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CALCULATION OF GAUSS QUADRATURE RULES*

Gene H. Golub and John H. Welsch

Introduction

Most numerical integration techniques consist of approximating the

integrand by a polynomial 1n a region or regions and then integrating

the polynomial exactly. Often a complicated integrand can be factored

into a non-negative "weight" function and another function better

approximated by a polynomial, thus

[I (t)dt = Ie (£)f(t)dt ~ ) f(t.)a © = Ja © o Witibyil oe
i=1

N

Hopefully, the quadrature rule ss t5di corresponding to the weight
function w(t) is available in tabulated form, but more likely 1t 1s

not. We present here two algorithms for generating the Gaussian quadra-

ture rule defined by the weight function when:

a) the three term recurrence relation is known for the orthogonal

| polynomials generated by w(t), and

b) the moments of the weight function are known or can be calcu-

lated.

*The work of the first author was 1n part supported by the Office of
Naval Research and the National Science Foundation; the work of the

second author wasin part supported by the Atomic Energy Commission.
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1. Definitions and Preliminaries

Let w(x) > 0 be a fixed weight function defined on [a, b] . For

w(x), it is possible to define a sequence of polynomials py (x), pp (x), **

which are orthonormal with respect to w(x) and in which p, (x) 1s of

exact degree n so that

Je 1 when m n

Jo we (x)p, (x)dax = =. (1.1)
0 when m # n

The polynomial

- .

p(x) =k I (x-t;), k > 0,
i=1

has n real roots

vee < < .a < ty <t2 < to b

The roots of the orthogonal polynomials play an important role in

-Gaussian quadrature.

2N

Theorem: Let f(x) e€ C [a, bl, then

b N (2N)
f 3

[era = Lowes) + SEL <gcw),
a j=1 (2M)1 ky

where

2



Cw Lo
s = TT nn. (+tJp'(t.)/ fy Pen (8g) pg (ty) .

dp) (t)? - .

Py (£5) = 3 J=1, 2, 2004 No
t =t.

J

Thus the Gauss quadrature rule 1s exact for all polynomials of degree

< 2N-1 . Proofs of the above statements and Theorem can be found in

Davis and Rabinowitz [4], chapter 2.

Several algorithms have been proposed for calculating

fw, t.3. 3 cf [8], [9].
J7 373=1

In this note, we shall give effective numerical algorithms which are

based on determining the eigenvalues and the first component of the

eigenvectors ofa symmetric tri-diagonal matrix.

2. Generating the Gauss Rule

- N

Any set of orthogonal polynomials, SNCINPY satisfies a three
term recurrence relationship:

Pip (%) = CE + bit) p, (x) - C4105. (%) (2.1)

J=0,1,2, «ec, N-1; p_, (x) =0, p(x) =1,

with

a. > 0, c.>0.
J J
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The coefficients (as .; c) have been tabulated for a number of
weight functions w(x), cf[6]. In section 4 we shall give a simple

method for generating {a,, b,, cs) for any weight function.JJ :

Following Wilf [10], we may identify (2.1) with the matrix equation

- (x) 0D,, (x) b,/a;, 1/2, 0 Po

- (x) 0

' 0 ' . . . °

X = +

O

P-1 (x) ey/eyr ~by/ay Py_q (%) py (x) /2)

or, equivalently 1n matrix notation

xp (x) = Tp (x) + = py(x)eR R a. “N' '~N
. N

where T is the tri-diagonal matrix and ey = (0, 0, ..., 0, 1)T. Thus

py (ts) = 0 1f and only 1if

t.plt.) = Tplt.R(t.) = g(t)

where t , is an eigenvalue of the tri-diagonal matrix T . In [10],
it 1s shown that T is symmetric if the polynomials are orthonormal.

If T is not symmetric, then we may perform a diagonal similarity
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transformation which will yield a symmetric tri-diagonal matrix J .

