An iterative statement of the form
while E gg <statement>

is exactly equivalent to

begin
L: EE E then

begin <statement> ; goto L ehd

end

where it is understood that L represents an identifier which is not

defined at the place from which the while statement is entered.

T.7.3. Examples

for V := 1 step 1 until N-1 do S := 5 + A(U,V)

while (5> 0) and (CITY(J) == S) do J := J-1

forI:=X,X+l,X+3,X+7d_o__P(1)

7.8. Standard Procedures

Standard procedures are provided in ALGOL W for the purpose of
communication with-the input/output system. These standard procedures
differ from explicitly declared procedures in that the number and type
of actual parameters need not be identical in every procedure statement
in which the standard procedure identifier appears. In the following

descriptions, each Ti is to be replaced by any one of

k9

integer string (<integer number>)

real logical
long real bits
complex

goognp l ex

7.8.1. The Input/Output System

ALGOL W provides a single legible input stream and a single legible
output stream. These streams are conceived as sequences of records, each
record consisting of a character sequence of fixed length. The input
stream has the logical properties of a sequence of cards in a card reader;
records consist of 80 characters. The output stream has the logical
properties of a sequence of lines on a line printer; records consist
of 132 characters, and the records are grouped into logical pages.

Each page consists of not less than one nor more than 60 lines.

Input records may be transmitted as strings without analysis.
Alternatively, it is possible to invoke a procedure which will scan the
sequence of records for data items to be interpreted as numbers, bit
sequences, strings, or logical values. If such analysis is specified,
data items may be reference denotations of the corresponding constants
(cf. Section 4). In addition, the following forms of arithmetic expressions
are acceptable data items, and the corresponding simple types are those

determined by the rules for expressions (cf. 6.3.):

(1) <sign> <& number>
where : J is one of integer, real, long real, complex, long

complex;

50

(2) <IO number> <sign> <Il number>
<sign> <TO number> <sign> <Tl number>
where : TO is one of integer, real, long real, and

Tl is one of complex, long complex.

Data items are separated by one or more blanks. Scanning for data items
initially begins with the first character of the input stream; after
the initial scan, it normally begins with the character following the
one which terminated the most recent previous scan. Leading blanks are
ignored. The scan is terminated by the first blank following the data
item. In the process, new records are fetched as necessary; character
position 80 of one record is considered to be immediately followed by
character position 1 of the next record. There exist procedures to
—-cause the scanning process to begin with the first character of a record;
if scanning would not otherwise start there, a new record is fetched.
Output items are assembled into records by an editing procedure.
Items are automatically converted to character sequences and placed
in fields according to the simple type of each item, as described below:

Simple Type Field Description

integer right justified in a field containing
the number of characters specified by
the current value of INTFIELDSIZE
(initialized to 14, cf. 8.5.) and followed
by 2 blanks

real right justified in a field of 14 characters

and followed by 2 blanks

51

long real right justified in a field of 22 characters

and followed by 2 blanks

complex two adjacent real fields

long complex two adjacent long real fields

logical right justified in a field of 6 characters
followed by 2 blanks

string placed in a field exactly the length of
the string

bits same as real

The. first field transmitted begins the output stream; thereafter, each
field is normally placed immediately following the most recent previously
transmitted field. If, however, the field corresponding to an item

cannot be placed entirely within a non-empty record, that item is made the
first field of the next record. 1In addition, there exist procedures to
cause the field corresponding to an item to begin a new record. Each

page group 1is automatically terminated after 60 records; procedures

are provided for causing earlier termination.
7.8.2. Read Statements

Implicit declaration headings:

procedure RWU)(Tl result X;; . . . ; T result Xh);
procedure READ@H(Tl result X . . . ;J result Xn);

(where n > = 1)

Both READ and READON designate free field input procedures. Input
records are scanned as described in 7.8.1. Values on input records are
read, matched with the variables of the actual parameter list in order

of appearance, and assigned to the corresponding variables. The simple

52

type of each data item must be assignment compatible with the simple
type of the corresponding variable. For each READ statement, scanning
for the first data item is caused to begin with the first character of
a record; for a READON statement, scanning continues from the previous
point of termination as determined by prior use of READ, READON, or
IOCONTROL (cf. 7.8.1.).

Implicit declaration heading:

procedure READCARD (string(80) result X, Xn);

(where n > = 1)
READCARD designates a procedure transmitting 80 character input
records without analysis. For each variable of the actual parameter list,

the scanning process is set to begin at the first character of a record

(by fetching a new record if necessary), @ll 80 characters of that record

are assigned to the corresponding string variable, and subsequent input

scanning is set to begin at the first character of the next sequential

record.
7.8.3. Write Statements

Implicit declaration headings:

procedure WRITE (Tl value X5 . . . ; T value Xn);
procedure WRITEON (11 value X1; . . . ; Tn'ﬂal”e Xn);

(where n > = 1)
WRITE and WRITEON designate output procedures with automatic format
conversion. Values of expressions of the actual parameter list are converted

to character fields which are assembled into output records in order of

appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding

23

to the first value is caused to begin an output record; for a WRITEON

statement, assembly continues from the previous point of termination.
7.8.4. Control Statements

Implicit declaration heading:

procedure IOCONTROL (integer value Xl’ . ,Xh);

(where n > = 1)
IOCONTROL designates a procedure which affects the state of the
input/output system. Arqgument values with defined effect are listed below;

other values currently have no effect but are explicitly made available

for local use or future expansion.

Value Action (cf. 7.8.1.)

1 Subsequent input scanning is set to begin
with the first character of a record.

2 Subsequent output assembly is set to begin
with the first field of a record.

5 Subsequent output assembly is set to begin
with the first field of a record which, in

turn, is caused to begin a new output page.

7.8.5. Examples

READ (X, A(1))

READCARD (S, LINE(10|80))
wRITE ("AVERAGE =", SUM/N)
WRITEON (X(1,J))

TOCONTROL (2)

54

8. STANDARD FUNCTIONS AND PREDECURED IDENTIFIERS

The ALGOL W environment includes declarations and initialization of
certain procedures and variables which supplement the language facilities
previously described. Such declarations and initialization are considered
to be included in a block which encloses each ALGOL W program (with
terminating period eliminated). The corresponding identifiers are said

to be predeclared.

8.1. Standard Transfer F-unctions

Certain functions for conversion of vaiues from one simple type
to another are provided. These functions are predeclared; the
corresponding implicit declaration headings are listed below:

integer procedure TRUNCATE (real value X);

comment the integer i such that
|i]< = x| < |il + 1 and i¥X > = 0

integer procedure ENTIER (real value X);

comment the integer i such that
i<=X<<i+1;

integer procedure ROUND (real value X);

comment the value of the integer expression
if X < 0 then TRUNCATE (X-0.5) else TRUNCATE (X+0.5) ;
real procedure ROUNDTOREAL (long real value X);

—-comment the properly rounded value of X ;

real procedure REALPART (complex value Z);

comment the real component of Z ;

long real procedure LONGREALPART (long complex value Z);

real procedure IMAGPART (complex value Z);

comment the imaginary component of Z ;

long real procedure LONGIMAGPART (long complex value Z);

25

complex procedure IMAG (real value X);

comment the complex number 0 + Xi ;

long complex procedure LONGIMAG (long real value X);

logical procedure ODD (integer value N);

comment the logical value
N rem 2 =1 ;
bits procedure BITSTRING (integer value N);

comment two's complement representation of N ;

integer procedure NUMBER (bits value X);

comment integer with two's complement representation X ;

integer procedure DECODE (string(l) wvalue S);

comment numeric code for the-character S (cf. Appendix 1) ;

string(l) procedure CODE (integer value N);

comment character with numeric code (cf. Appendix 1) given by

abs (N rem 256) ;

In the following comments, the significance of characters in the prototype

formats is as follows:

D decimal digit in a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit in an exponent

+ sign (blank for positive mantissa or integer)
w blank

Each-exponent 1is unbiased. Decimal exponents represent powers of 10;

hexadecimal exponents represent powers of 16. Each mantissa (except 0)
represents a normalized fraction less than one. Leading zeroes are not

suppressed.

