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INTEGER PROGRAMMING OVER A CONE

| 0. Introduction

_ The properties of a special form integer programming problem are

discussed. We restrict ourselves to optimization over a cone (a set of

= n constraints in n unconstrained variables) with a square matrix of

positive diagonal and non positive off-diagonal elements. (called a

- bounding form by F. Glover(3]).

_ It 1s shown that a simple 1iterational process gives the optimal

integer solution in a finite number of steps,

It 1s then shown that any cone problem with bounded rational

NB solution can be transformed to the bounding form and hence solved by

7 the outlined method.

— Some extensions to more than n constraints are discussed and

a numerical example 1s shown to solve a bigger problem.

— The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-18%).
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: g 1. Notation and Formulation
5 Our main concern in this paper will be with linear programming

= problems of the form

(1) Maximize Z = CX

a Subject to MX <b

WhereC, X, b are n dimensional column vectors, M 1s a rectangular

m x n matrix, and all components of M, C, b are assumed to be integral.

— X 1s unconstrained and any positivity requirements are explicitly 1incor-

porated into the system M{ <b . }

Bh We will refer to the linear program (1) as the rational program,

Co because 1t possesses 1n general a rational solution X .

| If we add to (1) the requirement that the solution X be inte-
L gral, we obtain the integral program, whose solution gives 1n general a

| lower value of the objective function Z .
As 1s known, the notion of optimal solution to (1) 1s meaningful

| only when m > n , since otherwise unbounded rational solutions exist
r and most often unbounded integral solutions. Thus we will be interested

. in this case only.

An additional requirement imposed 1s one of complete non degeneracy,

1.e. All square n X n submatrices -of M should be non singular.

| The special case m = n is called a rational (integral) cone
program.



— 2. Properties of a Bounding Cone

A cone program (1) 1s in bounding form 1f the following conditions
ng

are met:

§ a) C>0, C#£0

b) Mjy <0 for i# J

_- My; > 0 for 1=1, o mm Il

| Thus M can be written as M = D-A where D 1s & positive diagonal
“

matrix and A 1s a non-negative off-diagonal matrix.

c) There exists a positive row vector « = (ay soe @ )

a; > 0 such that aM > 0 or for each component

— n

y oa, M > 0 J =1, 2, o mm Il.
$21 174]

” Since M is net singular by requirement, there exists ML,

g } And we have
Lemme1 MT >0

-— Let u = (Uy cos U) be any row vector such that WM> 0 .

Consider the quantities Uy/ays Uys + ce Ufa where g; are those
Ne

given in condition c). Let k be the one for which U./eq is minimal

| 1.e.

Inspecting the k™ inequality of MM > 0 we get

U U
n n i k n |

0< 3 UM, = £ (—) (eM, )<(—) § aM,
~ jm TH gn ow 11k oy | 45 11k
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| Where replacing each — i # k by — only increases its valuei k

— because of (2) and the fact that aM. < (0 . Fram condition c) we know

that z aM, > 0 therefore we have U/o > 0 and also
Ue, >U/e >0 fori=1,...n,

“. Thus we conclude that U 1s non negative or

UM >0=70U>0

~ Since all rows of the inverse matrix M © satisfy the left side of this

implication 1t follows that Mt > 0

Observation: Given that M™* = N > 0 1t 1s easily shown that

- condition c¢) 1s satisfied by taking a, = > Ns (Let « be the sum
k=1

of the rows of M7).
~ CL -1

Hence given a) and b) condition c) is equivalent to M ~ > 0 .

_ We show that a bounding cone always possesses a bounded rational solution

given by Xp = M-1b .

— Let X be any feasible point satisfying MX < b .

Subtracting the equation My = b from this we get

M(X - Xp) <0.
-1 -

Since M 1s non negative we may multiply both sides by M : without

distorting the inequalities implied to get

— X - Xp < 0 or

(3) X < Xo for any feasible X .
T

= Since C>Oweget ox <C X end hence no feasible solution may have
higher value for Z than Xp .
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_ It can be shown that any non degenerate cone contains an integral

feasible point.