Thus

oy By 0

By % Po (1@) * [ J [ J

pID* = J =

[ ] [

(0) | | -
Byrn

where

0, Ci41 :
Tar PT aa] (2.2)

1 i7i+1

It is shown by Wilf [10] that as a consequence of the Christoffel-

Darboux identity

wilp(t) 17Ip(t) 1 = CC =1,2, ,.., XN (2.3)

where p(t) corresponds to the normalized eigenvector associated with

the eigenvalue t. . Suppose that the eigenvectors of T are calculated
so that

J == t. a. | = 1 2 veo N 2.433 33 J » ©) ’ ( )
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with

T
gq. = 1.

L323

Then 1f

To ( Gy ss ees Q )S33 FT Voge G13 000 9-1, 570

(2.5)

2 2
. = OW, T.

by (2.3) . Thus from (1.1), we see

Bi % :
W, =te= il 1. X Ii w(x)dx = a. X ho (2.6)
ESC I A i "0

0" "5 0

Consequently, 1f one can compute the eigenvalues of T and the first

component of the orthonormal eigenvectors, one 1s able to determine the

Gauss quadrature rule.

5. The O-R algorithm

One of the most effective methods of computing the eigenvalues and

eigenvectors of a symmetric matrix is the Q-R algorithm of Francis [5].

The Q-R algorithm proceeds as follows:

Begin with the given matrix J = i) compute the factorization

0 050) _ (0), (0
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where NOME =T and r (©) 1s an upper triangular matrix, and
then multiply the matrices in reverse order so that

EONENONCORINORNORON

Now one treats the matrix #1) in the same fashion as the matrix 70),

and a sequence of matrices 1s obtained by continuing ad infinitum, Thus

71) J og)
(3.1)

-, 71) _ (1) (1) _ o (+1) (+1)

so that

(141) _ o(1)7 (1) (4)
J = Q JQ

0

qt TG) i.

Since the eigenvalues of J are distinct and real for orthogonal poly-

.nomials, a real translation parameter A may be chosen so that the

elgenvalues of 51) - AMI are distinct in modulus. Under these conditions,

it is well known [5] that 51) - AI converges to the diagonal matrix of

eigenvalues of J = AI as i — ® and that p (1) _o(9) vq (1) X ,,.X oH)

converges to the orthogonal matrix of eigenvectors of J . The method

has the advantage that the matrix A) Al remains tri-diagonal

throughout the computation.

Francis has shown that 1t 1s not necessary to compute the decomposi-

tion (3.1) explicitly but it is possible to do the calculation (3.2)

directly. Let
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(1) _ (ol) _
(S k,1 -_ {Q Jk, 1 (k - 0, 1, ev oy N 1),

(i.e., the elements of the first column of 5(1) are equal to the
elements of the first column of o(1) ). Thenif

: AT. .
+

11) k(t 1) is a tri-diagonal matrix,

111) 71) 1s non-singular,
os 1+

iv) the sub-diagonal elements of x (3 1) are positive,

it follows that k (itl) _ S(i+1)

For the tri-diagonal matrices, the calculation is quite simple.

Dropping the iteration counter i, let

(p) (p+1)

1 .

1 S$
° COS v, sin 3, ) ° ° °

b 5 (P)

. o oe sin 6 —cos © . o ° . (p+1)
P P

L 1

Then cos 0, 1s chosen so that

(2,30 1 - 0 K = 2, 3, oueyg +
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Let

ay ob, 0
||

by ay b, 0
J = A

- Py.1 By

The matrix

1 1

a, oy dq

1 t 1

by a ob, 0 ()?

d, b, a bs

£92 = 0b : ’
5 :

Py.1 Bw

where the primes indicate altered elements of J; then
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K = Zyn_1 4-0 see TY 32. . Zx-1

and Zs coy N-1 are constructed so that K 1s tri-diagonal. The

product of all the orthogonal rotations yields the matrix of orthogonal

eigenvectors. To determine CRY however, we need only the first
component of the orthonormal eigenvector. Thus, using (2.3)

T 1 (gli), 0) (3)_ i i i

gq = [2515950 oe oy doy] =] [1, 0, 0, ® IP 0] x 1 (Z, X Log Ke * x VARY
1=0

and 1t 1s not necessary to compute the entire matrix of eigenvectors.

