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CALCULATION OF GAUSS QUADRATURE RULES*

Gene H. Golub and John H. Welsch

Introduction

Most numerical integration techniques consist of approximating the
integrand by a polynomial in a region or regions and then integrating
the polynomial exactly. Often a complicated integrand can be factored

into a non-negative~'weight" function and another function better

approximated by a polynomial, thus
jb (t)at = J‘b (£)f(t)dt ~ f £(t.)
a8 —Jg @ “&_l WitA\by) e

Hopefully, the quadrature rule fwj, tj}§=l corresponding to the weight
function w(t) is available in tabulated form, but more likely it is
not. We present here two algorithms for generating the Gaussian quadra-
ture rule defined by the weight function when:
a) the three term recurrence relation is known for the orthogonal
polynomials generated by w(t), and
b) the moments of the weight function are known or can be calcu-

lated.

*The work of the first author was in part supported by the Office of
Naval Research and the National Science Foundation; the work of the
second author was in part supported by the Atomic Energy Commission.



1. Definitions and Preliminaries

Let w(x) >0 be a fixed weight function defined on [a, b] . For

w(x), it is possible to define a sequence of polynomials PO(X); Pl(x),.**
which are orthonormal with respect to ®(x) and in which p, (x) is of

exact degree n so that

I o), ()p_(x)ax = ; Wien g ; " (1.1)
when m n

The polynomial
p;(x) =k I (x-ti), k >0,
has n real roots
a < tl <t2 < ... < tn <b .
The roots of the orthogonal polynomials play an important role in

-Gaussian quadrature.

) 2N
Theorem: Let f(x) € C [a, b], then

b N (ew)
‘JQ w(x)f(x)dx = Z ij(tj) + 'f——"@%; @ <E<Db),
a j=l (QN)-. kN

where



] 1

W, = ’

577 Ty g (5)mg(ts)

Thus the Gauss quadrature rule is exact for all polynomials of degree

< 2N-1 . Proofs of the above statements and Theorem can be found in

Davis and Rabinowitz [4], chapter 2.

Several algorithms have been proposed for calculating
fw, t. 15 ef (8], [9].
37 3=l
In this note, we shall give effective numerical algorithms which are
based on determining the eigenvalues and the first component of the

eigenvectors of a symmetric tri-diagonal matrix.

2. Generating the Gauss Rule

Any set of orthogonal polynomials, {pj(x)}?zl, satisfies a three

term recurrence relationship:

pj+l(x) = (aj+lx + bj+l) pJ (X) - cj+lpj-l(x) (2-1)
J=20,12, «.., N-1; P_l(x) =0, Po(x) =1,
with
a, > 0, c.>0



The coefficients [%_,, bJ_., cj} have been tabulated for a number of

weight functions (x), cf[6]. 1In section b we shall give a simple
method for generating (aj, b,j’ cJ.} for any weight function.

Following Wilf [10], we may identify (2.1) with the matrix equation

() | [oy/a, 1/, O e [ o
Pl(x) 02/82, -b2/a2, l/a2 pl(x) 0
0 . .
x = +
. l/aN_ . o
Py-1 (x) J 1 CN/aN, _bN/aN J1Pw-1 (x;)— PN(X) /aI

or, equivalently in matrix notation

xp(x) = Tp(x) + 2= py(x)ey

N
where T is the tri-diagonal matrix and Ly = (0, 0, «e=y 0, l)T. Thus
pN(t.J.) = 0 if and only if
t.plt.) = t.
(5, = TR(t))
where t 5 is an eigenvalue of the tri-diagonal matrix T . In [10],

it is shown that T is symmetric if the polynomials are orthonormal.

If T is not symmetric, then we may perform a diagonal similarity




transformation which will yield a symmetric tri-diagonal matrix J .

Thus
o B, o
By % P
0
R,
| .
PN-
By v
where
2
3 =']’:':l" B; = é'c';'LiL ' (2.2)
i iTi+l

It is shown by Wilf [10] that as a consequence of the Christoffel-

Darboux identity
wj[g(tj) ]T[;g(tj) I=1 =1,2 ,.., N (2.3)

where Iﬂtj) corresponds to the normalized eigenvector associated with

the eigenvalue t.J . Suppose that the eigenvectors of T are calculated

so that

Jgd = tjgj, j= 1,2, veuy, N (2.4)




with

Ly = 1
Then if
T )
,9.3 - q.OJﬁ qu’ ey q’N—l,j b4
(2.5)
2
a5 = W3 (Ry(t.)
by (2.3) . Thus from (1.1), we see
0 % :
W= J = 23 = qu X J‘ w(x)dx = q(2) X ko - (2.6)
J PO(t ) kq a J

Consequently, 1if one can compute the eigenvalues of T and the first
component of the orthonormal eigenvectors, one is able to determine the

Gauss quadrature rule.