56

string(12) procedure BASE10 (real wvalue X);

comment string encoding of X with format
HEE+DDDDDDD

string(12) procedure BASE16 (real value X);

comment string encoding of X with format
L s BBTAAAAAA
string(20) procedure LONGBASE1O (long _real wvalue X);

comment string encoding of X with format
LﬁEEtDDDDDDDDDDDDDDD

.
14

string(20) procedure IONGBASE16 (long real value X);

comment string encoding of X with format
(JJtBBtAAAAAAAAAAAAAAg
string(12) procedure INTBASELO (integer value N);

comment string encoding of N with format
;+PDDDDDDDID ;

string(12) procedure INTBASE16 (integer wvalue N);

comment unsigned, two's complement string encoding of N with format

o ARAAAAAA

8.2. Standard Functions of Analysis

The following functions of analysis are provided in the system
environment. In some cases, they are partial functions; action for
arguments outside of the allowed domain is described in 8.5. These
functions are predeclared; the corresponding implicit declaration headings
are listed below:

peacedure SQRT (real value-X);

comment the positive square root of X,
domain : X>= 0 ;

long real procedure LONGSQRT (long real walue X);

comment the positive square root of X,

domain : X > = 0 ;

o7

complex procedure COMPLEXSQRT (complex value Z);

comment principal square root of Z ;

long complex procedure LONGCOMPLEXSQRT (long complex value Z);

comment principal square root of Z ;

real procedure EXP (real value X);

comment e ¥*¥ X ,
domain : X < 174.67 ;
long real procedure LONGEXP (long real value X);

comment e *¥ X ,
domain : X < 174.67 ;

real procedure IN (real value X);

comment logarithm of X to the-base e,
domain : X > 0 ;

long real procedure LONGLN (real value X);

comment logarithm of X to the base e,
domain : X >0 ;

real procedure LOG (real value X);

comment logarithm of X to the base 10,
domain : X >0 ;
long real procedure LONGLOG (long real value X);

comment logarithm of X to the base 10,
domain : X > 0 ;

real procedure SIN (real value X);

comment sine of X (radians),
domain : -823550 < x < 823550 ;
long real procedure LONGSIN (long real value X);

comment sine of X (radians),
domain : -3.537'+15 < x < 3.537'+15 ;

real procedure COS (real value X);

comment cosine of X (radians)
domain : -823550 < x < 823550 ;
long real procedure LONGCOS (long real value X);

comment cosine of X (radians),
domain : -3.537'+15 < X < 3.537'+15 ;

58

real procedure ARCTAN (real value X);

comment arctangent (radians) of X,
range : -m/2 < ARCTAN(X) < n/2 ;
long real procedure LONGARCTAN (long real value X);

comment arctangent (radians) of X,

range : -m/2 < LONGARCTAN (X) < n/2 ;

8.3. Time Function

The ALGOL W environment includes a clock which measures elapsed
time since the beginning of program execution. The resolution of that
clock is 1/60 second. A predeclared function is provided for reading

the clock.

integer procedure TIME (integer value N);

comment returns elapsed time, in hundredths of a minute if N=0,

in sixtieths of a second otherwise;

8.4. Predeclared Variables

The following variables are to be considered declared and initialized
by assignment in the conceptual block enclosing the entire ALGOL W program.
The values indicated for real and long real quantities are to be understood
as decimal approximations to the actual machine-format values provided.

integer INTFIELDSIZE;
comment initialized to 14 ,
controls output field size for integers (cf. 7.8.1.);
integer MAXINTEGER;
comment initialized to 2147483647 ,

the maximum positive integer allowed by the implementation;

59

real

long

long

long

EPSILON;
comment initialized to 9.536743 '-07 ,
the largest positive real number e provided by the
implementation such that
l1+e=13

real LONGEPSILON;

comment initialized to 2.22044604925031'-16L ,

the largest positive long real number € provided by
the implementation such that
l1+e=1;
real MAXREAL;
comment initialized to 7.23700557733226'+75L ,
the largest positive long'real number provided by the
implementation;
real PI;
comment initialized to 3.14159265358979L ;

8.5. Exceptional Conditions

The facilities described below are provided in ALGOL W to allow

detection

and control of certain exceptional conditions arising in

the evaluation of arithmetic expressions and standard functions.

Implicit declarations:

record EXCEPTION (logical XCPNOTED; integer XCPLIMIT, XCPACTION;

logical XCPMARK; string(6L) XCPMSG);

reference (EXCEPTION)

OVFL, UNFL, DIVZERO,
INTOVFL, INTDIVZERO,
SQRTERR, EXPERR, INLOGERR, SINCOSERR ;

60

Associated with each exceptional condition which can be processed

is a predeclared reference variable to which references to records of

the class EXCEPTION can be assigned.

Fields of such records control the

processing of exceptions. The association between conditions and

reference variables is as follows:

Reference Variable

OVFL

UNFL

DIVZERO

INTOVFL

INTDIVZERO

SORTERR

EXPERR

INLOGERR

SINCOSERR

Conditions

real, long real,' complex, long
complex (exponent) overflow
real, long real, complex, long
- complex (exponent) underflow
real, long real, complex, long
complex division by zero
integer overflow
integer division by zero
negative argument for SQRT, LONGSQRT
argument of EXP, LONGEXP out of
domain (cf. 8.2.)
argument of LN, LOG, LONGLN,
LONGIOG out of domain (cf. 8.2.)
argument of SIN, COS, LONGSIN,
LONGCOS out of domain (cf. 8.2.)

When one of the conditions listed above is detected, the corresponding

reference variable is interrogated,

below is chosen.

and one of the alternatives described

If the value of the reference variable interrogated is null, the

condition is ignored and execution of the AIGOL W program continues.

In such situations, a value of 0 is returned as the value of a standard

6l

function. For other conditions the result is that provided by the
underlying IBM System/560 hardwareg/, In determining such a result, it
is to be noted that in those cases in which the detection of exceptional
conditions can be inhibited at the hardware level, namely integer overflow
and exponent underflow, detection is so inhibited when the corresponding
reference is NULL.

