
CS 110

ALGOL W (REVI SED)

LANGUAGE DESCRI PTI ON pp. 1 to 65

ERROR MESSAGES pp. 66 to 75

NUMBER REPRESENTATI ON Pp. 76 to 89

DECK SET- UP Pp. 90 to 91

GRAMMATI CAL DESCRI PTI ON pp. 92 to 103

COMPUTER SCI ENCE DEPARTMENT

STANFORD UNI VERSITY

SEPTEMBER 1969

&/

. - - 8no+

ALGOL W

LANGUAGE DESCRIPTION

by

Henry R. Bauer

Sheldon Becker

Susan L. Graham

Edwin Satterthwaite

RITE 3
p

"A Contribution to the Development

of ALGOL" by Niklaus Wirth and C+ A. R.

Hoare’ was the basis for a compiler de-

veloped for the IBM 360 at Stanford Univer-

sity. This report is a description of the

implemented language, ALGOL W. Historical

background and the goals of the language

may be found in the Wirth and Hoare paper.

1) Wirth, Niklaus and Hoare, C. A. R., "A
Contribution to the Development of ALGOL",

Comm. ACM 9, 6(June 1966), pp. 413-431.

2

D.....[oe fut

f # ..
.

Ly

CONTENTS

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS... . +: seeseee®™ . . +..6

1.1. NOLALION + + « vv 4 eevovrrenoneonvnsnunssons + a¥iuun..0

1.2. Definitions + + tii ivesteornonanosssssesssavesoonsssb

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES. «vse v vvevceesssQ

2.1. Basic Symbolsceiiieiiiiiinitiiiiiiirinresensss9

2.2, Syntactic Entities... .eeeoeveoosoessenes.vesaneesslO

3. IDENT IF TERS. tt ttt tev aeoonasoesosossssaossessassosssnsssssessesll

L.1, NUMbEersS ...c.veeoeironesnor sesonessnsensinneseadlh

4.2. Logical Values «eoovesaveervsoersnsonssonsacssssslh

4.3. Bit Sequences|

Lh 5, REfETENCES +oeivses orto essossuvueseosssesenssassl

5. DECLARATIONS: «se seuss saousouenesonenssoueonsssoonsssnseaneaseld

>«1. Simple Variable Declarations . . «eceoreessvrecess.18

5.2. Array Declarations «eeeeeo ovenners sanes vo vanes, 20

5.3. Procedure Declarationsci. veces ssenevvensossnees 2]

5.47 Record Class Declarations +oesevscasscosansaanssel)

6. EXPRESSIONS «ov vvvvcnnnnnsnecacenenseonceesssaoecssessoreness5

6.2. Function DesSignatorsS «:eoeeesvreonnsenennecnsess28

3

CONTENTS (cont.)

6.3. Arithmetic Expressionsceeeveevnneees 229

6.4. Logical Expressionsevieeieerieneeneeeeeeeas33

6.5. Bit EXPressionsieivieeieiirenerneeneenenneaa. 35

6.6. String EXPressionsieeeeeeieneernneennee...36

6.7. Reference EXpressionseieeeeeeeeeeeeneeaeeaa.37

6.8. Precedence of Operators +38

To STATEMENTS © vv vot eee eee ec m0

7.1. Blocks...........iii cca 39

7.2. Assignment Statementseeeeeeeeneeeneeenssodb

7.3. Procedure Statements vuvuueeeeeeeerreeennnnnan.. 42

7.4. Goto Statementsc.ciiiiiiiiiiiiiinne...... 44

7.59 If Statements 00.45

7.6. Case Statements vivir... 406

7.7. Iterative Statements5.%47

7.8. Standard Procedures iii 49

7.8.1. The Input/Output System50

7.8.2. Read Statements%

7.8.3. Write Statements cecevvweweowwsce53

7.8.4. Control Statements54

8. STANDARD FUNCTIONS AND PREDECIARED IDENTIFIERS95

8.1. Standard Transfer Functionsoeeeuen 0)

8.2. Standard Functions of Analysiscocevenven0]

4

| 8.3. Time Functionieiiuiinerneennenne. 59

8.4. Predeclared VariablesBQ

8.5. Exceptional Conditions60

APPENDIX

I. CHARACTER ENCODINGc0000000000neeneseseeseB5

era)

- - “ . Ls Cr ae . . “ CE .

Co . . .

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language 1s a phrase structure language, defined by

a formal metdlanguage. This metalanguage makes use of, the notation and

definitions explained below. The structure of the language ALGOL W

1s determined by:

(1) ¥, the set of basic constituents of the language,

(2) U, the set of syntactic entities,- and

(3) P, the set of syntactic rules, or productions.

1.1. Notation

A syntactic entity 1s denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form

WA =x |

where <A> is a member of UW, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a “sequence”.

The form

1s used as an abbreviation for the set of syntactic rules

<A> ::=X

<A> i=y

<A> i:= zg

1.2. Definitions

1. A seguence x 1s said to directly produce a sequence y 1f and

6

only 1f there exist (possibly empty) sequences u and w, so that

either (i) for some <A» in U, x = WKOW,.y = uvw, and <& 1:=

v 1s a rule in Pj; or (ii) x = uw, Vv = uvw and v is a "comment"

(see below). oo

2. A sequence x 1s said to produce a sequence y if and only if

there exists an ordered set of sequences 8[0]}, s(1},... , s[n],

so that x = 8[0], s[n] = y, and s[i-1] directly produces s[i] for

all1 =1,. . ., n.

3. A sequence'x is said to be an ALGOL W program 1f and only 1if

its constituents are members of the set 'If, andx can be produced

. from the syntactic entity <program>.

The sets V -and UW are defined through enumeration of their members

in Section 2 of this Report (cf. also 4.4.). The syntactic rules are

given throughout the sequel of the Report. To provide explanations

for the meaning of ALGOL W programs, the letter sequences denoting

syntactic entities have been chosen to be English words describing

approximately the nature of that syntactic entity or construct. Where

words which have appeared in this manner are used elsewhere 1n the

text, they refer to the corresponding syntactic definition. Along

with these letter sequences the symbol T may occur. It is understood

that this symbol must be replaced by any one of a finite set of English

words (or word pairs). Unless otherwise specified in the particular

section, all occurrences of the symbol J within one syntactic rule

must be replaced consistently, and the replacing words are

/

integer logical

real bit

long real string

complex reference

long complex

For example, the production

<J term>::= <J factor> (ef. 6.3.1.)

corresponds to

<lnteger term> . := <integer factor>

<real term> :.- <real factor>

<long real tern> : v= <long real factor:,

<complex term> , *~ <compiex factor>

<long complex term>: := <long complex factor>

The production

<7, primary> ::= long <7, primary> (cf. 6.3.1. and
table for long

corresponds to 6.5.2.7.)

<long real primary> ::= long <real primary?

<long real primary> :*= long <integer primary>

<long complex primary> ::= long <complex primary>

Tt 1s recognized that typographical entities exist of lower order

than basic symbols, called characters. The accepted characters are

those of the IBM System 3€Q EBCDIC code.

The symbol comment followedby any sequence of characters not

containing semicolons, followed by a semicolon, is called a comment.

A comment has no effect on the meaning of a program, and 1s ignored

during execution of the program. An identifier (cf. 3.1.) immediately

8

following the basic symbol end 1s also regarded as a comment.

The execution of a program can be considered as a sequence of

units of action. The sequence of these units of action1s defined as

the evaluation of expressions and the execution of statements as de-

noted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs 1s either (1) de-

fined by System 360 operations, e.g., reai arithmetic, or (2) left

"undefined, e.g., the order of evaluation of arithmetic primaries 1n

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

aAlB|lc|p|E|lF|Ge|u]|z]s]lk]L|M|N]|O]|P|
lr |s|r|lulv|w|x|[y]z]

olrlafs]sls|e6]7]8]9]

true | false | "| null | # ||
integer | real | complex | logical | bits | string |

reference long real | long complex | array |

procedure record |

» 15 1:1 1 (])1 begin 1 end | if | then | else |

case | of | + | =| =| / | * | div | ren | shr | smi | is |
abs long short and | or = | i = | = < |
<= |>|>=]:|

= | goto | go to | for | step | until | do | while |
comment I value I result

All underlined words, which we call 'reserved words”, are repre-

sented by the same words in capital letters in an actual program, with

nc intervening blanks
9

-TTTI

Adjacent reserved words, identifiers (cf. 3.1.) and numbers must include

| no blanks and must be separated by at least one blank space. Otherwise

blanks have no meaning and can be used freely to improve the read-

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter list> Te3 <formal type> 5.3

<actual parameter> Te5 <go to statement> 7.4

<bit factor> 6.5 <hex digit> 4 3

<bit primary> 6.5 <identifier list> 3.1

<bit secondary> 6.5 <identifier> 3.1

<bit sequence> 4.3 <if clause> 6

<bit term> 6.5 <1f statement> 75

<block body> 7.1 <imaginary number> 4.1

_ <block head> 7 1 <increment> TT

<block> 7.1 <initilial value> 7.7

<bound pair list> 5.2 | <iterative statement> 7.7

<bound pair> 5.2 | <label definition> 7.1
<case clause> 6 <label identifier> 3.1

<case statement> 7.6 <letter> 5.1

<control 1identifier> 31 <limit> TT

<declaration> 5 I <logical element> 6.4

<digit> 3.1 <logical factor> 6.4

<dimension specification> 513 | <logical primary> 6.4
<empty> see page 34 <logical term> 6.4
<equality operator> 6.4 <logical value> 4.2

<expression list> 6.7 <lower bound> 5.2

<field list> 5.4 | <null reference> L.5
<for clause> TT | <procedure declaration> 5¢3
<for list> 7.7 <procedure heading> 513

<formal array parameter> 5.3 § <procedure identifier> 3.1

<formal parameter list> 513 <procedure statement> Ted

<formal parameter segment> 5.3 | <program> /

10

<proper procedure body’ 5.2 <subscript list> 6.1

«proper procedure . | <substring designator> 6.6
declaration 5:2 GT 30 Geetanators 61

<record class declaration> 5.4 <I array identifiers 3.1
<record class identifier> 3.1 <T assignment statement3 7.2

crecord class identifier _-. <T expression lists 6
<record designator> 6.7 <J expressior> 6
<relat ior 61 | < factor> 6.3

<relational operator> 6.4 <I field designator> 6.1
<scale factors 4 1 <J field identifier» 3.1

<sigr> yl <I function designator> 6.2
<simple bit expressior> 6.5 <F function identifier> 5.1
<simple logical expression> 6.4 <J function procedure body> 5.3
<simple reference <J function procedure

expression 6.7 declaratior> 5.3

<simple statement> 7 <I left part> 7.2
<simple string expression> 6.6 <J number> b.1
<simple JT. expressior> 6.3 <T primary3 6.3

<simple J variable 6.1 < subarray designator> 5
<simple type> 2.1 | < variable> 6.1

<simple variable <J variable identifier> 3,1
declaratiorn> 0.1 | <unscaled real> 4.1

| <statement list> 7.6 | <upper bound> 5.2

<statement> 7 <while clause> 7.7
<string primary=> 6.6

<string> Lb

<subarray designator list> T.3

<subscript> 6.1

3. IDENTIFIERS

5.1. Syntax

<identifier> i: = <letter> | <identifier> <letter> | <identifier> <digit>
'<J variable identifier> ::= <identifier3

11

<T array identifier3 ::= <identifier>

<procedure 1identifier> ::= <identifier>

<I function identifier> ::= <identifier>

<record class 1identifier> ::= <identifier>

<J field identifier>::= <identifier>

| <label identifier> ::= <identifier>

<control identifier> ::= <identifier>

<letter> ::=A|B|c|D|E|F|Ge|H|I]|T|K]|L]|M]|
N|o|P|le|R|s|[T|Uulv]|w]x]|Y]z

<digit> ::= O | 1 | 2 | 3 | 4 | 5 6 | 7 | 8 | 9
<identifiler list> ::= <identifier> | <identifier list> , <identifier>

3.2. Semantics

Variables, arrays, procedures, record classes and record fields

are sald to be quantities. Identifiers serve to identify quantities,

or they stand as labels, formal parameters or control identifiers.

Identifiers have no inherent meaning, and can be chosen freely in the

reference language. In an actual program a reserved word cannot be

used as an identifier.

Every identifier used in a program must be defined. This 1is

achieved through

(a) a declaration (cf. Section 5), if the identifier identifies a

quantity. It 1s then said to denote that quantity and to be a

J variable identifier, J array identifier, T procedure identifier,

JT function identifier, record class identifier or J field iden-

tifier, where the symbol TJ stands for the appropriate word re-

flecting the type of the declared quantity;

(b) a label definition (cf.7.1.), if the identifier stands as a

12

| se

label. It 1s then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 53.).It is then

sald to be a formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7.7.).

It 1s then said to be a control identifier;

(e) 1ts implicit declaration in the language. Standard procedures,

standard functions, and predefined variables (cf. 7.8 and 8)may be

considered to be declared in a block containing the program.

The recognition of the definition of a given identifier 1s

determined by the following rules:

Step 1. If the identifier 1s defined by a declaration of a

quantity or by its standing as a label within the smallest block

- (cf. 7.1.) embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a

procedure heading (cf. 53.) or a for clause (cf. 7.7.) is considered

to be a block.