~ We will outline now a method for deriving the optimal -integral

| solution. Define the following sequence:

X. = [X(4) 0 | o)

- X — (DL (b+ax )]
n+l n’-

Where [ ] is the truncation operation i.e. taking the largest integer

| not larger than the argument, applied to each component. D and A are

- the positive decomposition of M = D-A into diagonal and off diagonal

matrices. Clearly Xy < Xp

= From which by multiplications of positive matrices and additions

| -1 -1 BN

3 we get D “(b+AX,) < D T(b+AXp) = Xp

_ Truncating both sides we get

— IC
X, = [D (b+AX)] < [Xp] = X, or

_ x) =X
Assuming inductively that X < X

n — n-1

We prove similarly that

-]1 -_1

[D (b+AX )] < [D (b+AX 1) or

ha (5) X 41 S x which holds therefore for all n .

Let ¥, be any 1integral-feasible point.
—

By (3)it follows that Y, < Xp and since Y, IS integral also

Since Y, is feasible Y, < D™ (bray) Furthermore it is integral
— Y < (DL (b+AY )1 (6)

0 - 0)
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— Apply the operator T(X) = [0 (b+a%) 1) to both sides of

| Y, <X, and then use (6) to get

} Ih =X
— which can be inductively extended to

| (7) Yo < X, -

” We proved our sequence x to be non increasing in all components

_ and bounded below by any integral feasible point Yo There must exist

| therefore n such that Xa =X, which implies

-— X = [D7 (bx) < DH (bax)
| Le. that x 1s a feasible integral point,

” Furthermore it 1s not lower in any component than any other inte-

3 gral feasible point and hence 1s an optimal integral solution.

3 We summarize this chain of arguments in the following:

— Theoreml

The sequence defined by (4) converges in a finite number of steps

to an optimal integral solution of any bounding cone program.,

3. General Applicability of the Method

— The contents of this chapter 1s a theorem showing that any cone

program possessing a bounded rational solution can be transformed to a

- special bounding form and solved by the above suggested method,

_ When transforming integral programs one must be careful to pre-

serve 1ntegrality of the feasible points, The only permissible transfor-

— mations are change-of-variable transformations (column operations on the

matrixM and the row ch which map integral points on integral points

- and do not map any non integral point on an integral point.
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5 These are unimodular transformations and may be built up of the

- following elementary operations:

- a) Reverse the sign of a column,
| b) Add to a column a multiple (integral in our case) of

another column,

o Let us indicate a sequence of increasingly complex procedures

that can be executed using these twe operations.

= c) Interchange two columns.

Given two columns U and V, the following sequence interchanges

- their contents.

. U:= U+V;

Vi= V=-U;

~~ Vi= =V;3

- U:= U=-V;

- d) Given two elements in a given row, use column operation on

_ the two corresponding columns which result in a 0 being placed in the

first elements location and the greatest common divisor of the two ele-

~ ments 1n the second location, (If both are initially 0 leave them

that way).

N We start by sign modifications to make both elements positive.

_ By successive subtractions of the smaller from the bigger we cause the

numbers to decrease until one or the other becomes 0 . If this happens

— to the second element, interchange columns. The remaining non zero ele-

ment 1s the G.C.D.

~ e) Given a row segment by a specified row 1 and last column

g k <n, transform 1t to a row containing 0 in locations Ma to kel

_ 7



CT and the ¢.c.D.of this segment (if not zero) at location M; x ‘
Apply procedure d) to the first two elements producing 0 in

Bh the first column and the G.C.D. of the pair 1n the second column.

_ Repeat successively between 2nd and 3rd, 3rd and 4th, etc.,

| until after applying 1t to the k-1 and the kth columns, the row seg-

- ment attains the desired form.

| f) Glven a square subma-trix by specifying k as the last row

- and column to be included, transform 1t to an upper triangular matrix

_ 'having positive diagonal and non positive super-diagonal elements.

| (Assume the submatrix to be non singilar).

— Apply procedure e) to the last row segment for columns 1 to k.

producing zeroes everywhere except for Mek which gets a positive
~ value.

