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Abstract

A general approximation theory for linear and nonlinear
operators on Banach spaces is presented. It is applied to
numerical integration approximations of integral operators.
Convergence of the operator approximations is pointwise rather
than uniform on bounded sets, which is assumed in other theories.
The operator perturbations form a collectively compact set, i.e.,
they map each bounded set into a single compact set. In the
nonlinear case, Frkchet differentiability conditions are also
imposed. Principal results include convergence and error
bounds for approximate solutions and, for linear operators,

results on spectral approximations.






Chapter I

APPROXIMATE SOLUTIONS OF EQUATIONS

1. Introduction

Consider a Fredholm integral equation of the second kind
1
A x(s) - j'o k(s,t) x(t)dt = y(s), 0<s< 1 (1.1)

where x(s), y(s), and k(s,t) are continuous, real or complex valued
functions for 0 < s, t < 1 and M £ 0.
In a classical method of approximate solution based on numerical

integration, the integral in (1.1) is replaced by a summation to obtain

)x_(t_.)=y(s), 0 < s < 1. (1.2)

n
N xn(s) - ;Z& whjk(s’tnj n{nj

If we replace the free variable by subdivision points we get a finite
linear algebraic system

n
A xn(tni) - ;Z; wn.k(tni,tnj)x (t_.) = y(tni), i=1,2,...,n.

J n' nj
(1.3)

The two equations (1.2) and (1.3) are effectively equivalent.
Certainly if xn(s) satisfies (1.2) then the xn(tni), i=1,2,...,n,
satisfy (1.3). Conversely, if (1.3) is satisfied, then (1.2)
determines xn(s) explicitly in terms of the xn(tni) -- in effect, (1.3)
serves as an interpolation formula.

The technique of replacing an integral equation by a finite system
goes at least back to Fredholm [ 26]. Hilbert [28] gave convergence

proofs for approximate solutions using the rectangular quadrature




formula. The idea of using (1.2) goes at least back to Nystrbm [35]

in the mid 1920's. The advantage is that equations (1.1) and (1.2) are
defined in the same space. In particular cases this technique has been
studied by Blckner [pla, 2L4b], Kantorovitch [29], Mysovskih [30, 31, 32],
Wielandt [37], and Brakhage [22, 23]. 1In all cases rather particular
assumptions were made.

Basic problems to be considered are the solvability of the
equations, convergence of the solutions, error bounds, and the eigén-
value problems associated with these operators. Also to be considered
are integral equations with discontinuous and even singular kernels,
problems in higher dimensions, unbounded domains and nonlinear integral
equations.

Applications can be made in the field of radiative transfer. The
transport equation is an integrodifferential equation which yields a
system of ordinary differential equations when the integral is replaced
by a sum. This problem can be cast so that it can be treated by the
theory to be presented here (see [ 5, T, 34]).

An abstract theory concerning equations in a Banach space will be
presented. Thus all the applications will simply be special cases of
the general theory. The abstract theory has been developed within the
last four or five years. Other principal contributors to the theory

have been R. H. Moore, T. W. Palmer and K. E. Atkinson.




2. Banach Space Fundamentals

Let X denote the Banach space of real or complex continuous
functions x(t), 0 < t < 1, with the uniform norm Hxn = max‘x(t)|.The
unit ball will be denoted by 8. Thus,

B = {x€X: |jx]] < 1) . (2.1)
The symbol [X] will represent the space of bounded linear operators on
X into X with the usual operator norm, ||| = SU%HKX“ for Ke[X].

Lemma 2.1 Let K and Kn be elements of}T;]. Then
“Kn-KH-e o iffm“Knx-KxH - 0 for all x€X uniformly for x€B (or any
bounded set).

In the general theory as well as the applications to be discussed,
the convergence of the operator approximations is only pointwise and not
uniform in the operator norm. Nevertheless, for the sake of motivation,
suppose we have convergence in the operator norm, that is, HKh-KH -0
as n = ®, Then we have the following lemma.

Lemma 2.2  Let HKh-KH - 0. Then there exists (X-K)-l€[X] iff for
all n sufficiently large there exist (K-Kn)-lé[x] bounded uniformly in

n.

In either case,

1Ok )H-0-)7H » 0 as n -~ (2.2)

A constructive proof of lemma 2.2 also provides error bounds.
In order to prove the lemma however, let us first state two further

results.