Step 2. Otherwise, 1f that block 1s a procedure body and if the

given identifier 1s identical with a formal parameter in the asso-

clated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for clause

and the identifier 1s identical to the control identifier of

that for clause, then 1t stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered.

15

If either step 1 or step 2 could lead to more than one definition, oo

then the identification 1s undefined. ¥

The scope of a quantity, a label, a formal parameter, or a con- |

trol identifier 1s the set of statements in which occurrences of an

identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.3. Examples

I

PERSON

ELDERSIBLING

x15, X20, x25

4.. VALUES AND TYPES

Constants and variables (cf. 6.1.) are said to possess a value.

The value of a constant is determined by the denotation of the con-

stant. In the language, all constants (except references) have a

reference denotation (cf. 4%.1.-k.4.). The value of a variable is the

one most recently assigned to that variable. A value is (recursively)

defined as either a simple value or a structured value (an ordered set

of one or more values). Every value is said to be of a certain type.

The following types of simple values are distinguished:

integer: the value is a 32 bit integer,

real: the value is a 3 bit floating point number,

long real: the value 1s a 6 bit floating point number,

complex: the value is a complex number composed of two
numbers of type real,

14

tamgqnpl ex: the value 1s a complex number composed of two
long real numbers,

logical: the value 1s a logical value,

. bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256 char-
acters,

reference: the value 1s a reference to a record.

The following types of structured values are distinguished:

array: the value 1s an ordered set of values, all of identi-
cal simple type,

record: the value is an ‘ordered set of simple values.

A procedure may yield a value, in which case 1t 1s said to be a

function procedure, or it may pot yield a. value, in which case it is

called a proper procedure. The value of a function procedure is de-

fined as the value which results from the execution of the procedure

body (cf. 6.2.2.).

Subsequently, the reference denotation of constants 1s defined.

The reference denotation of any constant consists of a sequence of

characters. This, however, does not imply that the value of the de-

noted constant 1s a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, 1n the case

of strings.

4 .1. Numbers

4.1.1. syntax

<long complex number> ::= <complex number>L

<complex number> ::= <imaginary number>

<imaginary number> :!:= <real number>I | <integer number>I

15

4 <long real number> : : = <real number>L | <integer number>L
, <real number> : := <unscaled real> | <unscaled real> <scale factor> |
i <integer number> <scale factor> | <scale factor>
§ <unscaled real> ::= <integer number> + <integer number> |

f *<integer number> | <ilnteger number>.
i | <scale factor> : := ‘<integer number> | '<sign> <integer number>
3 <integer number> : := <digit> | <integer number> <digit>

<sign> ::= + | -

4.1.2. Semantics

Numbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which 1s

multiplied by the unscaled real or integer number preceding it. Each

| number has a uniquely defined type. (Note that all <J number>s are

unsigned.)

4.1.3. Examples

1 5 11

0100 1'3 0.671

3 . 1416 6.02486 ' +23 1IL

2.718281828459045235360287L 2.3'-6

4.2, Logical Values e

-4.,2,1. syntax

<logical value» : := true, | false

4.3. Bit Sequences

4.3.1. syntax

<bit sequence> : := # <hex digit> | <bit sequence> <hex digit>

<hex digit ::=0 [1] 2|3| 456718]9|Aa]B3B]|

c|/pDI|E|F

16

Note that 2 |... | F corresponds to 250 Co. [15,5

4.3.2, Semantics

The number of bits in a bit sequence is 32 or 8 hex digits. The

bit sequence is always represented by a 32 bit word with the specified

bit sequence right justified in the word and zeros filled in en the

left.

4.3.3. Examples

#4F = 0000 0000 0000 0000 0000 0000 0100 1111

#9 = 0000 0000 0000 0000 0000 0000 0000 1001

4.4, Strings

L.4.1. syntax

<string> ::= '"<sequence of characters>"

4.42. Semantics

Strings consist of any sequence of (at moat 256)charactersac-

cepted by the System 360 enclosed by", the string quote. If the

string quote appears in the sequenceof characters it must be imme-
J

diately followed by a second string quote which is then ignored. The

numberof characters in a string is said te be the length of the

string.

4.4.3. Examples

" JOHN"

"I is the string of length 1 censiating of the string

quote.

17

4.5. References

4.5.1. Syntax

<null reference ::= null

4.5.2. Semantics

The reference value null fails to designate a record; 1f a refer-

ence expression occurring in a field designator (cf. 6.1.) has this

value; then the field designator 1s undefined.

5 DECLARATIONS

Declarations serve to associate identifiers with the quantities

used in the program, to attribute certain permanent properties to

_ these quantities (e.g. type, structure), and to determine their scope.

The quantities declared by declarations are simple variables, arrays,

procedures and record classes.

Upon exit from a block, all quantities declared or defined within |

that block lose their value and significance (cf. 7.1.2. and 7.4.2.).

Syntax:

<declaration> ::= <simple variable declaratior> | <I array

declaratior> | <procedure declaratiorn> |
<record class declaratiorn>

5.1. Simple Variable Declarations

5.1.1. Syntax

<simple variable declaration» ::= <simple type> <identifier list>

<simple type ::= integer | real | long real | complex | long
complex | logical | bits | bits (32) |

18

string | string (<integer number>) | reference
(<record class identifier list>)

<record class identifier 1list> ti= <record class identifer> |
<record class identifier list> ,

<record class 1identifier>

5.1.2. Semantics

Each identifier of the identifier list 1s associated with a

variable which 1s declared to be of the indicated type. aA variable is

called a simple variable, if its value is simple (cf. Section 4). If

a variable 1s declared to be of a certain type, then this implies that

only values which are assignment compatible with this type (cf. 7.2.2.)

can be assigned to it. It is understood that the value of a variable

1s equal to the value of the expression most recently assigned to it.

A variable of type bits 1s always of length 32 whether or not

the declaration specification 1s included.

A variable of type string has a length equal to the unsigned

integer 1n the declaration specification. If the simple type is

given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to records of the

record classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

5.1.3. Examples

integer I, J, kK,M, N

real X, Y, Z

long complex C

logical L

bits G, H

19

string_ (10) S, T

reference (PERSON) JACK-; JILL

5.2. Array Declarations

5.2.1. Syntax

<J array declaration> ::= <simple type> array <identifier list3

(<bound pair 1ist>)

<bound pair list> ¢:= <bound pair> | <bound pair 1ist>,<bound
pair>

<bound pair> := <lower bound : <upper bound>

<lower bound> ::= <integer expression>

<upper bound> := <integer expressiorp>

5.2.2. Semantics

Each identifier of the identifier list of an array declaration 1s

~ associated with a variable which is declared to beof type array.

variable of type erray is an ordered set of variables whose type ls the

simple type preceding the symbol ‘array . The dimension of the array is

the number of entries in the bound pair list,

Every element of an array is identified by a list of indices.

The indices are the integers between and including the values of the

lower bound and the upper bound. Every expression in the bound pair

list 1s evaluated exactly once upon entry to the block in which the

declaration occurs. The bound pair expressions can depend only on

variables and procedures global to the block in which the declaration

occurs. In order to be valid, for every bound pair, the value of the

upper bound must not be less than the value of the lower bound.

5.2.3. Examples

antagery H (1: : 100)

20

real array A, Bil::M, l::N’

string (12) array STREET, TOWN, CITY (J::K + 1)

0.2. Procedure Declarations

5.3.1. Syntax

<procedure declaratior> :!!= <proper procedure declaration> |

<I function procedure declaration>

<proper procedure declaration> ::= procedure <procedure heading> ;

<proper procedure body>

<J function procedure declaration> ::= <simple type> procedure

<procedure heading>;

<J function procedure body>

<proper procedure body> ::= <statement>

<J function procedure body> :3= <J expression> | <block body>

<J expression> end

<procedure heading> i= <ildentifier> | <identifier (<formal

parameter' 1list>)

<formal parameter list> i= <formal parameter segment> |
<formal parameter 1list> ; <formal

parameter segment?

<formal parameter segment> ::= <formal type> <identifier list> |
<formal array parameter>

<formal type> ::= <simple type> | <simple type> value | <simple

- type result | <simple type> value result |

<simple type> procedure | procedure

<formal array parameter> ::= <simple typé& array <identifier

lists (<dimension specification>)

<dimension specification> ::= * | <dimension specification> , *

5.3.2. Semantics

A procedure declaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal

21

part of the procedure declaration is the procedure body. Other parts

of the block in whose heading the procedure is declared can then cause

this procedure body to be executed or evaluated. A proper procedure |

is activated by a procedure statement (cf. 7.3.), a function procedure

by a function designator (cf. 6.2.). Associated with the procedure

body is a heading containing the procedure identifier and possibly a

list of formal. parameters.

5.3.2.1. Type specification of formal parameters. All formal para-

meters of a formal parameter segment are of the same indicated type,

The type must be such that the replacement of the formal parameter by

the actual. parameter of this specified type leads to correct ALGOL W

- expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the symbols value and result appearing in &

formal type 1s explained by the {following rule, which 1s applied to

the procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols hegin and end

if 1t 1s not already enclosed by these symbols;

(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

(a) a declaration followed by a semicolon is inserted after

the first begin of the procedure body, with a simple

type as indicated in the formal type, and with an 1den-

tifier different from any identifier valid at the place

of the declaration. |

(b) throughout the procedure body, every occurrence of the

22

formal parameter identifier 1s replaced by the identifier

defined in step 23a;

(3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by a semicolon 1s inserted

after the declarations of the procedure body. Its left part

contains the identifier defined in step 2a, and its expression

consists of the formal parameter identifier. The symbol

value1s then deleted;

(4) If the formal type contains the symbol result, an assignment

statement preceded by a semicolon 1s inserted before the symbol

end which terminates a proper procedure body. In the case

of a function procedure, an assignment statement preceded

by a semicolon 1s inserted after the final expression

} of the function procedure body. Its left part contains the

formal parameter identifier, and its expression consists of

the identifier defined in step 2a. The symbol result is

then deleted.

5.3.2.3. Specification of array dimensions. The number of "¥"'g

appearing in the formal array specification 1s the dimension of the

array parameter.

5.5.3. Examples

procedure INCREMENT; X := X+1

real procedure MAX (real value X, Y);

if X < Y then Y else X

25

procedure COPY (real array U, V(*,%); integer value A, B);
for IT := 1 until A do

for 3 :=1 until B doU(Z,J) := V (I,J)

real procedure HORNER (dead dreag 2 (*); value N;
real value X);

begin real S; S := 0;

for I := 0 until N do S := SS *¥ X + A(l);
S

end

long real procedure SUM (integer K, N; long real X);

begin long real Y; Y := 0; K := Nj

while K> = 1 do

begin Y := Y +X; K:=K-1

end;

Y

end

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);

begin reference (PERSON) P, M;

P := YOUNGESTOFFSPRING (rATHER (rFaTHER (R)));

while (P = = null) and.(= MALE (P)) or

(P = FATHER (R)) do

P := ELDERSIBLING (P);

M :=YOUNGESTOFFSPRING (MOTHER (MOTHER (R))):

while (M= =null) and (= MALE (M)) do
M := ELDERSIBLING (M);

| f nulPthen=M else

if nullMthema P else

if AGE(P)< AGE (M) then P else M

gna

2h

5.4. Record Class Declarations

54.1. Syntax

<record class declaration> ::# record <identifier> (<field list>)

<field list> ::= <simple variable declaration> | <field list> ;

<simple variable declaration>

5.4.2. Semantics

A record class declaration serves to define the structural pro-

perties of records belonging to the class. The principal constituent

of a record class declaration 1s a sequence of simple variable declar-

ations which define the fields and their simple types for the records

of this class and associate identifiers with the individual fields.

A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) LEFT, riGHT)

record PERSON (string NAME; integer AGE; logical MALE;

reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING,

EIDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed

from existing ones. These new values are obtained by performing the

operations indicated by the operators on the values of the operands,

The operands are either constants, variables or function designators,

or other expressions, enclosed by parentheses if necessary. The evalu-

ation of operands other than constants may involve smaller units of

oe |

action such as the evaluation of other expressions or the execution

of statements. The value of an expression between parentheses is

obtained by evaluating that expression. If an operator has two operands,

then these operands may be evaluated in any order with the exception

of the logical operators discussedin 6.4.22. Several simple types

of expressions are distinguished. Their structure is defined by the

following rules, in which the symbol T has to be replaced consistently

as described in Section 1, and where the triplets Ts I. T, have to
be either all three replaced by the same one of the words

logical

bit

string

~ reference

or by any combination of words as indicated by the following table,

which yields I given ‘N and Ts:

™N | integer real complex
integer integer real complex

real real real complex

—complex complex complex complex

T has the quality "long" 1f either both T and have that quality,
or if one has the quality and the other is "integer".

Syntax:

<J expression> := <simple J expression>| <case clause>

(<T expression list>)

Jo expression> ::= <if clause> J, expression> else

J, expression>

26

<I expression list> ::= <I expression>

Js expression list> ::= J; expression list> , Js expression>
<1f clause> ::= if <logical expression> then

<case clause> ::= case <integer expression> of

The construction

<if clause> Jy expression> else J, expression>

causes the selection and evaluation of an expression on the basis of

the current value of the logical expression contained 1n the 1f clause.