_ B Apply procedure e) again to the k-1 st row for columns 1 to k-1.

Since the k°® row contains non zero element in the kD column only, it

~— will not be changed. Raving produced zeroes in columns 1 to k-2 and a

positive number in column k-1, we proceed to subtract that column suffi-

ciently many times from column kto make Me 1k <0.

_ Similar application to the previous rows finally produce the

desired form.

— g) Given a square submatrix of order k , transform the whole

matrix to a form in which the k+1*° column has negative entries in all

of the first k rows,

_ Transform first the submatrix to an upper triangular form by
prodcedure f). Subtract a large multiple of the k'? column from the

— +1 5% to make Me kel = O . Subtract now a large multiple of the k-15%

— 8



column from the x15" column to make Mo 1,ke1 S O . Notice that since
My k-1 = 0 we did not destroy the negativity property of Me kl
Proceeding in this fashion we finally subtract the 1 - element first

column from the +157 column to make Mp kel S O , not disturbing
the rest of this column,

Before we proceed to procedureh) which effects the complete

transformation we derive a necessary result,

We assumed our cone problem to have a bounded rational. solution.

'The only one possible is Xj = My.
In order for 1t to be optimal 1t 1s necessary that for any other

feasible solution:

M <Db = ox < ox,
or

) (8) MY<O0=CY<O if we let XX,= Y.
by Farkas Lemma [1] it follows that

(9) c= BM

where B 1s a non negative row vector.

Now we are ready to outline the final procedure.

h) Given a cone problem which 1s rationally solvable, it can be

transformed to a bounding cone problem of the following special type:

(to be called P1 form).

0 E |
o C >0

C = X = M=
0J 0 G

F <O



—

E 1s an upper triangular bounding matrix, i.e.,

— e.. >0e.. <0 for i<]
11 ij —

e.. = 0 for 1 > j
— 1]

G 1s an upper sub-triangular bounding matrix with negative (non zero)

_ elements on the first lower sub diagonal,

| 1.e. 8:5 > 0 8:5 = 0 for1 < J

&i+1,1 < ©
g.. = 0 for 1 > j+1

— 1]

_ —

+ o ® oo a » e « © . v . o

0 + 6 | | )
| . ]

0 0, .
_ ’ * . )

’ . *e
— ’ PY ®

M = 0 vo,0 # e 0 ©

0 - ® * 0 0 + a o * . @ o
— 0 - + 8

0 0 - +,

~— 0 0 =, *.

Ye * ee ’
— ’ ¢ ’ ‘e a ®

. ° . Ye _
_ . ’ . «0 te

0 s + 0 Ow » ¢ so) +

© stands for a non positive element.

Lo For convenience we place the ct row as an additional +1 St row
of the matrix M.
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(_

Start by applying procedure 3)to row ntl up to column n ,

_ getting ct into the above indicated form, Apply now procedure g)
to the submatrix of order n-1 making the first n-1 entries of the nth

— column non positive, (One can always find a non singular (n-1) x (n-1)

submatrix among the first n-1 columns), The matrix at this stage

looks as shown:

—

+ or

— 0 + ] O
* 9

xy
— + 8

~ + ©

_ SX OX OX XeedX X 7_

T - (0,0 0 0 +)C = Ag sow

The " ?" stands for Mo whose sign is unknown, Consider the fact that

a non negative combination of the n rows should result 1n the last ot

row. This could be true for the last column only if M n> 0 and theb

— ntl row actively participates in that combination 1.e. g >o0 ,
n

2). Inspect now row n, columns 1 to n-1 (where we drew X to signify

= we do not have any information about their sign pattern). If all entries

are 0 the matrix has been brought to PL form with G of order O.

(M then consists of E only).

— If any non zero entry 1s present, apply procedure e) to this row

segment. All entries will be 0 now except Mon 1 which is positive.
——

Reverse this column sign to make M < 0.
nq-l
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| | Repeat now and apply procedure g) to the submatrix of order n-2,

_ making all elements of colum n-1 and rows 1 to n-2 non positive. The

matrix now has the following form

| [+ © 6 o

= 0 + 6 ©
. 6 +

ey © ©

— X Xeas aX ?2 ©

Oe «0. 0 - +

” ot (0, 00vocscoveneal +)

= Inspecting column n-1 we find nonrpositive entries in rows 1 to
- n-2, a negative entry which participates actively in the non negative

combination, and 0 as the value of that combination. It must there-

_— fore be that M11 > 0 and row n-1 also participates actively

| in the combination.

