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Abstract

">A method of representing data-structures in the
form of a directed graph is described. Such & graph is

suitable for the data-base of belief systems in particular

and of large memory structures in general. / ) no |
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Introduction

. ‘There exists a class of problems in the behavioral sciences which
| have been difficult to manage satisfactorily with information processing

methods because of a lack of a good computer representation for very

large memory structures. One example is the abstract representation

linguists term a "deep structure” into vhich natural language is trans-

lated and to which a transformational grammar is applied in generating

natural language sentences. Another example consists of the large data-

"bases required in computer simulation of human belief systems. It is

the purpose of this paper to describe a directed graph we are using for

the representation of the data-base of a computer model which simulates

the formation and processing of an actusl person's or an artificial

system's beliefs about interpersonal relations. Although we have written

a computer progrem in a special-purpose language (GRAFPLE) we designed
to process a directed graph of this kini, the present paper will be

concerned primarily with describing the graph and its relations to the

model. A future psper will discuss the details of our perticular

implementation,

© Comcepts
A useful approach in building a model is to stipulate a unit or

basic component of the data-base., The unit in our model will be the
abstract entity, concept. Examples of concepts are parents, fear of

women, old men, hating suthority, John, hatred.
KINDS OF CONCEPTS

1) Sets

2) Individuals

3) Propositions
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A teiief in this model »s an attitude towards a prcposition about

soncepts. Examples of proposiiicns are men like women, John obeys his

father, fear of men leads to avoidance of men, rz. It is convenient |

to regard a propositicn as a special case of & concept. A proposition

has one of two functions -- to represent fact, or impar: a rule, Thus,
all men are mortal is a fact, while if it is believed that x 1s & man,

ir shall be believed that x is mortal is a rule. Note that these two

statements are logically equivalent, cut one 1s in a form amenable to

classification (a fact), whi.e the cther is in a form amenable to rea-

soning (a rui-). Since facts and ruies form pairs in the above manner, |

we wi'l racognize the duasity of rules and facts,

Concepts are fcrmed in various ways. In our mcdei, we restrict

concept formation to three methods: y

ORIGIN CF CCNRCEPTS

1) Starting kncwiedge ‘a priori) |
2) Ovservaticn (perception, hearsay, etc.)

3) Reasoning (identification or induction)

A pricri concepts might te self, and desire to observe. Observed

concepts wculd include I See my brother, andmy mother tells me sex is )
tad. Some factual ccucepts tbat could be induced from the above cone |
cepts and previously formed rules are sex is bad, my mother is crazy,

1 am curicus about sex. A factual concept obtained by identification

is, tnis person 18 @ man. Other methcds, such as 'deducticn’ apd

'analogy', are ali considered degenerate forms of identification and

induction in this model. One justification fcr this will be given. An

analogy such as: ‘Cows, four iegged animals, give milk, so horses, also

four legged animals, proretly g:ve milk’, really consists of the indue-

tion, ‘Cows, four legged animals give milk, so: all four legged animsls

give milk’, and the identification, ‘horses are four legged animals, all. |
four legged animals give milk, 80: horses give milk’. All dedi ions B
are applications of formal rules of manipuletion; therefore, they om
all be performed by ansicgy tc & learned set of deductive patterms (for =

example, modus ponendc ponens). B8ince ordinary people can aot Look: wt .
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two complex propositions and determine if they are equivalent without |

involved and skillful analysis, there is no reason why our model should
be a super-logician.

Not all propositions need be beliefs in the model. The degree to

which the model is willing to accept a proposition will be called the

credibility of the proposition, while the degree to which evidence sub-

stantiates a proposition will be called its foundation. Thus, ‘There

is & men behind that wall' might have little foundation yet be credible.