If this value 1s true, the expression following the 1f clause 1s

selected; 1f the value 1s false, the expression following else 1s se-

lected. If 7, and I, are simple type string, both string expressions

must have the same length. The construction

<case clause> (<J expression 1list>)

_ causes the selection of the expression whose ordinal number in the

expression list 1s equal to the current value of the integer expression

contained in the case clause. In order that the case expression be

defined, the current value of this expression must be the ordinal number

of some expression in the expression list. IfTis simple type string,

all the string expressions must have the same length.

6.1. Variables

6.1.1. Syntax

<simple T variable> ::= J variable identifier> | & field designator> |

J array designator>

J variable> ::= <simple J variable>

<string variable> ::= <substring designator>

<I field designator> ::= < Tfield identifier> (<reference expression>)

<J array designator> ::= <Jarray identifier> (<subscript list>)

<subscript 1list> ::= <subscript> | <subscript 1list>, <subscript>

<subscript> ::= <integer expression>

27

6.1.2. Semantics

An array designator denotes the variable whose indices are the

current values of the expressions in the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field in the record referred to

by its reference expression. The simple type of the field designator

1s defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

(cf. 5.4.).

6.1.3. Examples
|

- X A(T) M(I+J, 1-7)

FATHER (JACK) MOTHER (FATHER (JILL))

6.2. Function Designators

6.2.1. Syntax

<J function designator> ::= <J function identifier> | <7 function

identifier> (<actual parameter list>)

6.2.2. Semantics

A function designator defines a value which can be obtained by sa

process performed in the following steps:

Step 1. A copy 1s made of the body of the function procedure

whose procedure identifier 1s given by the function designator

and of the actual parameters of the latter.

Steps 2, 3, 4, As specified in 7.3.2.

28

Step 5. The copy of the function procedure body, modified as indicated

in steps 2-4, is executed. Execution of the expression which constitutes

or 1s part of the modified procedure body consists of evaluation of that

expression, and the resulting value 1s the value of the function desig-

nator. The simple type of the function designator 1s the simple type

in the corresponding function procedure declaration.

6.2.3, Examples .

MAX (x ** 2, Y %*% 2)

SUM (I, 100, H(1))

SuM (I, M, SUM (J, N, A(I,J)))

YOUNGESTUNCLE (JILL)

SUM (I, 10, x(1) * Y(1))

HORNER (X, 10, 2.7)

- 6.3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol T

must be systematically replaced by one of the following words (or

word pairs):

integer

real

long real

complex

long complex

The rules governing the replacement of the symbols Ty 7, and T, are
given in 6.3.2,

<simple J expression> ::= <T7Tterm> | + <J term> | - <J term>

29

| <simple Ty expression> :i= <simple T, expression> + <I, term> |
<simple Ty expression> - J, term>

<J term> ::= <J factor>

<5 term> ::= J, term> ¥ J, factor>

J, term> ::= <T, term> / J, factor>
<integer term> ::= <integer term> div <integer factor> |

<integer term> rem <integer factor>

J, factor> ::= Jprimary> | <I, factor> ¥* <integer primary>
Js primary> ::= abs J, primary>

<I, primary> ::= long <I, primary>

Js primary> ::= short <J, primary>
<I primary> ::= <I variable> | < function designator> |

(<I expression>) | <I number>
<integer primary> ::= <control identifier>

6.3.2. Semantics

An arithmetic expression 1s a rule for computing a number.

According to its simple type it 1s called an integer expression,

real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +,-, ¥, and / have the conventional meanings

of addition, subtraction, multiplication and division. In the relevant

syntactic rules of 6.3.1. the symbols Tor Ty and Ts have to be replaced

by any combination of words according to the following table which

indicates To for any combination of Ty and To

Operators + | -

Ia
Iq | integer real complex
integer | integer real complex

real | real real complex
|

complex § complex complex complex

30

UA has the quality "long" if both I and 7, have the quality

"long", or 1f one has the quality "long" and the other 1s "integer".

Operator *

J

71 2 integer real complex

integer integer long real long complex

real long real long real long complex

complex long complex long complex long complex

7, or Ts having the quality “long” does not affect the type of
the result.

Operator /

A J | :_ Ti | 2 integer real complex

integer long real real complex

real real real complex

complex complex complex complex

To, has the quality "long" if both 7 and J, have the quality
"long", or 1f one has the quality "long" and the other 1s "integer",

or 1f both are "integer".

6.3.2.2. The operator "-" standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type

of the result is the type of the operand. The operator "+" standing

as the first symbol of a simple expression denotes the monadic opera-

tion of identity. |

6.3.2.3. The operator div is mathematically defined (for B 4 0) as

A div B = SGN (A Xx B; Xx D (abs A, abs B) (cf. 6.3.2.6.)

31

where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

| integer procedure D (integer value A, B);

if AC B then 0 else D(A-B, B) + 1

6.3.2.4. The operator rem (remainder) is mathematically defined as

AremB =A- (A div B) x B

6.3.2.5. The operator *% denotes exponentiation of the first operand

to the power of the second operand. [In the relevant syntactic rule of |

6.3.1. the symbols Io and 7, are to be replaced by any of the follow-
ing combinations of words:

Io | Ty
long real integer
real real

complex complex

To has the quality "long" if I, does or if Ty 1s "integer".

6.3.2.6.The monadic operator abs yields the absolute value or modulus

of the operand. In the relevant syntactic rule of 6.3.1. the symbols Ts

and Ty have to be replaced by any of the following combinations of words:

Io | Ti
integer integer

real real

real complex

If Ii has the quality "long", then so does Ts

32

6.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation is of simple type real, complex, long real, or long complex

then 1t 1s the mathematically understood result of the operation per-

formed on operands which may deviate from actual operands.

"In the relevant syntactic rules of 6.3.1. the symbols To and I,

must be replaced by any of the following combinations of words (or

word pairs) :

Operator long | |

UA oo Ti

long real real

long real integer

long complex | complex

Operator short

To Ty -
oo real | long real |

| complex long complex |

6.3.3. Examples

-C + A(1) *B(I)

EXP (-X/(2 * SIGMA)) /SQT (2 * SIGMA)

6.4. Logical Expressions

6.4.1. Syntax

In the following rules for <relation> the symbols I and 7 must

either be identically replaced by any one of the following words:

33

bit

string

reference

or by any of the words from:

complex

long complex

real

long real

integer

and the symbols Ts or Ts must be identically replaced by string or
must be replaced by any of real, long real, integer.

<simple logical expression> ::= <logical element>| <relation>

<logical element> ::= <logical term>| <logical element> or
<logical term>

<logical term> ::= <logical factor> | <logical term> and
<logical factor>

<logical factor> ::= <logical primary>|- <logical primary>

<logical primary> ::= <logical value>| <logical variable |

<logical function designator> |

(<logical expressiorn>)

<relatior> ::= <simple Ts expression> <equality operator>

<simple Tq expression | <logical elements
<equality operator> <logical element> |

<simple reference expression> is

<record class identifier> |

<simple 3, expression> <relational operator>

<simple T3 expression
<relational operator> =< <=> = | >

<equality operator> si==| — =

6.4.2. Semantics

A logical expression is a rule for computing a logical value.

3h

6.4.2.1. The relational operators represent algebraic ordering for

arithmetic arguments and EBCDIC ordering for string arguments. If two

strings of unequal length are compared, the shorter string 1s extended

to the right by characters less than any possible string character.

~The relational operators yield the logical value true if the relation

is satisfied for the values of the two operands; false otherwise. IWO

references are equal 1f and only 1f they are both null or both refer

to the same record. Two strings are equal if and only 1f they have

the same length and the same ordered sequence of characters. The operator

1s yields the logical value true if the reference expression designates a

record of the indicated record class; false otherwise. The reference

value null fails to designate a record of any record class.

6.4.2.2. The operators = (not), and, and or, operating on logical

values, are defined by the following equivalences:

— X 1f X then false else true

X and Y if X then Y else false

X orY 1f X then true else Y

6.4.3. Examples

P or Q |

(X < Y) and (Y <7)

YOUNGESTOFFSPRING (JACK) = = null

FATHER (JILL) 1s PERSON -

6.5. Bit Expressions

6.5.1. Syntax

<simple bit expression> ::= <bit term> | <simple bit expression>
or <bit term>

<bit term> ::= <bit factor>| <bit term> and <bit factor>

<bit factor> ::= <bit secondary>| - <bit secondary>

<bit secondary> ::= <bit primary> | <bit secondary> shl

<integer primary> | <bit secondary> shr

<integer primary>

<bit primary> ::= <bit sequence> | <bit variable> | <bit PAGE35
function designator> | (<bit expression>)

6.5.2. Semantics

A bit expression 1s a rule for computing a bit sequence.

The operators and, or, and = produce a result of type bits, every

bit being dependent on the corresponding bit (s) in the operand(s) as

follows:

X Y | AX XandY XorY
0 0) 1 0 0

0 1 1 0 1

1 0 0) 0 1

1 1 0 1 1
!

The operators shl and shr denote the shifting operation to the

left and to the right respectively by the number of bit positions

indicated by the absolute value of the integer primary. Vacated bit

- positions to the right or left respectively are assigned the bit

value 0.

6.5.3. Examples

G and H or #38

G and = (H or G) shr 8

6.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary> ::= <string> | <string variable> | <string
function designator> | (<string expression>)

<substring designator>ii= <simple string variable>

(<integer expression <integer number>)

36

6.6.2. Semantics

A string expression 1s a rule for computing a string (sequence of

, characters).

6.6.2.1.A substring designator denotes a sequence of characters of

the string designated by the string variable. The integer expression

preceding the § selects the starting character of the sequence. The

value of the expression indicates the position in the string variable.

The value must be greater than or equal to 0 and less than the declared

length of the string variable. The first character of the string has

position 0. The integer number following the § indicates the length

of the selected sequence and 1s the length of the string expression,

~- The sum of the integer expression and the integer number must be less

than or equal to the declared length of the string variable.

6.6.3. Example

string (10) S;

5s (413)

Ss (I+JW1l)

string (10) array T (1: em, 2: in);

T (k6) (35)

6.7. Reference Expressions

6.7.1. Syntax

—-<simple reference expression) ::= <null reference | <reference

variable> | <reference function

designator> | <record designator> |

(<reference expression>)

37

<record designator> :i= <record class identifier> | <record
class identifier> (<expression list>)

<expression list> i= expression> | <expression list>,
<J expression>

6.7.2. Semantics

A reference expression is a rule for computing a reference to a

record.

The value of a record designator is the reference to a newly

created record belonging to the designated record class. If the

record designator contains an expression list, then the values of the

expressions are assigned to the fields of the new record, The entries

in the expression list are taken in the same order as the fields in

the record class declaration, and the simple types of the expressions must

be assignment compatible with the simple types of the record fields

(cf. 7.2.2.).

6.7.3. Example

PERSON ("CAROL'", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING

(JACK))

6.8. Precedence of Operators

The syntax of 6.3.1., 6.4.1., and 6.5.1. implies the following

hierarchy of operator precedences:

long, short, abs

shl, shr, ¥¥

1

*, [5 div, rem, and

38

+, -, or

<< ==, =, >=,2>, 1s

Example

A =BandC 1s equivalent to A = (B and C)

TT. STATEMENTS

A statement denotes a unit of action. By the execution of a

statement 1s meant the performance of this unit of action,which may

consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements.

syntax:

<program> ::= <block> .

<statement> :!:= <simple statement> | <iterative statement> |

<if statement> | <case statement>

<simple statement> ::= <block> | <J assignment statement> |

<empty> | <procedure statement>
<goto statement>

7.1. Blocks

7.1.1. Syntax

- <bloc& i= <block body> <statement> end

<block body> ::= <block head> | <block body> <statement>; |

<block body> <label definitior>

<block head> ::= begin ; <block head> <declaration> ;

<label definition» ::= <identifier> :

7.1.2. Semantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:

i 39

| Step 1. If an identifier, say A, defined in the block head or

in a label definition of the block body 1s already defined at

the place from which the block 1s entered, then every occurrence

of that identifier, A, within the block except for occurrence 1in

array bound expressions 1s systematically replaced by another

identifier, say APRIME, which is defined neither within the

block nor at the place from which the block 1s entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

Step 5. Execution of the statements contained in the block body

begins with the execution of the first statement following the

block head.

- After execution of the last statement of the block body (unless

it 1s a goto statement) a block exit occurs, and the statement follow-

ing the entire block 1s executed.

7.1.5. Example

begin real U;

u :=X; X :=Y%Y,;, Y =z; zZ =U

end

7.2.- Assignment Statements :

7.2.1. syntax

In the following rules the symbols Ts and I, must be replaced by

words as indicated in Section 1, subject to the restriction that the

type 7, 1s assignment compatible with the type 7s as defined 1n 7.2.2.

LO

<J, assignment statement> ::= J, left part> <J, expression> |
J, left part> J, assignment
statement>

<J left part> ::= <I variable>:=

7.2.2. Semantics

The execution of a simple assignment statement

J assignment statement> ::= Jy left part> <7, expression>:

causes the assignment of the value of the expression to the variable.