If the value of the reference variable interrogated is not NULL,
the fields of the record designated by that reference are interrogated,
and processing action is that described by the algorithm given\below in
the form of an extended ALGOL W procedure. Identifiers in lower case
represent quantities which transcend the ALGOL W language; they are
explained subsequently.

procedure PROCESSEXCEPTION (reference (EXCEPTION) value CONDITION);

begin
XCPNOTED (CONDITION) := true;
XCPLIMIT (CONDITION) := XCPLIMIT (CONDITION) - 1;

if (XCPLIMIT(CONDITION) < 0) or XCPMARK (CONDITION) then
WRITE ("#***% EXCEPTION NEAR CARD nnnn - ", XCPMSG(CONDITION));
if XCPLIMIT(CONDITION) < 0 then endexecution else

if integercondition then

resultant

default else

if XCPACTION(CONDITION) = 1 then adjustment else
if XCPACTION(CONDITION) = 2 then OL else

default

ﬂi PROCESSEXCEPTION

resultant

This procedure is invoked with the value of the reference variable
appropriate to the condition as actual parameter. The significance of

the special identifiers used is as follows:

g/IBM System/360 Principles of Operation, IBM Systems Library, Form A22-6821

62

)

nnnn

endexecution

integercondition

default

resultant

adjustment

approximate line number of the source code
which was being executed when the exceptional
condition was detected

procedure to terminate execution of the ALGOL W
program

logical value which is true if, and only if,
the condition being processed is integer overflow
or integer division by =zero

result of the operation or function provided

by the ALGOL W system prior to invocation of
the exception processing procedure; this is

3/

defined by the hardware for arithmetic
operations and is the value 0 for standard
functions

value to be returned as the result of the
arithmetic evaluation or standard function
invocation

adjusted result of the operation according to

the following table

Condition Adjustment
exponent overflow, if default < 0 then
division by zero -MAXRFEAL else MAXREAL
exponent underflow oL

argument X out of domain for :

SQRT, LONGSQRT SORT (abs X), LONGSQRT(abs X)
EXP, LONGEXP MAXREAL

IN, LONGIN -MAXREAL

LOG, LONGLOG -MAXREAL

SIN, LONGSIN OL

COS, LONGCOS OL

7 L . .
IBM System/360 Principles of Operation, IBM Systems Library, Form A22-6821

63

The reference variable UNFL is initialized by the system to NULL.
All other reference variables listed above are initialized to references
to a special record which is accessible only by the system. Interrogation
of this record by the procedure described above has the effect of causing
the ALGOL W program to be terminated with a message indicating the type

of exception. Any other attempt to access any field of this record will

result in a reference error.

64

APPENDIX 1 - CHARACTER ENCODINGS

The following table presents the correspondence between printable
string characters and their (EBCDIC) integer encodings. This encoding
establishes the ordering relation on characters and thus on strings.
Those characters in parentheses are not available on the line printer.

Integer codes not listed below do not correspond to any established

character.
64 space 129 (a) 195 A 2k O
T (£) 130 (b) 194 B 2kl 1
75 : 131 (0) 195 ¢C 242 2
76 < 132 (d) 196 D 2Lz 3
7 (133 (e) 197 E 2kl L4
78 + 134 (f) 198 F 25 5

79 I 135 () 199 G 26 6
80 & 136 (h) 200 H 2kt 7
9 (1) 137 (i) 201 I 248 8
91 $ s (3) 209 J 249 9
92 * 146 (k) 210 K ’
93) 147 (1) 211 L
ok ; 148 (m) 212 M
95 ! 149 (n) 213 w
96 150 (0) 214 0
a7 / 151 (P) 215 P

07, 152 (q) 216

108 % 153 (r) 217 R

109 162 (S) 226 S

110 5 163 (t) 227 T

111 2 164 (u) 228 U

122 : 165 (v) 229 V

123, 166 (w) 230 W

124 @ 167 (%) 231 X

125 ' 168 (y) 232 v

126 = 169 (z) 233 Z

127 "

65

ALGOL W

ERROR MESSAGES

by

Henry R. Bauer
Sheldon Becker
Susan L. Graham

66

ALGOL W ERROR MESSAGES

I. PASS ONE MESSAGES

All Pass One messages appear on the first page following the program

listing. The message format is

CARD NO, (number) —-- (message)

The (number)

was found. The (message)

INCORRECT SPECIFTN

INCORRECT CONSTANT

MISSING END

- MISSING BEGIN

MISSING)

ILLEGAL CHARACTER

MISSING FINAL

STRING LNGTH ERROR

BITS LENGTH ERROR

MISSING (

TABLE OVERFLOW

corresponds to the card number on which the error

is one of those listed below.

syntactic entity of a declaration is

incorrect, e.g. variable string length.
syntax error in number or bitstring.
an END needed to close block.

an attempt to close outer block

before end of code.
) is needed.

a character, not in a string, is

unrecognizable.
program must be terminated by a period.

string is of 0 length or length
greater than 256,

bits constant denotes no bits or

more than 32 bits.
(is needed.

terminating error - a compile time

table has exceeded its bounds.

67

TOO MAW ERRORS the maximum nuiber of errors for Pass
One records has been reached. Com-
pilation continues but messages for
succeeding errors detected by Pass

One are suppressed.

ID LENGTH > 256 more than 256 characters in' identifier.
See alsc discussion of PROGRAM CHECK in IV.

II. PASS TWO MESSAGES

The format of Pass Two error messages 1is

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incoming

symbol)

If a $STACK card is included anywhere in the source deck, the

~ .SYNTAX ERROR message is followed by

STACK CONTAINS:
(beginning of file)

<symbol-1>

<symbol-r> (top of stack)

The symbol names may differ somewhat from the metasymbols of
the syntax.

1f any Pass One or Pass Two errors occur, compilation is termi-
nated-at the end of Pass Two.
INCCRRECT SIMPLE TYPE <number> <simple type> of entity is improper

as used. Number indicates explana-

tion on list of simple type errors.

68

ARRAY USED INCORRECTLY

IDENTIFIER MUST BE RECORD
CLASS ID

MISMATCHED PARAMTER

MULTIPLY-DEFINED SYMBOL <iden-

tifier>

UNDEFINED SYMBOL <identifier>

INCORRECT NUMBER OF ACTUAL
PARAMETERS

INCORRECT DIMENSION

DATA AREA EXCEEDED

INCORRECT NUMBER OF FIELDS

INCOMPATIBLE STRING LENGTH

INCOMPATIBLE REFERENCES

BLOCKS NESTED TOO DEEP

REFERENCE MUST REFER TO
RECORD CLASS

EXPRESSION MISSING IN
PROCEDURE BODY

a variable must be used here.

reference declaration is incorrect,

formal parameter does not correspond

to actual parameter.

symbol defined more than once in a

block
symbol is not declared or defined.

the number of actual parameters to
a procedure does not equal the number
of formal parameters declared for

the procedure.

the array has appeared previously

with a different number of dimensions.
too many declarations in the block.

the number of fields specified in a
record designator does not equal the
number of fields the declaration of

the record indicates.

length of assigned string is greater

than length of string assigned to.
record class bindings are inconsistent.
blocks are nested more than 7 levels.

reference must be bound to a record

class.

body of typed procedure must end

with an expression.

69

RESULT PARAMETER MUST BE
<T VAR>

PROCEDURE READ LACKS SIMPLE
TYPE

<SYMBOL-1> UNREIATED TO
<SYMBOL-2>

SYNTAX ERROR

the actual parameter corresponding

to a result formal parameter must
be a <J VARIABLE>.

proper procedure ends with an

expression

the symbol at the top of the stack
(<SYMBOL-1>) should not be followed
by the incoming symbol (<SYMBOL-2>).

construction violates the rules of
the grammar. The input string is
skipped until the next END, ";",
BEGIN, or the end of the program.
More than one error message may be

generated for a single syntax error.