3. The Q-R algorithm

One of the most effective methods of computing the eigenvalues and
eigenvectors of a symmetric matrix is the Q-R algorithm of Francis [5].
The Q-R algorithm proceeds as follows:

{0)

Begin with the given matrix J = ¢ compute the factorization

ROBINONG



()7 (o) (0)

where Q =I and R

Q

is an upper triangular matrix, and

then multiply the matrices in reverse order so that

T
EONEROROEINORRORON

(1)

5(0)

Now one treats the matrix J in the same fashion as the matrix s

and a sequence of matrices is obtained by continuing ad infinitum, Thus

5 (D)

i) R(i)Q(i) _ Q(i+1)R(i+1) .1)
so that
M CORMENNCY
- Q(i)TQ(i-l)T N Q(O)TJQ(O)Q(l) e (3.2)

Since the eigenvalues of J are distinct and real for orthogonal poly-

. nomials, a real translation parameter A may be chosen so that the

(1)

- M are distinct in modulus. Under these conditions,

L)

eigenvalues of J

it is well known [5] that - \I converges to the diagonal matrix of

eigenvalues of J - AI as 1 — @ and that P(l) =Q(O) xQ(l) X .. X Q(l)

converges to the orthogonal matrix of eigenvectors of J . The method
has the advantage that the matrix J(i)- Al remains tri-diagonal
throughout the computation.

Francis has shown that it is not necessary to compute the decomposi-

tion (3.1) explicitly but it is possible to do the calculation (3.2)

directly. Let



[S(i)}k,l = {Q(i)}k,l (k = 0 1, eeey B-D),

(i.e., the elements of the first column of S(l) are equal to the
elements of the first column of Q(l) ). Then if

R E o N COLN VR co)

1i) K(1 1) 1s a tri-diagonal matrigx,

TTTRE A COR non-singular,

. , i+ L
iv) the sub-diagonal elements of K(l l) are positive,

it follows that k (F*1) _ 5(i+1)

For the tri-diagonal matrices, the calculation is quite simple.

Dropping the iteration counter i, let

(?) (p+1) j
1 . .
1
cos 6 sin 6 . o . .
P * P (P)
. sin @ -cos 6 . . . . (p+1)
P P
o 1
1

Then cos 61 is chosen so that

{ZlJ]k 1 =0 K =2, 3, eieg +

b4




Let

The matrix

Z2.J4., =

where the primes indicate altered elements of J;

then




R

~q
th

K =2y %o o0 ¥

and ZQ’ cony ZN-l

product of all the orthogonal rotations yields the matrix of orthogonal

are constructed so that K is tri-diagonal. The

, , N .
eigenvectors. To determine [w}]j—l’ however, we need only the first

component of the orthonormal eigenvector. Thus, using (2.3)

o= (i) (i o 1%(

[qo:L’qOEJ ooy qu\T] 5 [l O) O’ ® DI O] X 1130 (Z )

and i1t 1s not necessary to compute the entire matrix of eigenvectors.

More explicitly, for j =1, 2, «esy N-1

i

sin (1) _ dgf)l/[\d:gﬂ)e A (b( )) 2,

(050 1@t + aI2e,

a,J(i+l) - g'J(i) - J9(1)+ Zggi) cos egi) cin 9§ i) §+)1 sin2 QJ i)
§§;i = 511 cos® R e§i) sin egi) +a§i?L sin” egi)’
bgf’{l) = ng)l cos egl) + dgi)l sin egi) = [(Bﬁji_2l>2 * (d%f))E]%
Egi) = (Zgi) - agi;) sin 9§i) cos eJ(.i) + f(gi) (sin2 egi) - cos® BOIPE
%gi)l bgi)l cos 81,

10




(1) _ &) (i)
dj J+l sin 9
z§i+l) () cos 6, + zéil sin 6,,
{1 — 1
§+i ( ) sin 951) zgii cos 9§1);
with
(1) _ (D) (1) (1) (1)
dg "= by, by (al )
Iritially
z£O).= 1, zJ(O) =0 for | =2, .., N
so that
T
N(i) - ,QT as i1 = @