If a shorter string 1s to be assigned to a longer one, the shorter

string 1s first extended to the right with blanks until the lengths are

equal. In a multiple assignment statement

(<7, assignment statement> ::= I, left part> I; assignment
statement>)

the assignments are performed from right to left. For each left part

variable, the simple type of the expression or assignment variable immediately

to the right must be assignment compatible with the simple type of that

variable.

A simple type Ty 1s sald to be assignment compatible with a simple

type Ts 1f either

(1) the two types are identical (except that 1f To and Ty are

string, the length of the To variable must be greater than

or equal to the length of the Ty expression or assignment), or

(2) To is real or long real, and T, is integer, real or long

real or

(3) T, is complex or long complex, and J, is integer, real,

long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer

to a record of one of the classes specified by the record class identifiers

assoclated with the reference variable in its declaration.

Li

| 7.2.3. Examples

z := AGE(JACK) := 28

X :=Y + abs Z

C :=I+ X + C

P := X | = Y

7.5. Procedure Statements

7.3.1. Syntax

<procedure statement> ::= <procedure identifier> | <procedure
identifier> (<actual parameter list>)

<actual parameter 1list> ::= <actual parameter> | <actual
parameter list> , <actual parameter>

<actual parameter> ::= <I expression> | <statement> | < subarray
designator> | <procedure identifier> |
<&J function identifier>

<I subarray designator> ::= <J array identifier> | <I array
identifier> (<subarray designator

list>)

<subarray designator list> ::= <subscript> | * | <subarray

designator list>,<subscript> |

<subarray designator list>,*

7.3.2. Semantics

The execution of a procedure statement 1s equivalent to a process

performed 1n the following steps:

Step 1. A copy is made of the body of the proper procedure whose

procedure identifier 1s given by the procedure statement, and of

the actual parameters of the latter. The procedure statement 1s

replaced by the copy of the procedure body.

Step 2. If the procedure body 1s a block, then a systematic

change of identifiers in its copy 1s performed as specifiedby

Lo

step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in an

undefined order as follows: If the copy 1s an expression

different from a variable, then it is enclosed by a pair of

parentheses, or if it 1s a statement it 1s enclosed by the symbols

begin and end.

Step 4. In the copyof the procedure body every occurrence of an

identifier identifying a formal parameter 1s replaced by the copy

of the corresponding actual parameter (cf. 7.3.2.1.). In order

for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

steps 2-4, is executed.

7.3.2.1. Actual-formal correspondence. The correspondence between

the actual parameters and the formal parameters 1s established as

follows: The actual parameter list of the procedure statement (or

of the function designator) must have the same number of entries as

the formal parameter list of the procedure declaration heading. The

correspondence 1s obtained by taking the entries of these two lists

in the same order.

7.3.2.2. Formal specifications. If a formal parameter is specified by

value, then the simple type of the actual parameter must be assignment

compatible with the formal type. If it 1s specified as result, .then the

formal type must be assignment compatible with the simple type of the

actual parameter. If it 1s specified by value result, both the above

43

conditions must be satisfied. In all other cases, the types must be

identical. If an actual parameter 1s a statement, then the specification

of 1ts corresponding formal parameter must be procedure.

7.5.2.3. Subarray designators. A complete array may be passed to a

procedure by specifying the name of the array if the number of subscripts

of the actual parameter equals the number of subscripts of the

corresponding formal parameter. If the actual array parameter has

more subscripts than the corresponding formal parameter, enough subscripts

must be specified by integer expressions so that the number of *'s appearing

in the subarray designator equals the number of subscripts of the

corresponding formal parameter. The subscript positions of the formal

array designator are matched with the positions with *'s in the subarray

designator in the order they appear.

T.5.5. Examples

INCREMENT

COPY (A, B, M, N)

INNERPRODUCT (IP, N, A(I,*), B(*,J))

T.4. Goto Statments

7.4.1. Syntax

<goto statement> ::= goto <label identifier> | go to (label
identifier>

7.4.2. Semantics

An identifier 1s called a label identifier if 1t stands as a

label.

44

A goto statement determines that execution of the text be contin |

ued after the label definition of the label identifier. The ident if i

cation of that label definition 1s accomplished in the following steps:

Step 1. If some label definition within the most recently acti-

vated but not yet terminated block contains the label identifier,

then this 1s the designated label definition. Otherwise,

Step 2. The execution of that block 1s considered as terminated

and Step 1 1s taken as specified above.

7.5. If Statements

7.5.1. Syntax

<if statement> ::= <if clause> <statement> | <if clause>

<simple statement> else <statement>

<if clause> : := 1f <logical expression> then

7.5.2. Semantics

The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical ex-

pressions . An if statement of the form

<if clause <statement>

1s executed in the {following steps:

Step 1. The logical expression in the if clause 1s evaluated.

Step 2. If the result of Step 1 1s true, then the statement

following the if clause 1s executed. Otherwise step 2 causes

no action to be taken at all.

45

An 1f statement of the form

<1f clause> <simple statement> else <statement>

1s executed 1n the following steps:

Step 1. The logical expression 1n the if clause 1s evaluated.

Step 2. If the result of step 1 is true, then the simple state-

ment following the if clause 1s executed. Otherwise the state-

ment following else is executed.

7.5.3. Examples

1f X = Y then goto L

if X <Y thenU := X else 1fY < Z then U:= Y else V :=1Z

- 7.6. Basatements

7.6.1. Syntax

<case statement> ::= <case clause> begin <statement lists end

<statement 1list> '::= <statement> | <statement list>; <statement>

<case clause> ::= case <integer expression> of

7.6.2. Semantics ’

The execution of a case statement proceeds in the following

steps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list

1s equal to the value obtained in Step 1 1s executed. In order

that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some

L6

statement of the statement list.

, 7.6.5. Examples

case 1 of

begin X = X + Y;

Y :=Y + z;

LL t= Z +X

end

case J of

begin H(I) r= —H(I);

begin H(I-1) := H(I-1) + H(1); I := I-1 end;

begin H(I-1) := H(I-1) x H(1); I := I-1 end;

begin H(H(I-1)) := H(l); I := I-2 end

end

7.7. Iterative Statements

7.7.1. Syntax

<iterative statement> ::!: <for clause> <u* Sement> | <while
clause <statemeni>

<for clause> ::= for <identifier> := <initial value>

step <increment> until <limit> do | for

<identifier> := <initial value» until <limit>

do | for <identifier> := <for list> do

fer list> 3 := <integer expressior> | <for listd> , <integer

expression>

<initial wvalue> : i= <integer expression>

<increment> s:= <integer expression

<limit> ::= <integer expressiorn>

<while clause ::= while <logical expressiorn> do

7.7.2. Semantics

The iterative statement serves to express that a statement be

Lr

executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause

or the while clause always acts as a block, whether it has the form of

a block or not. The value of the control identifier (the identifier

following for) cannot be changed by assignment within the controlled

statement.

(a) An iterative statement of the form

for <identifier> := El step E2 until ¥3 do <statement>

. 1s exactly equivalent to the block

begin <statement-0>; <statement-1> . . . ; <statement-I>;

... 3 <statement-N> end

in the th statement every occurrence of the control identifier

1s replaced by the value of the expression (El + I x E2).

The index N of the last statement 1s determined by

N < (E3-E1) / E2 < N+l. If N < 0, then it is understood that

the sequence 1s empty. The expressions El, E2, and E3 are

evaluated exactly once, namely before execution of <statement-0>.

Therefore they can not depend on the control identifier.

(b) An 1terative statement of the form

for <identifier> := El until E3do <statement>

1s exactly equivalent to the iterative statement

for <identifier> := El step1 untilE3 do <statement>

(c) An iterative statement of the form

for <identifier> := El, E2, . . . , EN do <statement>

1s exactly equivalent to the block

L8

begin <statement-1>; <statement-2> . . . <statement-I>; . . .

<statement-N> end

when 1in the pth statement every occurrence of the control identifier

1s replaced by the value of the expression EI.

(d) An iterative statement of the form

while E do <statement>

1s exactly equivalent to

L: if E then

begin <statement> ;gotoL end

end

where 1t 1s understood that L represents an identifier which 1s not

defined at the place from which the while statement 1s entered.

T.7T.5. Examples

for V := 1 step 1 until N-1 do S := 8S + A(U,V)

while (s> 0) and (CITY(J) == S) doJ := J-1

for I =X, X +1,X + 3, X +7 do P(1)

7.8. Standard Procedures

Standard procedures are provided in ALGOL W for the purpose of

communication with-the input/output system. These standard procedures

differ from explicitly declared procedures in that the number and type

of actual parameters need not be identical in every procedure statement

in which the standard procedure identifier appears. In the following

descriptions, each Ts 1s to be replaced by any one of

49

integer string (<integer number>)

real logical

long real bits

complex

coognp 1 ex

7.8.1. The Input/Output System

ALGOLW provides a single legible input stream and a single legible

output stream. These streams are conceived as sequences of records, each

record consisting of a character sequence of fixed length. The input

stream has the logical properties of a sequence of cards 1n a card reader;

records consist of 80 characters. The output stream has the logical

properties of a sequence of lines on a line printer; records consist

of 132 characters, and the records are grouped into logical pages.

Each page consists of not less than one nor more than 60 lines.

Input records may be transmitted as strings without analysis.

Alternatively, 1t 1s possible to invoke a procedure which will scan the

sequence of records for data items to be interpreted as numbers, bit

sequences, strings, or logical values. If such analysis 1s specified,

data 1tems may be reference denotations of the corresponding constants

(cf. Section 4). In addition, the following forms of arithmetic expressions

are acceptable data items, and the corresponding simple types are those

determined by the rules for expressions (cf. 6.3.):

(1) <sign> <J number>

where : J is one of integer, real, long real, complex, long

complex;

50

(2) <I, number> <sign> Jy number>

<sign> <5 number> <sign> J, number>

where : To 1s one of integer, real, long real, and

Ty is one of complex, long complex.

Data 1tems are separated by one or more blanks. Scanning for data items

initially begins with the first character of the input stream; after

the initial scan, it normally begins with the character following the

one which terminated the most recent previous scan. Leading blanks are

ignored. The scan 1s terminated by the first blank following the data

item. In the process, new records are fetched as necessary; character

position 80 of one record 1s considered to be immediately followed by

character position 1 of the next record. There exist procedures to

—cause the scanning process to begin with the first character of a record;

if scanning would not otherwise start there, a new record is fetched.

Output 1tems are assembled into records by an editing procedure.

. Items are automatically converted to character sequences and placed

in fields according to the simple type of each item, as described below:

Simple Type Field Description

integer right justified in a field containing

the number of characters specified by

the current value of INTFIELDSIZE

(initialized to 14, cf. 8.5.) and followed

by 2 blanks

real right justified in a field of 14 characters

and followed by 2 blanks

51

long real right justified in a field of 22 characters

and followed by 2 blanks

complex two adjacent real fields

long complex two adjacent long real fields

logical right justified in a field of 6 characters

followed by 2 blanks

string placed in a field exactly the length of

the string

bits same as real

The. first field transmitted begins the output stream; thereafter, each

field is normally placed immediately following the most recent previously

transmitted field. If, however, the field corresponding to an item

cannot be placed entirely within a non-empty record, that item 1s made the

first field of the next record. In addition, there exist procedures to

cause the field corresponding to an item to begin a new record. Each

page group 1s automatically terminated after 60 records; procedures

are provided for causing earlier termination.

7.8.2. Read Statements

Implicit declaration headings:

procedure READ (7, result Xp; . . . ; J result xX);

procedure READON (I, result X;;3 . . . ; J result x);
(where n > = 1)

Both READ and READON designate free field input procedures. Input

records are scanned as described in 7.8.1. Values on input records are

read, matched with the variables of the actual parameter list in order

of appearance, and assigned to the corresponding variables. The simple

52

type of each data item must be assignment compatible with the simple

type of the corresponding variable. For each READ statement, scanning

for the first data item 1s caused to begin with the first character of

a record; for a READON statement, scanning continues from the previous

point of termination as determined by prior use of READ, READON, or

IOCONTROL (cf. 7.8.1.).

Implicit declaration heading:

procedure READCARD (string(80) resultXo, xX);
(where n > = 1)

READCARD designates a procedure transmitting 80 character input

records without analysis. For each variable of the actual parameter list,

the scanning process is set to begin at the first character of a record

(by fetching a new record if necessary), all 80 characters of that record

are assigned to the corresponding string variable, and subsequent input

scanning 1s set to begin at the first character of the next sequential

record.

7.8.3. Write Statements

Implicit declaration headings:

procedure WRITE (7, value X,3 . . . ; 7value X);

procedure WRITEON (7, value X1; . . . ; Jwalue OF
(where n > = 1)

WRITE and WRITEON designate output procedures with automatic format

conversion. Values of expressions of the actual parameter list are converted

to character fields which are assembled into output records in order of

appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding

23

to the first value 1s caused to begin an output record; for a WRITEON

statement, assembly continues from the previous point of termination.

7.8.4, Control Statements

Implicit declaration heading:

procedure IOCONTROL (integer value Xs Co X 1s
(where n > = 1)

IOCONTROL designates a procedure which affects the state of the

input/output system. Argument values with defined effect are listed below;

other values currently have no effect but are explicitly made available

for local use or future expansion.