Indeed, 'there is not a man behind that wall' might have the same lack

of foundation and also be credible. On the other hand, ’'we all use ESP‘

may be well founded yet incredible. Credibility and foundation are

important in a model of belief systems because they are useful criteria

for rejecting and accepting observed and induced propositions during

periods both of pathological and of normal thought. We will arbitrarily

assign values of O to 100 for these attributes; e.g., a credibility of

50 means as credible as not (50-50%. 'We all use ESP' could be said to

have a credibility of 30, but a foundation of 80. 'I am alive' might

have a credibility of 100 and a foundation of 100. 'There is a man

behind that wall' could have a credibility of 85, but a foundation of

10, as could ‘there is not a man behind that wall'. If the credibility

and foundation of a proposition p are designated by cred (p) and found
(p), and the negation of a proposition p is p, we have, in normal sit-
uations:

0 < cred (p) < 100

0 < found (p) < 100

cred (p) + cred (p) > 100
found (p) + found (p) < 100

The credibility inequality arises from the peculiarity thet both a

proposition and its negation could be quite credible (cf. man behind

the wall), although they could not both be incredible, for if p is
incredible, there ie little choice but to accept p. Similarly, both
& proposition and its negatiun could be quite unfounded, (cf. man behind
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the wall), but if p becomes well-founded, it tends to detract from the

foundation of p*-
The rules of probability, such as prot (p and q) = prob (p) x |

pret (q), are not realistic predictors of humen beliefs. One of the

problems encountered in the simuiation of telief systems is how to as-

sign credibility and foundation values to propositions, whether entering

the system or being producedas a result of reasoning.

Without regard for their status as beliefs, two propositions can

still differ only in intensity, e.g., John is firm and John is obstinate,

or John strongly believes x and John weakly believes x. We will agree

by convention:

0 < intens (p) < 100

intens (p) = intens (p)

There are thus three values attributabie to a proposition; two

relate to its status as a belief, the other does not.

MEASURES OF PROPOSITIONS

1) Credibility (degree of acceptance)

2) Foundation (degree of substantiation:

3) Intensity (e.g., relative degree of assertion)

Different concepts (propositions, ideas, and tckens) in a model can

vary in their importance to the train of thought, to decision making,

and to reasoning processes of a simulation,and agingle concept can vary

in its importance from time to time, The attribute measuring these

differences will be called charge. Thus, sex might be a permanently

charged concept to a model, while washing the dishes might be temporarily

charged. Ifc is any concept,

0 < charge (c)< 100

#When found (p) + found (p) > 100 we call p a paradox; and when cred

(p) + cred (p) < 100 we call p a quandary. The above are abnormal sit-
uations and the model would try to resolve them if noticed.

ly=



If c¢ happens to be a proposition p, there is nc special restriction on

the relation between charge (p) and charge (p). One could care less

whether or not ‘there is a wan behind that wall’ {charges both low), but

become extremely excited whenever someone expresses either agreement or

disagreement with 'capital punishment is necessary’ (both charges high).

Furthermore 'there were no tornadoes in Oregon today’ might have low

charge while its negation could te quite highly charged. Charge can be

resolved into two components, fixed charge and current charge. A tem-

porarily charged concept has a high current charge but not necessarily

a high fixed charge. When the current charge of a concept approaches

its fixed charge, the concept is said to te active. If it is very much

below the fixed charge, it is said to be dormant.

Other quantitative distinctions could be made between concepts,

such as longevity (how long ago formed) and inhibition (tendency to be

avoided in communication and reasoning). For example, a concept formed

long ago having few known properties is easily "forgotten". An inhib-

ited concept which is highly charged is of interest because it may

provide a clue to some previous trauma or tO & neurotic conflict. These

attributes are not central to this paper, but will be included in the

following table for completeness:

MEASURES OF CONCEPTS

1) Charge (importance to the belief system)

2) Longevity (time since concept was formed)

3) Inhibition /tendency to avoid being considered)

A belief such as 'I was beaten by my mother' could te charged and

long lived, but aiso be very inhibited. Thus, the model would be ex-

pected to avoid reference tu it unless forced ty extenuating circum-

stances.