Lemma 2.3 TLet T¢[X] and ||T)| < 1. Then there exists

(I'T)-l =f§ ™ t[x] and
n=0
I(z-1) M) < v/ (-l (2.3)

This is the well known Neumann series for (I-T)-l.

=

-1 -1
Lemma 2.4  Assume there exists T €[X] and & = |7 |‘||T-s|| <
Then there exists S-le[x] with
~ -1
(=1 T
s < L (2.4)
and furthermore --.
=12
-1 -1 ™| ||r-sl|
"S -T HS 1- A . (25)
. , , -1 .
To prove this we can write (since T = exists)
§ = T-(T-S) = T[I-T-l(T-S)] . (2.6)
Hence, there exists
st = [1-r7Y(1-8) 17t (2.7)
and an application of Lemma 2.3 yields (2.4).
To. prove (2.5) we write
g7torl _ g (rog)rt . (2.8)

Taking the norm of (2.8) and using (2.4) gives (2.5) immediately.
Now we can easily show (2.2) and give the error bound by using

(2.5) with T =(h-K) and S = OwKn).We obtain




- 2
o) (7Y < LK

| IS , (2.9)

n

where

By = 0= e, K] (2.10)
Since' HKn-KH- 0 and.H(K-K)-lH is bounded, (2.2) follows.

Notation
The notation K - K will be used for pointwise convergence.

That is, K = K iff nKnx-Kx\i -+ 0 for all x€X.

-

Lemma 2.5 If Kn - K for bounded linear operators Kn and K, then
the sequence {Kn} is bounded. That is, there exists a bound, b < = ,
such that HKnH < b for all n.

This is an application of the principle of uniform boundedness.

Lemma 2.6 If Kn - K, then the convergence is uniform on each
compact set in X.

Before proving Lemma 2.6 a brief discussion relating the concepts
of compact, sequentially compact and totally bounded is in order. A
compact set is a set such that any open cover has a finite subcover.

A set S is sequentially compact ify given any infinite sequence taken

from S, it has a convergent subsequence (the limit may or may not be

in S). A set S is totally bounded iff for each ¢> 0 there exists a

finite set (an e-net), Xpsee X, such that for any x€8,

minnx-x.H < €. These three concepts are closely related. First, in
. i
1<igm



a complete metric space, sequentially compact and totally bounded are

the same. Secondly, compactness is the same as either one or the other
concepts if the set 8 is also closed. And thirdly, a set S is totally
bounded (or sequentially compact) iff the closure of S is compact. The

third concept, total boundedness, is the one to be used in the following

discussion.

Lemma 2.6 can be stated for either compact or totally bounded
sets and the two statements are equivalent. The proof is now given for
totally bounded sets.

Let Tn = Kn;k - 0 and let S be a totally bounded set. Since we
maymultiply by a scalar we may, without loss of generality, assume
HTnH <1 for all n. Fix €> 0. Then there exists a finite e-net,
ERREFE such that m%n Hx-xiu < ¢ for any x€3. Since HTnH -0

1<i<m

pointwise, there exists N such that HTnxiH <e for i =1,...,m and

n> N. Hence, by the triangle inequality we have
e i < x|l + iz (xex,) | < 2e (2.1

which proves Lemma 2.6.

Lemma 2.6 is a special case of a more general proposition. Here
we had pointwise convergence of uniformly bounded operators. Recall
that an operator is bounded iff it is continuous. Similarly, a set of
operators is uniformly bounded iff it is an equicontinuous set of
functions. In much the same fashion it can be proved that pointwise
convergence of equicontinuous functions from one metric space to

another is always uniform on totally bounded sets.




In the approximation theory and applications to follow, results
will be obtained for pointwise convergence which are quite analogous to

those which hold for operator norm convergence.

3. Collectively Compact Sets of Operators

The integral operators to be used are compact (or completely
continuous). Some definitions and theorems concerning this class of
operators will now be given.

Definition An operator KE€[X] is compact iff K maps B, the unit
ball, into a totally bounded set; equivalently, the closure of KB is
compact. B

Definition A set of operators,KC[X], is collectively compact
iff the set ¥8 = (Kx: K€K, x€B} is totally bounded (or has compact
closure) .

It will be shown later that approximations to integral operators
defined by sums form a collectively compact sequence.