Value Action (cf. 7.8.1.)

1 Subsequent input scanning 1s set to begin

with the first character of a record.

2 Subsequent output assembly is set to begin

with the first field of a record.

5 Subsequent output assembly is set to begin

with the first field of a record which, in

turn, 1s caused to begin a new output page.

7.8.5. Examples

READ (X, A(1))

READCARD (S, LINE(10{80))

wRITE ("AVERAGE =", SUM/N)

WRITEON (X(1,J))

IOCONTROL (2)

54

8. STANDARD FUNCTIONS AND PREDECURED IDENTIFIERS

The ALGOL W environment includes declarations and initialization of

certain procedures and variables which supplement the language facilities

previously described. Such declarations and initialization are considered

to be included in a block which encloses each ALGOL W program (with

terminating period eliminated). The corresponding identifiers are said

to be predeclared.

8.1. Standard Transfer F-unctions

Certain functions for conversion of vaiues from one simple type

to another are provided. These functions are predeclared; the

corresponding implicit declaration headings are listed below:

integer procedure TRUNCATE (real value X);

comment the integer 1 such that

|i|< = |x]< lil + 1 and i¥X> = ©
integer procedure ENTIER (real value X);

comment the integer 1 such that

1 <=X<1+ 1;

integer procedure ROUND (real value X);

comment the value of the 1nteger expression

if X < 0 then TRUNCATE (X-0.5) else TRUNCATE (X+0.5) ;

real procedure ROUNDTOREAL (long real value X);

—comment the properly rounded value of X |

real procedure REALPART (complex value 27);

comment the real component of Z ;

long real procedure LONGREALPART (long complex value 7);

real procedure IMAGPART (complex value 7);

comment the imaginary component of Z ;

long real procedure LONGIMAGPART (long complex value 27);

oP

complex procedure IMAG (real value X);

comment the complex number 0 + Xi ;

long complex procedure LONGIMAG (long real value X);

logical procedure ODD (integer value N);

comment the logical value

N rem 2 =1;

bits procedure BITSTRING (integer value N);

comment two's complement representation of N ;

integer procedure NUMBER (bits value X);

comment integer with two's complement representation X ;

integer procedure DECODE (string(l) value S);

comment numeric code for the-character S (cf. Appendix 1) ;

string (l) procedure CODE (integer value N);

comment character with numeric code (cf. Appendix 1) given by

abs (N rem 256) ;

In the following comments, the significance of characters in the prototype

formats 1s as follows:

D decimal digit 1n a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit 1n an exponent

+ sign (blank for positive mantissa or integer)

wu blank

Each-exponent is unbiased. Decimal exponents represent powers of 10;

hexadecimal exponents represent powers of 16. Each mantissa (except 0)

represents a normalized fraction less than one. Leading zeroes are not

suppressed.

56

string (12) procedure BASE10 (real value X);

comment string encoding of X with format

LTEE+DDDDDDD

string(12) procedure BASEl6 (real value X);

comment string encoding of X with format

LoTBBTAAAAAA ;

string (20) procedure LONGBASEIO (long real value X);

coment string encoding of X with format

+ EE+DDDDDDDDDDDDDDD ;

string (20) procedure LONGBASEL6 (long real valueX);

comment string encoding of X with format

LF BBHAAAAAAAAARAAAA. 5
string (12) procedure INTBASELO (integer value N);

comment string encoding of N with format

, +DDDDDDDDDD ;

string (12) procedure INTBASE16 (integer value N);

comment unsigned, two's complement string encoding of N with format

Laos AAAAARAA

8.2. Standard Functions of Analysis

The following functions of analysis are provided in the system

environment. In some cases, they are partial functions; action for

C : : These
arguments outside of the allowed domain is described in 8.5.

functions are predeclared; the corresponding implicit declaration headings

are listed below:

peaedure SQRT (real value-X);

comment the positive square root of X,

domain : X>= 0 ;

long real procedure LONGSQRT (long realwalueX);

comment the positive square root of X,

domain : X > = 0 ;

of

complex procedure COMPLEXSQRT (complex value Z);

comment principal square root of Z ;

long complex procedure LONGCOMPLEXSQRT (long complex value Z);
comment principal square root of Z ;

real procedure EXP (real value X);

comment e *¥ X ,

domain : X < 174.67 ;

long realprocedure LONGEXP (long realvalueX);
comment e ** X ,

domain : X < 174.67 ;

~ real procedure IN (real value X);

comment logarithm of X to the-base eg,

domain : X > 0 ;

long real procedure LONGLN (real value X);

comment logarithm of X to the base eg,

domain : X > 0 ;

real procedure LOG (real value X);

- comment logarithm of X to the base 10,

domain : X > 0 ;

long real procedure LONGLOG (long realvalueX);

comment logarithm of X to the base 10,

domain : X > 0 ;

real procedure SIN (real value X);

comment sine of X (radians),

domain : -823550 < x < 823550 ;

long real procedure IONGSIN (long realvalueX);

comment sine of X (radians),

domain : -3.537'+15 < x < 3.537'+15 ;

real procedure COS (real value X);

comment cosine of X (radians)

domain : -823550 < x < 823550 ;

long real procedure LONGCOS (long real value X);

comment cosine of X (radians),

domain : -3.537'+15 < xX < 3.537'+15 ;

58

real procedure ARCTAN (real value X);

comment arctangent (radians) of X,

range : -m/2 < ARCTAN(X) < m/2 ;

long real procedure LONGARCTAN (long real value X);

comment arctangent (radians) of X,

range : -m/2 < LONGARCTAN(X) < m/2 ;

8.3. Time Function

The ALGOL W environment includes a clock which measures elapsed

time since the beginning of program execution. The resolution of that

clock 1s 1/60 second. A predeclared function 1s provided for reading

the clock.

integer procedure TIME (integer value N);

comment returns elapsed time, in hundredths of a minute 1f N=0,

in sixtieths of a second otherwise;

8.4. Predeclared Variables

The following variables are to be considered declared and initialized

by assignment in the conceptual block enclosing the entire ALGOL W program.

The values indicated for real and long real quantities are to be understood

as decimal approximations to the actual machine-format values provided.

integer INTFIELDSIZE; .

comment initialized to 1h ,

controls output field size for integers (cf. 7.8.1.);

integer MAXINTEGER;

comment initialized to 2147483647 ,

the maximum positive integer allowed by the implementation;

59

real EPSILON;

comment 1nitialized to 9.536743 '-07 ,

the largest positive real numbere€ provided by the

implementation such that

1 + e=13;

long real LONGEPSILON;

comment initialized to 2.22044604925031'~16L ,

the largest positive long real number € provided by

the implementation such that

1 +e¢e=13

~ long real MAXREAL;

comment initialized to 7.2370055773%3226'+75L ,

the largest positive long'real number provided by the

implementation;

long real PI;

comment initialized to 3.14159265358979L ;

8.5. Exceptional Conditions

The facilities described below are provided in ALGOL W to allow

detection and control of certain exceptional conditions arising in

the evaluation of arithmetic expressions and standard functions.

Implicit declarations:

record EXCEPTION (logical XCPNOTED; integer XCPLIMIT, XCPACTION;

logical XCPMARK; string(64) XCPMSG);

reference (EXCEPTION)

OVFL, UNFL, DIVZERO,

INTOVFL, INTDIVZERO,

SQRTERR, EXPERR, INLOGERR, SINCOSERR ;

60

Associated with each exceptional condition which can be processed

1s a predeclared reference variable to which references to records of

the class EXCEPTION can be assigned. Fields of such records control the

processing of exceptions. The association between conditions and

reference variables 1s as follows:

Reference Variable Conditions

OVFL real, long real,' complex, long

complex (exponent) overflow

UNF L real, long real, complex, long

- complex (exponent) underflow

DIVZERO real, long real, complex, long

complex division by zero

INTOVFL integer overflow

INTDIVZERO integer division by zero

SORTERR negative argument for SQRT, LONGSQRT

EXPERR argument of EXP, ILONGEXP out of

domain (cf. 8.2.)

LNLOGERR argument of LN, LOG, LONGLN,

LONGIOG out of domain (cf. 8.2.)

SINCOSERR argument of SIN, COS, LONGSIN,

LONGCOS out of domain (cf. 8.2.)

When one of the conditions listed above 1s detected, the corresponding

reference variable 1s interrogated, and one of the alternatives described

below 1s chosen.

If the value of the reference variable interrogated is null, the

condition is ignored and execution of the AIGOL W program continues.

In such situations, a value of 0 is returned as the value of a standard

61

function. For other conditions the result 1s that provided by the

2 _
underlying IBM System/360 hardware? In determining such a result, it

1s to be noted that in those cases in which the detection of exceptional

conditions can be inhibited at the hardware level, namely integer overflow

and exponent underflow, detection 1s so inhibited when the corresponding

reference 1s NULL.

If the value of the reference variable interrogated is not NULL,

the fields of the record designated by that reference are interrogated,

and processing action 1s that described by the algorithm given below in
the form of an extended ALGOL W procedure. Identifiers in lower case

represent quantities which transcend the ALGOL W language; they are

explained subsequently.

procedure PROCESSEXCEPTION (reference (EXCEPTION) value CONDITION);

begin

XCPNOTED (CONDITION) := true;

XCPLIMIT (CONDITION) := XCPLIMIT (CONDITION) - 1;

if (XCPLIMIT (CONDITION) < 0) or XCPMARK (CONDITION) then

WRITE ("%¥¥%%x EXCEPTION NEAR CARD nnnn - ", XCPMSG(CONDITION));

if XCPLIMIT (CONDITION) < 0 then endexecution else

1f integercondition then

resultant := default else

resultant := if XCPACTION (CONDITION) = 1 then adjustment else

if XCPACTION(CONDITION) = 2 then OL else
default

end PROCESSEXCEPTION

This procedure 1s invoked with the value of the reference variable

appropriate to the condition as actual parameter. The significance of

the special identifiers used 1s as follows:

2 eM System/360 Principles of Operation, IBM Systems Library, Form A22-6821

62

nnnn approximate line number of the source code

which was being executed when the exceptional

condition was detected

endexecution procedure to terminate execution of the ALGOL W

program

integercondition logical value which is true if, and only if,

the condition being processed 1s integer overflow

or integer division by zero

default result of the operation or function provided

by the ALGOL W system prior to invocation of

. the exception processing procedure; this 1s

defined by the hardware 2 for arithmetic
operations andis the value 0 for standard

functions

resultant value to be returned as the result of the

arithmetic evaluation or standard function

invocation

adjustment adjusted result of the operation according to

the following table

Condition Adjustment

exponent overflow, if default < 0 then

division by zero -MAXRFAL else MAXREAL

exponent underflow OL

argument X out of domain for :

SQRT, LONGSQRT SORT (abs X), LONGSQRT (abs X)

EXP, LONGEXP MAXREAL

IN, LONGIN -MAXREAL

LOG, LONGLOG -MAXREAL

SIN, IONGSIN OL

COS, LONGCOS OL

x7 30
2/ 1M System) 360 Principles of Operation, IBM Systems Library, Form A22-6821

63

The reference variable UNFL 1s initialized by the system to NULL.

All other reference variables listed above are initialized to references

to a special record which 1s accessible only by the system. Interrogation

of this record by the procedure described above has the effect of causing

the ALGOL W program to be terminated with a message indicating the type

of exception. Any other attempt to access any field of this record will

result 1n a reference error.

Hl

APPENDIX 1 - CHARACTER ENCODINGS

The following table presents the correspondence between printable

string characters and their (EBCDIC) integer encodings. This encoding

establishes the ordering relation on characters and thus on strings.

Those characters in parentheses are not available on the line printer.

Integer codes not listed below do not correspond to any established

character.

64 space 129 (a) 193 A 240 0

4 (£) 130 (Db) 19% B 241 1

75 131 (0) 195 C 242 2

76 < 132 (d) 196 D 2hks 3

TT (133 (e) 197 E 24h kt

78 + 134 (f) 198 F 2k5 5

79 135 (sg) 19 G 2k6 6
” 80 & 136 (h) 200 H 27 7

0 (') 137 (i) 201 I 248 8

91 $ 15 (3) 209 J 24k 9

92 * 146 (k) 210 K

93) 147 (1) 211 L

oh ; 148 (m) 212 M

95 | 149 (n) 213 nN

96 150 (0) 214 0

a7 / 151 (P) 215 P

107 , 152 (q) 216 0

108 % 153 (r) 217 R

109 162 (9S) 226 S

110 > 163 (t) 227 T

111 ? 164 (u) 228 U

122 | 165 (v) 229 Vv

123 166 (w) 230 W

124 @ 167 (x) 231 X

125 168 (¥) 232 v

126 = 169 (z) 233 Z

127 "

65

ERROR MESSAGES

by

Henry R. Bauer

Sheldon Becker

Susan L. Graham

66

TAL Tar an TNE
EP IT ep ty

: ; ¥ Li Co. Ps

ALGOL W ERROR MESSAGES

I. PASS ONE MESSAGES

All Pass One messages appear on the first page following the program

listing. The message format is

CARD NO, (number) -- (message)

The (number) corresponds to the card number on which the error

was found. The (message) 1s one of those listed below.

