
| CS 11

| WHAT TO DO TILL THE COMPUTER SCIENTIST COMES

| BY

| GEORGE E. FORSYTHE

SEP 21 R67

TECHNICAL REPORT NO. CS 77

| SEPTEMBER 22, 1967

| COMPUTER SCIENCE DEPARTMENT
y School of Humanities and Sciences| STANFORD UN IVERS ITY

| WHAT TO DO TILL THE COMPUTER SCIENTIST COMES

| George E. Forsythe

Computer Science Department

| Stanford University
Stanford, California 9305

L
WHAT TO DO TILL THE COMPUTER SCIENTIST COMES

L George E. Forsythel
Computer Science Department

L Stanford University
| Computer science departments

L What 1s computer science anyway? This is a favorite topic in
: computer science department meetings. Just as with definitions of math-

| ematics, there is less than total agreement and --moreover--you must know
a good deal about the subject before any definition makes sense. Perhaps

| the tersest answer is given by Newell, Perlis, and Simon [8]: just as
zoology 1s the study of animals, so computer science is the study of

| computers. They explain that 1t includes the hardware, the software,
and the useful algorithms computers perform. I believe they would also

| include the study of computers that might be built, given sufficient
demand and sufficient development in the technology. In an earlier

paper [4], the author defines computer science as the art and science

L of representing and processing information. Some persons [10] extend
the subject to include a study of the structure of information 1n nature

| (e.g., the genetic code).
Computer scientists work 1n three distinguishable areas: (1) design

| of hardware components and especially total systems; (2) design of basic
languages and software broadly useful in applications, including monitors,

[compilers, time-sharing systems, etc.; (3) methodology of problem solving
with computers. The accent here is on the principles of problem solving

| -—-those techniques that are common to solving broad classes of problems,
as opposed to the preparation of individual programs to solve single

[problems. Because computers are used for such a diversity of problems
(see below), the methods differ widely. Being new, the subject is not

well understood, and considerable energy now goes into experimental

L solution of individual problems, in order to acquire experience from

| Expanded version of a presentation to a panel session before the Math-ematics Association of America, Toronto, 30 August 1967. The author is
grateful to Professors T. E. Hull, William Miller, and Allen Newell for

| various ideas used in the paper.
1

i

— ap BR

L
which principles are later distilled. But in the long run the solution

L of probiems in field X on a computer should belong to field X, and
computer science should concentrate on finding and explaining the prin-

1 ciples of problem solving.

L
One example of methodological research in computer science 1s the

| design and operation of "interactive systems," in which a man and a com-
puter are appropriately coupled by keyboards and console displays (perhaps

{ within a time-sharing system) for the solution of scientific problems.
Because of our emphasis on methodology, Professor William Miller

likens the algorithmic and heuristic aspects of problem solving in computer

L science to the methodology of problem solving in mathematics so ably dis-
cussed by Professor Polya in several books [9]. In computer science there

L 1s great stress on the dynamic action of computation, rather than the
| static presentation of logical structure. It tends to attract men of

| action, rather than contemplative men. Our students want to do something
from the first day.

| Computer science is at once abstract and pragmatic. The focus on
actual computers introduces the pragmatic component: our central questions

| are economic ones like the relations among speed, accuracy, and cost of
a proposed computation, and the hardware and software organization required.

| The (often) better understood questions of existence and theoretical com-
~ putability--however fundamental--remain in the background. On the other

| hand, the medium of computer science--information--i1s an abstract one.
— The meaning of symbols and numbers may change from application to appli-

; cation, either in mathematics or in computer science. Like mathematics,

| one goal of computer science 1s to create a basic structure in terms of
inherently defined concepts that 1s independent of any particular appli-

L cation,
Computer science has hardly started on the creation of such a basic

LL structure, and in our present developmental stage computer scientists are
largely concerned with exploring what computers can and cannot economically

do. Let me emphasize the variety of fields in which computing has become

= an important tool. One of these 1s applied mathematics, as Professor Lax

emphasizes, but this is merely one. Others include experimental physics,
-

2

9

L business data processing, economic planning, library work, the design of
[almost anything (including computers), education, inventory management,

police operations, medicine, air traffic control, national population

inventories, space science, musical performance, content analyses of

[documents, and many others. I must emphasize that the amount of computing
done for applied mathematics 1s an almost invisible fraction of the total

[amount of computing today.
. There 1s frequent discussion of whether computer science 1s part

t of mathematics--1.e., applied mathematics or "mathematical science." In
a purely intellectual sense such jurisdictional questions are sterile and

[a waste of time. On the other hand, they have great importance within
the framework of institutionalized science--e.g., the organization of

| universities and of the granting arms of foundations and the Federal
Government.

