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INTEGER PROGRAMMING OVER A CONE

0. Introduction

The properties of a special form integer programming problem are
discussed. We restrict ourselves to optimization over a cone (a set of
n constraints in n unconstrained variables) with a square matrix of
positive diagonal and non positive off-diagonal elements. (called a
bounding form by F. Glover[3]).

It is shown that a simple iterational process gives the optimal
integer solution in a finite number of steps,

It is then shown that any cone problem with bounded rational
solution can be transformed to the bounding form and hence solved by
the outlined method.

Some extensions to more than n constraints are discussed and

a numerical example is shown to solve a bigger problem.

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (sp-183).



-

— —

T

1. Notation and Formulation

Our main concern in this paper will be with linear programming
problems of the form
(1) Maximize 2 = C:X
Subject to MX < b
Where C, X, b are n dimensional column vectors, M is a rectangular
m x n matrix, and all components of M, C, b are assumed to be integral.

X 1s unconstrained and any positivity requirements are explicitly incor-

porated into the system M{ < b .

We will refer to the linear program (1) as the rational program,
because it possesses in general a rational solution X .

If we add to (1) the requirement that the solution X be inte-
gral, we obtain the integral program, whose solution gives in general a
lower value of the objective function Z .

As is known, the notion of optimal solution to (1) is meaningful
only when m > n , since otherwise unbounded rational solutions exist
and most often unbounded integral solutions. Thus we will be interested
in this case only.

An additional requirement imposed is one of complete non degeneracy,
i.e. All square n X n submatrices -of M should be non singular.

The special case m = n 1is called a rational (integral) cone

program.
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2. Properties of a Bounding Cone

A cone program (1) is in bounding form if the following conditions

are met:
a) ¢>0, C,l-O
b) MiJSO for i# J
Mii>0fori=l, oo N

Thus M can be written as M = D-A where D is & positive diagonal
matrix and A is a non-negative off-diagonal matrix.
c) There exists a positive row vector e« = (“1’ coe a‘n),
@y > 0 such that eM > 0 or for each component
n

pY o, M >0 J=1, 2 e I
& 1713 r 4y

Since M is not singular by requirement, there exists M'l.
And we have
Lema 1 M1 >0
Let u = (Ul’ . Un) be any row vector such that W > 0
Consider the quantities Ul/ql, Ua/“é’° ee Un/otn where gy are those

given in condition c). Let k be the one for which Uk/ak is minimal

i.e.
Inspecting the kth inequality of MM > 0 we get
U U,
n n i k n
0< g UM, = g (—) (@M )< (—) § aM,
gm T D o 1k o = g;y L1k



U U

. 1o, k . .
Where replacing eacha—E i # k by —aci{nly increases its value
i

because of (2) and the fact that o;M; < 0 . Fram condition c) we know

that 3 M,

> 0 therefore we have U/o > 0 and also
i=1

k
U /e, 20 /4 >0 fori=1,...n.
Thus we conclude that U is non negative or
UM>0=U>0
Since all rows of the inverse matrix M* satisfy the left side of this
implication it follows that M™* > 0

Observation: Given that M™® = N > 0 it is easily shown that

condition c) 1is satisfied by taking o, = 5 Nys (Let o be the sum
k=1
of the rows of M'l).

Hence given a) and b) condition c) is equivalent to M_1 >0 .
We show that a bounding cone always possesses a bounded rational solution
given by Xy = M-1b .

Let X be any feasible point satisfying MK < b .

Subtracting the equation My = b from this we get

M(X-X,) <0,

R) S

. -1, . . . - .
Since M is non negative we may multiply both sides by M 1 without
distorting the inequalities implied to get

X-XR<O or

(3) X <X for any feasible X .

R
. T . .
Since C>Oweget CTX <C )(Rand hence no feasible solution may have

higher value for Z than XR .