In addition to quantitative measures, concepts have qualitative as-

pects. The kind (set, individual, or proposition) and the origin (a
priori observed,or reasoned) are examples. However, most qualitative

information about a concept is suppiied by its relationship to other

concepts,
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Autosimulation

A belief system 's itself a model of the universe. Thus, a model

of a belief system is a model of a model. The ability of people to

model a model is both unusual and important, especially when the target

model is the human wi:d., In fact, reasoning processes are ajded by

simulation of one's own mind, i.e., by autosimulation. For example, 'If

you show me a cat with two tails, I will believe twc tailed cats exist’

is a prediction of & change of one's own mind in a certain situatiom, All

beliefs which are rules are models of the model itself (cf., ‘if it is

believed that x is a man, then it will be believed that x is morual’).

Context

During a dialogue, a person observes words and sentences which

upon examination out of context are not subject to reliable interpreta-

tion. Thus, 'It is blue outside' could refer tn the color of the ex-

terior of a car, the loveliness of the weather (tlue as in blue sky),or

even the dismalness of the weather (blueas in Blue Monday). Out of

context, 'it' can not be interpreted. It may be a pronoun whose ante=-
cedent could be 'the car', or it may be a part cf a figure of speech:

'it is x' specifying a general outlook of condition, especially of the

weather.

A nameis something uniquely associated with something, while an

appellation is what we happen to te using to refer to something. Even

. seemingly accurate word like John is really not a name, but an appel-

lation -- it can be used to refer to any of a number of people, depending

on the context. We will call this type of multivocality the 'context

problem’, Its solution is crucial to those applications in which a

model must communicate by means of natural language. Tn addition,solu-

tion of some non-linguistic problems, such as the determination of rele

evance, may be expedited by regarding them as context problems.
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Representation of Beliefs

It has already been indicated that beliefs are attitudes towards

propositions, and that propositions are special kinds of concepts. This

reduces the problem mainly to one of representing concepts, their values,
and the relations between them.

All our examples of concepts so far have been expressed as English

phrases. Natural language has room for rich variability, but is un-

comfortably vague, ambiguous, multivocal, unspecific and difficult to

process usefully on a computer. Some problems of natural language can

be solved by adopting the notation of logic and set theory, but the

rich variability disappears. In addition, there is no provision in

conventional logic for meaningful processing of inconsistent propositions,

nor for representation of contextual dependencies. Computer processing

of logical and set notation can often be straightforward; however, when

we try to simulate human cognition and affect, the inability to cope

with conflicting propositions makes set theoretic notation inadequate,
Hence we require a different representation.

Several schemes have been proposed for such a representation. We

call them ‘associative languages’, for they allow arbitrary, even in-

consistent associations to be specified between concepts in easily

processible form. Feldman's APL allows relationships to be stated in

terms of triples (6, 12).

LEFT (CIKCLE) = SQUARE

LEFT (CIRCLE) = TRIANGLE

INSIDE (SQUARE) = TRIANGLE

OBJECT (D) = FATHER, where,

D = FEAR (SELF) (1 fear my father)

Basically A(B)=C is read, 'One thing which is A cf B is C'. APL allows
answering questions like:

| LEFT (CIKCLE) = 2

INSIDE (?) = TRIANGLE

In which one or two elements of the triple are not specified. All
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triples in the system which are of that form are located. Since many

'answers' are possible to a question (e.g., both SQUARE and TRIANGLE

satisfy LEFT (CIRCLE) = 7), the answer to such a question is generally

a set of things.

One APL triple can be thought of as a subgraph of a directed graph

whose arcs associate together three nodes. Tne chiet advantage of this

outlook is that all nodes near a given node are readily accessible,

while in APL several association questions may have to be asked to deter-

mine 'nearness' to identify things related to another thing in a certain

way. Other advantages of this representation will emerge later,

A Directed Graph Model

Concepts are represented in the model M by nodes of a directed

graph. OSimple relationships are represented by directed arcs between

pairs of nodes. Each arc is labelled e,s, or p, depending on the type

of relationship existing between the connected concepts. If an are

lateled r (where r = e, s, or p) is directed from node A to node B, we

say ArB. The types of arcs are distinguished by their formal properties,

but notions of their approximate meanings can be outlined:

AeB Individual A is a member of the set B.

AsB Set A is a subset of the set B, or

Proposition A is a consequence of the proposition B.