[I am told that the preponderant opinion among administrators in
Washington 1s that computer science 1s part of applied mathematics. I

{ believe the majority of university computer scientists would say 1t 1s
not; cf. [8]. I would have to ask you how mathematicians feel about the

matter. COSRIMS* has so far taken the position that computer science is

I a mathematical science, but many of the discussions emphasize differences
between mathematics and computer science.

L In spite of the infancy of our subject, there are approximately 30
| computer science departments in the United States and Canada today. There

| 1s no longer any doubt that computer science will have a separate university
organization for several coming decades. I believe that the creation of

| . these separate departments 1s a correct university response to the computer
revolution, for I do not think computers would be well studied in an

| environment dominated by either mathematicians or engineers. However,
finding suitable faculty members 1s very difficult today.

| What are these computer science departments doling? Answer: Roughly
the same things that mathematics departments are doing: education, research,

I *Committee on the Support of Research in the Mathematical Sciences,
: appointed by the National Academy of Science ~ National Research Council.

i
3

\

L
and service. We teach computer science to three types of students: to

l our majors at the B.S., M.S., and Ph.D. levels, to technical students
who need computing as a tool, and to any students who wish to become

acquainted with computing as an important ingredient of our civilization.

L We do research in our several specialties: e.g., numerical analysis,
programming languages and systems, heuristic methods of problem solving,

| graphical data representation an:! processing, time-sharing systems,
logical design, business data processing, etc. We perform an unusually

[large amount of community service 1n helping our colleagues with their
computing problems, both individually and by advising or managing the

| university computation center.
At Stanford University our graduate students are distributed

[among roughly three major areas of computer science: numerical mathematics
(about 10 percent), programming languages and systems (about50 percent),

| and artificial intelligence (about 40 percent). I have to emphasizethat my own research field-—-numerical mathematics--1s drawing only about

10 percent of our students. This is because the other two areas have

L problems that seem more exciting, important, and solvable at this particu-
lar stage of computer science. Moreover, they require less prior educa-

| tion, permitting the student to start original research at a younger stage.
Thus 1n the past fifteen years many numerical analysts have progressed

l from being queer people 1n mathematics departments to being queer people
in computer science departments!

b } Computer scilence 1s rich in designs of programming systems and
languages, full of techniques for meeting this and that difficulty, and

| heavily beset with colleagues who want to help. We are poor 1n theorems
. and general theories; our deep intellectual questions are shared with

[logic, economics, applied physics, and mathematics. On the other hand,the totality of techniques and ideas built into many of our moderate-

sized computing systems (say an Algol compiler or a large eigenvalue

| routine) 1s quite impressive, for a computer is extremely good at dealing
with very complex situations.

L Most of known computer science must be considered as design tech-
nique, not theory. This-doesn't bother us, as we all know that a period

L
L

L

i ss N

L
of developing technique necessarily precedes periods of consolidating

L theory, whether the subject be physics, mathematics, biology or computer
science, As long as computers continue changing drastically every three

or four years, there 1s scarcely a chance to sit down and contemplate

L the creation of a theory. In this respect our subject is reminiscent of
early engineering, and also of mathematical analysis in the time after

| Newton, I wish to emphasize my »elief that this 1s a passing stage of
computer science.

L The most valuable acquisitions 1n a scientific or -technical educa-
| tion are the general-purpose mental tools which remain serviceable for a

L lifetime, I rate natural language and mathematics as the most important
of these tools, and computer science as a third. The mathematics you

[teach reaches 1ts effective application largely through digital computing,
and hence you and your students need to know some computer science. The

| learning of mathematics and computer science together has pedagogical
advantages, for the basic concepts of each reinforce the learning of

the other (e.g., the concepts of function in mathematics and procedure

L in Algol 69).

| I have emphasized certain differences between computer scienceand mathematics, particularly because I feel this audience may not be

- aware of them. However, in another sense computer science and mathematics

| are remarkably similar, The computer industry is overwhelmed by the pains
of growing so large so fast. In 19%7 there are over 40,000 computers in

| | the United States, Many thousands of programmers are constantly at work,
producing software and descriptions thereof. These people work under

| extreme pressure of time, and many have had little supervised practice
+ 1n the twin arts of programming for computers and expounding for human

| beings Many compromises are made in the hurried effort to make reason-
ably available to users programs that work reasonably well (if not per-

fectly) |

L Seen from this hurly-burly of production, we academic mathematicians
and computer scientists look much alike. We both insist on high standards