More explicitly, for J = 1, 25 «ees N-1

sin 0 (1) _ (1) pr (12 , ((1)y2q3

(1) _ 21) jp ea(2)y2 , (m(3)y248
= + .cos 6, by /(asT)" + (bs3)" 1%

1-4 _ 1 - ~ [] f , , <33 1) ~ 74) I 61), A) cos pL 1) sin oli) + ney sin” o(1).
J J J J J J +1 J

(1) _ 23) Lo 2 (1) (5) (1) AG), [2 (1),
84541 = 85.1 cos 9, + 2 COS 0 sin 95 + 2541 sin 5;

La) (4) (1) , (1) (1) (2 + (4(1)y2¢3
b. = Db. cos 8.77 + 4. sin 6:77 = [ (Db. (d,72)°]j-1 J=-1 J j-1 2H; L( 5) 5-1

=(3) _ o(1) (1), Lo od) (1) , vt 2 (; 2b: "= (a. - a, sin 6. 0. + 0p) (1) - cos 1)y aJ (= +1 i 2% J (sin 3 lily57

~(1) (1) (1)
bil = =bsi] COs 24 ’
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(1) _ (1) (1)
a, S bit1 sin 2 3

i+1 —(1 ]

ae ) = Z{1) cos 6, + 2 (3) sin @,,
J J J gtd J

=(1) (1) _. (1) (i) (1)
2541 S 2, sin 0, - 251 cos 9; ,

with

(1) _ JD =(3) _ (1) _, (3),
ds = by ’ by = (a) - A J os

Initially

oy

2! ) = 1, 20) = 0 for | =2, coe; NJ

so that

T f

5 (1) ~q as 1 — @

In the actual computation, no additional storage is required for

a, 50, 50) 2),
A EE A

s ince they may overwrite

(1) (1) (1)
(a, ’ os ’ 3 }

We choose (3) as an approximation to an eigenvalue; usually, 1t 1s

relatea '0 the eigenvalues of the matrix
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(1) L (1)
N-1 Py-1

(1) (1)
Py-1 7.

(1) (1)
When by 3 1s sufficiently small, an 1s taken as elgenvalue and N

1s replaced by N-1 .

4, Determining the Three Term Relationship from the Moments

For many weight functions, the three term recursion relationship of

the orthogonal polynomials have been determined. In some situations,

however, the weight function 1s not known explicitly but one has a set

of 21 moments, viz.

b k
be = | olx)x dx k=0, 1, ....N.

3

Let

Hor Myr eves Hy

Mao coy Mo

M = 1 N+1 ,

pee Hy

Ho Hos Re J Hy

Mao Hay *) Hay

D = det 1” Te tL j=0,1, r.., N-1,
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and

Mas Hay vees Hay Me

F, = det roe J gre | j=1,2, ....081.

It is shown in [1] that

xp. (x) = B. . L(x a.p. (x PD... (xX 4.1ps ( ) B3.1P5.1( ) + 5p ) + BPs ) (4.1)

for J = 1, 2, ec cg =:

where

Fa Tip
a, = {F= - == 1 =0 Fyo= pn) 7=1,2 +... .0N
’ j-1 J-2!

VP. _D.
B, === (D. =1,D.= pu.) j=1,2,. ...N1,

Ny D, -1 0 0
. J-1

Note that the tri-diagonal matrix so generated 1s symmetric.

. In [7], Rutishauser gives explicit formulas in terms of determinants

for the Gauss-Crout decomposition of a matrix. We may use these relation-

ships to evalute the coefficients

N N-1

j=1 j=1

Let R denote the Cholesky decomposition of M so that
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M = R'R

and R 1s an upper triangular matrix whose elements are

ry; = (mgy = L Tei)
i=1

and

1-1 a= - . I <1 . 2ris = (mys ) Tis Teg)/T1 RL )
k=1

for i and j between 1 and n .