BpA A has B, or A has property B, or
B belongs to A, or B is part of A, or
the idea of A suggests the idea of B, or
A does B

All three kinds of concepts are mentioned in the above outline: individ-

uals, sets, and propositions. By convention, individuals and sets are

collectively called tokens. The relationship e is between an individual

and a set, 8s is between two sets or between two propositions, and p is

between two tokens. The same node can be a token and a proposition in

different contexts, and the same token can be a set and an individual

in different contexts. When we say AeB and BeC, we are implying, in

the logical sense, that C is a family of sets like B. Although the
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terminology of families of sets can be used cccasionally in discourse

for clarification, families and sets are not explicitly distinguished

in the graph.

The formal properties distinguishing the three types of arcs are

given by seven axioms for valid graph-enlargement.

Axioms:

Axiom 1, AsA s is reflexive.

Axiom 2. AsB . BsC + AsC s is transitive,

Axiom 3. AeB . BsC —AeC A member of a subset is a member of
the set.

Axiom 4. AsB . CpB —» CpA A property of a set is had by its
subsets.

Axiom 5. AeB . CpB -+ CpA A property of a set is had by its
members,

Axiom 6. BpA . BsC -» CpA Having a specific property imp.iies
having the more general property.

Axiom 7. BpA . Be” -» CpA Having a specific property implies
having the more general property.

For instance, axiom 2 stutes that whenever an s arc is directed from A

to B, and another s arc vom B to C, it is valid (after substitution and

detachment) to direct in addition an s arc frem A to C. These axioms

and their contrapcsitives are the sc.e means of valid inference available

to the model. The axioms do not vary according to information in the

graph. They are considered to be automatically utilized in processes |

of interpretation and reasoning ty the model and no other laws of formal
logic are available as axioms to the model. For example, DeMorgan's

Laws (-(AB) » -A V -B; -(A VB) »-A. -B) can not be applied as laws

of inference by the model to representations in the graph.

Examples:

All persons are persons. (Axiom 1)

If women are persons, and persons are animals, then women are
apimals. {Axiom 2)

If p is a consequence of q, and q is a consequence of r, then p is
| a consequence of r. (Axiom 2)

If Sally is a person, and persons are animals, then Sally is an
animal. {Axiom 3)
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If persons are animals, and animals move, then persons move,
(Axiom 4)

If Sally is a woman and women Speak, then Sally speaks. (Axiom 5)

If brunette is brown-haired and Sally is brunette then Sally is
brown-haired. (Axiom 7)

The graph in Figure 1 represents by circles the tokens PERSON

(1.e., the set of all persons), SALLY, WOMEN, ANIMAL, MOVE, SPEECH,

BROWN, COLOR, and BRUNETTE. The relationships (1) Sally is a person,

(2) Women are persons, (3) Persons are animals, (4) Animals move,

(5) Women speak, (6) Browns are colors, (7) Sally is brown-haired,

(8) Brunette is brown-haired, and (9) Sally is brunette are represented

by the arcs pointed to by the respectively numbered triangles,

Insert Figure 1 Here

Notice that the concept Sally is represented by the node SALLY, and the

concept Woman by the node WOMEN. Since the information that Bally is

a woman is contained in the graph, it is desirable to have a node rep-

resenting that entire concept. This is accomplished by the convention

that every arc has associated with it a single node called the circum-

stance of that arc, which is drawn as a triangle touching that arc, and

whose meaning is, roughly, "the idea that" that arc exists. For ex-

ample, the triangle 1 in figure 1 is really the circumstance node of the
arc SALLY e WOMEN, and it is interpreted, "The idea that Bally is a

woman". Triangular nodes are propositions; generally, they are prop-

ositions concerning the existence of certain relationships between

certain concepts. We reserve circular nodes for tokens. As waz noted

before, occasionally a node will be used as both & proposition and as

a token; in such a case it is written as a triangle and its kind is

determined by context.