In the actual computation, no additional storage is required for

) 50 1) 25,
J J 3 3

s irce they may overwrite

(1) (1) (1)
{aj » 05 2 }

We choose X (1) as an approximation to an eigenvalue; usually, it is

relate a '0 the eigenvalues of the matrix

11



(1) 5 (1)
oN-1 Py.y
(1) (1)
Py-1 i
(1) | o (1) . .
When bN-l is sufficiently small, ay is taken as eigenvalue and N

is replaced by N-1

L, Determining the Three Term Relationship from the Moments

For many weight functions, the three term recursion relationship of
the orthogonal polynomials have been determined. 1In some situations,
however, the weight function is not known explicitly but one has a set

of 2N+1 moments, viz.

b k
uk=5['w(x)xdx k=0,1, ....N.
Let
-
s by o iy
M = ,

My e Moy

:Lo} “'2) M 4 IJ-J-

oo By eeep My
D, = det e JrLy j=0,1, r.., N1,

i S IR 5




and

mo,ul,. POz GE Mj-l’ Lﬁ+l-

B Hyy cees sy M.
Py = det e J gre | 3=1,2, ....01.
J-Lj’ Hj’f“l, M uej_l, uej_l,];
It is shown in [1] that
xp.(x) =B, ,p, ,(x a,p. (x .. - (x h.1l
pyG) = By 12y 1 G + 0P () 4 Bup, () (.1)
for 3 =1, 2, ...
where
sl Tio
a.=jSF———J-—- =05 Fyo= ) j=1, 2, N
S B B2
’-ED'
BJ-—ﬂ-—-ilel y (D =1, D = u) =1, 2,

Note that the tri-diagonal matrix so generated is symmetric.

In [7], Rutishauser gives explicit formulas in terms of determinants
for the Gauss-Crout decomposition of a matrix.

We may use these relation-
ships to evalute the coefficients

N

fag , f{s.}
I 521 J 3=

N-1

Let R denote the Cholesky decomposition of M so that

13




and R is an upper triangular matrix whose elements are

iml
2%
o= gy - L)

11 i=1
and
= - E T r 1 (L" )
= P 1 < ] .
r.. (m.j r] . kJ)/ 137 Iy 2

for i and j Dbetween 1 and n

-~

Then, from the formulas of Rutishauser

r., . r .
o dpJ¥l _g-1,

. T r =12 N
I T, j-1,3-1
(%.3)
r
i i+ .
Bj = —lilil—i j =1, 2 N-1
Jsd
with Torg = 1, rO,l =0 .

There are other means for evaluating (aj }’[ﬁj} but it is the
opinion of the authors that the above method will lead to the most

accurate formulas.

5. Description of Computational Procedures

In the following section there are three ALGOL 60 procedures for
performing the algorithms presented above. We have tried to keep the

identifiers as close to the notation of the equations as possible without

1k




sacrificing storage or efficiency. The weights and abscissas of the

quadrature rule are the result of the procedure GAUSSQUADRULE which

must be supplied with the recurrence relation by either procedure

GENORTHOPOLY or procedure CLASSICORTHOPOLY

moments of the weight function and the latter the name of the particular

The former requires the

orthogonal polynomial. A short description of each procedure follows.,

CLASSICORTHOPOLY produces p. and the three term recurrence

relationship

polynomials:

KIND

Il
=
~

KIND

1l
[N
~

KIND = 3,

KIND = k4,

0

(%., 59 cj) for six well-known kinds of orthogonal

Legendre Polynomials Pﬁ(x) on [~1.0, +1.0],

w(x) = 1.0 .

Chebyshev Polynomials of the first kind Tnbd on

[-1.0, +1.0], w(x) = (1-x2)"%.

Chebyshev Polynomials of the second kind Unbﬂ on

c-1.0, +1.0], w(x) = (l-x2)+% .

Jacobi PolynomialsPﬁa’a)Od on [-1.0, +1.0],

w(x) = (l-x)a(l+x)B for a > -1 and B > -1

/.
"KIND =5, Laguerre Polynomials ng)(x) on [0, +=],
w(x) =e 3% for a> -1
4
KIND = 6, Hermite Polynomials Hn(x) on [-=, +»=], w(x) = e

Notice that this procedure requires a real procedure to evaluate

the gamma function I'(x) .