Bimpgle #ype r s

25. Upper and lower bounds must be integer.

29. Upper and lower bounds must be integer.

32. Simple type of procedure and simple type of expression in

procedure body do not agree.

71l. Substring index must be integer.

73. Simple variable preceding '(' must be string.

74. Substring length must be integer.

76. Field index must be reference or record class identifier.

77. Array subscript must be integer.

81. Array subscript must be integer.

84, Actual parameters and formal parameters do not agree.

88. Actual parameters and formal parameters do not agree.

93. Expressions in if expression do not agree.

Ok, Expressions in case expression do not agree.

95. Expression in if clause must be logical.

70

98.
9.
101.
102.

103.
106.
107.
108.
109.
110.
112,
117.
118.
119.
120.
121.
123.
125.

126.

130.
134,
135.
136.
148.
181.
182.
188.
190.
.191.
193.
195.
197.

Expressions in case expression do not agree.
Expression in case clause must be integer.
Arguments of = or —=do not agree.

Arguments of relational operators must be integer, real, or

long real.
Argument before is must be reference.
Argument of unary + must be arithmetic.
Argument of unary - must be arithmetic.
Arguments of + must be arithmetic.
Arguments of - must be arithmetic.

Arguments of or must be both logical or both bits.

Record field must be assignment compatible with declaration.

Arguments of * must be arithmetic.
Arguments of / must be arithmetic.

Arguments of div must be integer.

Arguments of rem must be integer.

Arguments of and must be both logical or both bits.

Argument of - must be logical or bits.

Exponent or shift quantity must be integer; eqression to be
shifted must be bits.
Shift quantity must be integer; expression to be shifted must be

bits.

Actual parameter of standard function has incorrect simple type.

Argument of long must be integer, real, or complex.

Argument of short must be long real or long complex.

Argument of abs must be arithmetic.

Record field must be assignment compatible with declaration.
Expression is not assignment compatible with variable.
Result of assignment cannot be assigned to variable.

Limit expression in for clause must be integer.

Expression in for list must be integer.

Assignment to for variable must be integer.

Expression in for list must be integer.

Step element must be integer.

Expression in while clause must be logical.

11

ITII. PASS THREE ERROR MESSAGES

The form of Pass Three error messages is

*¥KX¥ (message)
¥¥%%¥%¥ NEAR CARD (number)

The number indicates the number of the card near which the error

occurred. The message may be

PROGRAM SEGMENT OVERFLOW

COMPILER STACK OVERFLOW

CONSTANT POINTER TABLE TOO LARGE

BLOCKS NESTED TOO DEEPLY

DATA SEGMENT OVERFLOW

TOO MANY PROCEDURES

CARD TABLE OVERFLOW

Iv. RUN TIME ERROR MESSAGES

the amount of code generated for a

procedure exceeds 8192 bytes.
constructs nested too deeply.

too many literals appear in a

procedure.

parameters in procedure call are nested
too deeply; procedure calls in block

nested too deeply.

too many variables declared in the

block.

the program contains too many procedure
declarations; the number of procedures
allowed depends on the size of each

procedure and cannot exceed 52,

density of information on (non-blank

and non-comment) source cards is too low.

The form of run error messages is

RUN ERROR NEAR CARD (number)
SUBSTRING INDEXING

CASE SELECTION INDEXING

ARRAY SUBSCRIPTING

- (message)
substring selected not within named string.

index of case statement or case expression

is less than 1 or greater than number of cases.

array subscript not within declared bounds.

T2

LOWER BOUND> UPPERBOUND

ARRAY TOO LARGE

ASSIGNMENT TO NAME PARAMETER

DATA AREA OVERFLOW

lower bound is greater than upper

bound in array declaration.

The (n-1) dimensional array obtained
by deleting the right-most bound~

pair of the array being declared has
too many elements The maximum number
of elements allowed in this (n-1)
dimensional array is given below,

according to the declared type of

the array.

maximum # of

elements in

first (n-1)

type dimensions

lcgical, string 32767
integer, real 8191
bits, reference 8191
long real, complex 4095
long complex 2047

assignment to a formal name parameter
whose corresponding actual parameter
is an expression, a literal, control

identifier., or procedure nane.

storage available for program execu-

tion has been exceeded.

ACTUAL-FORMAL PARAMETER MISMATCH the number of actual parameters in

IN FORMAL PROCEDURE CALL

RECORD STORAGE AREA OVERFLOW

a formal procedure call is different
from the number of formal parameters
in the called procedure, or the
parameters are not assignment

compatible.

no more storage exists for records.

3

IENGTH OF STRING INPUT string read is not assignment compatible

with corresponding declared string.

LOGICAL INPUT quantity corresponding to logical

quantity is not true or false.

'NUMERICAL INPUT numerical input not assignment compatible
with specified quantity.

REFERENCE INPUT reference quantities cannot be read.

READER EOF a system control card has been

encountered during a read request.

REFERENCE the null reference has been used to
address & record, or a reference bound
to two or more record classes was used
to address a record class to which it

was not currently pointing.

LINE ESTIMATE EXCEEDED line estimate on %AIGOL card is
exceeded.

TIME ESTIMATE EXCEEDED time estimate on %ALGOL card is
exceeded.

I/0 ERROR see consultant.

PROGRAM CHECK #nn see consultant.

Counts of certain exceptional conditions detected during program
compilation or execution are maintained.' If any of these are non-zero,
they are listed after the post-compilation or post-execution elapsed

time message in the following format:
nnnn PROGRAM CHECK NO xx

The number of times the condition was detected (modulo 10000) is
given by nnnn; the nature of the condition is indicated by xx according

to the following table:

Th

08 integer overflow

09 integer division by zero
12 real exponent overflow
13 real exponent underflow
15 real division by zero

This counting is inhibited for integer overflow and exponent

underflow whenever the value of the corresponding reference variable

is null (cf. IANGUAGE pescrIPTIoN, Section 8.5.).

V. OTHER

PRG PSW see consultant.

COMPILER ERROR see consultant.

INSUFFICIENT insufficient memory available to complete compilation.
STORAGE

75

NOTES ON NUMBER REPRESENTATION

ON SYSTEM/360

AND RELATIONS TO ALGOL W

by

George E. Forsythe

76

The following notes are intended to give the

student of Computer Science 136 some orientation

into how numbers are represented in the IBM System/360
computers. Because we are using Algol W, some refer-
ences are made to that language. However, very little
of what is said here depends on the peculiarities of
Algol W, and this exposition is mostly applicable to
Fortran or Algol 60 with slight changes in wording.

It will also do for the floating-point numbers and
full-word integers of PL/l. Users of shorter or
longer integers or decimal arithmetic in PL/l will

need more orientation.

11

On IBM's system 360, the following units of information storage
are used:
a) the bit., a single 0 or 1
b) the byte, a group of eight consecutive bits
c) the (short) word, a group of four consecutive bytes--
i,e., 32 consecutive bits
d) the long word, a group of two consecutive short words--
i.e., eight bytes or 64 bits.
For number representation in Algel W the words and long words are

the main units of interest,

INTEGERS.

