cs -109

A COMPUTER SYSTEM FOR WRITING AND TESTING
TRANSFORMATIONAL GRAMMARS

FINAL REPORT

JOYCE FRIEDMAN
PRINCIPAL INVESTIGATOR

This research was supported in part by the United
States Air Force Electronic Systems Division, under
Contract F196328-C-0035.

STANFORD UNIVERSITY COMPUTER SCIENCE DEPARTMENT
COMPUTATIONAL LINGUISTICS PROJECT

30 SEPTEMBER 1968




CS - 109
ar - 38

A COMPUTER SYSTEM FOR WRITING AND TESTING

TRANSFORMATIONAL GRAMMARS

Final Report

Joyce Friedman*

principal-investigator

This research was supported in part by the
United States Air Force Electronic Systems
Division, under Contract F196828-C-0035.

30 September 1968

*present address: Computer and Communication Sciences Department,
University of Michigan, Ann Arbor, Michigan.



For the past two years the Computational Linguistics Project in
the Computer Science Department at Stanford University has been engaged
in research leading to computer programs for accepting and manipulating
transformational grammars corresponding to a version of the theory based

on Chomsky's Aspects of the Theory of Syntax, M.I.T. Press, 1965. These

programs have been combined into a computer system for transformational
grammar which accepts a transformational grammar in a natural format,
and carries out the complete generation of sentences, from phrase struc-
ture generation, through lexical insertion and transformation. These
programs are the first to handle complete sentence generation. The sys-
tem has been made available on a limited basis to linguists writing
transformational grammars, and has proved valuable.
In order to construct the computer system, it was necessary to do

considerable preliminary work in formalizing and making more precise

the linguistic notions involved,, Thus, in addition to the value of the
programs per se, the project has made some interesting contributions to
linguistic theory, particularly in the areas of formal definition of
grammars, lexical insertion, and traffic rules for transformations.

The results obtained are described in reports which have been issued
during the-course of the projest. To summarize these results the ab-
stracts of the more important papers are included here. The bibliography
attached to this report contains a complete list of all current reports
-produced by the project, Reports that became obsolete as the project

developed have been omitted,



AF - 21

cs - 84 January 1968

A Computer System for Transformational Grammar

by

Joyce Friedman

Abstract

A comprehensive system for transformational grammar has been designed
and is being implemented on the IBM 360/67 computer. The system deals
with the transformational model of syntax, along the lines of Chomsky's
Aspects of the Theory of Syntax. The major innovations include a full
and formal description of the syntax of a transformational grammar, a
directed random phrase structure generator, a lexical insertion algo-
rithm, and a simple problem-oriented programming language in which,the
algorithm for application of transformations can be expressed, 1In this
paper we present the system as a whole, first discussing the philosophy
underlying the development of the system, then outlining the system and
-discussing its more important special features. References are given

to papers which consider particular aspects of the system in detail,



srr

AF - 14
cs - 79 October 1967

360 0.S. Fortran IV Free Field

Input-Output Package

by

Robert W. Doran

Abstract

Programmers dealing with aspects of natural language processing
have a difficult task in choosing a computer language which enables
them to program easily, produce efficient code and accept as data
freely written sentences with words of arbitrary length., List proces-
sing languages such as LISP are reasonably easy to program in but do
not execute very quickly. Other, formula oriented, languages like
FORTRAN are not provided with free field input,

The Computational Linguistics group at Stanford University Computer
Science Department is writing a system for testing transformational
grammars. As these grammars are generally large and complicated it is
important to make the system as efficient as possible, so we are using
FORTRAN IV (G.S. on IBM 360-65) as our language. To enable us to handle
free field input we have developed a subroutine package which we describe
here in the hope that it will be useful to others embarking on natural
language tasks,,

The package consists of two main programs, free field reader, free

field writer, with a number of utility routines and constant COMMON blocks.