It can be shown that any non degenerate cone contains an integral
feasible point.
We will outline now a method for deriving the optimal -integral

solution. Define the following sequence:

X,y = [D7 (0K )]

Where [ ] is the truncation operation i.e. taking the largest integer
not larger than the argument, applied to each component. D and A are
the positive decomposition of M = D-A into diagonal and off diagonal

matrices. Clearly XO < X

Fram which by multiplications of positive matrices and additions

we get D'l(b+AxO) < D'l(b+AxR) = X

Truncating both sides we get

X, = [D'l(b+AxO)] <[xR] = X, or

X =X

Assuming inductively that X < X
n — "n-1

We prove similarly that

-1 . -
(D7 (orax )] < [0 (orax, )] or
(5) X 11 SX% which holds therefore for all n .

Let YO be any integral-feasible point.

By (3) it follows that Yy < Xp and since Y, is integral also

Y, < X,
Since Y, is feasible ¥, < D'l(

Y, < [0 (ovav )] (6)

b+AYO) Furthermore it is integral



Apply the operator T(X) = [D ~(b+AX)]) to both sides of

Y. <X and then use (6)to get

which can be inductively extended to
(7) Yy < X .

We proved our sequence X to be non increasing in all components
and bounded below by any integral feasible point Yb' There must exist
therefore n such that Xnﬂ.= Xn which implies

X, = [D‘l(b+Axn)] < D'l(b+Axn)

Le. that X is a feasible integral point,

Furthermore it is not lower in any component than any other inte-
gral feasible point and hence is an optimal integral solution.

We summarize this chain of arguments in the following:

Theoreml

The sequence defined by (4) converges in a finite number of steps

to an optimal integral solution of any bounding cone program.,

3. General Applicability of the Method

The contents of this chapter is a theorem showing that any cone
program possessing a bounded rational solution can be transformed to a
special bounding form and solved by the above suggested method,

When transforming integral programs one must be careful to pre-
serve integrality of the feasible points, The only permissible transfor-
mations are change-of-variable transformations (column operations on the
matrix M and the row CF) which map integral points on integral points

and do not map any non integral point on an integral point.



These are unimodular transformations and may be built up of the
following elementary operations:

a) Reverse the sign of a column,

b) Add to a column a multiple (integral in our case) of
another column.

Let us indicate a sequence of increasingly complex procedures
that can be executed using these twc operations.

c) Interchange two columns.

Given two columns U and V, the following sequence interchanges

their contents.

U:= U+V;
V:= V-U;
Vi= =V;
U:= U-V;

d) Given two elements in a given row, use column operation on
the two corresponding columns which result in a 0 being placed in the
first elements location and the greatest common divisor of the two ele-
ments in the second location, (If both are initially 0 leave them
that way).

We start by sign modifications to make both elements positive.
By successive subtractions of the smaller from the bigger we cause the
numbers to decrease until one or the other becomes 0 . If this happens
to the second element, interchange columns. The remaining non zero ele-
ment is the G.C.D.

e) Given a row segment by a specified row i and last column

k <n , transform it to a row containing 0 in locations M, . to

1,1 TO M g



and the ¢.c,D. of this segment (if not zero) at location Mi,k .

Apply procedure d) to the first two elements producing 0 in
the first column and the G.C.D. of the pair in the second column.

Repeat successively between 2nd and 3rd, 3rd and 4th, etc.,
until after applying it to the k-1 and the k8 columns, the row seg-
ment attains the desired form.

f) Given a square subma-trix by specifying k as the last row
and column to be included, transform it to an upper triangular matrix
'having positive diagonal and non positive super-diagonal elements.

(Assume the submatrix to be non singilar).

Apply procedure e) to the last row segment for columns 1 to k.
producing zeroes everywhere except for Mk,k which gets a positive
value.