Theorem 3.1 Let Tn,T€[X] and Tn = T. Then, for each compact

operator K,
Il (T, -T)K]| =0 . (3.1)

-Moreover, the convergence is uniform for K&K, where X is any
collectively compact set.
To prove this, recall that convergence in norm is the same as

pointwise convergence uniformly for x€8. Consider

(Tn-T)Kx - 0. (3.2)




If x is some point in B and K is either fixed or is some element of a
collectively compact set, then the argument, KX, is some element of the
set K@ which is totally bounded by definition. But, pointwise conver-
gence is always uniform on a totally bounded set so in (3.2) the con-
vergence 1is uniform when both K and x vary.

This is an important theorem in that pointwise convergence has
been used to give us a form of convergence in norm. Two corollaries

follow.

Corollary 3.2 If Kn - K and.[Kn-K} is collectively compact, then

-~

I(x -7 -0 . (3.3)

Corollary 3.3 If Kn - K and.{Kn} is a collectively compact set,

then
i) K is compact and {Kn-K} is collectively compact,
1) ||k, -K0Kl| = o,
iii) H(Kn-K)KnH - 0.
The general theory will be continued in more detail later. First,

examples from the field of integral equations are presented.

L. Integral Operators

Now the integral equations setting will be shown to be a valid
application of the theory. As before, we will assume our functions are
in real or complex C = C[0,1], with the maximum norm, [x|| = max Ix(t)\.

<t

Thus ,Hxn-xu - 0 iff x,(t) = x(t) uniformly.




Define bounded linear functionals ¢ and P, 0 > 1, by

X = j':)x(t)dt, , (%.1)
¢ X = gl anx(tnj) . (4.2)

It is necessary to assume that

P, P (&.3)
This convergence holds for most of the usual quadrature formulas such
as the rectangular and trapezoidal and those of Simpson, Weddle,
Gauss, and Chekgyshev. The Newton-Cotes: quadrature rule however, does
not satisfy (4.3).
Lemma k4.1 Given (pn as above, there exists B < o such that
n
||<Pn|| =j§1|wnjl < B for n = 1,2,.... (4.4)
This follows from the principle of uniform boundedness and an elem-
entary calculation
The convergence in (4.3) is pointwise convergence which is
automatically uniform on a totally bounded set, The Arzeld-Ascoli
lemma tells us that a totally bounded set in €[0,1] is a bounded
* equicontinuous family of functions. In other words, (pnx—* Px
uniformly for x in a bounded equicontinuous family of functions.
To illustrate this uniform convergence, suppose that we have a

family of differentiable functions that satisfy a Lipschitz condition,

|x" (s)-x(t)| < m|s-t]. (4.5)




Then, for the trapezoidal rule for example, the error in numerical

integration is given by

o x-0x| < 2= . (I
n 12n2

It follows, since x does not occur on the right side of (4.6), that
the convergence ¢,® is uniform for functions satisfying the
hypotheses, which form an equicontinuous family,

It is easy to demonstrate that we do not have convergence in
norm.

Lemma 4.2 ”¢n -0l Ao

To show this consider a function which is identically zero
except in the neighborhoods of the subdivision points. Then the
numerical integral and the integral are far apart.

Now consider an integral operator with a kernel, k(sﬂﬂ, which
is continuous for 0 < s, t < 1 and let

M = max |x(s,t)] .
0<s, t<1

A formal definition of the integral operator and the approximate
operator is as follows,

Definition K, Kn € [C!] are defined by

(1) (5) = _J’;k(s,t)x(t)dt , 1)

(Knx)(s) = 321 wnjk(s,tnj)x(tnj) . (4.8)

These operators are bounded,

10




Lemma 4.3

1
I = max [ |k(s,t)lat < M, ang Lo
0<s<10
n
K1 = max ¥ lw (st )] < (4.10)

0<s<1 1

for n = 1,2,... , where B is from (4.4).

Proposition L.k. K converges to K pointwise. That is,

Kn -k, but “Kn-K“ # o (unless & = 0). (4.11)

-

Define ks(t) = k(s,t). Then equations (h.?) and,(h.B) yield

(kx)(s) = cp((k.s.-x'r)? and. (4.12)

(x, x)(s) = o (kx) . (4 .13)

Since k(s,t) 1s a continuous function on the unit square, the
family of functions {kS®_§ s < 1) is equicontinuous and the products
ksx share this property. Pointwise convergence is uniform on such a
family so we have uniform convergence for each fixed x in (4.11).