AF - 2k February 1968

cs - 95 (Revised May 1968)

A Formal Svntax for Transformational Grammar

by

Joyce Friedman and Robert W. ‘Doran

Abstract

A formal definition of a descriptive metasyntax for transformational
grammar is given using a modified Backus Naur Form as the metalanguage.
Syntax constraints and interpretation are added in English. The under-

lying model is that presented by Chomsky in Aspects of the Theory of

Syntax. Definitions are given for the basic concepts of tree, analysis,
restriction, complex symbol, and structural change, as well as for the
major components ofa transformational grammar, phrase structure, lexicon,
and transformations. The syntax was developed as a specification of
input formats for the computer system for transformational grammar de-
scribed in [6]. It includes as a subcase a fairly standard treatment

of transformational grammar, but has been generalized in many respects,



—

AF - 15
October 1967
cs - 80

Directed Random Generation of Sentences

by

Joyce Friedman

Abstract

The problem of producing sentences of a transformational grammar
by using a random generator to create phrase structure trees for input
to the lexical insertion and transformational phases is discussed. A
purely random generator will. produce base trees which will be blocked
by the transformations, and which are frequently too long to be of
practical interest. A solution is offered in the form of a computer
program which allows the user to constrain and direct the generation
by the simple but powerful device of restricted subtrees. The program
is a directed random generator which accepts as input a subtree with
restrictions and produces around it a tree which satisfies the restric-
tions and is ready for the next phase of the grammar. The underlying

linguistic model is that of Noam Chomsky, as presented in Aspects of the

Theory of Syntax. The program is written in Fortran IV for the IBM

360/67 and is part of the Stanford Transformational Grammar Testing
System. It 1is currently being used with several partial grammars of

English.



—

AF - 34 September 1968

Analysis in Transformational Grammar

by

Joyce Friedman and Theodore S. Martner

Abstract

In generating sentences by means of a transformational grammar,
it is necessary to analyze intermediate trees, testing for the presence
or absence of various structures. This analysis occurs at two stages
in the generation process -- during insertion of lexical items (more
precisely, in testing contextual features), and during the transforma-
tion process, when individual transformations are being tested for
applicability.

In this paper we describe a formal system for the definition of
tree structure of sentences. The system consists of a formal language
for partial or complete definition of the tree structure of a sentence,
plus an algorithm for comparison of such a definition with a tree,

It represents a significant generalization of Chomsky's notion of
"proper analysis," and is flexible enough to be used within any trans-

formational grammar which we have seen.



en

AF - 25

cs - 103 June 1968

Lexical Insertion in Transformation Grammar

by

Joyce Friedman and Thomas H. Bredt

Abstract

In this paper, we describe the lexical insertion process for
generative transformational grammars. We also give detailed descriptions
of many of the concepts in transformational theory. These include the
notions of complex symbol, syntactic feature (particularly contextual
feature), redundancy rule, tests for pairs of complex symbols, and
change operations that may be applied to complex symbols., Because of
our general interpretation of redundancy rules, we define a new complex
symbol test known as compatibility. This test replaces the old notion
of nondistinctness. The form of a lexicon suitable for use with a
generative grammar is specified.

In lexical insertion, vocabulary words and associated complex
symbols are selected from a lexicon and inserted at lexical category
nodes-in the tree. Complex- symbols-are lists of syntactic features,
The compatibility of a pair of complex symbols and the analysis procedure
used for contextual features are basic in determining suitable items for
insertion. Contextual features (subcategorization and selectional) have

much in common with the structual description for a transformation and



r

we use the same analysis procedure for both. A problem encountered in
the insertion of a complex symbol that contains selectional features is
side effects. We define the notion of side effects and describe how
these effects are to be treated.

The development of the structure of the lexicon and the lexical
insertion algorithm has been aided by a system of computer programs that
enable the linguist to study transformational grammar. In the course
of this development, a computer program to perform lexical insertion was
written. Results obtained using this program with fragments of trans-
formational grammar are presented. The paper concludes with suggestions
for extensions of this work and a discussion of interpretations of trans-

formational theory that do not fit immediately into our framework,



~

AF - 35 September 1968

A Control Language for Transformational Grammar

by

Joyce Friedman and Bary W. Pollack

Abstract

Various orders of application of transformations have been considered
in transformational grammar, ranging from unordered to cyclical orders
involving notions of "lowest sentence' and of numerical indices on depth
of embedding. The general theory of transformational grammar does not
yet offer a uniform set of 'traffic rules" which are accepted by most
linguists. Thus, in designing a model of transformational grammar, it
seems advisable to allow the specification of the order and point of
application of transformations to be a proper part of the grammar.

In this paper we present a simple control language designed to be
used by linguists for this specification.

In the control language the user has the ability to:

1. Group transformations into ordered sets and apply transformations
either individually or by transformation set.

.2, Specify the order.in which the transformation sets are to be
considered.

3. Specify the subtrees in which a transformation set is to be
applied.

L, Allow the order of application to depend on which transformations
have previously modified the tree.

5, Apply a transformation set either once or repeatedly.