Apply procedure e) again to the k-1 st row for columns 1 to k-1.
Since the kP row contains non zero element in the k&i! column only, it
will not be changed. Raving produced zeroes in columns 1 to k-2 and a
positive number in column k-1, we proceed to subtract that column suffi-
ciently many times from column kto make Mkahk <0

Similar application to the previous rows finally produce the
desired form.

g) Given a square submatrix of order k , transform the whole
matrix to a form in which the k1*° column has negative entries in ell
of the first k rows,

Transform first the submatrix to an upper triangular form by
prodcedure f). Subtract a large multiple of the kth column from the

115 to make M 41 SO - Subtract now a large multiple of the k15
2



column from the k+1St column to make N&,l,k+l < 0. Notice that since
Mk,k-l = 0 we did not destroy the negativity property of Mkﬂwl'
Proceeding in this fashion we finally subtract the 1 - element first
column from the k+15%  column to make Mi,k+l < 0, not disturbing
the rest of this column,

Before we proceed to procedure h) which effects the complete
transformation we derive a necessary result,

We assumed our cone problem to have a bounded rational. solution.
'The only one possible is Xy = M .

In order for it to be optimal it is necessary that for any other
feasible solution:

stb=CTXSCTXR

or

(8) MY50=CIY50 if we let X-Xp = Y.
by Farkas Lemma [1] it follows that

(9) cf - BM

where B 1is a non negative row vector.

Now we are ready to outline the final procedure.

h) Given a cone problem which is rationally solvable, it can be
transformed to a bounding cone problem of the following special type:

(to be called Bl form).

2 Qooeooe O
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E is an upper triangular bounding matrix, i.e.,

;i > 0 & 5 <0 for i<j

it

e.. =0 for i > j
1]

G 1is an upper sub-triangular bounding matrix with negative (non zero)

elements on the first lower sub diagonal,

i.e. g4 >0 gij <0 for 1 < j
8i41,1 <9
g.. =0 for i > j+1
1]

- —t
+ 'e ® o v 'e > . « O . [ . 9
o + o ‘
o o, .
ot : '
» 'y 'O
[ . .

o 0 ceO + 6 6 ©
0 "'O O + 'e e L . o e
- + o
0 -+,
00 - "+,
f' .., [
. » .. b. R
. L] . .._.
: . . SN
O --O O'-- “‘O - +

¢ stands for a non positive element.

For convenience we place the CT row as an additional n+lSt row

of the matrix M.

10
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Start by applying procedure 3)to row ntl up to column n ,

getting CT into the above indicated form, Apply now procedure g)
to the submatrix of order n-1 making the first n-1 entries of the nth
column non positive,  (One can always find a non singular (n-1) x (n-1)
submatrix among the first n-1 columns), The matrix at this stage

looks as shown:

G-
-+ o Fal
0 + 6
0. ¢
9 [
¢ ¢
9
'+ e :
+ 8
X X X XeedX X ?_

cT - (0, 0... 0 0 +)

The " ?" stands for M , whose sign is unknown, Consider the fact that

a non negative combination of the n rows should result in the last CT
row. This could be true for the last column only if Mh,n > 0 and the
nth row actively participates in that combination i.e. B, > 0.

2). Inspect now row n, columns 1 to n-1 (where we drew X to signify
we do not have any information about their sign pattern). If all entries
are 0 the matrix has been brought to P1 form with G of order 0.

(M then consists of E only).

If any non zero entry is present, apply procedure e) to this row

segment. All entries will be 0 now except M

-1 which 1s positive.

Reverse this column sign to make Mngll < 0.

11



Repeat now and apply procedure g) to the submatrix of order n-2,
making all elements of column n-1 and rows 1 to n-2 non positive. The

matrix now has the following form

+ e o o

o + 6 ©

R e «

. T

"+ € ©

X Xeas asX 7 O

O¢vw. 0 - =

C o (0, enrrenrannaas0 +)

Inspecting column n-1 we find nond%sﬁﬁve entries in rows 1 to
n-2, a negative entry which participates actively in the non negative
cambination, and 0 as the value of that combination. It must there-

fore be that Mo_ > 0 and row n-1 also participates actively

l,n-1
in the combination.