= Inspect now row n-1 (where the Xs are). If all entries are 0

~ we are done. Otherwise go back to step 2) with row n-1 and shorter seg-
ment 1 to n-2.

— Proceeding in this way we either stop because such a row segment

has all zero entries, at which stage we have a non trivialE, or we carry

= this process through up to row 1, in which case E is of dimension 0

and G 1s all of M.

Observe that all rows of G participate actively 1n the positive

g combination,

CC — 10



A complete Algol program effecting this transformation 1s

attached as an appendix.,

We have thus shown that any cone problem can be brought to Pl

form* In order to complete the proof of the theorem we have to show

that

ML >0, for M in the PL form.

We start by showing that ci > 0 . Let G be of order gf .

From the observation about all rows of G actively participating

in the Farkas combination we conclude the existence of

o = CY oo a, ) Such that a, > 0
Z |

Z, = @:g,, > 0 for j=1,... 1-1
34h MT

and

) Z, = { ., >C >0
I £1 i859 Zn

Let now U = (U)542.0,) be any row vector such that UG > 0 .

Consider the sequence U./% and let k be the largest index

such that U/a_ < U,/e, for i=l, 0. 1 .

Consider the kth inequality of UG > 0, as before we can derive
U U U

J 1 i k J k
0 <y Ug, = 5 (—) (08) <( =) ¢ (a;8.,) = — °so 1 ik io ay i~ik on joq © ik Ole x

If k = then 2, > 0 and we conclude that U/e > 0 .
If k #1 and the inequalities on the way were strict inequalities we

Uy Up
have 0< — - Z, = — >0.

Xk Qk
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~ In order for the inequalities to became equalities 1t 1s neces-

sary that all i) i # k , for which g,, # 0 be equal co .
= org 1k ote

But since 8+ ,k # 0 it follows that Uta _ Ye which violates
| Ok+1 Ok

Co our requirement that k be the largest index for which U/e is
minimal. Hence as proven 1n Lemma 1

= (UG>0=TU>0)=GT>0.

Co E Ft gt let
Moto = > 0

| — 0 6 0 ca

E-© being the inverse of a triangular matrix with positive diagonal

_ and non positive superdiagonal elements is positive. =F > 0 and so

is its product with positive matrices a >0 :

— We summarize these results in the following:

Theorem 2

- Any non singular, rationally solvable cone problem can be trans-

_ formed to a Pl bounding form,

— 4, Extensions

The natural extension to a bounding cone 1s a bounding program

~ which. may be defined as follows:

. Maximize 72 = ox
Subject to MX <b C, M, b, X integers, M completely

- non deg=neratsz.,

- 14



BN With the conditions:

_ a) C>0

The rows indices may be partitioned into exclusive non empty

~~ sets I i=l,..0. N such that

b) For j¢ I, Mops 0 k #1

Mi > 0
_ c) There exists a row « a >0 such-that aM > 0 . In other

words there should be a basic bounding cone and additional constraints,

— each having exactly one positive coefficient.

The iterational process 1s defined now as
—

Xy = [Xp

= | b, "5 MX

| _ (8) x1 =min RETRKft Jk n_ Mn

By using this szquencz one may convert all proofs for the cone

~ case to proofs for the more general case, thus showing the iterational

~ process to converge provided an integral feasible point exists.
Existence of a feasible integral point 1s assured in the case of

— a bounding non degenerate cone.

In the case of a more general bounding program the following pro-

~ cedure 1s suggested:

1) Look first for a bounded rational solution to the minimum

program Minimize Z = CX S/T MX <bD

— If no bounded solution exists and the program 1s completely non

degenerate, an integral feasible point must exist and hence the itera-

BN tional process must converge,

_ 15



| - If a bounded rational scliution exists, record its value. At

_ each generation of Xn compare cx against the minimal value. If
it gets beiow the minimal value, no feasible integral point exists.