Rules in the Model

To be able to reascn, the model obviously needs more than the

seven axioms stated earlier. Because human beings generally reason not
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by formal logical deduction, but by "common sense® reasoning, analogy,
induction, and plausible inference, the consequence relationship denoted

by the s arc between propositions is not deductive implication; it is

" called instead a "rule" tc suggest heuristic reasoning, as in "rule of

thumb. Rules are propositions in the graph like any other, and are

subject to hypothetical formation and verification. They are the"back-

Fone" of the graph, for they provide the principal ability to reason

about the universe in a flexible mammer. Important characteristics of

rules are that each must be well-defined, but several rules may mutually

conflict. This allows the model to be self-inconsistent, unlike a con-

ventional logical system, bu! much like a human being. While the seven

axioms and their corollarf:zs are independent of the information in the

graph, rules are themselves part of the graph, and can be used and changed

during processes of hypothesis formation and verification. The model

can represent rules in its graph, and utilize them to enlarge the same

graph. Not every application of & rule is expected to draw a vaiid

conclusion, rather, rules should be useful heuristics for generating

and testing hypotheses.

| Two new kinds of nodes must be introduced toc assist in substitution

and detachment. A formal node is one which is a variable in the ante-

cedent of & rule; it must be sutstituted for by a normal node. A

creative node is one which specifies graph-enlarging in the consequence

of a rule; it results in the creation of a new node during detachment.

In the graph, formal nodes are denoted vy drawing a diameter inside the

circle or triangle, and creative nodes are denoted by writing a C inside.

Insert Figure 2 Here

In Figure 2, the circumstance 1 represents the fact that AeB is a

consequence of BpA for any A and B (heuristically).

Rules as Data and as Programs

It was stated in an earlier section that rules enable a model to

ponder about what it might think in a hypothetical situation by rfim-
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wating itself. ‘When dcing tms, the mcdel utilizes rules as data, that
is, erzmination of the rules directs ine examination and processing of

other data, But ruies can sa.s» tecome activated and autonomously create

new concepts or medify cid «res, i1.e., they can re programs. Thus, the

same subgraph can be beta program and data. This ctservation suggests a

duality of program and dutta. A progrem can te regarded 88 & processor

of date and of other prograss. and a data str.~t.ce as a8 retriever of

programs and of other data. Ine duality of prigsam aad dete is reflected

in a related dua.ity oF prrecss.ag &2 re.si2vdg Tv

Sone advantages of Us11@ tne g4ame rapresearanicia for programs and

data are that processing ang rirrievel Tus ne arried oul in the same

information kase, programs ce: ro. oveas:1, cxaminzd, and changed ny The

mod«l, and vradec~ffs in 2tfirr c¢wesn r2ncoreva. and Tomputation can be

&ccompl ished ny sransfoymarions witn.a a song. domain,

Rules differ from conveys iionas prvgranss 01 “oda:s compaters in tnat

they are nct seguentif.u. io Larural way Leo .se Seles wewd he to have

each rue continually scar ne wraga £1rr ~ondivicons sarzsfying ite ante-

cedents, ard then Creare Ac enceptd ao tording te ins consequences

hcwever, present.y tnis _$ neither pra “ia: nor realistie., Althcugh

rales svwouid ve executed un paral lei, Lr seems iik-ly that any one rule

should cnly operate mn speriar situaTicns. Sain sinuations are. some

ruie nas just been forme.s =1, and 1s to“: ried <1; an observation

is made, and tre mode. wn, St zvasuatr: iv as a proposit.ua; a fact is

hignly charged and enters rre prasecsrn cornax, lac moe. enters a phase

of 'contemplatii:i.

Rules allow the mide. tL. muk: -~udgments ron oI ctserved evants and

of its own curr:at state, Just as ruies sucn as Wr2n Sam te.ls me a

story about his acoumplisnments, tnay are an*ruae” can pz invoked to

screen prtentia. neliefs, appropriate rules could v= used to notice and

resolve conflicts, to ma8k- nypctrneses ahuct interprezaticas of natural

language input. and tc cnurse among presenced hypotheses ¢n the basis of

evidence derivea from ralevant rige: and facts,

¥The duality cf facts and r.i=s mentioned on page z is a linguistic one,
whiie that of program/pr: essing and daia/ratrieval is a functional one.
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. The comsequence of & rule can be a nev rule. Thus, the model can

expand the repertoire of its rules as well as that of its beliefs,

: Computer Representation
The directed graph model can be evaluated best either by invest-