Inspect now row n-1 (where the Xs are). If all entries are 0
we are done. Otherwise go back to step 2) with row n-1 and shorter seg-
ment 1 to n-2.

Proceeding in this way we either stop because such a row segment
has all zero entries, at which stage we have a non trivial E, or we carry
this process through up to row 1, in which case E is of dimension 0
and G is all of M.,

Observe that all rows of G participate actively in the positive

combination,



A complete Algol program effecting this transformation is
attached as an appendix.,

We have thus shown that any cone problem can be brought to R
form* In order to complete the proof of the theorem we have to show
that

M1 >0. for Min the P form.

lle start by showing that gt >0 . Let G be of order 1 .
From the observation about all rows of G actively participating

in the Farkas combination we conclude the existence of

a=(a,~o..az) Such that a; > 0
)
Z. = @:8..> 0 for j=l,... 21
and
Z = ! >C >0
1T Eg %84y 2

Let now U = (Ul"”U1) be any row vector such that UG > 0 .
Consider the sequence Ui/a’i and let k be the largest index
such that Uk/otk < Ui/Oti for i=1l, 0O.e £ .
Consider the kth inequality of UG > 0, as before we can derive
. U
i k

)] £ ) Uk !
0 < g Ug, =5 (= (0.8:) < ( = ) & (a8, ) = — °
;5 1 ik 12 o i®ik o £ ik o Zk

If k=4 then 2, > 0 and we conclude that U/ > 0

If k #1 and the inequalities on the way were strict inequalities we

U. U
have 0< L'Zka —5>O.
ax ax

13
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In order for the inequalities to become equalities it is neces-
U

sary that all — i # k , for which gqi% 0 be equal to k.
o * o
But since gg,; 4 # 0 it follows that Yies1 _ Eg_ which violates
, A=
k+1 @k

our requirement that k be the largest index for which ank is

minimal. Hence as proven in Lemma 1

(U6>0=U>0)=Gr>0.
E F T gl g tret
Ml - >0
0 G 0 dd;
E*" being the inverse of a triangular matrix with positive diagonal
and non positive superdiagonal elements is positive. =-F > 0 and so

is its product with positive matrices -Etra >0 :
We summarize these results in the following:
Theorem 2
Any non singular, rationally solveble cone problem can be trans-

formed to a Pl bounding form,

4, Extensions
The natural extension to a bounding cone is a bounding program
which. may be defined as follows:
Maximize Z = CIX

Subject to MX < b C, M, b, X integers, M completely

non degenerata.

14



With the conditions:

a) ¢>0

The rows indices may be partitioned into exclusive non empty
sets Ii i=l,... N -such that

i€ I, M. < i
b) For j& I, jk—o k#1
M.. >o
ji

c) There exists a row « o >0 such-that oM >0 . In other

words there should be a basic bounding cone and additional constraints,

each having exactly one positive coefficient.

The iterational process is defined now as

XO=[XRJ
. b =% M xt
i j kii 3k n
(8) X ., =min |
J1

By using this szquence one may convert all proofs for the cone
case to proofs for the more general case, thus showing the iterational
process to converge provided an integral feasible point exists.

Existence of a feasible integral point is assured in the case of
a bounding non degenerate cone.

In the case of a more general bounding program the following pro-
cedure is suggested:

1) Look first for a bounded rational solution to the minimum
program Minimize 7 = CX S/T MX <D

If no bounded solution exists and the program is completely non

degenerate, an integral feasible point must exist and hence the itera-

tional process must converge,

15
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If a bounded rational soiution exists, record its value. At
each generation of Xn compare CTXn against the minimal value. If
it gets beiow the minimal value, no feasible integral point exists.

It is thus ascertained thau in a finite number of steps one
either proves the non existenze of integral solution or finds it.

Unfortunately no general procadure is known which will transform
a general problem to a bounding form except for the case of n = 2.