L of rigor and exposition (in mathematicians* language), or performance and
| documentation (in computer science terminology), and place a higher premium

|
p

L

L
on quality than on promptness. As the computer era matures, we may find

; ourselves more and more thrown together in defense of this intellectual
— attitude. For the typical industrial programmer has little sympathy for

‘ it. He knows that the computer is often powerful enough to overcome the

L slipshod way it 1s understood and used. As an academic type, I can hardly
| admit 1t, but I have seen enough computing to believe it. pegspite some

| grave deficiencies in users' understanding of the operation of hardware
and software, the fact is that most large programs yield results that

! are satisfactory to the user--results that satisfy him as well or better
than the analyses he used to get from mathematicians!

| We academic types must surely defend our premise that critical
analyses and proofs are worthwhile 1n this age of wholesale number-crunch-

| ing.

What can you do now2

L And now follow my answers to the question of the title.,
| First, you can get a little acquainted with computing. This

involves two steps:

| Btep : Learn to program some automatic digital computer 1n some
language--~e.g., Fortran, Algol, PL/1,--and actually use the computer

| enough to find out some of the fascination and frustrations of the com-
puter-man's world. Step B: Read some books from the list at the end of

this paper. Since computer science is not yet very deep and mathematicians

L are very smart people, this should not be onerous.
Second, you can study how computing intersects mathematics. Applied

L mathematics 1s no longer the same subject, now that you have a magnificent
experimental tool at hand. Moreover, there are several undergraduate

| courses that owe their large enrollments largely to their wide applications
| in technology and science: e.g., linear algebra, and ordinary differential

| equations. I think both of these courses should be substantially influenced
by computers.

L

L

A

i
In a linear algebra course, along with concepts like rank, deter-

| minant eigenvalues, linear systems, and so on, ought to go some construc-
tive computational methods suitable for automatic computers. There 1s

plenty of literature now, and I think some of it should be worked into

L ¢ourses 1n linear algebra. If not, then an instructor should loudly
confess that he 1s ignoring these topics, and furnish some reading lists

| for his students.
| The same goes for ordinary differential equations, Here the situ-

| ation 1s slightly different, in that textbooks in this field usually do
say something about numerical methods. The trouble is that it usually

| dates from before the days of computers. It should be expunged and
replaced with at least an equivalent amount of orientation 1n today's

| useful numerical methods for computers. See [7] for Professor Hull's
suggestions.

L I think also that the calculus courses should be influenced by an
awareness of computing, but I do not expect this to be a very large

| fraction of the courses, See [6] for some ideas.
The alternative to weaving computational material into various

| mathematics courses 1s to teach computational mathematics in separate
courses, 1n either the department of mathematics or the computer science

L department. This alternative 1s the accepted method at present, but many
have felt it should be only a temporary expedient. If computational

| mathematics 1s taught in the computer science department, what effective

mechanism can there be to reunite the theoretical and the computational

aspects of mathematics?

L There 1s a good deal of interest nowadays in computer-aided
instruction. I don't expect this to have a very large application to

L university mathematics teaching. However, I should like to call your
attention to the usefulness of a computer-controlled cathode-ray-tube

l display and "light pen" in giving vivid graphical representations of
sophisticated concepts. In one of these, developed by Professor William

| McKeeman and Mr. William Rousseau at Stanford University, the scope shows
'both the complex z plane and the plane of f(z), for any simple elemen-

| tary function f typed at the console. When the light pen traces any
!

i

L
curve in the z-plane, a dot of light traces the curve f(z) . Many of

| the elementary theorems of analytic function theory receive an impressive
illustration in this way. Professor Marvin Minsky has used similar dis-

plays 1n dealing with nonlinear ordinary differential equations.-

L At a more fundamental level, the emergence of computer science has
added one more applier of mathematics. Along with operations research,

L economics, and other more recently mathematized subjects, computer science
| 1s relatively more interested in discrete mathematics (e.g., combinatorics,

| logic, graph and flow theory, automata theory, probability, number theory,
| etc.; see (11), than in continuum mathematics (e.g., calculus, differential

| equations, complex variables, etc.). Hence the mathematics department (in
my view) should devote much thought to organizing its curriculum suitably

| from the standpoint of consumers of discrete mathematics, I feel that
currently common curricula are inherited from the days when continuum

1 mathematics was more in demand (from physics, mechanical engineering,etc.) .

l Third, you can help the computer scientist find his way to your
campus, and make him feel welcome. Abvovz ali, please don't judge him as

a mathematician, for he isn't one and isn't supposed to be one--his values

L are different., The difference in values between mathematics and numerical
analysis is the subject of a provocative paper [5].