Integers are stored in (short) words, Of the % bits of & short
word, one is reserved for the sign (0 for + and 1 for -), leaving
31 bits to represent tie magnitude, A positive or zero integer is
stored in a binary (base 2) representation, Thus 2l,, (the subscript
means base 10) is stored as

0000 0000 0000 0000 0000 0000 0001 0101 .

sign bit
To confirm this, note that

L ' 1 0
21-0x20« . 40x2” +1x2 +0x2] 2

+1x2°+0X2 +1Xx2,
The largest integer that can be stored in a word is

30+ 2294 ... +210 k2 =27 -1 - (21LTHB3ELT) -

Any attempt to create or store an integer larger than 231- 1 will
produce erroneous results, and (unfortunately) the user will not always
be warned of the error (Cee below,)

To save space in writing words on paper, each group of four bits
in a word is frequently converted to a single base-16 (hexadecimal)
digit, according to the following code:

18

base 2 base 16 base 2 base 16

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Thus A, B, C, D, E, F are used as base-16 representations of’ the deecimal
numbers 10, 11, 12; 13, 14, 15 respectively. Nevertheless, integers are
stored as base-2 numbers.
Using hexadecimal notation, the decimal number 21 is represented

by

OOOOOOlSl6
Note that 1516 is the base-16 representation of 2110.

Negative integers are stored in what is called the "two's complement

form". For example, -1 is stored as

111 1111 1111 1111 131311 1111 1111 1111

= FFFFFFFF16 .
Also, -21 is stored as

1111 1211 1111 1121 1111 1111 1110 1011

= FFFFFFEBl6 |
The representation for -21 is obtained from that for +21 by changing
every 0 to 1 and every 1 to 0, and then adding + 1 in base-2 arithmetic
to the result. Similarly for any negative integers. Every negative
integer has 1 as its sign bit. The smallest integer storable in
System/360 is -251 = 2147483648 , and is represented by 8000000016 .
Another way to think of the representation of negative numbers is
to consider a 32-place binary accumulating register (the base-2 equivalent
of the-decimal accumulating register in a desk calculating machine),
If one starts with all zeros in this register, one gets the representation
for -1 by subtracting 1. The process requires a “borrow” to propagate
to the left all the way across the register, leaving all ones, just as
on a decimal accumulator this would leave all nines. Continued sub-

traction will give the representations for -2, -3, ...

79

From the point of view of an accumulator we can also see what

251 -1. For

happens when we create a positive number larger than
example, if we add 1 to 251—1, the resulting carry will go all the

way into the sign bit, leaving a sign bit of 1 with all other digits
31

zero. But this is the representation of -2 Thus the attempt to

produce positive numbers in the range from 251 to approximately 252
will yield a negative sign bit. Consequently, positive integers that
"overflow" into this range are sensed as negative by System/360. The
mechanisms of AIGOL W for detecting integer overflow (not described in
this document) can be used to detect additions, subtractions, or
multiplications that produce integers outside the range from -251 to

251H1 Go-called integer overflow). Attempts to divide an integer by 0

will yield an error message and an irrelevant quotient and remainder.

The behavior of System/360 on integer overflow is quite different
from the Burroughs B5500. In the latter machine, any integer that
overflows 1is replaced by a rounded floating-point number. There are
advantages to either approach to integer overflow, depending on the
application.

If the user suspects that integers in his program are getting
anywhere near 10Y, he should convert them to double-precision floating-
point numbers by use of the Algol W operator LONG. Conversion to single-
precision floating-point numbers may lose some precision.

The most important thing for a scientific user to remember is that
integers in the range —251 to 251—1 are stored without any approximation.
Moreover, operations on integers (adding, subtracting, multiplying) are
done without any error, so long as all intermediate and final results
are integers between —231 and 251-1. It is perhaps easier to remember
as safe the interval from -2 X 109 to 2 x 109 , obtained from the

useful approximation 210 = 103

80

The operations of division without remainder (called DIV in Algol
W) and taking the remainder on division (called REM in Algoel W) always
give integer answers, If the divisor is 0, an error message is given,

In Algol W two operations on integers give results that are not
stored as integers—-namely / and ** .

FLOATING-POINT NUMBERS

Numbers in many scientific computations will grow in magnitude
well beyond the range of integers described above, To provide for
this, System/360 and most scientific computers have a second way to

represent numbers--the so-called floating-point representation,

The significance of the name "floating-point" is that the radix point
--for example, the decimal point in base-10 numbers--is permitted to
float to the right or left, thus permitting scaling of numbers by
various powers of the radix, Although a decimal point that has floated
off to the left will produce a number written like 0.001345, the
nuuibers are actually represented in a form closer to what is often
called scientific notation, here 10545X10“5 .

In System/360, floating- .int numbers =re always represented in

base-16 notation; i.e., the re ix or number base s 16. This permits

us to write numbers in abbrevi *“ed form (as we did with integers earlier).

More important, the use of base-16 conforms with the hardware arithmetic

processes in which shifting is done four bits at a time to speed up the

operations. The speed-up is achieved at a slight cost in precision,

as is learned frcxn detailed error analyses which we cannot go into here,
We first consider the floating-point representation of numbers by

a single word of 32 bits. This 1is the so-called _single-precision

or short real number, the number of type REAL in Algol W, The 32 bits

of a word are numbered frcxn 0 to 31, fram left to right, just to identify

them, In floating-point representation the left-hand eight bits (bits 0
to 7, equivalent to two hexadecimal digits) are devoted to the sign of
the number and the exponent of 16 associated with the number, The right-
hand 24 bits (bits 8 to 31, ecj\zivalen‘c to six hexadecimal digits)

81

represent six significant hexadecimal digits_ (the gignificand) of the

number .

As with integers, the sign of the number is denoted by bit 0,
with 0 representing + and 1 representing - .

Bits 1 to 7 give the binary (base-2) representation of a non-
negative integer in the range 0Oy to 12710 s inclusive, This In-
teger is called the biased exponent, for reasons now to be explained,
If this integer were taken directly a8 the exponent, we would have no
negative exponent 8, and our range of floating-point number6 could not
include such numbert &8 16-25. It is desirable to have an exponent
range that is approximately symmetric about zero. In System/360 one
obtain8 the_true exponent of the floating-point number by subtracting

6t from the biased exponent represented by bits 1 to 7. A8 a result,
the actual exponent6é range from -64 to 63.

The 24 bit6 8 to 31 of a number are regarded a6 six hexsdecimal
-digits with a hexadecimal point atthe left-hand end. If the floating-
point number zero is being represented, all the hexadecimal digit8 are
zero, ac are all the other bits, Otherwise,at least one of the hexa=
decimal digits must be nonzero. A floating-point number is seid to be
normalized if the left-hand hexiadecimal digit (the most significant
digit) of the significend is nonzero. In System/360 the floating-point
nrbers are ordinarily normalized, and we will not consider any other
forms.,

We now give the floating-point representations of saae sample
numb:rs. As we said before, the number zero is represented by 32 zero
bits, Le., by eight 0 hexadecimal digits. Thus zero is represented
by the same trords in floating-point or integer form. No other number
ha6é this property.