‘igating human behavior to see if it displays the characteristics of the

: model, or by using the model in a simidation of human cognitive activity

to see if it displays the characteristics of & human. The present paper

will discuss the latter course, because it can be performed by the

reliable technique of interviewing a computer, while the former course

sequires dependence upon interviewers and subjects, with the associated

interference caused by interperscnal relationships and unreliable

responses,

One way to represent a directed graph structure such as that used

in the model will be presented here. Each node in the graph, including

all circumstances of arcs, will correspond to a record table) in a

rapdom-access memory. The record for the node N will have the following

fields (attributes):

MODE (normal, formal, or creative).

TYPE (t if a token, e, 8, or p if a proposition).

CHARGE (0-100).

LONGEVITY (O-...) |

INHIBITION (0-100)

OPERATORS (a list of directed arcs touching KN).

NEIGHBORS (a list of the nodes attainable via OPERATORS).

For propositions only...

SIGN (:ffirmation or negation).

CREDIBILITY (0-100).

POUNDATION (0-100).

INTENSITY (0-100).

The arcs need not be represented since their circumstance nodes are

represented, :

There are two ways to look at a graph: locally, and globally.

Local exsmination implies that exsmination begins at some node, amd
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proceeds only by following the arcs (in either direction) that touch that

node. Global examination requires "stepping back" from the graph and

looking for patterns. Both kinds of examinations are useful, but most

functions can te performed satisfactorilyby local examination, so this

method .s adopted in the present research,

Beginning at 8 node N, there are several possible connections that

can exist to arcs that touch it.

Insert F:gure 3 Here

An arc can be thought of as having three positions at which nodes can

touch it: the tail, the center, and the head. Thus the arc in figure 3

which means NeA has N at its tail, K at its center, andA at' its head,

If the three positions are numbered 1, 2, and 3, we can designate the

process of traversing the type e half-arc from N to K by an operator:

el?

In general, if r is one of the relations e, 8, or p, the possible oper-

ators to traverse half-arcs of type r are:

r12 (tail to center) r21 (center to tail)

r2% (center to head) r32 (head to center) |

Operators can te strung out and applied successively to.'a node to reach

any other node. For example, one operator string to reach V from R in

figure 3 is

(p21;p32;s12)

It is useful to define a multi-valued function g ("via") whose arguments

are a list of nodes and an operator string, and whose value is a list of

all nodes attainable from the argument nodes by application to each of

the successive operators. In figure 4,

Insert Figure 4 Here

(Fla(e32;e21)=(D), and (A,B,C)a(s12;823;e12;e25;p32;p21 = (L, M, C, J.

1.



Operator strings provide a limited means of looking for patterns in |

a graph without resorting to global examination. We camconceive of

"factoring” a graph into its structure and its content. Thus, the sub-

graph of Figure 4 which consists of the path appearing horizontel from

B to M has content BPGQM and structure {s3Z;s21;p32;p21).

The nodes attainable by single operators from N will be called the

neighbors of NX. The list of neighbors of N is inciuded as a field in
the computer's record of N. Corresponding to this list is a list of the

respective operators via which the neighbors are attained. For example,
the operators and neighbors lists of G in figure U4 are:

(812,p32,e12,e12,832)

(P,Q,R, U,V)

If G is in fact a normal token with average charge, age 20 units, and

inhibition 10, the complete record of G will appear:

MODE: normal

TYPE: t

CHARGE: 50

LONGEVITY: 20

INHIBITION: 10

OPERATORS: (812,32, €12,el2,s32)
NEIGHBORS: ( P,Q,R, U,V)

Graph Searching

Now, suppose it is required to find a node x which bears a certain

relationship R to N. If R can te expressed as a set of possible operator

strings Bisa usBps then the solntion is theoretically ottainatle by
comput ing (N)&B,,..., (HB in whose union U any node will suffice as X,
U could be empty, in which case there is no solution X, or it could have

one element, in which case the solution is unique, or it could provide

multiple solutions, of which we couad chowse any one.