9



[Fir

In addition, since the control language has been implemented as
part of a computer system, the behavior of the transformations may be
monitored giving additional information on their operation.

In this paper we present the control language and examples of its
use, Discussion of the computer implementation will be found in

Pollack [1].

10



AF - 33

cs - 108 September 1968

Computer Experiments in Transformational Grammar

by

Joyce Friedman, Lorraine Klevansky,
Theodore S. Martner, Barbara H. Partee,
and Elizabeth C. Traugott

Abstract

The papers in this volume describe computer runs with six different
transformational grammars, in each case using the computer system for
transformational grammar described in CS-84 (January 1968). They are
collected here as examples which we hope will encourage other linguists
to use the system.

The motivation for the first three projects described was primarily
to test the system. The remaining papers describe experiments by
linguists using the system as a tool in their own research.

In some of the papers there are occasional remarks which indicate
a misunderstanding of the system. Editorial notes have been added to
clarify these points. Otherwise, the papers are presented without

alteration.

11



aF = 36 September 1968

Programmers Manual for a Computer Svstem

for Transformational Grammar

by

Joyce Friedman, Thomas H. Bredt,
Robert W. Doran, Theodore S. Martner,

and Bary W. Pollack
Abstract

This Manual is written by and for programmers. 1Its purpose is to
make the code of the computer system for transformational grammar more
readily understandable to programmers who wish to maintain and use the
system, or to modify and extend it. Section 2 is a short outline of the
subroutine structure of the system. It is followed in Section 3 by more
detailed descriptions of the subroutines. Sections 4 and 5 are listings
of the COMMON blocks and BLOCK DATA statements, respectively, Section 6
discusses possible extensions to the system.

The programs are written in FORTRAN IV for the IBM 360/67 and were
compiled under FORTRAN H, OPT=2, under 0.S. There are approximately
9000 lines of FORTRAN code; the compiled code, with storage areas, re-
quires approximately 300,000 bytes of storage.

The inputs to the system consist of

1. a grammar (described by the formal syntax of AF-95),
2. a one-line driver for the MAIN program,

3. 1input trees or skeletons.

12



AF - 3
AF - 4
AF - 8
AF - 9
AF - 10
AF - 13
AF - 14
cs - 79
AF - 15
cs - 80
AF - 20
AF - 21
cs - 84
AF - 24
cs = 95
AF - 25
cs - 103
AF - 33
cs --108

Bibliography

Reports of the Computational Linguistics Project

Programming lexical grapho-morphic analysis. Joyce Friedman
(Sept 1966) .

A new method for storing grammars and its application to
checking trees. Alan C. Tucker (Dec 1966).

The Tucker parser. Alan C. Tucker (Apr 1967).

Design of the programmer interface for a transformational
grammar programming system. Robert W. Doran (May 1967).

The applicability of computational linguistics.
Joyce Friedman (May 1967).

AF test grammar. Olasope O. Oyelaran (Sept 1967).

360 0.S. Fortran IV free field input-output package,
Robert W. Doran (Oct 1967).

Directed random generation of sentences. Joyce Friedman
(Oct 1967) .

Linear representation of tree structure I: basic concepts;
isotone notations. William J. Meyers (Nov 1967).

A computer system for transformational grammar. Joyce Friedman
(Jan 1968) .

A formal syntax for transformational grammar. Joyce Friedman
and Robert W. Doran (Mar 1968).

Lexical insertion in transformational grammar., Joyce Friedman
and Thomas H. Bredt (June 1968).

Computer experiments in transformational grammar. Joyce Friedman
(Ed.) (Sept 1968)

I: Fragment from Aspects (Joyce Friedman)

II: Traugott's grammar of Alfredian prose (Joyce Friedman)

III: The IBM core grammar (Joyce Friedman and Theodore S.
Martner)

Iv: 0ld English grammar I (Elizabeth C. Traugott)

v: UCLA AFESP case grammar I (Barbara H. Partee)

VI: UCLA AFESP case grammar II (Barbara H. Partee)
VII: A transformational grammar for Swahili (Lorraine
Klevansky) .

1%



-

AF - 34

AF - 35

AF

36

Analysis in transformational grammar. Joyce Friedman and
Theodore S. Martner (Sept 1968).

A control language for transformational grammar. Joyce
Friedman and Bary W. Pollack (Sept 1968).
Programmers manual for a computer system for transformational
grammar. Joyce Friedman, Thomas H, Bredt, Robert W. Doran,
Theodore S. Martner, Bary W. Pollack (Sept 1968).

14