Then, from the formulas of Rutishauser

r, . r .

J, Jtl j=l, J .xX. = - g=1 2, ....N
J r. . Yr. .

Jsd J-1,3-1 7
(k.3)

Tier, 441
p, = —=ul= j=12,.... N-1
/ 3s

with Taig _ 1 0,1 = 0 .

There are other means for evaluating (a3 PACH but 1t 1s the
opinion of the authors that the above method will lead to the most

accurate formulas.

5. Description of Computational Procedures

In the following section there are three ALGOL 60 procedures for

performing the algorithms presented above. We have tried to keep the

identifiers as close to the notation of the equations as possible without
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sacrificing storage or efficiency. The weights and abscissas of the

quadrature rule are the result of the procedure GAUSSQUADRULE which

must be supplied with the recurrence relation by either procedure

GENORTHOPOLY or procedure CLASSICORTHOPOLY . The former requires the

moments of the weight function and the latter the name of the particular

orthogonal polynomial. Ashort description of each procedure follows.,

CLASSICORTHOPOLY produces Ho and the three term recurrence

relationship (a. 5? cs) for six well-known kinds of orthogonal
polynomials:

KIND = 1, Legendre Polynomials P(x) on [~1.0, +1.0],

w(x) = 1.0 .

KIND = 2, Chebyshev Polynomials of the first kind T(x) on

[-1.0, +1.0], w(x) = (1-x2)%.

KIND= 3, Chebyshev Polynomials of the second kind U, (x) on
c-1.0, +1.0], w(x) = (1-522

KIND = 4, Jacobi Polynomials BP) (x) on [-1.0, +1.0],
w(x) = (1-x)*(14+x)P for a > -1 and Bg > -1 .

/

"KIND = 5, Laguerre Polynomials 1%) (x) on [0, +=],
w(x) =e Xx? for a > -1 .

2

KIND = 6, Hermite Polynomials H (x) on [-», +=], w(x) = ex

Notice that this procedure requires a real procedure to evaluate

the gamma function I'(x) .
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GENORTHOPOLY uses the 2N+l moments of the weight function which

are supplied in MU[O] through MU2®N] to compute the a's and B,'s
of formula (4.1). First, The Cholesky decomposition (formula 4.2) of the

moment matrix 1s placed 1n the upper right triangular part of the array

R, then the formulas (4.3) are used to compute the as and Bs's
which are placed in the arrays A and B respectively.

GAUSSQUADRULE has two modes of operation controlled by the Boolean

parameter SYMM which indicates whether the tri-diagonal matrix is

symmetric or not. When the recursion relation is produced by GENORTHOPOLY,

SYMM is true; when produced by CLASSICORTHOPOLY, SYMM is false. If

SYMM 1s false, the matrix 1s symmetricilzed using the formulas (2.2). The

diagonal elements a. are stored in A[I] and the off diagonal elements

B. are stored in B[I] .

Beginning at label SETUP, several calculations and 1initializations

are done: the 2 norm of the tri-diagonal matrix and the relative zero

tolerance are computed; the first component of each eigenvector W[I] and

the Q-R iteration are initialized. LAMBDA 1s a variable subtracted off

the diagonal elements to accelerate convergence of the Q-R iteration

and control to some extent 1n what order the eigenvalues (abscissas) are

found. It begins with a value outside and to the right of the interval

containing the abscissas (=NORM) and moves to the left as the abscissas

are found; thus the abscissas will be in ascending order in the array T

(just to be sure an exchange sort 1s used at label SPRT ).

The maximum (EIGMAX) of the eigenvalues ( LAMBDA1 and LAMBDA2 )

of the lower 2 X 2 submatrix 1s compared to the maximum (RHO) from

the last iteration. If they are close, LAMBDA is replaced by EIGMAX .