INCORRECT SPECIFTN syntactic entity of a declaration is

incorrect, e.g. variable string length.

INCORRECT CONSTANT syntax error 1n number or bitstring.

MISSING END an END needed to close block.

- MISSING BEGIN an attempt to close outer block

before end of code.

MISSING)) is needed.

ILLEGAL CHARACTER a character, not in a string, is

unrecognizable.

MISSING FINAL . program must be terminated by a period.

STRING LNGTH ERROR string 1s of 0 length or length

greater than 256.

BITS LENGTH ERROR bits constant denotes no bits or

more than 32 bits.

MISSING ((1s needed.

TABLE OVERFLOW terminating error - a compile time

table has exceeded its bounds.

67

TOO MANY ERRORS the maximum nukber of errors for Pass
One records has been reached. Com-

pilation continues but messages for

succeeding errors detected by Pass

One are suppressed.

ID LENGTH > 256 more than 296 characters in' identifier.

See alsc discussion of PROGRAM CHECK in IV.

II. PASS TWO MESSAGES

The format of Pass Two error messages 1S

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incoming

symbol)

If a $STACK card is included anywhere in the source deck, the

~ SYNTAX ERROR message 1s followed by

STACK CONTAINS:

. (beginning of file)

<symbol-1>

<symbol-n> (top of stack)

The symbol names may differ somewhat from the metasymbols of

the syntax.

1f any Pass One or Pass Two errors occur, compillation 1s termi-

nated—-at the end of Pass Two.

INCCRRECT SIMPLE TYPE <number> <simple type> of entity 1s improper

as used. Number indicates explana-

tion on list of simple type errors.

68

ARRAY USED INCORRECTLY a variable must be used here.

IDENTIFIER MUST BE RECORD reference declaration 1s incorrect,
CLASS ID

MISMATCHED PARAMTER formal parameter does not correspond

to actual parameter.

MULTIPLY-DEFINED SYMBOL <iden- symbol defined more than once 1n a
Lfier>tifier block

UNDEFINED SYMBOL <identifier> symbol 1s not declared or defined.

INCORRECT NUMBER OF ACTUAL the number of actual parameters to

PA BIERS a procedure does not equal the number

of formal parameters declared for

the procedure.

INCORRECT DIMENSION the array has appeared previously

with a different number of dimensions.

DATA AREA EXCEEDED too many declarations in the block.

INCORRECT NUMBER OF FIELDS the number of fields specified 1n a

record designator does not equal the

number of fields the declaration of

the record indicates.

INCOMPATIBLE STRING LENGTH length of assigned string 1s greater

than length of string assigned to.

INCOMPATIBLE REFERENCES record class bindings are inconsistent.

BLOCKS NESTED TOO DEEP blocks are nested more than 7 levels.

REFERENCE MUST REFER TO reference must be bound to a record

RECORD CLASS
class.

EXPRESSION MISSING IN body of typed procedure must end
PROCEDURE BODY

with an expression.

69

RESULT PARAMETER MUST BE the actual parameter corresponding

<I VAR> to a result formal parameter must
be a <I VARIABLE>.

PROCEDURE READ LACKS SIMPLE proper procedure ends with an

TYPE expression

<SYMBOL-1> UNREIATED TO the symbol at the top of the stack

<SYMBOL-2> (<SYMBOL-1>) should not be followed
by the incoming symbol (<SYMBOL-2>).

SYNTAX ERROR construction violates the rules of

the grammar. The input string is

skipped until the next END, ";",

BEGIN, or the end of the program.

More than one error message may be

generated for a single syntax error.

Eimple #ype r Ss

25. Upper and lower bounds must be integer.

29. Upper and lower bounds must be integer.

32. Simple type of procedure and simple type of expression in

procedure body do not agree.

71. Substring index must be integer.

73. Simple variable preceding '(' must be string.

Th. Substring length must be integer.

76. Field index must be reference or record class identifier.

77. Array subscript must be integer.

8l. Array subscript must be integer.

84. Actual parameters and formal parameters do not agree.

88. Actual parameters and formal parameters do not agree.

95. Expressions in 1fexpression do not agree.

Ol, Expressions in case expression do not agree.

95. Expression in 1f clause must be logical.

70

08. Expressions in case expression do not agree.

; 99. Expression in case clause must be integer.
) 101. Arguments of = or —=do not agree.

| 102. Arguments of relational operators must be integer, real, or
| long real.
| 103. Argument before ismust be reference.

| 106. Argument of unary + must be arithmetic.

107. Argument of unary - must be arithmetic.

108. Arguments of + must be arithmetic.

109. Arguments of - must be arithmetic.

110. Arguments of or must be both logical or both bits.

112. Record field must be assignment compatible with declaration.

117. Arguments of * must be arithmetic.

118. Arguments of / must be arithmetic.

119. Arguments of div must be integer.

120. Arguments of rem must be integer.

121. Arguments of and must be both logical or both bits.

123. Argument of — must be logical or bits.

125. Exponent or shift quantity must be integer; eqression to be

shifted must be bits.

126. Shift quantity must be integer; expression to be shifted must be

bits.

130. Actual parameter of standard function has incorrect simple type.

134. Argument of long must be integer, real, or complex.

135, Argument of short must be long real or long complex.

136. Argument of abs must be arithmetic.

148. Record field must be assignment compatible with declaration.

181. Expression 1s not assignment compatible with variable.

182. Result of assignment cannot be assigned to variable.

188. Limit expression in for clause must be integer.

190. Expression in for list must be integer.

191. Assignment to for variable must be integer.

193. Expression in for list must be integer.

195, Step element must be integer.

197. Expression in while clause must be logical.

11

III. PASS THREE ERROR MESSAGES

The form of Pass Three error messages 1S

*HXHKX (message)
¥*%¥%¥¥% NEAR CARD (number)

The number indicates the number of the card near which the error

occurred. The message may be

PROGRAM SEGMENT OVERFLOW the amount of code generated for a

procedure exceeds 8192 bytes.

COMPILER STACK OVERFLOW constructs nested too deeply.

CONSTANT POINTER TABLE TOO IARGE too many literals appear in a

procedure.

BLOCKS NESTED TOO DEEPLY parameters in procedure call are nested

too deeply; procedure calls in block

nested too deeply.

DATA SEGMENT OVERFLOW too many variables declared in the

block.

TOO MANY PROCEDURES the program contains too many procedure

declarations; the number of procedures

allowed depends on the size of each

procedure and cannot exceed 52,

CARD TABLE OVERFLOW density of information on (non-blank

and non-comment) source cards 1s too low.

IV. RUN TIME ERROR MESSAGES

The form of run error messages 1S

RUN ERROR NFAR CARD (number) - (message)

SUBSTRING INDEXING substring selected not within named string.

CASE SELECTION INDEXING index of case statement or case expression

1s less than 1 or greater than number of cases.

ARRAY SUBSCRIPTING array subscript not within declared bounds.

72

LOWER BOUND> UPPERBOUND lower bound 1s greater than upper

bound in array declaration.

ARRAY TOO LARGE The (n-1) dimensional array obtained

by deleting the right-most bound-

palr of the array being declared has

too many elements The maximum number

of elements allowed in this (n-1)

dimensional array 1s given below,

according to the declared type of

the array.

maximum # of
elements in

first (n-1)

type dimensions

lecgical, string 32767

integer, real 8191

bits, reference 8191

long real, complex 4095

long complex 2047

ASSIGNMENT TO NAME PARAMETER assignment to a formal name parameter

whose corresponding actual parameter

1s an expression, a literal, control

identifier., or procedure name.

DATA AREA OVERFLOW storage available for program execu-

tion has been exceeded.

ACTUAL-FORMAL PARAMETER MISMATCH the number of actual parameters 1in

IN FORMAL PROCEDURE CALL a formal procedure call 1s different
from the number of formal parameters

in the called procedure, or the

parameters are not assignment

compatible.

RECORD STORAGE AREA OVERFLOW no more storage exists for records.

3

LENGTH OF STRING INPUT string read 1s not assignment compatible

with corresponding declared string.

LOGICAL INPUT quantity corresponding to logical

quantity 1s not true or false.

"NUMERICAL INPUT numerical input not assignment compatible

with specified quantity.

REFERENCE INPUT reference quantities cannot be read.

READER EOF a system control card has been

encountered during a read request.

REFERENCE the null reference has been used to

address .& record, or a reference bound

to two or more record classes was used

to address a record class to which it

was not currently pointing.

LINE ESTIMATE EXCEEDED line estimate on PAIGOL card is

exceeded.

TIME ESTIMATE EXCEEDED time estimate on PAIGOL card is

exceeded.

I/0 ERROR see consultant.

PROGRAM CHECK #nn see consultant.

Counts of certain exceptional conditions detected during program

compilation or execution are maintained.' If any of these are non-zero,

they are listed after the post-compilation or post-execution elapsed

time message in the following format:

nnnn PROGRAM CHECK NO xx

The number of times the condition was detected (modulo 10000) 1is

given by nnnn; the nature of the condition 1s indicated by xx according

to the following table:

Th

08 integer overflow

09 integer division by zero

12 real exponent overflow

15 real exponent underflow

15 real division by zero

This counting 1s inhibited for integer overflow and exponent

underflow whenever the value of the corresponding reference variable

is null (cf. LANGUAGE pescriPTion, Section 8.5.).

v. OTHER

PRG PSW see consultant.

COMPILER ERROR see consultant.

INSUFFICIENT insufficient memory available to complete compilation.
STORAGE

75

Ho Hp 4 bE
Cia alm IT
LEE

NOTES ON NUMBER REPRESENTATION

ON SYSTEM/360

AND RELATIONS TO ALGOL W]

by

George E. Forsythe

76

The following notes are intended to give the

student of Computer Science 136 some orientation

into how numbers are represented in the IBM System/360

computers. Because we are using Algol W, some refer-

ences are made to that language. However, very little

of what 1s said here depends on the peculiarities of

Algol W, and this exposition 1s mostly applicable to

Fortran or Algol 60 with slight changes in wording.

It will also do for the floating-point numbers and

full-word integers of PL/l. Users of shorter or

longer integers or decimal arithmetic in PL/1 will

need more orientation.

1]

On IBM's system 360, the following units of information storage

are used:

a) the bit., a single 0 or 1

b) the byte, a group of eight consecutive bits

c) the (short) word, a group of four consecutive bytes~-

i,e., 32 consecutive bits

d) the long word, a group of two consecutive short words--

i.e., eight bytes or 6&4 bits.

For number representation in Algel W the words and long words are

the main units of interest,

INTEGERS. |

Integers are stored in (short) words, Of the 32 bits of a short

word, one is reserved for the sign (0 for + and 1 for -), leaving

31 bits to represent the magnitude, A positive or zero integer is

- stored in a binary (base 2) representation, Thus 21,, (the subscript
means base 10) is stored as

0000 0000 0000 0000 0000 00OQO0 0001 0101 .

sign bit

To confirm this, note that

51= 0 x27+ rox 1x2 rox2derxfroxeleaxa,
The largest integer that can be stored in a word 1is

530 + 229 +... + 210 +2 = SSL Lp = (21kTh836MT)
Any attempt to create or store an integer larger than 22h 1 will
produce erroneous results, and (unfortunately) the user will not always

be warned of the error (fee below,)

To save space 1n writing words on paper, each group of four bits

in a word 1s frequently converted to a single base-16 (hexadecimal)

digit, according to the following code:

18

a _—

base 2 base 16 base 2 base 16
0000 0 1000 8

0001 1 1001 9
0010 2 1010 A

0011 3 1011 B
0100 4 1100 C

0101 5 1101 D
0110 6 1110 E

0111 7 1111 F

Thus A, B, C, D, E, F are used as base-16 representations of’ the decimal

numbers 10, 11, 12; 13, 14, 15 respectively. Nevertheless, integers are

stored as base-2 numbers.

Using hexadecimal notation, the decimal number 21 1s represented

by

00000015, .

Note that Big 1s the base-16 representation of 219 .
Negative integers are stored in what 1s called the "two's complement

form". For example, -1 1s stored as

111> 1111 1111 1111 1111 1111 1111 1111

mn FFFFFFFF,6
Also, -21 1s stored as

1111 1311 1111 1111 1111 1111 =:310 1011

= FFFFFFEB,
The representation for -21 1s obtained from that for +21 by changing

every 0 to 1 and every 1 to 0, and then adding + 1 1n base-2 arithmetic

to the result. Similarly for any negative integers. Every negative

integer has 1 as 1ts sign bit. The smallest integer storable in

System/360 1s -2°" = -2147483648 , and is represented by 80000000, .
Another way to think of the representation of negative numbers is

to consider a 32-place binary accumulating register (the base-2 equivalent

of the-decimal accumulating register in a desk calculating machine),

If one starts with all zeros in this register, one gets the representation

for -1 by subtracting 1. The process requires a “borrow” to propagate

to the left all the way across the register, leaving all ones, just as

on a decimal accumulator this would leave all nines. Continued sub-

traction will give the representations for -2, -3

79

From the point of view of an accumulator we can also see what

happens when we create a positive number larger than 251 -1. For
example, 1f we add 1 to Pl the resulting carry will go all the
way into the sign bit, leaving a sign bit of 1 with all other digits

zero. But this 1s the representation of Ey Thus the attempt to
produce positive numbers in the range from 1 to approximately 22
will yield a negative sign bit. Consequently, positive integers that

"overflow" into this range are sensed as negative by System/360. The

mechanisms of AILGOLW for detecting integer overflow (not described in

this document) can be used to detect additions, subtractions, or

multiplications that produce integers outside the range from 231 to
PL Go-called integer overflow). Attempts to divide an integer by 0
will yield an error message and an irrelevant quotient and remainder.