-— It 1s thus ascertained that in a finite number of steps one

either proves the non existenze of integral solution or finds it.

Unfortunately no general procedure is known which will transform

a general problem to a bounding form except for the case of n = 2,

Another possible extension 1s using the bounding form to derive

- a suboptimal solution rather than an optimal one. We use again a se-

quence defined in the same way as (7) or (8). The only difference is

= in taking as X, ary feasible integer point, This sequence is guaran-
teed to converge to a suboptimal solution with objective functions

B value Z not lower than the one for Xo 2, = cx, ‘
_ In order to get a complete integer programming algorithm one

may use the following scheme:

— 1) Identify the active cone (the one which tightly bounds the

rational optimal solution) and solve it.

- 2) If some other ccnstraints are still unsatisfied add to the

. set of constraints the n new constraints

Xs <h, -1=1ly000 No

= Where h 1s the integral solution of the currently

solved cone!.

- Return to step 1.

— 16



| 5 ER Form
During computation it has been observed that the matrices ob-

tained in formPl are not in general diagonal dominant. Since diagonal

dominance may enhance convergence, We show now how any bounding cone can

be brought to a 2 form, which 1s also a bounding form with the additional

| requirement that

My, > JEL.

i This transformation is accomplished by column additions only

| "and hence preserve condition c¢) validity.

| Assume M to be 1n bounding form and let o be the row vector,

« > 0 such that

| aM = g > 0

| Suppose there are a row 1 and a column j such that

My; < IMA
| We apply then a basic step of adding the ; bh column to the jth column,.

| "In order to show that this does not destroy the bounding form of M,

we focus our attention on the principal minor formed out of rows and

| colums 1 and J. (Without loss of generality assume 1 < j).

| BERNESE! SERRA SHAE

verre renrreneeeeillygrenen

Because any other elements in these columns are non positive it follows

that

aM, + aM. = 0, > 0
aM, + aM 5 = 63 >0

17



| Since ®; 10 are positive and the sign pattern of the minor 1s the
bounding one, one considers the solution of this 2 X 2 system and

infers that

MoMyo My ML > 0

| If now Ms < | u, | it must follow that Ms > Ms |e Adding the jth
column to the th column 1s going therefore to leave M, 4 non positive,
M, 5 positive and all other element in the altered column non positive.

| To show that this process of repeated column additions must

terminate in a finite number of steps observe the following:

Adding column i to column j transforms matrix M to M' and

| accordingly oM' = B'> 0 where quite obviously

Bs = B + Bs
Hence

Pr > & Px

| This implies that the sum of all the matrix elements weighted by

| positive welght vector « has increased. This transformation, however,

never increases any positive elements value, and must therefore decrease

| the weighted sum of the negative elements 1n absolute magnitude. This
sum should decrease by at least 1 (assume a. to be integral) at each

| such step. Since it cannot decrease below 0 the process must terminate;

| termination means that no 1 and J exist such that CSL £3,

| and P2 form has been attained.



: = 6. Numerical Example
_ Trying different numerical examples we adopted the following

computational procedure.

-- 1) Accept a general program (larger than a cone).

2) Solve first to get a rational minimal solution for bounding

he Zz fran below,

~ 3) Solve next to get a rational maximal solution = XR ,
| This process (using dual simplex method) singles out a basic cone

| . of tight or active constraints. |

; 4) Transform this cone to PL and later to P? bounding form,
| = modifyingXR on the way to be expressed in the new variables.

| 5) Search among the rest of the transformed program for addi-

| tional constraints that are in bounding form and add them to form an
| . extended cone problem.

6) Solve the extended cone problem by the iterational method.

: ~ 7) Check if the optimal solution attained satisfies the non-
| participating constraints, If 1t does not - print an error message.

| | Return to step 1 to try the next problem.
CC — In most of the cases tried, no error message was printed, which

| means that the solution to the active cone 1s also a solution to the
LT complete program.

| 5 |
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] As an 1llustrative numericé&l. example we chose the following

| fixed-charge problem [2].