16



This scheme seems to stabalize IAMBDA and speed convergence immediately

after deflation.

An eigenvalue has been found when the last off diagonal element falls

below EPS (see section 7). Tts value is placed in T[I] and the corre-

sponding weight W[I] is computed from formula (2,5). This convergence

test and the test for matrix splitting are done following label INSPECT.

Only the Lower block (from K to M ) needs to be transformed by the

Q-R equation given in formulas (3.3)
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6. The ALGOL 60 Procedures



procedure classicorthopoly(kind, alfa, beta, n, a, b, c, muzero) ;

value kind, n, alfa, beta;

integer kind, n; real alfa, beta, muzero;

real array a, b, c; .

begin comment This procedure supplies the coefficients of the three term

recurrence relationship for various classical orthogonal polynomials. ;

: integer i; real abl, pi;

switch swt := legendre, chebyshevl, chebyshevz, jacobi,

laguerre, hermite;

pi 2= 3.14159265359;

go to swtlkindj;

legendre: muzero ;= 2.0;

comment P(x) in [-1, 1], w(x) = 1.0

for i:=1 step1 untiln do

begin ali] := (&xi-1)/i; b[il:=0; clil:=(i-1)/i end;

go to return;

chebyshevl: muzero :=7pi ;

comment T (x) in [-1, 1], w(x) = (1-xT2)*(-.5) ;

) for i:=1 step 1 until. n do

begin ali] i= 2; bli] := 0; c[il:s=1 end;

ali] == 1; go to return;

chebyschev2: muzero := pi/.0;

comment u(x) in [-1, 1], W(x) = (1-xT2)P.5;

for i:=1 step1 watiln do

begin ali] := 2; bli] :=0; c[i] := 1 end;

go to return;
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jacobi: muzero:=2% (alfatbebatl)Xgamma (alfatl)xgamma(betatl) .

/ gamma,(alfatbetat?)

comment P ({alfa,beta)(x) in [-1, 1], w(x) = (1-x)Palfax(l+x)4beta

alfa > -1 and beta > -1 ;

ali] := 0.5x(alfatbetat2); bli] := 0.5x(alfa-beta);

for ii2 step1 until n do

begin abl:: 2xix( i+alfatbeta);

a[i] = (2xi+alfatbeta-1)X (2xi+alfatbeta)/abl;

abl != (2xi+alfatbeta-2)Xxabl;

pi] := (2xi+alfatbeta-1)x(alfal2-betat2)/abl;

e[1] 1 = 2x(i-1+alfa)x(i-1+beta) x(2xi+alfatbeta)/abl;

end;

go to return;

laguerre: muzero := gamma(alfe+l.0) ;

comment L(alfa)(x) in [0, infinity), w(x) = exp(-x)Xzx alfa,

alfa > -1;

for iil step 1 until n do

begin ali]:= -1/1; | : = (2xi-1+alfa)/i;
| cli] := (i-l#alfa)/i;

end;

go to return ;

hermite: muzero := sqrt(pi);

comment H (x) in (-infinity,+infinity), w(x) = exp(-xi2) ;

for iv=x1 step 1 until n do

begin alil #2; bli] :=0; ol 1]7= 2x( i-1) end;

return: end classicorthopoly ;
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procedure genorthopoly(n, mu, a, b);

value n; integer n;

real array mu, a, b;

begin comment Given the 2n+l moments of the weight function,

generate the recursion coefficients of the orthogonal

polynomials. ;

real array r[O:ntl,O:ntl]; real sum ;

integer i, j, k;

comment Place the Cholesky decomposition of the moment matrix in »{];

for i:=1 step 1 untiln+l do

for jixl step1 until n+l do

. begin sum:= mu[i+j-2] ;

for k:=i-1 step -1 until1 do

sum:= sum-r{k,i]xrlk,j];

rli,jl:= (if i=j en sqrt(sum) else sum/r[i,il);