Another possible extension is using the bounding form to derive
a suboptimal solution rather than an optimal one. We use again a se-
quence defined in the same way as (7) or (8). The only difference is
in taking as XO any feasible integer point, This sequence 1is guaran-
teed to converge to a suboptimal solution with objective functions
value Z not lower than the one for XO Zy = CTXO .

In order to get a complete integer programming algorithm one
may use the following scheme:

1) Identify the active cone (the one which tightly bounds the

rational optimal solution) and solve it.

2) If some other ccnstraints are still unsatisfied add to the

set of constraints the n new constraints

X, Shj’_ “1=lye0. m.

Where h is the integral solution of the currently
solved cone!.

Return to step 1.

16



5. P Form
During computation it has been observed that the matrices ob-
tained in form Pl are not in general diagonal dominant. Since diagonal
dominence may enhance convergence, We show now how any bounding cone can
be brought to a P2 form, which is also a bounding form with the additional
requirement that
Mii>|MiJ.| iAi
This transformation is accomplished by column additions only
'and hence preserve condition c¢) validity.
Assume M to be in bounding form and let o be the row vector,
@ > 0 such that
oM =g >0
Suppose there are a row i1 and a column j such that
My < Mgl A
We apply then a basic step of adding the ith column to the jth column., .
'"In order to show that this does not destroy the bounding form of M,
we focus our attention on the principal minor formed out of rows and
colums i and 7. (Without loss of generality assume i < j).

° .
.

.
. .

LB N s .O.OIQOQOOOOMQ ® e 0 000
1

«11

'.....I.dji ..‘nc.oooo.oM..Qoooo.

Because any other elements in these columns are non positive it follows

that
QWM-+%#ﬁ==6i>O
M.+ oM. = 67 >
%My T 1 >0

17



Since ai,aj are positive and the sign pattern of the minor is the
bounding one, one considers the solution of this 2 X 2 system and
infers that

M,.M,, - M 0

LML >
i Jgg 1331

i : th
<
If now M, S i Mijl it must follow that M%J > | Mﬁi

. Adding the i
column to the jth column 1is going therefore to leave Mij non positive,
ij positive and all other element in the altered column non positive.
To show that this process of repeated column additions must
terminate in a finite number of steps observe the following:
Adding column i to column j transforms matrix M to M' and
accordingly oM' = B' > 0 where quite obviously
By =Py "By
Hence
kP & Px
This implies that the sum of all the matrix elements weighted by
positive weight vector « has increased. This transformation, however,
never increases any positive elements value, and must therefore decrease
the weighted sum of the negative elements in absolute magnitude. This
sum should decrease by at least 1 (assume @, to be integral) at each
such step. Since it caﬁnot decrease below 0 the process must terminate;
termination means that no i and j exist such that Mﬁ'shgjl i#t3,

and P2 form has been attained.

18
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6. Numerical Example

Trying different numerical examples we adopted the following
computational procedure.

1) Accept a general program (larger than a cone).

2) Solve first to get a rational minimal solution for bounding
Z fram below,

3) Solve next to get a rational maximal solution - XR .

This process (using dual simplex method) singles out a basic cone
of tight or active constraints.

4) Transform this cone to Pl and later to P bounding form,
modifying XR on the way to be expressed in the new variables.

5) Search among the rest of the transformed program for addi-
tional constraints that are in bounding form and add them to form an
extended cone problem.

6) Solve the extended cone problem by the iterational method.

7) Check if the optimal solution attained satisfies the non-
participating constraints, If it does not - print an error message.
Return to step 1 to try the next problem.

In most of the cases tried, no error message was printed, which
means that the solution to the active cone is also a solution to the

complete program.