Maximize Z =

+X + Xg

S/T ° [ «@h Sill

“Xe <0

A, + 2X +ox +

L 1 2 2X Xt Xs < 25
+

| i! <0
"4 <0

| - X

| 3 <0
= x) <0

| The constraints have been ordered in such a way that the first
| five are the tight constraints and yield the following rational solution

Zp = 11 =L: 1
| _ 116 _1 _ oll- X, = 1 X = X. = 8 _ =z 4d _

v,

4 Under transformation to new variables we get the following
b

rule of substitution:

| X. = 1 + y y + y, -

2 1. ° y2
X - ‘
3= 3 + 5yl 3¥, = e3 + By, - Ty

x) = 5 + - - - 4 5
vp Fe 28 SW = ow

Xs = 9 -10y, + 5%, n ky, + 2y, y 9,
Z = +

7 Ve

20



| Where the y, are constrained to satisfy:

1. 0y, - Sy, - hy "ay - Ws 29

2. -3y, + 6y,, © 23 oC ov, - ¥5 = 2

3 - 1 = zy, + by - By, - Ys S03

4. 3 + 8y), = 2
: 5. y, + Tvs < 6

6. “yt, < 0

7. - J to¥s oc Wy + Ys S01

| 8. hy, + BW, + 2p = By, + TN, S 3
9. DY) te, + 25 tf ooy tt Vs £55

| Notice that the first 5 constraints are in the Pform, i.e.,

| positive diagonal, non positive off diagonal, and diagonal greater in

| absolute value than any other element in its row. Also note that in-
: advertently constraint 6 is also of bounding form and should be added

| to the five when generating the sequence.
| The initial solution achieved by suitably truncating the trans-
| formed rational solution 1s listed below together with the iterations:

| Initial | 1st | 2nd 3rd , L | 5 6 7 8 :
| 169 168 | 167 [166 | 165 | 164 | 163 | 162 | 16 [162 | vy,

169 168 | 167 | 166 165 | 164 | 163 | 162 | 162 | 162 Ys
189 188 | 187 | 186 185 | 184 | 183 [18 | 181 | 181 Va

| 24 2k 23 23 23 | 23 23 | 23 25 25 ¥),
| L L 4 4 I L L L L 4 Vs

21



=

Substituting these final values of y into the expressions for

_ Xx we get the final solution as

1-1, X,=0 x%5=6 X =0 X=5
- and the optimal value 1s Z = 11 .

It was verified of course that this cone solution satisfies

| also the other constraints as well,

7. Relation toPrevious Work

= Even though independently derived, the suggested method is in

3 some respects similar to F. Glovers "Bound Escalation Method" [3].
Once a bounding form 1s achieved, the process of attaining the optimal

_ integral solution to this partial problem 1s quite smilar,

The main differences are in justification of the 1iterational

= method and in the proof of its convergence.

While the bound escalation method strongly relies on the assump-

| tion that all variables are restricted to be positive, and hence 1s

— restricted in the range of admissible transformations for creation of

| a bounding form, our method has no such limitation. Convergence is

proved without any positivity assumptions,,

| The-possibility of simultaneously transforming a complete

| cone 1nto either Pl orP2 bounding form 1s considered and proved here

- for the first time.

22



APPEND IXA

Following are two ALGOL-60 procedures which transform solvable

cone problems into PL and P2 forms respectively.

PROCEDURE P1(M,n,m ); VALUE m,n;

- INTEGER ARRAY M; INTEGER n,m;

BEGIN COMMENT M 1s the matrix to be transformed. Assume column

— ntl Lo contain the negated right hand side of the inequali-

tiles, row ntl contains the objective function coefficients

| and M = 0, m 1s the total number of constraints to
— ntl, nt]

be transformed together with the cone. m > n+l;

- INTEGER b,e,q;

= PROCEDURE NEGATE(a); VALUE a;

INTEGER a;

BEGIN COMMENT Reverse sign of column a;

o FOR b:=1 STEP 1 UNTIL m DO

M(b,a]:= -Mb,a]

= END;

PROCEDURE MULADD (c,d, p); VALUE c,d,p;

INTEGER c¢,d,Dp;

3 BEGIN COMMENT Multiply column ¢ by p and add to column d;

FOR b:=1 STEP 1 UNTIL m DO

= M[(b,d,]:= M[b,d] + p X M[b,c]

| END;
a.