The behavior of System/360 on integer overflow 1s quite different

from the Burroughs B5500. In the latter machine, any integer that

overflows 1s replaced by a rounded floating-point number. There are

advantages to either approach to integer overflow, depending on the

application.

If the user suspects that integers in his program are getting

anywhere near 107 he should convert them to double-precision floating-
point numbers by use of the Algol W operator LONG. Conversion to single-

precision floating-point numbers may lose some precision.

The most important thing for a scientific user to remember 1s that

integers in the range 21 to ai are stored without any approximation.
Moreover, operations on integers (adding, subtracting, multiplying) are

done without any error, so long as all intermediate and final results

are 1ntegers between pot and 21, It 1s perhaps easier to remember
as safe the interval from -2 X 107 to 2 x 107 , obtained from the

useful approximation 10 = 103

80

The operations of division without remainder (called DIV in Algol

W) and taking the remainder on division (called REM in Algol W) always

give integer answers, If the divisor 1s 0, an error message 1s given,

In Algol W two operations on integers give results that are not

stored as integers--namely / and **

FLOATING-POINT NUMBERS

Numbers in many scientific computations will grow 1n magnitude

well beyond the range of integers described above, To provide for

this, System/360 and most scientific computers have a second way to

represent numbers--the so-called floating-point representation,

The significance of the name "floating-point" 1s that the radix point

--for example, the decimal point in base-10 numbers--is permitted to

float to the right or left, thus permitting scaling of numbers by

various powers of the radix, Although a decimal point that has floated

off to the left will produce a number written like 0.001345, the

nuuibers are actually represented in a form closer to what 1s often

called scientific notation, here 1.345X10 7 ‘
In System/360, floating- .int numbers are always represented in

base-16 notation; i.e., the rr ix or number base s 16, This permits

us to write numbers in abbrevi *ed form (as we did with 1ntegers earlier).

More important, the use of base-16 conforms with the hardware arithmetic

processes 1n which shifting 1s done four bits at a time to speed up the

operations. The speed-up 1s achieved at a slight cost in precision,

as 1s learned frcxn detailed error analyses which we cannot go into here,

We first consider the floating-point representation of numbers by

a single word of 3% bits. This 1s the so-called _single-precision

or short real number, the number of type REAL in Algol W. The 32 bits

of a word are numbered frcxn 0 to 31, from left to right, just to identify

them, In floating-point representation the left-hand eight bits (bits 0

to 7, equivalent to two hexadecimal digits) are devoted to the sign of

the number and the exponent of 16 associated with the number, The right- /

hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)

81

represent six significant hexadecimal digits_ (the significand) of the
number

As with integers, the sign of the number 1s denoted by bit 0,

with 0 representing + and 1 representing = .

Bits 1 to 7 give the binary (base-2) representation of a non-

negative integer in the range 050 to 12740 y inclusive, This In-
teger is called the biased exponent, for reasons now to be explained,

If this integer were taken directly a8 the exponent, we would have no

negative exponent 8, and our range of floating-point numbert could not

include such number6 &s 16722 It is desirable to have an exponent
range that is approximately symmetric about zero. In System/360 one

obtain8 the_ true exponent of the floating-point number by subtracting

64 from the biased exponent represented by bits 1 to 7. A8 a result,

the actual exponent6 range from -64 to 63.

The 24 bit6 8 to 31 of a number are regarded a6 six hexadecimal

-digits with a hexadecimal point atthe left-hand end. If the floating-

point number zero is being represented, all the hexadecimal digit8 are

zero, 8¢ are all the other bits, Otherwlse,at least one of the hexa-

decimal digits must be nonzero. A floating-point number is sald to be

normalized if the left-hand hexadecimal digit (the most significant

digit) of the significand is nonzero. In System/360 the floating-point

nvbers are ordinarily normalized, and we will not consider any other

forms.

We now give the floating-point representations of saae sample

numbers. As we said before, the number zero is represented by 32 zero

bits, Le., by eight 0 hexadecimal digits. Thus zero is represented

by the same trords in floating-point or integer form. No other number

ha6 this property.

The number 1.0 1s represented by the word

sign bit

iN 0,100 0001, 0001 _0000 oooo 0000 0000 ©O0Q0Q, .
utp | signif cand |

82

To check this, note that the sign is 0 (representing +). The biased

exponent 1s 1000001, or 6510 . Subtracting SP yield8 1 as the
true exponent. The hexadecimal significand is 100000, ¢ . Putting a
hexadecimal point at the left end give6 the hexadecimal fraction

.100000,. , which equals 1/16. Thus the above word represents
+1/16 times 16% , or 1.0 .

To save writing, the above word 1s ordinarily written in the

hexadecimal form 41100000 . While one gradually learns to recognize

some floating-point numbers in this form, the author knows no easy way |

to convert such a hexadecimal word into a real number. OneJjust hat

to take the right-hand six hexadecimal digits, and prefix a hexadecimal

point. Then one examine6 the left-hand two-hexadecimal-digit number

(here 41), If this is less than 80. ¢ y the floating-point number 1is
positive and one gets the true exponent by subtracting 40, ¢ = Oks +
If the left-hand two-hexadecimal-digit number is 801¢ or larger, the

—floating-point number is negative, and one gets the true exponent by

gubtracting CO, ¢ = 80, + 40, ¢ = 1%,, and affixing a minus sign.
Some facility with hexadecimal arithmetic 1s required, 1f one has to

deal with such numbers.

In this presentation, we have considered the radical point to be

at the left of the six significant hexadecimal digits, and regarded

the exponent as biased high by 6h . As an alternative, the reader
may prefer to place the radix point just to the right of the most

significant digit of the significand, and regard the exponent as biased

high by 65.0 This brings the significand closer to usual scientific
notation but, of course, requires a trickier conversion to get the

true exponent, The fact that either interpretation (and many others)

are possible shows that really the radical. point is just in the eye of

the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa-

decimal notation, with the confirmation left to the reader.

83

decimal floating-point
0.0 = 00000000

1.0 = 41100000

0.0625 = 40100000
16.0 = 42100000

256.0 = 43100000

-1.0 = C1100000

-16.0 = 2100000

3.5 = 41380000

The largest floating-point number 1s T7FFFFFFF, representing

.FFFFFF X 16°F or (1 = 167%) X 1603 £ 7,23 X 100°, (Here 10 and 16
denote decimal numbers.)

The smallest positive normalized floating-point number is 00100000,

representing

5 x167%% £5.40 x 1077
Negatives of these two numbers can also be represented, and are

the extremes 1n magnitude of representable negative numbers.

Very few numbers can be exactly represented with six significant

decimal digits. (Exercise: Which ones can?) For example, 1/3 = 3353331
only approximately. In the same way, very few number6 can be exactly

represented with six significant nexadecimal digits, (Exercise:

Which ones can?) For example, 1/3 = 5555551 ¢ enly approximately.
Moreover, some numbers that are exactly representable in decimal are

only approximately representable in hexadecimal; for example,

1/10 = .100000,5 exactly; but
1/10 = -19999A, only approximately.,

Thus round-bff error enters into-the representation of most

floating-point numbers on System/360, and the round off differs from

that with decimal numbers,, This can easily give rise to unexpected

results. For example, if the above number 199994, ¢ (= 0.15) is
multiplied by the integer 100, = hag , one gets not A. 00000, —
10.0, , but instead A. 00003, , as a cumulative effect of the slightly

high approximation to 0.1.4 : And A.00003, 0 rounds to 10.00002,
on conversion to decimal.

The precision of a single-precision hexadecimal number 1s roughly

1077, ne can think of this as being crudely equivalent to seven sige

84

| niflcant decimal digits,

| Not only do errors appear in the representation of numbers inside

System/360 (or any computer), but they arise from arithmetic operations

perf ormed on numbers, For example, the product of two floating-point

numbers may have up to 12 significant hexadecimal digits. When the

product 1s stored as a single-precision floating-point number, it must

be rounded to six hexadecimal digits, This introduces an error, even

though the factors might have been exact,

The story of round off and its effect on arithmetic is a complex.

and Anteresting one, Only within the current decade have there begun

to appear even partly satisfactory methodsto analyze round off, and

we cannot go into the matter now, Some idea of this 1s obtained in

| Computer Science 137.

When an Algol W program assigns decimal numbers or integer values

to variables of type REAL, these are immediately converted to hexadecimal

_ floating-point numbers, with (usually) a round-off error. When one

| outputs numbers from the computer in Algol W, they are converted to

decimal. Both conversions are done as well as possible, but introduce

changes in the numbers that the rrogrammer must be aware of, And, of

course, all intermediate opera®ions introdu-e further round offs and

possible errors. It 1s unthin.able to do the analysis necessary to

counteract these errors and get the true answer to the problem, If the

| user wishes answers uncontaminated by round off, he should use integers

and integer arithmetic, and be prepared to guard against overflow,

Fortunately most users .can accept an indeterminate amount of

round off 1n their numbers, provided they have some assurance that

round off 1s not growing out of control, It is the business of numerical

analysts to provide algorithms whose round-off properties are reasonably

under control. This has been well accomplished 1n some areas, and hardly

at all in others.

| DOUBLE PRECISION

| The precision of single-precision floating-point numbers seems

| 85

very adequate for most scientifie and engineering purposes,being at the

level of seven decimals, However, a considerable number of computations

require still more precision in the middle sanewhere, just in order to

cane out with ordinary accuracy at the end. As a result, System/360

has provided an easy mechanism for getting a great deal more precision

in the computations. For this purpose a double word of 64 bits is used

to store a floating-point number of so-called double precision or long

precision. In this representation, the sign and biased exponent are

found in the first word of the double-word, with precisely the same

interpretation as with single-precision floating-point numbers, The

second word of the double-word consists of eight hexadecimal digits

immediately following the six found in the first word., There is no

sign or exponent in the second word. Tnus a double-word represents

a signed floating hexadecimal. number with 14 significant hexadecimal

digits, As before, nonzero numbers are normalized so that the most

significant digit of the 14% is nonzero.

Examples:

long significand

1.0L = 41' 100000 00000000

0.1L = 40 199999 99999994

There 1s a full set of arithmetic operations for both single

and double-precision operations. Very crudely, for an example, single-

precision multiplication of single-precision factors takes around 4 micro-

seconds, while that for double-precision factors takes around 7 micro-

seconds. For modest problems the extra time is completely lost in the

several. seconds of time lost to systems and compilers, and the use of

double-precision is strongly recommended for all scientific computation.

Normally the only possible disadvantage of using long precision 1s the

doubling in the amount of storage needed. If one has arrays with tens

of thousands of elements, the extra storage may be very costly. Other~

wise, it should not matter,

Since 16H = 10747, the double-precision numbers are crudely
equivalent in precision to 17 significant decimal digits.

For a machine with the speed of the 360/67, a number precision of

86

six hexadecimal digits (roughly seven decimals) is considered ‘very low,

while a precision of 14 hexadecimal digits (roughly 17 decimals) is

very adequate .

Tre floating-point arithmetic

hardware of System/360 provides the possibility of detecting when

numbers have gone outside the exponent range stated above. The reader

may think that a range from rc.ghly 1c? t o 107° snould cover all
reasonable computations. While exponent overflow and exponent underflow

are not very common, they can be the cause of very elusive errors,

The evaluation of a determinant is a common computation, and for a matrix

of order 40 is quite rapidly done {if you know how). If the matrix

elements are of the quite reasonable magnitude 1077, the magnitude of
the determinant will be no larger than roughly oo" (and probably
much smaller), well below the range of representable floating-point

numbers, Such problems are a frequent source of exponent underflow.

We shall not discuss here the mechanisms of Algol W for detecting

exponent overflow and underflow, for these should be written up in

another place, Even without these; we see that floating-point numbers

behave well for numbers that are at least 1096 times as large a8 the
largest integer in the system: Hence uge of fioating point numbers

meets almost all the problems raised by integer .verflow. And, of

course. it permits the use of a large set of rational numbers, which

do not even enter the integer system,

ALGOL W REALS AND LCINGREALS

The Algol W manual tells how to represent real variables and

numbers to take advantage of both single-and double-precision, The

purpose of this section is to bring this information into rapport with

the hardware representation of numbers, If a variable X is declared

REAL, one word is set aside for its values, and it will be stored in

single-precision floating-point form, If a variable is declared to be

LONG REAL, a double-word is set aside to hold its values, and it will

be stored in double-precision form,,

87

If a number 1s written in one of the decimal forms without an L

at the end, 1t will be chopped to single-precision, no matter how many

digits are set down. Thus 3.1415926535891932 will be immediately

chopped to single-precision in the program, and all the superfluous

digits are lost at once. Thus the assignment statement

XX := 3,1415926535897932

will result in the double-word XX receiving an approximation to m

in the more significant half, and all zeros in the less significant

half! Thus one gets a precision of only approximately seven decimals

for the pain of writing 17, and this may well contaminate all the rest

of the computation.