end;

comment Compute the recursion coefficients'from the decomposition r{];

r(0,0] := 1.0; r[0,1] := 0;

for 1:=0 step 1 until n+l do

aln] := rin,n+1)/rln,nl-r{n-1,n}/r[n-1,n-1] ;

for j:=n-1 step-1 until1 do

begin [jl] := r[ j+1,3+11/x(5,3];

ald] t= r(3,5+13/x05,30-r0 3-1, 51/20 3-1,3-11;
end;

end’ genorthopoly ;
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procedure gaussquadrule(n, a, b, c, muzero, symm, t, w);

value n, muzero, symm;

integer repl muzero; boolean symm;

real array a, b, ¢, t, « :

begimm e n t Given the coefficients a, b, ¢ of the three term recurrence

relation : plk+l] = (alk+1]x+o[x+1])plk]-clk+1]plk-11, this procedure

] computes the abscissas t and the weights w of the gaussian type

quadrature rule associated with the orthogonal polynomial by QR

tyr  1teration with origin shifting;

integer 1, Jj, k, m, ml;

real norm, eps, ck, st, ct2, st2, sc, aa, ai, aj, a2, eigmax, lambda,

lambdal, lambda2, rho, r, det, bi, bj, b2, wj, cj;

boolean ex;

real procedure max (x,y); valuex, y; real x, y;

max := 1f x2y then x else y;

if symm then go to setup;

comment Symmetrize the matrix, 1f required.;

for i:=1 step1 until n-1 do

begin al := alil; ali] := -blil/ai;

bli] := sqrt(eli+l]/(aixali+l]));

end;

aln] := -blnl/alnl;

concaent Find the maximwi row sum norm and initialize wl;

setup: blo] := 0; norm := 0;

for i:=1 stepI until n-1 do

begin norm i= max(nommn, abs( a! i] J+ebs(bli-1]) +abs(b[i-1]));

wlil = 0;



end;

norm := max(norm, abs(alnl)+abs(bln-11));

wll] := 1.0; win] := 0; m := n;

eps :=normx1l.0 x8%(-13); comment Relative zero tolerance:

lambda := lambdal := lambda?:= rho := norm;

comment Look for convergence of lower diagonal element;

inspect: 1f m=0 then go to sort elsei := k := ml := m-1;

if abs(blmll)seps then

begin tlm] := alm]; win] := muzeroxwlm]® 2;

rho := (if lambdal<lambda2 then lambdal else lambda2);

m := ml; go to inspect;

end;

comment Small of diagonal element means matrix can be split;

for 1:=1-1 while abs(bli]lDeps do k := i;

comment Find eigenvalues of lower 2x2 and select accelerating shift;

b2 := blm1 12; det := sqrt((almil-alm])f2+4.0x02) ;

aa := almll+alml;

lambda? := 0.5x(if aad0 then aa +det else aa-det);

© lambdal := (alml]lxalm]-b2)/lambda2;

eigmax := max(lambdal, lambda?) ;

if abs(eigmax-rho)£0.125xabs(eignax) then lambda := rho := eigmax

else rho := eigmax;

comment Transform block from k to m;

cj := blk]; blk-1] := alk]-lambada;

for ji=k step 1 until ml do
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begin r 1 = sqrt(cjte+blj-1192) ;

st := cj/r; st2 := st?2;

ct := blj-11/r; ct2 := cti2; |

sc := stXct; aj := aly];

bj := bljl; wi = wljl;

alj] := ajxct2+2.0xbjxsc+alj+llxst2;

bij] := (aj-alj+l])xsc+bjx(st2-ct2);

alj+1] := ajxst2-2.0xbjixsc+alj+llxct2;

ej = bli+llxst; vlj+1] := -blj+llxct; vlj-1]:=r

wij] = wixettwlj+llxst; wij+l] := wixst-wlj+llxet;

end; -

blk-1] := 0go toinspect;

comment Arrange abscissas 1n ascending order;

sort: for m:=n step -1 until2 do

begin ex := false;

for i:=2 step 1 until m do

if ¢[i-1]»tli] then

begin r:= t[i-1]; t[i-1] := t[ il;
©tliji= ry; ri=w[i-1];

wli-1] := wl[il; w[i] :=r;

ex:= true ;

end ;

if = ex then go toreturn ;

end;

return : end gaussquadrule ;
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7. Test Program and Results