PROCEDURE XG(c,d); VALUE c,d;

. INTEGER c,d;



- BEGIN COMMENT Interchange contents of columns c and d;

_ INTEGER t;

FOR b:=1 STEP 1 UNTIL m DO

. BEGIN M[b,c]; M[b,c]:= M{®, dl; M[b,d]:=t
| END

_ £3

3 PROCEDURE GCD1 (a, c,d); VALUE a,c,d;

INTEGER a,c,d;

— BEGIN COMMENT Set M[a,c] to 0 and Ma,d] to the G.C.D.

of the two elements;

— IF Mla,c] < 0 THEN NEGATE (c);

| IF Mla,d] < 0 THEN NEGATE (d);

L:IF M[s,c] £ 0 THEN

_ ) BEGIN IF M[a,d] = 0 THEN XG(c,d) ELSE
BEG? IF Ma,c] < Ma,d] THEN

— MULADD(C, d,-M[a,d] + Mla,c]) ELSE

| MULADD(d, c,-M[a,c] + Ma,d]);
GO TQ L

3 END

END

— END;

| PROCEDURE GCD2 (a,c); VALUE a,c;

- INTEGER 8,c;

BEGIN COMMENT SET Me,1], M{a,2], . . . UNTIL Mla,c-1] TO 0

= and Ma,c] to the G.C.D. of the two elements;
FOR e:=l §TEP-1 BNTIL D _O

acDl (a,e,etl);
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| IF Mla,c] < 0 THEN NEGATE(c)

| END;

PROCEDURE TRIANG(k); VALUE k;

BEGIN COMMENT Transform submatrix of order k into upper tri-

~ angular bounding form. Use 1f necessary +1 5° row for
interchanges;

- INTEGER ERC,i,J,t ;

_ ERC:=0;

FOR i:=k STEP -1 UNTIL 1 DO

— BEGIN Ig: GCD2(i,i);

IF M[i,i]=0 THEN

BEGINIF ERC # 0_THEN GO_TO_ERRORI:

COMMENT ERRCRL 1s an error exit for cases

- of singular matrix;

_ ERC:= 1;

FOR j:=1 STEP 1 UNTILm+l DO

- BEGIN t:= M[k+1,j];

Mk+1,5]:= M[1i,3];

- Mi,j):= t

_ END;

COMMENT 1n case of temporary singularity

o exchange row with +1 5 row;

GO TQ I2

— END;

FOR j:=i+l STEP 1 UNTIL k+l DO

” MULADD(1, 3,- (M[1,3] + M[i,i]-1) + M[i,i]);

— 22



COMMENT make th column negative by subtracting
oh column. Note that J ranges until

| COMMENT main body of procedure;

acd (n+l,n);

FOR q:= n STEP -1 UNTIL 2 DO

BEGIN TRIANG(g-1);

6oD(a5 9-1);

IF M[q,q-1]-0 TEENGO TO LEND;

NEGATE (g-1)

| : LEND:

| PROCEDURE P2(M,n,m); VALUEm,n;
| INTEGER ARRAY M; INTEGER m,n;

BEGIN COMMENT transform matrix Mto form P2;

INTEGER i,j,k,p;

| P1(M,n,m);
LB:FOR i:= 1 STEP1 UNTIL n DO

FOR j:= 1 STEP 1 UNTIL ntl DO

IF (if 3) A (abs(M[1,3]) >M[i,1]) THEN

| BEGIN p:= abs(M[i,j]) + M[i,i];

| 26



FOR k:=1 STEP 1 UNTIL m DO

Mlk,jl:= Mk,j] + p X Mk,i];

GO TO LB

| END

| END

No attempt has been made to code these procedures efficiently,
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