L When the computer scientist does arrive on campus, be prepared for
| a rather large impact, He is tied to a rampant field of rapidly growing

| interest to students and scholars everywhere, He will need many colleagues
and new buildings He may take some of the heat off mathematics faculties

| . by providing a partial substitute for mathematics as a research tool. This
vast energy may have some undesirable side effects on your sense of impor-

[tance and even your budget.
Fourth, 1f you are really enthusiastic, I recommend tackling some

[research problems of a mathematical nature that would help computer science
(and your own publication list). There are serious and important mathe-

1 matical questions at almost every turn, and most computer scientists aren't
very good at mathematics I will leave to Professor Lax the important

[area of experimental mathematics. One area of computer science with a
8

}

L probable payoff 1s the automation of algebra and analysis. So far, most
actual computing consists of automated arithmetic, A Fortran program,

L for example, asks a computer to carry out addition, subtraction, multipli-
cation and division of (simulated) real or complex numbers, 1n a-sequence

| which 1s dynamically determined by the course of the computation There
1s nothing else., It is clear that computers are capable of automated

| algebra, and there have been expsrimental systems for this since about
1961. They are still primitive. Some of the roadblocks to further

l development occur at surprising places. One is the question of simplifi-
cation (e.g., of rational polynomial expressions in n variables). 'What

do we mean by simplification? How shall we do it? See Brown [2] for one

| indication of the depth of the problem.
Proposed by Dr. R. W. Hamming, but still largely in the future, 1s

L the partial automation of analysis, Faced with an initial-value problem
: for an ordinary differential equation, for example, a computer should 'be

| able to put the pro'blem into some sort of normal. form (using automated
| algebra, of course). Then the computer should inspect the rormal form

| 0 see whether it 1s a recognized standard equation. If it is, then a
solution formula should be obtained from a tatle, and then transformed

L (by automated algebra) back into the variables originally presented. Of
Co urse; the user may want a table of values. The computer then must

L decide whether to use the solution formula (if one exists>, or to computea numerical solution, In the latter case, a numerical integration formula

| mist be automatically selected (or devised), and then used (by automatic

| arithmetic; to produce a table of answers and error bounds (more automated
aralysis). There are many unsolved pro'blems in this program, and mathe-

L .maticians are uniquely qualified to define ths problems and start their
solution .

L Most computation to date has been serial in nature, with only one
computation or decision being made at a time within the central processor,

L Soon to arrive will be parallel computers, in which from two to perhaps
several hundred operations can ‘be formed simultaneously. The general

| pattern of serial computation has been well understood since the work of
Rabbage; Aiken, von Neumann, and others, There are good research problems

L ;

L

_—mmm-srer --m sm sm rer mmrmv-vuouoem--mmm--——————+29-——"~"-""=1

L in analyzing parallel computation and identifying the important features.

| See [3] for a recent contribution.
There are good research problems in the theoretical aspects of the

design of algorithms. Initiatedby Post, Turing, and others, there is an

L important theory that tells us that some functions are computable on a
"Turing machine," and some are not. (Turing machines differ in theoretical

| capability from existing computers only in having infinite storage capac-
ity.) This theory has been extended to state that some problems can be

| solved on a Turing machine with a suitable algorithm, but for some prob-
lems no such algorithm can exist.

L It 1s essential to know that a problem 1s solvable, but this is
only the beginning. What is needed nextis information about how much

L computer storage 1s required for the program and data, and how long the
algorithm will run, In other words, we need theoretical information on

1 the complexity of solvability. There are some results by Kolmogorov and
others on the complexity of a computable function, but much more research

| 1s needed.,
Other research problems lie in areas further removed from mathe-

| matics . One such area 1s computer graphics--the uses of computers for
dealing directly with information in the form of structures. (Examples:

representing graphs of mathematical trees, design of networks, recognition

L of three-dimensional block structures from photographs, automatic reading
| of bubble chamber pictures.) In this area there are problems of represent-

[ing information, both visually and inside a computer store, and of proces-
sing the information. Most algorithms are being created by persons with

1 only a modest knowledge of mathematics, and it seems likely that an inter-
—es—-ted mathematician could both help solve some computing problems and find

1 worth-while mathematical problems.
In summary, here are my four answers to the question of the title:

L (1) Learn a little about computer science.
(2) Consider how mathematics curricula should be affected by

| computer science.

L (3) Help the computer scientist find his way, but expect a big
blast after he gets there.

| (4) Think of computer science as a possible source of mathematical
research problems.