19
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As an illustrative numeric&l. example we chose the following

fixed-charge problem [2],

Maximize Z = x_ + Xh +ox

3 5
S/T T,
-X
-8X2 + X, >
—6Xl + x3 <0
X, + 2X2 + .¢.’X5 + Xh_+ ex5 <25
_2;((1 2 X3 + 2x4 teX, < 19
1 =0
- X, <0
- x3 <0
- X <0

The constraints have been ordered in such a way that the first

five are the tight constraints and yield the following rational solution
_ 2
Zg = 11 ’IZ'
— 116 1 _ olk
X, =1 X =17 x =8 _ =1 _
1 X L X qu“ﬁf X; =0
Under transformation to new variables we get the following

rule of substitution:

X, = 1 +

1 ¥y Y3 ty, - ys
X, = -

2 1 y2
X

3 = +5y1 T 2, ~ 2/3 + - 7
X . _53 ! oyl eCEN 3+ 3y Y

5yl 2y2 2y3 SY)_,_ - y5

X,J. = 9 -loyl + 5y2 ' hy3 + 2y4 + 9y5
Z =

20



Where the y, are constrained to satisfy:

1. 0y; - By, - hy3 -2y, - Wy 29
2. 3y o+ 6, - o2y5 - Sy, - v5 505
3. - - B, ¢ by - 3y - V5 23
b, Y3 4 8y, <3
5. v, + T < 6
6. vt < 0
Te - t ¥ - ¥+ Vg S 1
8. =oyy o+ 3V, o+ 2y3 - oy 7Y5 <3
9. 25 A 2Y5 2 Y5 £-5

Notice that the first 5 constraints are in the P form, i.e.,
positive diagonal, non positive off diagonal, and diagonal greater in
absolute value than any other element in its row. Also note that in-
advertently constraint 6 is also of bounding form and should be added
to the five when generating the sequence.

The initial solution achieved by suitably truncating the trans-
formed rational solution is listed below together with the iterations:

Initial | I1st | 2nd [3za ,| 4 - | 5 6 7 8 9

169 168 | 167 | 166 165 | 164 | 163 | 162 | 162 | 162 ¥y
169 168 | 167 | 166 165 | 164 | 163 | 162 | 162 | 162 Y,
189 188 | 187 | 186 185 | 184 | 183 |18 | 181 | 181 Ng

3
oL 2L 23 23 23 23 23 23 23 23 Y,
L N 4 4 i ) N i i L Vs

21




Substituting these final values of y into the expressions for

x we get the final solution as

i}
i
[

and the optimal value is 2
It was verified of zourse that this cone solution satisfies

also the other constraints as well,

Te Relation to Previous Work

Even though independently derived, the suggested method is in
some respects similar to F. Glovers "Bound Escalation Method" [3].

Once a bounding form is achieved, the process of attaining the optimal
integral solution to this partial problem is quite smilar.

The main differences are in justification of the iterational
method and in the proof of its convergence.

While the bound escalation method strongly relies on the assump-
tion that all variables are restricted to be positive, and hence is
restricted in the range of admissible transformations for creation of
a bounding form, our method has no such limitation. Convergence 1is
proved without any positivity assumptions,,

The-possibility of simultaneously transforming a complete
cone into either Pl or P2 bounding form is considered and proved here

for the first time.

22
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APPENDIXA

Following are two ALGOL-60 procedures which transform solvable

cone problems into Pl and P2 forms respectively.

PROCEDURE Pl(M,n,m ); VALUE m,n;

INTEGER ARRAY M; INTEGER n,m;

BEGIN COMMENT M is the matrix to be transformed. Assume column
ntl to contain the negated right hand side of the inequali-

ties, row ntl contains the objective function coefficients

and M ... okl

be transformed together with the cone. m > ntl;

O. m 1is the total number of constraints to

INTEGER b,e,q;

PROCEDURE NEGATE(a); VALUE a;

INTEGER a;

BEGIN COMMENT Reverse sign of column a;

FOR b:=1 STEP 1 UNTIL m DO

M[b,a]:= -Mb,a]
END;

PROCEDURE MULADD (c,d,p); VALUE c,d,p;