The procedures in section 6 have been extensively tested in Burroughs

B5500 Algol and IBM 08/360 Algol, There are two machine dependent items

which must be mentioned. First, the constant used to define the "relative

zero tolerance" EPS 1n procedure GUASSQUADRULE 1s dependent on the

length of the fraction part of the floating-point number representation

( a for the 13 octal digit fraction on the B5500, and = 167 for

a 14 hexadecimal digit long-precision fraction on the IBM 360). Second,

the moment matrix M defined in section 4 usually becomes increasingly

ill conditioned with increasing N . Thus the round-off errors generated

during Cholesky decomposition in GENORTHOPOLY cause an 111 conditioned

M to appear no longer positive definite and the procedure fails on

taking the square root of a negative number.

The procedure GAUSSQUADRULE proves to be quite stable and when

the recursion coefficients are known or supplied by the procedure

CLASSICORTHOPOLY 1t loses only several digits off of full-word accuracy

even for N = 50 . Procedure GENORTHOPOLY usually failed to produce

the recursion coefficients from the moments when N was about 20 for

the IBM 360.

The test program given below 1s designed to compare the two methods

of generating the quadrature rules--from the moments or the recursion

coefficients. N can be increased until GENORTHOPOLY fails. Numerical

results may be checked against tables for Gauss-Legendre quadrature in [9]

and Gauss-Laguerre quadrature in [2]. In the Table, we compare the

abscissas and weights of the Gauss-Laguerre quadrature rule with

a = —-0.75 and N = 10 computed by (1) the analytic recurrence
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relationship and the Q-R algorithm; (2) the moment matrix and the Q-R

algorithm; (3) Concus et. al. [2]. The calculations for (1) and (2) were

performed on the IBM 360.
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comment Driver program for gaussrule;

real array a, b, c, mu, t, w[0:10];

real muzero; integer i, nj

n := 10;

comment Legendre polynomials. ;

outstring (1, 6. legendre quadrature.’ );
classicorthopoly(l, 0, O, n, a, b, c, muzero);

gaussquadrule(n, a, b, c, muzero, false, t, Ww);

 outstring(l, € abscissas: ?); outarray (1p);

outstring(l, ®weights:’ ); outarray(l,w);

for i:=0 step 1 until 2xn do mu[i] := O;

for i:=0 step2 until 2xn do mu[i] := 2.0/(i+1);

genorthopoly(n, mu, a, b);

muzero := mu[O0]; .

gaussquadrule(n, a, b, ¢, muzero, true, t, w);

outstring (1,%abscissas:’ ); outarray (1, t);

outstring(l, ¢ weights:? ); outarray(l, w);

comment Laguerre polynomials. ;

. outstring(l, ‘ laguerre quadrature. alpha =-0.5" )s

classicorthopoly(5, -0.5, 0, n, a, b, ¢, muzero);

gaussquadrule(n, a, b, c, muzero, false, t, Ww);

outstring (1, 6 abscissas 3 ); outarray (1, tt);

outstring (1, # weights: 7 ); outarray (1, w);

mu[0] := muzero := 1.7724538509 ; comment gamma (0.5);

for i:=1 step1 until 2xn do

mu[i] := (i-0.5)xmu{i-1];

ger.orthopoly(n, mu, a, b);

caussquadrule(n, a, b, ¢, muzero, true, t, Ww);
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outstring(l, ° abscissas:’ ); outarray (1, t);

outstring(1, ¢ weights: ? ); outarray (1, w);

end;
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