It is easy to showothat KB and.{Knx: n>1, x€8} are bounded and
equicontinuous. Thus, we have

Proposition 4.5. K is compact and,{Kn} is collectively compact.

These are basic properties needed in the approximation theory.
In particular, they yield the following results involving norm con-

vergence.

11




Proposition k4.6 In the integral equations case we have

‘ - i - Ll'olll'
e, > I(x_-K)Kl ~ 0 and ( )
li(k_- - L.1
Be_ > (K -K)K [ = 0. (4.15)
where
e = max | (o -0 )[K(s,u)K(u,t)]| = 0 and (4.16)
o<t <1

@n and ¢ operate with respect to u.

The estimate, e,s comes from the numerical integration and shows that
H(Kn-K)KH -0 and.H(Kn~K)KnH -+ 0 independently of the abstract theory.
The quantity, [K(s,u)K(u,t)] is an equicontinuous family of functions
of u parameterized by s and t , so @n-*¢ uniformly on that set.
Hence, the maximum goes to zero, and e ~0. If an error formula

for the numerical integration is known, it can give a computable

estimate for e "

5. Abstract Approximation Theorems

Again consider bounded linear operators Kh,KE[X], where X is a
Banach space. The principal hypotheses are:

(1) Pointwise convergence, K

n~ K

(2) {Kn} collectively compact. As before, we infer
(3) K is compact.

We wish to compare the equations

(nK)x = v, (5.1)

()‘-‘Kn)xn = v o (5-2)

12




and the inverse operators

(k) Yerx] (5.3)

(%.-Kn )'le[x] . . (5.4)

The Fredholm alternative asserts that (%.-K)-l exists iff (h-K)X = X.
If (%.-K)-l exists, it is automatically bounded.

The type of result we will obtain is illustrated by the next
theorem.

Theorem 5.1 Let K,KEG[X] for n 21. Assume (1) and (2) hold and
A # 0. Then
(a) (n-K)7Le[X] exists iff
(b) for all n sufficiently large (A-Kn)_le[X] exists and is bounded

uniformly with respect to n.
In either case,
() (E)™ = (k) -2

Proof Assume (b). Then (A-K)x = 0 implies
x| < ”()\,-Kn)'l||-”()\,_1(n)x” - 0 which in turn implies that x = 0. Hence
(b) implies (a) by the Fredholm alternative. Now assume (b) fails.
Then there exist {ni] and {xn.} such that

i

I I =1, -k )x =0
1 1 1

Since {Kn} is collectively compact, there exists {ni } and y€X such

1 P
that Kn xn - y. Then x_ - y/A , ¥ # O, and
i, 1. ni.
J J J
(K )x = (A-K)y/» =0 .
n, n
i, 1,
J J
Thus (a) fails. Hence, (a) implies (b). Since

15



(k)R = (k) TR K (R) T

we also have that either (a) or (b) implies (c).
We shall give another proof which yields error bounds. First

recall that

ll(x -K)X|| - o, (5.5)

Ik -OK |~ 0 (5.6)

The following auxiliary theorem will be needed.

Theorem 5.21- Let S,T €[X]. Assume (?\-T)-lE[X] exists and
a = | em) | lies-msll < M (5.7)

Then (X-S)-l exists,

Oy~
108l < HI‘& T)A sl , (5.8)

and for any y€(M-S)X ,

L= " lisy-Tyll+a (-1 "Myl
M -2 (5.9)

[(v-8) " y-0-m) ") <

To prove this we first consider the following identity where we

-1
use the resolvent operator to express (A-T) .

k'l[I + (k—T)-lT](k-T) = 1. (5.10)

We want to express the inverse of (h-S). If we consider
)\.-l[I + (k-T)nlS] as an approximate inverse of (h-S) and substitute

the expression for (?x--T)_:L from (5.10) we obtain

L




AT+ (1) Is](M-8) = 1A To-1) " H(s-T)s . 50 500

By the hypothesis (5.7) the operator on the right has a bounded
-1
)

.
.

inverse and we have an expression for (M-8
- - - - - -1
(r-8)" = AT I ) H(s-m)s) T ST ] (5.12)

Taking norms in (5.12) we see that (5.8) holds. By subtracting the
. -1 . .
expression for (A-T) given by (5.10) from (5.12) we obtain, after

some manipulation,

-

(h-8)"- (=) = AT IR ) T (s-T)s) T
: N P -1 (5 .13)
"(N-1) 7T [(8-T)+(5-T)S(A-T) 7]
Application of this operator on y€(M-S)X and taking the norm yields
6o ..