15




GENORTHOPOLY uses the 2N+l moments of the weight function which
are supplied in MU[O] through MU2® N] to compute the aj‘s and BJ'S
of formula (4.1). First, The Cholesky dgpomposition (formula 4.2) of the
moment matrix is placed in the upper right triangular part of the array
R, then the formulas (4.3) are used to compute the a3's and Bj's
which are placed in the arrays A and B respectively.

GAUSSQUADRULE has two modes of operation controlled by the Boolean
parameter SYMM which indicates whether the tri-diagonal matrix is
symmetric or not. When the recursion relation is produced by GENORTHOPOLY,
SYMM is true; when produced by CLASSICORTHOPOLY, SYMM is false. If
SYMM is false, the matrix is symmetricized using the formulas (2.2). The
diagonal elements o, are stored in A[I] and the off diagonal elements
B; are stored in B[I] .

Beginning at label SETUP, several calculations and initializations
are done: the £l norm of the tri-diagonal matrix and the relative zero
tolerance are computed; the first component of each eigenvector W[I] and
the Q-R iteration are initialized. LAMBDA is a variable subtracted off
.the diagonal elements to accelerate convergence of the Q-R iteration
and control to some extent in what order the eigenvalues (abscissas) are
found. It begins with a value outside and to the right of the interval
containing the abscissas (=NORM) and moves to the left as the abscissas
are found; thus the abscissas will be in ascending order in the array T
(just to be sure an exchange sort is used at label S¢RT).

The maximum (EIGMAX) of the eigenvalues ( LAMBDAl and LAMBDA2 )
of the lower 2 X 2 submatrix is compared to the maximum (RHO) from

the last iteration. If they are close, LAMBDA is replaced by EIGMAX

16




This scheme seems to stabalize [AMBDA and speed convergence immediately

after deflation.

An eigenvalue has been found when the last off diagonal element falls
below EPS (see section 7). Tts value is placed in T[I] and the corre-
sponding weight W[I] is computed from formula (2,5). This convergence
test and the test for matrix splitting are done following label INSPECT.
Only the Lower block (from K to M ) needs to be transformed by the

Q-R equation given in formulas (3.3) .

17




6. The ALGOL 60 Procedures



procedure classicorthopoly(kind, alfa, beta, n, a, b, c, muzero);
value kind, n, alfa, beta;
integer kind, n; real alfa, beta, muzero;
real array a, b, c;

begin comment This procedure supplies the coefficients of the three term

recurrence relationship for various classical orthogonal polynomials. ;

integer i; real abl, pi;

switch swt := legendre, chebyshevl, chebyshev2, jacobi,
laguerre, hermite;
pi 2= 3.14159265359;
go to swtl[kindi;
legendre: muzero ;= 2.0;
comment P (x) in [-1, 1], w(x) = 1.0

for i:=1 step 1 until n do

begin ali] := (&xi-1)/i; b[i}:=0; c[il:=(i-1)/i end;
g0 to return;
chebyshevl: muzero :=pi ;
comment T (x) in [-1, 1], w(x) = (1-x*2)*(-.5) ;

for i:=1 step 1 until. n do

begin a[i] 1= 2; b[i] := 0; c[i]ls=1 end;
cali] = 1 go to return;

chebyshev2: muzero := pi/".0;
comment u(x) in [-1, 1], W(x) = (l-xTE)‘T‘.5;
for i:=1 step 1 until n do

begin a[i] := 2; b[i] :=0; c[i] := 1 end;

go to return;



jacobi: muzero:=2¢ (alfatbetatl)xgamma(alfatl)xgamma(betatl)
/gamma(alfatbetatl) ;
comment P ({alfa,beta)(x) in [-1, 1], w(x) = (1l-x)palfax(l+x)fveta
alfa > -1 and beta > -1 ;
al[1] := 0.5x(alfatbetat2); b[i] := O.5xl<alfa-beta);

for i:=2 step 1 until n do

begin abl:s 2xix( i+alfatbeta);

ali] = (2xi+alfatbeta-1)X (2xi+alfatbeta)/abl;

abl .= (2xi+alfatbeta-2)Xabl;

b[i] ¢ = (2xitalfatbeta-1)x(alfat2-betar2)/abl;

e[1] 1= 2x(i-1+alfa)x(i-1+beta)x(2xi+alfatbeta)/abl;
end;
go to return;

laguerre: muzero := gamma(alfe+l.0) ;

comment L(alfa)(x) in [0, infinity), w(x) = exp(-x)Xx 2lfa,
alfa > -1;