The number 1.0 is represented by the word

sign bit
f’ 0,100 0001, 0001 0000 ooo0o 0000 0000 0000,
biased
f d
exponent sigoif ican

82

To check this, note that the sign is 0 (representing +). The biased
exponent 1s 10000012 or 6510 . Subtracting '&10 yield8 1 as the
true exponent. The hexadecimal significand is 10000016.Pu1:tinga
hexadecimal point at the left end give6 the hexadecimal fraction
'10000016 , which equals 1/16. Thus the above word represents

+1/16 times 16t , or 1.0

To save writing, the above word is ordinarily written in the
hexadecimal form 41100000 . While one gradually learns to recognize
some floating-point numbers in this form, the author knows no easy way
to convert such a hexadecimal word into a real number. Onejust ha6
to take the right-hand six hexadecimal digits, and prefix a hexadecimal
point. Then one examine6 the left-hand two-hexadecimal-digit number
(here 41). If this is less than 8016 s the floating-point number is
positive and one gets the true exponent by subtracting h016 = 61;10.
If the left-hand two-hexadecimal-digit number is 8016 or larger, the
-floating-point number is negative, and one gets the true exponent by
subtracting Cog = 8016 + 1‘016 = 1%2,, and affixing a minus sign.
Some facility with hexadecimal arithmetic is required, if one has to
deal with such numbers.

In this presentation, we have considered the radical point to be
at the left of the six significant hexadecimal digits, and regarded
the exponent as biased high by 6)"10 . As an alternative, the reader
may prefer to place the radix point just to the right of the most
significant digit of the significand, and regard the exponent as biased
high by ‘6510. This brings the significand closer to usual scientific
notation but, of course, requires a trickier conversion to get the
true exponent, The fact that either interpretation (and many others)
are possible shows that really the radical. point is just in the eye of
the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa-

decimal notation, with the confirmation left to the reader.

83

decimal floating-point
0.0 = 00000000
1.0 = 41100000
0.0625 = 40100000
16.0 = 42100000
256.0 = 43100000
-1.0 = €1100000
-16.0 = C2100000
3.5 = 41380000

The largest floating-point number is TFFFFFFF, representing
FFFFEF X 167 or (1 - 16°%) x 162 £ 7.3 x 107, (sere 10 and 16
denote decimal numbers.)

The smallest positive normalized floating-point number is 00100000,

representing
& x167%% 2500 x 10777

Negatives of these two numbers can also be represented, and are
the extremes in magnitude of representable negative numbers.

Very few numbers can be exactly represented with six significant
decimal digits. (Exercise: Which ones can?) For example, 1/3 = .53353510
only approximately. In the same way, very few number6 can be exactly
represented with six significant nexadecimal digits, (Exercise:

Which ones can?) For example, /3 =.55%5516cmly approximately.
Moreover, some numbers that are exactly representable in decimal are
only approximately representable 1in hexadecimal; for example,
1/10 = .100000, ,
1/10 = .19999Al6 only approximately.,

Thus round-bff error enters into-the representation of most

floating-point numbers on System/360, and the round off differs from

exactly; but

that with decimal numbers,, This can easily give rise to unexpected
results. For example, if the above number . 19999A16 (2 O.llo) is
multiplied by the integer 100lo '
10.0lo , but instead A.0000516 ;, as a cumulative effect of the slightly
And A.0000316 rounds to 10.00002

= 6&16 » one gets not A.00000, . =

high approximation to 0.1

10 ° 10

on conversion to decimal.
The precision of a single-precision hexadecimal number is roughly
10'7. me can think of this as being crudely equivalent to seven sig-

84

niflcant decimal digits,

Not only do errors appear in the representation of numbers inside
System/360 (or any computer), but they arise from arithmetic operations
perf ormed on numbers, For example, the product of two floating-point
numbers may have up to 12 significant hexadecimal digits. When the
product is stored as a single-precision floating-point number, it must
be rounded to six hexadecimal digits, This introduces an error, even
though the factors might have been exact,

The story of round off amd its effect on arithmetic is a complex.
and Anteresting one, Only within the current decade have there begun
to appear even partly satisfactory methods to analyze round off, and
we cannot go into the matter now, Some idea of this is obtained in
Computer Science 137.

When an Algol W program assigns decimal numbers or integer values
to variables of type REAL, these are immediately converted to hexadecimal
_ floating-point numbers, with (usually) a round-off error. When one
outputs numbers from the computer in Algol W; they are converted to
decimal. Both conversions are done as well as possible, but introduce
changes in the numbers that the rrogrammer must be aware of, And, of
course, all intermediate opera®ions introduce further round offs and
possible errors. It is unthin:able to do the anaiysis necessary to
counteract these errors and get the true answer to the problem, If the
user wishes answers uncontaminated by round off, he should use integers
and integer arithmetic, and be prepared to guard against overflow,

Fortunately most users .can accept an indeterminate amount of
round off in their numbers, provided they have some assurance that
round off 1is not growing out of control, It is the business of numerical
analysts to provide algorithms whose round-off properties are reasonably
under control. This has been well accomplished in some areas, and hardly

at all in others.

DOUBLE PRECISION

The precision of single-precision floating-point numbers seems

85

very adequate for most seientific and engineering purposes,being at the
level of seven decimals, However, a considerable number of computations
require still more precision in the middle sanewhere, Jjust in order o
cane out With ordinary accuracy at the end. As a result, System/360
has provided an easy mechanism for getting a great deal more precision
in the computations. For this purpose a double word of 64 bits is used

to store a floating-point number of so-called double precision orlom

precision. In this representation, the sign and biased exponent are
found in the first word of the double-word, with precisely the same
interpretation as with single-precision floating-point numbers, The
second word of the double-word consists of eight hexadecimal digits
immediately following the six found in the first word., There is no
sign or exponent in the second word. Thus a double-word represents
a signed floating hexadecimal. number with 14 significant hexadecimal
digits, As before, nonzero numbers are normalized so that the most

significant digit of the 14 is nonzero.

Examples:
long significand
1.0L = 41' 100000 00000000
0.1L = 40 199999 9999999A

There is a full set of arithmetic operations for both single
and double-precision operations. Very crudely, for an example, single-
precision multiplication of single-precision factors takes around 4 miero-
seconds, while that for double-precision factors takes around 7 micro-
seconds. For modest problems the extra time is campletely lost in the
several. seconds of time lost to systems and compilers, and the use of
double-precision is strongly recommended for all scientific computation.
Normally the only possible disadvantage of using long precision is the
doubling in the amount of storage needed. If one has arrays with tens
of thousands of elements, the extra storage may be very costly. Other-
wise, it should not matter,

Since 16_14 % 10-17, the double-precision numbers are crudely
equivalent in precision to 17 significant decimal digits.

For a machine with the speed of the 360/67, a number precision of

86

six hexadecimal digits (roughly seven decimals) is considered ‘very low,
while a precision of 14 hexadecimal digits (roughly 17 decimals) is
very adequate .

T2 floating-point arithmetic
hardware of System/360 provides the possibility of detecting when
numbers have gone outside the exponent range stated above. The reader
79 t o 1075

reasonable computations. Whiie exponent overflow and exponent underflow

may think that & range from rcighly 1c snould cover all

are not very common, they can be the cause of very elusive errors,

The evaluation of a determinant is a common computation, and for a matrix
of order L0 is quite rapidly done {if you know how). If the matrix
elements are of the quite reasonable magniﬁude 10w33 the magnitude of
the determinant will be no larger than roughly Po‘9o (and probably
much smaller), well below the range of representable floating-point
numbers, Such problems are a frequent source of exponent underflow.