Theorem 5.2 can now be used to prove Theorem 5.1 by substituting

Kn for S and K for T. Thus we obtain
b - 0. i
|l -l = 0 50 W)

Moreover we obtain the error estimate

O™l -k ol |
Il -xIl < o -0, 5o5)

n

whenever

8, = 1=k ) (xR < M| (5 .26)

15




The roles of K and Kn may be interchanged to obtain an inequality
similar to (5.15).

The convergence to 0 in (5.15) follows from the boundedness of
\‘(k-Kn)-lH and Hxnn and the convergence to 0 of HKny-KyH and Ah' The
convergence An - 0 follows from the boundedness of H(X-Kn)-lu and (5.5)
or (5.6) if the roles of K and %lare interchanged,

The estimate given by (5.15) is computable in the integral
equations case if the error in numerical integration is known. The
only quantity not due to error in numerical integration is H(h-Kn)-lH
whica can be estimated as follows.

Lemma 5.3
ek ) ™ < I st (5.17)

Here HKnH is given by (4.10) and HA;H| is the maximum row sum of the
inverse of the coefficient matrix, An' from the system of equations
(1.3).

The following chapter will apply the abstract theory to integral
operators with discontinuous or singular kernels. It will be shown
that these operators do satisfy the hypotheses so that the desired con-
clusions can be drawn.

In Chapter III, the abstract theory will be extended to the eigen-
value problems and more general spectral properties of operators. Non-
linear problems will be treated in Chapter IV. This involves combining

the linear theory with the abstract Newton's method.

16



Chapter 1II

INTEGRAL OPERATORS WITH
DISCONTINUOUs OR SINGULAR KERNELS

1. Introduction

Consider a Fredholm integral equation with functions in real or

complex C = C[0,1], with the maximum norm, |x|| = maxlIx(t)\ We have
x) (s) = J‘Olk(s,t)x(t)dt, 0<s<l (1.1)
for the integral operator and
(k%) ( ): w gk (ssty x(ey5) s, (1.2)

nJ

for the approximate operators defined by numerical integration.

The kernel, k(s,t), is assumed to be bounded and possibly dis-
continuous. We include Volterra and other "mildly discontinuous"
kernels which are discontinuous on a finite number of continuous curves
t = t(s) in the unit square, and bounded uniformly. More general
classes of kernels will be defined explicitly later.

With these discontinuous kernels, the integral operator, K, maps
into C but the approximate operators, Kh, do not map continuous

functions into continuous functions. That is,
KC © C but KC ¢ c . (1.3)

Therefore we cannot regard K and K on the same space C as was the
case for continuous kernels. To circumvent this problem we define a
new and larger space.

17




Definition Let R denote the normed linear space of proper
Riemann integrable functions x(t), O<t<l, with the supremum norm,

IxIl = sup[x(t)].

Lemma 1.1 R is complete; hence R is a Banach space.

To show this note that x€R iff x is bounded and x is continuous
almost everywhere. From these two facts the completeness follows
immediately.

Lemma 1.2 C is a closed subspace of R.

The space R is chosen since it is a rather minimal extension of
C which includes step functions and other piecewise continuous
functions.

We will show that the operators K and Kn map R into R, that
Kn - K pointwise, that {Kn] is collectively compact and that K is
compact. Hence, the general theory of Chapter I will apply as well

as the approximate spectral theory in Chapter III.

18



2. The Quadrature Formula

To examine the quadrature formula we introduce linear functionals
expressing integration,

1
Px = I x(t)dt , for x€R, (2.1)
0

and numerical integration,

QX = ZW x(t 3) for x€R. (2.2)

We assume that the weights in the quadrature formula are all

-

non-negative. Thus,
Vg > 0, I<k<n . (2.3)
So we have bounded linear functionals cp, QHGR* with norms
Ioll = 1/ oyl - z o (2.4)
In addition to (2.3) we hypothesize that
¢, "Pasn-®,onC, (2.5)

and note that for the usual quadrature rules (New-ton-Cotes excepted)

* these two assumptions hold.
Before proving that the hypotheses also hold on the space R we

show that the norm,l@nn is bounded. Since ¢, "9 on C,

n
.‘élwnj = gl ~ol = 1. (2.6)

19




The sum of the weights is bounded uniformly in n since it converges.