The disadvantage of this theoretical sclution is that, on a

computer, when the operator strings become relatively long (say, ten or

twenty operators) the & function tegins tc become Slow because many paths
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match the first few operators but fall out of contention later; although

they will not contribute to a solution, their paths must be followed out

until they "die". If the computer were capable of parallel processing (as

future computers will increasingly be), all paths radiating from N could

te traced simultaneously, and no time would be wasted. But with sequential

processing, methods must be found to minimize the search time if an

efficient simulation is to be possible,

Three basic methods are available for graph searching cn a

sequential machine, The standard method of recursive tree-searching can

be adapted to graphs; this will be called "depth-before-breadzh”.

Consider a person lost in a fcrest stumbling upon an intersection

of two deserted roads, He thinks there is a town a few miles away, and

that there may not be another for hundreds of miles. Unfortunately, he

has no way to tell which road to follow, Sco he sets off on one road,

leav.rg a mark in the ground at the intersection so he will remember

that 1e has already tried this route in case he is later forced to

backtrack. If he encounters other intersections, he again chooses a

route and leaves a mark. If his first choice gets him to the town by

sundown, all is well and good. However, if he walks several miles, he

might decide that he has chosen the wrong route, and will backtrack to

the nearest marked intersection. If there are any rcads from this inter-

section he has not yet tried, he will mark them and try them out. Other-

wise, he will again be forced to tacktrack, etc, Eventually, either he

will have reached the town or will have tried every route out to a

certain radius from his starting point. In the example in Figure 5,

Insert Figure 5 Here

the walker started out the wrong way, and exploited many uselesa paths

before discovering the town. We call this "depth-before-breadth" because

re always searched as deeply down a path as he ever would before back-

tracking and broadening the search, |

Now in a computer tracing through a graph, it takes one unit of

processor time (say, several milliseconds) to traverse a half-arc from
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one node to another in the forward searching direction, and a consistent

smaller unit of time to backtrack from a dead end to the preceding node,

To simplify matters, suppose one forward step takes 10 ms and one back-

wards step takes 5 ms, Then the search analogous to figure 5 would

take 155 ms,

" The second method of searching we call "breadth-before depth",

This method involves examination «f all nodes one step away, then all |
nodes two steps away, etc., until a sclution is found, or a certain

mamber of steps have been tried. This method is not avallable to our

lost traveller, which might explain why it is used less frequently in

graph and tree-searching than depth-before breadth. Figure 6 shows how

a atrong leapfrog might search for the town given the sane situation as

in Figure 5.

Insert Figure 6 Here

This method requires no backtracking and no recursion. In this particular

case, ten steps are necessary; if they take 10 ms each, the search will

conclude in 100 ms, as compared to 155 for depth-before-breadth.

The examples in figures 5 and 6 are not proofs that breadth-before-

depth is a superior method to depth-before-breadth, It is often the

case, however, that breadth-before-depth is better when the node being

sought is relatively close to the starting point and is a unique sol-
ution, but worse when there are multiple solutions, all distant from

the starting point. In richly connected graphs, the situation becomes |

more complicated, because loops can exist and the same paths searched

repeatedly, which may or may not be dcsirable,

The third method of searching might be called the Monte Carlo

approach. Short segments of paths in the graph are chosen at random, and

an attempt is made to fit the segments into the operator strings . i... ~~

several segments that are adjacent in the graph become adjacent when

compared to the operator string, they are preserved as highly likely

candidates; others are eventually discarded, Variations on this method

seem more reasonable: one good one would be to search randomly fora
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segment matching a substring near the middle of the operator string, and

then to search from the middle to both ends. The value of such techniques

has not been studied.

Graph Matching |

It is often desirable in processing & graph to locate a subgraph

R which has the same structure as a given subgraph @. For example, an

input proposition may be evaluat«d snd comprehended by finding relevant

beliefs in the graph of the model. This 15 the kind of problem that

seems best solved by global examination; however, the local examination

techniques presented here are sufficient.