We shall not discuss here the mechanisms of Algol W for detecting
exponent overflow and underflow, for these should be written up in
another place, Even without these; we see that floating-point numbers
behave well for numbers that are at least 1066 times as large a8 the
largest integer in the system: Hence uge of fioating point numbers
meets almost all the problems raised by integer .verflow. And, of
course. it permits the use of a large set of rational numbers, which

do not even enter the integer system,
ALGOL W REALS AND LCINGREALS

The Algol W manual tells how to represent real variables and
numbers to take advantage of both single-and double-precision, The
purpose of this section is to bring this informaetion into rapport with
the hardware representation of numbers. If a variable X is declared
REAL, one word is set aside for its values, and it will be stored in
single-precision floating-point form, If a variable is declared to be
LONG REAL, a double-word is set aside to hold its values, and it will

be stored in double-precision form,,

87

If a number is written in one of the decimal forms without an L
at the end, it will be chopped to single-precision, no matter how many
digits are set down. Thus 3.1415926535891932 will be immediately
chopped to single-precision in the program, and all the superfluous
digits are lost at once. Thus the assignment statement

XX := 3.1415926535897932
will result in the double-word XX receiving an approximation to m
in the more significant half, and all zeros in the less significant
half! Thus one gets a precision of only approximately seven decimals
for the pain of writing 17, and this may well contaminate all the rest

of the computation.

If one wants XX to be precise to approximately full double precision,

one must write the statement in the form
XX := 3.1415926535897932L
With the declaration REAL X, the statement

X := 3.1k15926535897932L

will result in X having a single-precision approximation to §¢ , as

- the long representation of ® is chopped upon assignment to X.

The reader should now go back and examine the specifications of
the types of various arithmetic expressions, as stated on pages 9, 10,

11 of the Algol W Notes, and on pp. 25, 26 of the Language Definition.

Some of the less expected effects are the following: Suppose we have
declarations

REAL x, Y, z;

LONG REAL XX, YY, ZZ;

INTEGER I, J, K;

Then X*Y, I¥*J, and I*X are all-long real.

The assignment statement

XX = X = Y¥Z

will result in XX having a single-precision chopped version of Y¥Z in
the more significant half, and zeros in the less significant word.

Moreover, I¥I is INTEGER, but I*¥¥2 is LONG REAL.

88

If the reader understands the language Algol W and the preceding
pages on number representation, he should have a gOOd basis for under-

standing the effects of mathematical algorithms . But he should always

remain wary of what a computer is actually doing to his numbers!

89

APPENDIX

Algol W Deck Set-Up
(Job Card)
//JOBLIB Dp DSNAME=SYS2.PROGLIB, DISP=(OLD, PASS)
// EXEC AILGOLW

//ALGOLW.SYSIN DD *

, [%AIGOL
§8 (program)
< FEOF
$ (data)
9 %EOF
/*
§ Optional

§§ May be repeated

Note: The Stanford ALGOL W system monitors execution time and number

of lines of output for each job. The default limits on these quantities
are 10 seconds execution time and 500 lines of printed output. Alternately,
the programmer may explicitly specify limits on the PAIGOL card.

Columns 10-29 of that card are scanned for such specification according

to the following syntax:

90

(limit specification) ti= (time limit) | (time limit), (line limit)

1= (minutes specification)l

(time limit)]
(minutes specification) seconds specification)

(
(minutes specification) ::= (unsigned integer) I(empty)
(seconds specification) :i= (unsigned integer) | (empty)

)

(line limit) +t= (unsigned integer)l (empty

An empty field is given the corresponding default value. The program
is automatically terminated if necessary at the end of the indicated

time. Similarly, the program is automatically terminated if necessary

after the indicated number of lines have been printed.

91

GRAMMATICAL DESCRIPTION OF ALGOL W

R. Floyd

92

In the grammatical description of ALGOL W on the following pages,
Roman capital letters, such as A B C D, stand for themselves. A script
letter, possibly accented, stands for a defined infinite class of symbol
strings; for example, 4 , as defined, stands for the class which includes
the symbols A, B, C, Z, AA, AB, . . .,A9, BA,...,B9,...Z9, AAR,

799, AABAA, A Greek letter, such as A , stands for a given finite
set of characters.

The symbol | means "or"; if @ is defined as B|C , this means that
a particular inscription is an @ if it is a B or if it is a C

The notation 0* , or equivalentiy {0}* , means any number (including
zero) of inscriptions, one after another, each of which is an @ . For
example, {A|B}* means A or B or AA or AB or BA or BB or AAA
oror A, where A means no inscription at all.

The notation 0+ means any number (but at least one) of inscriptions,
one after another, each of which is an Q@ . It abbreviates aa* . For
example, {AlB}+ means A or B or AA or . . . or BB or AAA , etc.

The notation [@] means an optional occurrence of @ ; it abbreviates
falal.

Thenotation C.I+Z§ means @ or @80 or XA , etc; it abbreviates
af@a}” .

The notation @ ,LB means @ and/or B ; it abbreviates 0|/3\0/3

The curly brackets {1 are used simply as parentheses to show the
scope of the above operators.

All other characters, such as /-, () / < etc., stand for themselves,

including ¥ and + when they are not raised.

3

Descriptive
Name

letter
digit
identifier
symbol
constant

function value

expression
simple statement
statement

block

declaration

type

procedure heading

program

The Grammar of a Simple Subset of ALGOL W

2 R o\

A|B|c|D|E|,:.|le|z

olr|2|3|...|8l9

r (a8

Any symbol on the keypunch, except the double quote
L8N et

4 (&)

C-1 (SICF[() %]/} (+]-} {<l<=|=|>=]>| ==}

3:=e| L (E)1le0 To S |B

S'|IF € THEN S|IF € THEN S' ELSE S|FOR d:=€ UNTIL € DO $
* *
BEGIN {83} {S;|9:}'s END
-+ * *
7 8°,|T PROCEDURE ¥ ;{€|BEGIN{S;} {S;|8:} € END]

INTEGER | REAL | LOGICAL | STRING(C)

8(T{VALUE | PROCEDURE}S ', ;)

B.

a6

Descriptive
Name

letter
digit
identifier
variable
symbol

constant

function wvalue
simple expression

simple expression
or relation

expression
argument

simple statement
empty

statement

The Grammar of ALGOL W

Definition

AlBlc|D|E| -+« |x|Y|2Z

-on'8|9

ol1l2|3
Aale}”
SEOITCHIE Y e
Any character on the keypunch, except the double quote.

(06716711 .67Y A {*[+]-1 8" 1} TI[L) |TRUE|FAISE
1# {6 |a|B]c|D|EIFY"|"{o]" "} " |NuLL -

S[(@)]

L

[+l-]fﬂ]{ABsILONGISHoRT}*{vlclsl(e)}'{**lsHLlsHRi{*l/IDIleEmlAND}{+|-IOR}

g’ & {<|<=|=]>=|>h=)¢" |&" 15 o

¢'|IF € THEN € ELSE &|cASE & oF (&)
’l
els| s (fel*}) 1
+ ——
fv:=}'e| GO o 3|d[(a ,)]|rlB
The empty statement; no character at all, .or a space.