INTEGER ¢,d,p;

BEGIN COMMENT Multiply column c¢ by p and add to column d;

FOR b:=l STEP 1 UNTIL m DO

M[b,d,]:= M[b)d] + p X M[b,C]
END;
PROCEDURE XG(c,d); VALUE c,d;

INTEGER c,d;

23



BEGIN CMMENT Interchange contents of columns ¢ and d;

INTEGER t;

FOR b:=1 STEP 1 UNTIL m DO

BEGIN M[b,cl; M[b,c]:= M[b,d]; M[b,d]:=t
°

PROCEDURE GD1 (a,c,d); _VALUE a,c,d;
INTEGER a,c,d;

BEGIN COMMENT Set M[a,c] to 0 and M[a,d] to the G.C.D.
of the two elements;

IF Mle,c] < 0 THEN NEGATE (c);
IF M{a,d] < 0 THEN NEGATE(d);
L:IF Mla,c] # 0 THEN
BEGIN IF M[a,d] = 0 THEN XG(c,d) ELSE
BEG? IF Mla,c] < Ma,d] THEN
MULADD(C, d,-M[a,d] + M[a,c]) ELSE
MULADD(d, c,-M[a,c] + Ma,d]);

GO TO L

END;
PROCEDURE GCD2(a,c); VALUE &,c;
INTEGER &,c¢;

BEGIN COMMENT SET M[e,1], Mle,2], . . . UNTIL Mla,c-1] TO 0
and Ma,c] to the G.C.D. of the two elements;
FOR e:=l $TEP-1 BNTIL D _O

aepl (a,e,e+l);

i oL



IF Ma,c] < 0 THEN NEGATE(c)
END;

PROCEDURE TRIANG (k); VALUE k;

INTEGER k;

BEGIN COMMENT Transform submatrix of order k into upper tri-

angular bounding form. Use if necessary k+lSt row for
interchanges;

INTEGER ERC,i,j,t H
ERC:=0;

FOR i:=k STEP -1 UNTIL 1 DO

BEGIN I2: GCD2(i,i);
IF M[i,i]=0 THEN

BEGIN IF ERC £0 THEN GO_TO_ERRORI:

COMMENT ERROR1 is an error exit for cases

of singular matrix;
ERC:= 1;

FOR j:=1 STEP 1 UNTIL n+l DO

BEGIN t:= M[k+1,j];
Mk+1,3]:= M[1i,3];
Mi,jl:= t

END;

COMMENT in case of temporary singularity
exchange row with k+lSt row;

GO TQ I2
END;

FOR j:=i+l STEP 1 UNTIL k+l DO

MULADD(i)J:‘(M[i:j] + M[i,1i]-1) + Mi,i]1);

25



th . .
CQMMENT make ] column negative by subtracting
ith column. Note that j ranges until
k+1;

END FORi;

END;

COMMENT main body of procedure;
acp2  (n+l,n);

FOR g:= n STEP -1 UNTIL 2 DO

BEGIN TRIANG(g-1);
GCD(gq,9-1)3
IF M[q,q-1]=0 THEN GO TO LEND;
NEGATE (9-1)
END;
LEND:
END;
PROCEDURE P2(M,n,m); VALUE m,n;

INTEGER ARRAY M; INTEGER m,n;

BEGIN COMMENT transform matrix Mto form P2;

INTEGER 1i,Jj,k,p;
Pl(M: n:m.)S

LB:FOR 1i:

1l

1 STEP1 UNTIL n DO

L]

FOR j:= 1 STEP 1 UNTIL n+l DO

IF (i# j) A (abs(M[i,j]) >Mi,i]) THEN

BEGIN p:= abs(M[i,j]) + M[i,i];
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FOR k:=1 STEP 1 UNTIL m DO

Mk, jl:= Mk,jl + p X Mk,i];
GO TO LB
END

END

No attempt has been made to code these procedures efficiently,
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