One necessary step to take before tackling a matching problem is

to delineate the subgreph which is to be matched, One way to do this

on paper is to draw a "circle" enclosing just those nodes and arcs which

belong to the subgraph. In local examination, this is not a very good

approach, because there is no natural orientation that can be given to

the subgraph so that it can be easily compared with other subgraphs.

Also, computer representation of such boundaries is not conveniently

accomplished.

The present method takes advantage of the fact that nodes in the

graph all represent concepts for which it is desirable tc maintain a

method of expressing their meaning in a natural linguistic menner. The

graph is constructed so that such an interpretation is ziways attached

t> each node (see figs. 1 and 7). Furthermore, it takes advantage of

the fact that, in general, subgraphs that are to be matched express

concepts in a natural linguistic manner, and so the structure guarantees

that there is a node in the subgraph that uniquely defines its boundaries;

this node will be called the hook of the subgraph. The graph-searching

problem then reduces to one of hook-matching, which has a simple local

examination solution because the subgraph becomes a tree with its hook

the root, and arcs directed away from the hook the branches, Co

In most cases, the graph-searching problem has restraints that

make it even easier. For example, in order to use a rule which includes

at least one normal node in the antecedent, a propositicn rust be under
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consideration that contains tne normal node with the same role in the

Structure of the propositicn that it has in the structure of the ante-

cedent. From the precedirg paragraph, 1t is detzrmined “hat the hook

of the proposition must likewise have the same roie in the structure of

the proposition as the hock of the antecedent nas ic .ts Structure,

Thus, we have two sutgraphs with art least one node 1n coamon, and the
problem is, starting at the hook of one, to find the hook of the other

(if any).

An example of this prebiem 1s shown in Figure 7

insert Figure 7 Here.

The sutgraph on tne right has hock R I means, literally, JOHN is a

member of the set: (a memter of the family of TOWARDS, belonging to (a
member of the set of FEARS, belonging t= SELF)); i e , John is one of what

self’s fear is 'owards, cr, Self fears Joan, When a sentence can be

put in the form

P does/has Q R I

where P 1s the subject. Q the noun form of tne vert, T a preposition,
~ and R its cbject, it usually can be represented as sn-wn in Figure 8.

Insert Figure 8 Here.

Since English does not precede direct stjects of verts ty a preposition,
we can invent one cailed D.C £2 that seatences like JOHN HITS SAM can

be encoded from JO!N DOES HIT D.C SAM.

Returning to figure 7, the left side of the figure nas a main sub

graph with hook at F which is a rule. The antecedent of the rule has

its nook at A, and it is read, v FARS Y, The consequence has its hook

at D, and it is read, V AVOIDS Y. Thus, F is read, TF V FEARS Y THEN V

AVOIDS Y. Since the nook B on the right side says SELF FEARS JOHN, we
should be able to conciude ty autcsimalation that SELF AVOIDS JOHN

according to this rule. SFL* FFAKS JOHN can easily be matched with V

FEARS Y because of the symmetryof operator strings about the common
nodes FEARS and D O.
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Summary

The representation described in this paper has many features in

common with recently developed question answering programs (Refs. l-12).°.

We have attempted to generalize these approaches for use in belief

systems in the following ways, First, the logical inference system has

been expanded to allow non-deductive inference, including analogy,

plausible inference, inductive inference, and mcdal logic. Second,

the data base representation has been generalized from property lists,

trees, and triples to a more general directed graph with a compact

representation, extensive richn:ss, and a parsimony of forms. Third,

the ability to add new relations in a simple and consistent mammer has

been achieved; that is, the graph can build new relations between con-

cepts using only the three basic arcs, other previously formed concepts,

and simple tokens. Question answering programs have shown the value

and feasibility of inference programs, consolidation and generalization
of these 1deas provide an effective and general representation for

beliefs and makes possible the modeling of human mental processes.

We have descrited in detail a directed graph suitable for computer

representation of data characteristic of belief systems. This graph

constitutes a formal structure capabie of abstractly representing the

great variety of semantic reiationships found in human concept and

belief systems. We teliieve 1t 1s sufficiently generai tc provide a

vay of representing data-hases of very large memory structures.
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