for i1 step 1 until n do

begin alili=z -1/1; 1= (2xi-1+alfa)/i;
cli] := (i-l+alfa)/i; ’
end;

go to return ;
hermite: muzero := sqrt(pi);
comment H (x) in (-infinity,+infinity), w(x) = exp(-xi2) ;

for i:x1 step 1 until n co

begin alil = 2; bli] :=0; el 1] ;= 2x( i-1) end;

return: end classicorthopoly ;




procedure genorthopoly(n, mu, a, b);
value n; integer n;

real array mu, a, b;

begin comment Given the 2n+l moments of the weight function,

generate the recursion coefficients of the orthogonal
polynomials.
real array r[O:ntl,0:n+l]; real sum ;
integer i, j, k;
comment Place the Cholesky decomposition of the moment matrix in r[];

for i:=1 step 1 until n+l do

for jisi step 1 until n+l do

. begin sum:= mul[i+j-2] ;

for k:=i-1 step -1 until 1 do

sum:= sum-r[k,ilxr[k,j];
r(i,i]:= (if i=j en sqrt(sum) else sum/r(i,i]);
end;
comment Compute the recursion coefficients'from the decomposition r[];
r[0,0] := 1.0; r[0,1] := 0;
for 1:=0 step 1 until n+l do

aln] := rln,n+1}/rln,n]-r[n-1,n]/r(n-1,n-1] ;

for j:=n-1 step -1 until 1 do

begin b[J] := [ j+1,5+11/x(5,3];
al 31 == r(3,5+1)/x[5,3)-xl 3-1, 31/20 3-1,35-10;
end ;

end” genorthopoly ;

20




procedure gaussquadrule(n, a, b, c, muzero, symm, t, w);
value n, muzero, symm;

integer regl muzero; boolean symm;

real array a, b, ¢, t, w

begimm e n t Given the coefficients a, b, ¢ of the three term recurrence

relation : plk+l] = (a[k+l]x+b[k+l])p[k]-c[k+l]p[k,-l], this procedure
computes the abscissas t and the weights w of the gaussian type
quadrature rule associated with the orthogonal polynomial by @R
tyr  iteration with origin shifting;

integer i, j, k, m, ml;

real norm, eps, ct, st, ct2, st2, sc, aa, ai, aj, a2, eigmax, lambda,
lambdal, lambda2, rho, r, det, bi, bj, b2, wj, cj;

boolean ex;

real procedure max(x,y); value x, y; real x, y;

max := 1f xay then x else y;
if symm then go to setup;
comment Symmetrize the matrix, if required.;

for i:=1 step 1 until n-1 do

begin ai := alil; ali] := -blil/ai;
bli] := sqrt(ecli+l]/(aixali+1]));
end;
aln] := -blnl/alnl;
comient Find the maximwa row sum norm and initialize W[I;
setup : b[0] := 0; norm := 0;

for i:=1 step 1 until n-1 do

begin norm := max(norm, abs( & | 1) )+abs(bli-1]) +abs(v[i-1]));

wlilt = 0;

21




end;

norm := max(norm, abs(aln])+abs(bln-11));
wl1] := 1.0; wln] := 0; m := n;
eps :=normx1.0 x8%(-13); comment  Relative zero tolerance:
lambda := lambdal := lambda2 := rho := norm;
comment Look for convergence of lower diagonal element;
inspect: 1if m=0 then go to sort else i := k :=ml := m-1;

if abs(blml])seps then

begin tlm] := alm]; wln] := muzeroxwlm]?® 2;
rho := (if lambdal<lambda2 then lambdal else lambda2);
m := ml;_ go to inspect;

end;

comment Small of diagonal element means matrix can be split;
for 1:=i-1 while abs(bli]l)eps do k := i;
comment Find eigenvalues of lower 2x2 and select accelerating shift;
p2 := blmiM2;  det := sgrt((almil-alm])f2+lk.oxv2) ;
aa := almll+alml;
lambda2 := 0.5x(if aa30 then aa +det else aa-det);
- lambdal := (almllxalm]-v2)/lambda2;
eigmax := max(lambdz_;l,lambdaa);
if abs(eigmax-rho)£0.125xabs(eignax) then lambda := rho := eigmax
else rho := eigmax;
comment Transform block from k to m;
cj := blk]; blk-1] := alk]-lambda;

for j:=k step 1 until ml do

22



begin r := sqrt(cite+blj-1112) ;

st := éj/r; st2 := st?2;

et := blj-11/r; ct2 := cth2;

sc := stxct; aj := al3l;

bj = blil; wi = wljl;

alj] := ajxct2+2.0xbjxsc+al j+llxst2;
blj]l := (aj-alj+l])xsc+bix(st2-ct2);

alj+1] := ajxst2-2.0xbjxsc+alj+llxct2;