S'|IF € THEN S|IF & THEN S' ELSE S|CASE & OF BEGIN §%; END
*
|WHILE € DO S|FOR d:=€ {[STEP &] uUNTIL &|{,e} }pOos

96

Descriptive
Name

block

declaration

type
procedure heading

program

Definition

* *
BEGIN {83} {S;]8:} s END

7 8|7 ARRAY rf'?(e::e',)IPROCEDURE ¥;s
|7 PROCEDURE %;{€|BEGIN {83} 7(S;|9:} ¢ END} | RECORD 8(T 3T,))

INTEGER| [LONG]{REAL | COMPLEX]} | LOGICAL | BITS[(32)] |STRINGI (C)] IREFERENCE(Z:-)

S[({7 [VALUE][RESULT]|[T] PROCEDURE}S, |T ARRAY'J’?(;"j)‘r;)]

B .

The Operators and Functions of ALGOL W, Their Formats, Meanings

and Type Constraints

Use of Symbols

€. = any ALGOL W expression.

a = value of expression &I.

k; = kind of data represented by @, corresponding to expression €.

The kinds of data are:

1. N = numeric
2. L = logical
3. S = string
4. B = bits

AS _
5. R= reference

di = domain of ai when k. = N.

The domains are:

integer

real

I
R
5. C

complex

They are ordered as follows: I C R C C.

p; = precision of-ozi when ki = N.

They are ordered as follows: S < L.
If di = I, then pi = L.

86

Kinds of Arguments

Domains of Numeric

Precision of Numeric

Format Meaning and Results Arguments and Results Arguments and Results
€+ &, o +a, N+ NN d +d, - max(dl,de)- P,*P, - mln(pl,pe)
el- £, @ - o N-N->N d,-d, —>max(dl,d2) P;-P, - mln(pl,pg)
* * *
% €, @ x o, N *N-M d,*d, - max(dl,dz) P, *p, » L
81/ 32 @y /oz2 N/N » N dl/dE - max(dl,dz, R) pl/p2 -—>m1n(pl,p2)
1]
o,
*x L2 *H HH
€ ** €, oy lN N —» N 4 **T - max(dl,R) P;**L - p,
“‘+ 81 oy +N - N +dl - dl +pl - Py
- 81 -0y =N - N -dl - dl -pl - Py
e, DIV €, TRUNCATE(ozl/ae) IDIVI—I
- *
e, REM & a;- (o) DIV ay)* o, IREM I I
the remainder of
81 DIV 62 |
ABS €, o, | ABS N N ABS d4; - mln(dl,R) ABS p, > P
LONG El ay LONG N » N LONG d; -emax(dl,R) LONG pl - L where py=s or d
SHORT &, oy SHORT N o N SHORT d) — d) SHORT p; -8 where p;=L and dl$ I

Kinds of Arguments Domains of Numeric Precision of Numeric

Format Meaning and Results Arqguments and Results Arguments and Results
& OR € o, Vo LORL->L
L 2 Looe B OR B - B
€. AND & o, N o LANDL-L
1 2 1 e B AND B—- B
-1+ B—>3B
61 = 62 oy =, kl k - L(where k _kE) any any
g, =&, aq 4 ap k, -k, » L(where kl=k2) any any
e <ée o, <o N<N-L d,,d. < R any
1 2 1 2 S <851 1’72 -
£ <=8 o, <« N<=N->L d,,d, <€ R any
g 1z 1-"2 S<=8oL e =
€. >=¢ o, Zo N> N->1L d.,d,CR any
1 2 1 2 N oS oL 1’72
e, > € o, > N>N->L d.,d, SR any
1 2 1 2 S>8 o1 1”2 =
4
&l IS 32 oy belongs to the R IS o L
record class 32
e 1 =
81 SHL 5 oy shifted left BSHL N—> B d2 I
dp places
61 SHR 82 oy shifted right BSHR N - B d2 =1
oy places
v.(e |¢&) characters @ S(N|N) - S d. = =1
1ve’ s through 2 2 d3
+a, -1 of ¢

oo T 3 1

00T

Kinds of Arguments

Domains of Numeric

Precision of Numeric

Format Meaning and Results Arguments and Results Arguments and Results
IF 81 THEN 62 ELSE 85 if o then @y, IF L THEN k2 ELSE k3 -k IFLTHEN dl ELSE d2 IF L THEN pl ELSE Py
otherwise o5 where k, = k3 =k - max(dl’dE) —)mln(Pl,Pz)

CASE € of (al,...,e,n)

ozdo(l <el n)

CASE N OF (kl,kg,...,kn)

- k where

k= .. o=k =k

CASE L OF (dl,da,...,dn)
- max(dl,da,...,dn)

CASE L OF (pl, ...,pn)

.‘-) min(pl, o e .,pn)

All the following functions have the format F(&l), where F is the function name.

We shall omit reference to the format, accordingly.

Function Meaning Kinds Domains Precision

TRUNCATE The integer i, with the same sign
as oy, such that

ENTIER The integer i such that ‘ 1 N-N Ro1I Any
o =1<igo
ROUND The integer i, with the same sign

s such that
Iall - 1/2 < |il < Iall + 1/2

'._I

o

= ROUNDTOREAL oy N-N R->R LS
REALPART The real part of ay

, , N-oN C->R Any — S*
IMAGPART The imaginary part of o
IMAG al*f-l NoN 4 -C Any — S*
(4, € R

*Note : A asterisk on a short precision-result means that prefixing the letters LONG to the function
name yields a long precision result.

0T

Function Meaning Kinds Domains Precision
SQRT ‘/al, for @ >0 N->N dl - R Any - s*
(4, € R)

COMPLEXSQRT Vo, NN Any - C Any — S%

o A

1
EXP e ™, for o < 17k.67
>

LN loge(al), for a; >0
LOG log;, d;) for @ >0 > NN 4, - R Any — S%
SIN sin(a;), for Iall < 823550 (¢; € R)
oS cos(a;), for o, | <823550
ARCTAN tan_l(al), in the range)

(- “/2, 11/2)
TIME elapsed time, in units of 1/100 I-1I

minute if o, = 0, otherwise in

units of 1/60 second.
ODD ozl is an odd number I
BITSTRING The sequence of bits which I8

represents ®. in binary.

1
See manuals for details.

¢oT

Function Meaning Kinds Domains Precision
NUMBER The integer which ®, represents B->1I
in binary.
DECODE The number which is used as a code s(l) 31
for the character o
CODE The character for which oy is used I - s(l)
as a code.
BASE10 A string of the form b+12+1234567 N - S(12) dlg R Any
representing al as a power of ten
times a. fraction. (b represents a
blank space).
LONGBASELO As above, for b:l&i123h567890123h5 N - 8(20) CR Any
BASE16 A string of the form bb+l2+123456 N - S(12) 4, SR Any
representing @) as a power of
sixteen times a fraction, both in
hexadecimal.
LONGBASE16 As above, for bb+l12+12345678901234 N - S(20) dl CR Any
INTBASELO A string of the form bi;234567890 I - s(12)
representing oy in decimal.
INTBASE16 A string of the form bbbbl2345678 I~ s(l2)

representing o, in hexadecimal,
using two's complement notation.