0

L Some books to read

| Here are some suggested book readings in computer science:
F. L. Alt (editor), Advances in Computers, annual serial volume,

. of which the seventh was issued in 1966, Academic Press. [These contain
interesting survey articles on a wide variety of topics 1n computer

science.]

Anonymous, Information, Freeman, 1966. [Originated as the Septem-

ber 1966 issue of the Scientific American.]

| Jeremy Bernstein, The Analytical Engine: Computers, Past, Present,
and Future, Random House, 1964. [A good book to start with; it originally

: appeared 1n the New Yorker.]

(EdwardA. Feigenbaum and Julian Feldman (editors), Computers and
L Thought, McGraw-Hill, 1963. [These articles are devoted to the topic of

| "artificial intelligence": to what extent can computers accomplish tasks

3 heretofore performed by human minds?]
: L. Fox (editor), Advances inProgramming and Non-Numerical Computa-
L tion, Pergamon, 1966. [Series of articles explaining programming and non-

numerical computation to the uninitiated mathematician. The main non-

L numerical applications dealt with here are theorem-proving, game-playing,
and 1nformation retrieval.]

L T. E. Hull, Introduction to Computing, Prentice-Hall, 1966. [A
first course in Fortran and its use in computing, both arithmetic and

symbolic, by a mathematician and numerical analyst. It has a good
_

annotated bibliography that can serve to expand the present list.]

] KennethE. Iverson, A Programming Language, Wiley, 1962. [The
|_-

author has created a notation useful for describing the logical design

of automatic computers and for programming computers. In other works

— the author makes it clear that he would like hfs notation to replace

! mathematical notation, which he finds full of inconsistencies.]

Marvin Minsky, Computation: Finite and Infinite Machines,

: Prentice-Hall, 1967. [An advanced undergraduate textbook on automata,

-— computability, and so on. Actual automatic computers are never far out
of the author's mind.]-

— 11

—

B. Randelland L. J. Russell, Algol 60 Implementation,, Academic

Press, 1960. [This book describes a program that translates a program

- written in Algol 60 into the machine-language program of an actual com-

(puter. Such programs are called "compilers," and are by far the most

L frequent programs run by computers.]

i Saul Rosen (editor), Programming Systems and Languages, McGraw-

L Hill, 1967. [One of the most sopaisticated of the emerging parts of
computer science is the theory of programming languages. It extends

L from abstract theories of written linguistics over to the psychological
questions of what languages human beings can most effectively use.

L Peter Wegner (editor), Introduction to System Programming, Academic
| Press, 196k. [By a system the author means any program that controls the

L course of programs through a computer, programs that translate from one
language to another, etc. Such systems are the "intelligence"that turns

L a bare pile of electronic componentry into an effective "living" computing
machine.]

| J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,
1965. [This is devoted to computing the eigenvalues and eigenvectors of

| a finite square matrix, by a man who has personally tested and analyzed
most known methods You will be surprised at how little space is wasted

L in the 662 pages.]

L

L

L

L

12

{

References

¢

l. Edwin F. Beckenbach (editor), Applied Combinatorial Analysis, Wiley,

L 1964.]
2. W. 3S. Brown, "Rational exponential expressions and a conjecture

L concerning nm and e," manuscript, Bell Telephone Laboratories,
1967.

| 5. A. B. Carroll and R. T. Wetherald, 'Application of parallel processing
‘to numerical weather prediction,' J. Assoc. Comput. Mach., vol. 1h

L (1967), pp. 591-61kL.
L. George E. Forsythe, 'A university's educational program in computer

L science," Comm. Assoc. Comput. Math., vol. 10 (1967), pp. 3-11.
>. R. W. Hamming, "Numerical analysis vs. mathematics," Science,

L vol. 148 (23 April 1965), pp. 473-475.
00 R. W. Hamming, Calculus and the Computer Revolution, Committee on

L the Undergraduate Program in Mathematics, P. 0. Box 1024, Berkeley,
California 94301, 1966.

Lo 7. T. E. Hull, The Numerical Integration of Ordinary Differential
Equations, Committee on the Undergraduate Program in Mathematics,

P. 0. Box 1024, Berkeley, California 94701.
L

8. Allen Newell, Alan J. Perlis, and Herbert A. Simon, 'What is computer

L science?" submitted as a letter to Science, 1967.
9. George Pblya, How To Solve It, 2nd edit. Anchor Book A93, Doubleday.

f

[Several other books.]
—

10. University of Chicago, Graduate Programs 1n the Divisions, Announce-

Lo ments 1966-67, pp. 175-177, describing their Committee on Information
Sciences.

15