If one wants XX to be precise to approximately full double precision,

one must write the statement in the form

XX := 3,1415926535897932L .

With the declaration REAL X, the statement

X := 3.,1415926535897932L

will result in X having a single-precision approximation to §¢ , as

- the long representation of fm is chopped upon assignment to X.

The reader should now go back and examine the specifications of

the types of various arithmetic expressions, as stated on pages 9, 10,

11 of the Algol W Notes, and on pp. 25, 20 of the Language Definition.

Some of the less expected effects are the following: Suppose we have

declarations

REAL x, Y, z;

LONG REAL XX, YY, ZZ;

INTEGER I, J, K;

Then X*Y, I*¥**J, and I*X are all-long real.

The assignment statement

XX = X = Y¥Z

will result in XX having a single-precision chopped version of Y¥Z in

the more significant half, and zeros in the less significant word.

Moreover, I*I is INTEGER, but I**2 is LONG REAL.

88

If the reader understands the language Algol W and the preceding

pages on number representation, he should have a good basis for under-

standing the effects of mathematical algorithms . But he should always

remain wary of what a computer is actually doing to his numbers!

89

APPENDIX

Algol W Deck Set-Up

(Job Card)

//JOBLIB Dp DSNAME=SYS2.PROGLIB, DISP=(OLD, PASS)

// EXEC AIGOLW

//ALGOLW.SYSIN DD *

| i FA IGOL | |
89 (program)

FEOF

9 { (data)FEOF

| /%

§ Optional

§¢ May be repeated

Note: The Stanford ALGOL W system monitors execution time and number

of lines of output for each job. The default limits on these quantities

are 10 seconds execution time and 500 lines of printed output. Alternately,

the programmer may explicitly specify limits on the PAIGOL card.

Columns 10-29 of that card are scanned for such specification according

to the following syntax:

90

(limit specification) ::= (time limit) | (time limit), (line limit)

(time limit) » i= (minutes specification) |

(minutes specification) : (seconds specification)

(minutes specification) ::= (unsigned integer) | (empty)

(seconds specification) ::= (unsigned integer) | (empty)

(line limit) :.t= (unsigned integer) | (empty)

An empty field 1s given the corresponding default value. The program

1s automatically terminated 1f necessary at the end of the indicated

time. Similarly, the program 1s automatically terminated 1f necessary

after the indicated number of lines have been printed.

ol

GRAMMATICAL DESCRIPTION OF ALGOL W

by

R. Floyd

Q2

Feo poi ave’i
Sl LEE

FEL . .

In the grammatical description of ALGOL W on the following pages,

Roman capital letters, such as A B C D, stand for themselves. A script

letter, possibly accented, stands for a defined infinite class of symbol

strings; for example, d , as defined, stands for the class which includes

the symbols A, B, C, Z, AA, AB, . . .,A9, BA,...,B9,...Z29, AAA,

299, AMAA, A Greek letter, such as A, stands for a given finite

set of characters.

The symbol | means "or"; if @ is defined as Bc , this means that

a particular inscription is an @ if it is a ®B or if it is a C .

The notation a" , Or equivalentiy ra)” y means any number (including

zero) of inscriptions, one after another, each of which is an @ . por

example, {a|B}" means A or B or AA or AB or BA or BB or AAA

oror A, where A means no inscription at all.

The notation a’ means any number (but at least one) of inscriptions,

one after another, each of which is an @ . It abbreviates ol . For

example, falg}” means A or B or AA or . . . or BB or AAA , etc.

The notation [@] means an optional occurrence of @ ; it abbreviates

fala}.

Thenotation a means @ or U3 or UA , etc; it abbreviates

afm)”

The notation Q LB means @ and/or #8 ; it abbreviates ¢|plas .

The curly brackets { } are used simply as parentheses to show the

scope of the above operators.

All other characters, such as / - , () / < etc., stand for themselves,

including ¥ and + when they are not raised.

95

| The Grammar of a Simple Subset of ALGOL W
Descriptive

| Name Symbol Definition

© letter A AlBlc|plEl... |x|¥|z
oo digit 8 ol1f2|3]...]8]9

identifier 3 A (ale

| | symbol of Any symbol on the keypunch, except the double quote

constant C 6 7 0 | gto

| function value F 4Em

_ emression 3 C-1CTF(ey ={x|/} (+]-} (<l<=l=l>=|>| ~=]
F simple statement g/ s:=e|L(€T,)] lao 0 8 |B

statement S S'|IF € THEN S|IF & THEN S' ELSE S|FOR J:=€ UNTIL € DO S

block 5 BEGIN (8;17(s;]9: Fs END

declaration 9 J ST PROCEDURE w;{e|BEcINS;} (8; (8:1 e END]

type T INTEGER | REAL | LOGICAL | STRING(C)

procedure heading 74 (7 {VALUE | PROCEDURES |, 3)
program i B.

The Grammar of ALGOL W

Descriptive —

Name Symbol Definition

letter A AlBlc|D|E|-«-|x]Y]|2Z

digit 8 ol1]2]3]«++]8]9
x

identifier 3 ars]

variable Vv {8]a(e) |8(e,) (eC)] ef

symbol ol Any character on the keypunch, except the double quote.
*

constant C (67 81 67) A D+]-] s 1 TIL] |TRUE| FALSE

{8 |a]B]c|p]E]|F}"|"{e]""}"| NULL —

Oo function value F I[@+)]
\n ————_——

simple expression eg’ [+|-1[—]{ABs |LoNG[sHORT} {V|C|#F|(€)} {**|sHL|sHR}{*|/|DIV|REM|AND]}{+]|-]|OR]}

simple expression e’ eg’ |e{<|<=]=]|>=|>h=}e" |&" 1s
or relation

expression € e’ | IF € THEN € ELSE ¢|CASE € OF (eH)
—_—

argument a els] Sf ({e]*},) 1
| |

simple statement s/ v:=1e| GO to 8|3[(a ,)1|AlB

empty A The empty statement; no character at all, ,or a space.

statement S S'|IF € THEN s|1IF € THEN S' ELSE S| CASE € OF BEGIN st END

WHILE € DO S|FOR $:=€ {[STEP €] UNTIL e|{,e} 100s

Descriptive

Name Symbol Definition
* »

block IS BEGIN {8;} {S;]|8:} s EMD

declaration 8 737 ARRAY J+ (&:2%) | PROCEDURE %;s
| IT PROCEDURE ¥;{€|BEGIN{#3} {S;|9:} € Ep} | RECORD$(T 3%

i
type T INTEGER | [LONG] { REAL | COMPLEX} | LOGICAL | BITS[(32)] |STRING[(C)] | REFERENCE(S,)

procedure heading N S[({T [VALUE][RESULT]|[T] PROCEDURE} 3, |T ARRAY 8 ,(*,);)]

program P B | | |

\O
ON

| The Operators and Functions of ALGOL W, Their Formats, Meanings
and Type Constraints

Use of Symbols

Es = any ALGOL W expression.

a, = value of expression €,e

k, = kind of data represented by @, corresponding to expression €,
The kinds of data are:

1. N = numeric

2. L = logical

5. S = string

L. B = bits

AY _
5. R= reference

d. = domain of «., when k, = N.
i i i

The domains are:

1. I = integer

2. R = real

5. C = complex

They are ordered as follows: TI C R C C.

bp, = precision ofa, when k. = N.
They are ordered as follows: S < L.

If 4; = I, then p, = L.

Kinds of Arguments Domains of Numeric Precision of Numeric

Format Meaning and Results Arguments and Results Arguments and Results

E+ &, ay + a, N+ NN d+d, - max(d,,d,) PtP, — min(p,,P,)

e - €, ay = a N-N->N d,-d, — max(d, ,d,) P,P, — min(p,,p,)
* * *

e.* &, a; xX a, N*N->M a, *d, - max(d,,d,) P,*p, = L

e/ &, oy / a, N/N -» N 4,/d, - mex (d, ,d,, R) p,/D, — min(p,,P,)
o

x Fr XK KK€,3x &, oy N N-N a, — max (a, ,R) p;**L — p,
y &1 ay +N —» N +d, - d, Py > Pp,

ou)

e, DIV &, TRUNCATE (a, /o,) IDIVIoI
- *

e, REM &, oy (oy DIV a5) oss IREM I —» I
the remainder of

€1 DIV €, |

ABS €q lor, | ABS No N ABS d; - min(d,,R) ABS p, — py

LONG El ay LONG N = N LONG dy - max(d,,R) LONG pl — L where p;=s or d,=I

SHORT &, oy SHORT No N SHORT d, — d; SHORT p; — § where p=L and a,+ I

Kinds of Arguments Domains of Numeric Precision of Numeric
Format Meaning and Results Arguments and Results Arguments and Results

€& OR E a, V o L ORL -»L
1 2 1 2 BORB-B

€. AND € ao. No L ANDL » IL
1 e 1 : B AND B—- B

— & NOT ay ~~ L->L
— B—>B

1 = &, aq = 0g ky = k, — L (where k, =k) any any

4 —= 5 ay + py ky= ky — L (where k,=k,) any any

Eg. <& a, < N<N-L d.,d.< R any
1 2 1 2 S <9 oT 1’72 —

E. <=¢ o, < o N<=N->L d,,d, < R any
9 1 : 1 a S <=S5->1L 12 =

E, >= ¢ a, >a N> NL d,,d, CR any
1 2 1 2 N > 8 oT, 1°72

E€, > £& o, > N>N->L d.,d, © R any
1 2 1 2 SSS oT 1” 72

!
4 IS I, oy belongs to the R IS 5 7 L

record class J
E =& SHL 5 ay shifted left B SHL N— B d, I

0p places

&4 SHR 5 oq shifted right BSHR N —» B d,, =I
op, places

v.(E.]¢.) characters « S(N|N) = s d. = =T
he’s through 2 2 “

+ -

Up a 1 of oq

Kinds of Arguments Domains of Numeric Precision of Numeric
Format Meaning and Results Arguments and Results . Arguments and Results

IF 2 THEN &s ELSE & 1f oy then a,, IF L THEN ky ELSE i — Kk ITFLTHEN d ELISE d, IF IL. THEN Py ELSE Ps
otherwise oz where K, = 5 =k — max(d;,d,) - min(p,,p,)

CASE €_ of (815eees) % (1 <o< n) CASE N OF (ky sky eeesk) CASE L OF (4,455.54) CASE IL OF (p;5 «eesD)
— k where - max(d,,d,s+-+,d) - min(p;,...,P)
k =k = Coe =k =k

aa
®)
oS

All the following functions have the format Fe), where F 1s the function name.

We shall omit reference to the format, accordingly.

Function Meaning Kinds Domains Precision

TRUNCATE The integer i, with the same sign
as a. such that

1

ENTIER The integer i such that | I N-N RoI Any
ap =1l<igo |

ROUND The integer i, with the same sign

aq» such that
la. | - 1/2 < |i] < |e, | + 1/2

- 1 = 1
O

= ROUNDTOREAL ay N-N R-R L »S

REALPART The real part of 0
N-N C->R Any — S¥*

IMAGPART The 1maginary part of oy

IMAG a, * /-1 No N 4, > C Any— S¥
(4; € R)

*Note ¢ A asterisk on a short precision-result means that prefixing the letters LONG to the function
name ylelds a long precision result. :

unction Meaning Kinds Domains Precision

me SQRT Vo, for aq > 0 N > N a, — R Any -> s*
(4; © R)

COMPLEXSQRT vag N —-N Any —» C Any — S¥

*1
EXP e ~, for oy < 17h.67

LN log (a), for a; > 0

LOG logy dy) for @q > 0 N > N dy —- R Any — S¥
SIN sin(e,), for Jo;| < 823550 (4, € R)

COS cos(ay), for lag] <823550

=~ ARCTAN tan" (,), in the range
no

(- n/2, n/2)

TIME elapsed time, in units of 1/100 I 1
minute 1f o, = 0, otherwise in
units of 1/60 second.

ODD ay 1s an odd number I oI,

BITSTRING The sequence of bits which I 5B

represents o, in binary.
See manuals for details.

|

Function Meaning Kinds Domains Precision

NUMBER The integer which a, represents B-o1
in binary.

DECODE The number which is used as a code s(l) 3 I

for the character oy «

CODE The character for which oy 1s used I -» s(1)
as a code.

BASE10 A string of the form b+12+1234567 N =» S(12) d, © R Any
representing ®; as a power of ten
times a. fraction. (b represents a

blank space).

LONGBASEIO As above, for b+12+123456789012345 N - S(20) 4, CR Any

BASEL6 A string of the form bb+12+123456 N - S(12) 4, CR Any
bs representing @, as a power of
Q

\N sixteen times a fraction, both in
hexadecimal.

LONGBASE16 As above, for bb+l2+1234567890123L N — S(20) d, CR Any

INTBASELO A string of the form b+1234567890 I -» s(12)
representing @, in decimal.

INTBASEL6 A string of the form bbbbl2345678 I =» s(12)

representing oy in hexadecimal,
using two's complement notation.

Ea ERA To

Te . .

LA t .