¢j := bli+llxst; bly+1] := -blj+llxect; vlj-1]:=r
wljl := wixetsw[j+1llxst; wig+l] := wixst-wlj+llxct;
end; -
blk-1] := 0go to inspect;
comment Arrange abscissas in ascending order;

sort: for m:=n step -1 until 2 do

begin ex := false;

for i:=2 step 1 until m do

if t[i-1]>t[i] then
begin re= t[i-17; t[i-1] := t[ il;

tliJ:= r; ri=w[i-1];
wli-1] := w[il; wli] :=r;

ex:= true ;
end
if = ex then go to return ;

end;

return : end gaussquadrule ;

.,

23




7. Test Program and Results

The procedures in section 6 have been extensively tested in Burroughs
B5500 Algol and IBM 0S/360 Algol, There are two machine dependent items
which must be mentioned. First, the constant used to define the "relative
zero tolerance" EPS in procedure GUASSQUADRULE is dependent on the
length of the fraction part of the floating-point number representation
( =8"15 for the 13 octal digit fraction on the B5500, and = 16_1br for
a 14 hexadecimal digit long-precision fraction on the IBM 360). Second,
the moment matrix M defined in section 4 usually becomes increasingly
ill conditioned with increasing N . Thus the round-off errors generated
during Cholesky decomposition in GENORTHOPOLY cause an ill conditioned
M to appear no longer positive definite and the procedure fails on
taking the square root of a negative number.

The procedure GAUSSQUADRULE proves to be quite stable and when
the recursion coefficients are known or supplied by the procedure
CLASSICORTHOPOLY it loses only several digits off of full-word accuracy
even for N = 50 . Procedure GENORTHOPOLY usually failed to produce
the recursion coefficients from the moments when N was about 20 for
the IBM 360.

The test program given below is designed to compare the two methods
of generating the quadrature rules--from the moments or the recursion
coefficients. N can be increased until GENORTHOPOLY fails. Numerical
results may be checked against tables for Gauss-Legendre quadrature in [9]
and Gauss-Laguerre quadrature in [2]. In the Table, we compare the
abscissas and weights of the Gauss-Laguerre quadrature rule with

o= -0.75 and N = 10 computed by (1) the analytic recurrence

24




relationship and the Q-R algorithm; (2) the moment matrix and the Q-R
algorithm; (3) Concus et. al. [2]. The calculations for (1) and (2) were

performed on the IBM 360.
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begin
comment Driver program for gaussrule;
real array a, b, ¢, mu, t, w[0:10];
real muzero; integer i, n;
n := 10;
comment  Legendre polynomials. ;
outstring (1, €. 1egendre quadrature.’);
classicorthopoly(l, 0, O, n, a, b, ¢, muzero);
gaussquadrule(n, a, b, c, muzero, false, t, w);
. outstring(l, 6 abscissas: ?); outarray (Lp);
outstring(l, ®weights:’ ); outarray(l,w);

for i:=0 step 1 until 2xn do mu[i] := O;

for i:=0 step 2 until 2Xxn do mu[i] := 2.0/ (i+1);

genorthopoly(n, mu, a, b);
muzero := mu[O0];
gaussquadrule(n, a, b, ¢, muzero, true, t, w);
outstring (1,%abscissas:’ ); outarray (1, t);
outstring(l, ¢ weights:? ); outarray(l, w);
comment Laguerre polynomials. ;
outstring(l, élaguerre quadrature. alpha =—O.5’ )3
classicorthopoly(5, -0.5, 0, n, a, b, ¢, muzero);
gaussquadrule(n, a, b, c, muzero, false, t, w);
outstring (1, b gpscissas i ); outerray (1, t);
outstring (1, # weights:  ); outarray (1, w);
ma[ 0] := muzero := 1.7724538509 ; comment gamma (0.5);

for i:=l step 1 until 2xn do

muli] := (1-0.5)xmu[i-1];
gerorthopoly(n, mu, a, b);
gaussquadrule(n, a, b, ¢, muzero, true, t, w);
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¢ gabscissas:? ); outarray (1, t);

outstring(l,
outst-ring(ﬂl, ¢ weights:’ ); outarray (1, w);

end;
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