Thus we have the inequality
n .
o |l = jglwnj <B< . (2.7)

The next lemma states that ¢ and 9, are positive and monotone

linear functionals.

Lemma 2.1 For X,y € R,

b3
v

0 implies ¢x > 0 and P X >0, (2.8)
X > y implies ¢xX>@y and o, x Zcpny. (2.9)

We also have for complex functions the following fact.
Lemma 2.2 xR iff Re x, Im x €R.

The next lemma will be used to extend (2.5) to the space R.
Lemma 2.5 A real function x is in R iff for any € > 0 there

£
exist real functions Xes x €C such that

X <x< XE ) (2.10)

ox° - Px, < € . (2.11)

This follows easily from the usual definition of R in terms of

upper and lower integrals. By Lemmas 2.1 and 2.3 we have
ox” - Px andq)xe -Px as € = 0 . (2.12)

Now it can be proved that the numerical integral converges to

the integral on R.

20



Proposition 2.4 If x€R then

¢ x = ¢x , xER . (2.13)
Proof By Lemmas 2.1 and 2.3 we have

PXe SanXS q)nxe s (2.14)

pxt - e <PX <PxXg + € . (2.15)
Subtracting (2.15) from (2.14) Yields
€
PXe “PX - €< QX -9X<QP xF -Px” + €. (2.16)

Since x,, xF€C and (2.5) holds, it is easy to see that
cpnx-cpx—'O as n — o,

For our theory to apply, it is necessary to know for what
classes of functions in R there is uniform convergence in (2.13)
A standard answer is that on any totally bounded set mn -0
uniformly, However, in the present case this can be extended. To
this end, we introduce the following concept.

Definition 2.1 A set, S, of real functions such that

S C R 1is regular iff for each xS and each € > 0 there exist real
* functions Xes x€ €C such that (2.10) and (2.11) hold and, for each

fixed € > 0, the sets

= . € €
S, = {xe. x€8} and s = {x°: x€8} (2.17)
are totally bounded (or bounded and equicontinuous -- by the Arzeld-
Ascoli lemma). An arbitrary set, S C R, is regular iff Re S and Im S

21




comprise regular sets.

Using this definition the following theorem holds.

Theorem 2.5 The convergence in.(2.13) is uniform on each reg-
ular set S C R.

Proof By (2.5) and (2.17), for each fixed ¢,
€ 2 .
PXe = Pxg, P x = 9x uniformly for x€S. (2.18)

Now (2.16) and (2.18) imply that the convergence in (2.13) is uniform
for x€8.

To illustrate the concepts just developed, consider the following
examples.

Example 2.1 The set of all characteristic functions of
intervals in [0,1] is a regular set but not totally bounded.

This follows from the fact that this set can be approximated in
the sense of Definition 2.1 by sets of trapezoidal functions which
are bounded and equicontinuous.

Any regular set is bounded since Se and % are bounded. The
converse 1is false as shown by the next example,

Example 2.2 Let x,(t) = cos(2mt). Then {x 0= 1,2, . L]
is bounded but not regular.,

Proof For an indirect proof, use the rectangular quadrature

rule:

¢ X = %-éi; x(k/n) . (2.19)

Then qhxn =1 mmiwxn = 0, n > 1. Therefore, by Theorem 2.5, the

22




set {xn; n > 1} is not regular.
Based on these two examples, we can now state the following
result.

Proposition 2.6  Given a set S C R,

Stotally bounded = S regular , (2.29)
S regular = S bounded , (2.21)

but neither reverse implication holds.

Without proving it here, we state that regular sets may be very
much larger than totally bounded sets. Reqularity is essentially a
requirement of compactness or total boundedness in one dimension only.
Any regular set is totally bounded with respect to the £l semi-norm
but the converse is false. We observe that the pointwise convergence
is uniform on much larger sets when the operators are positive than
when they are not.

From the definition of regular sets we have the following.

Lemma 2.7 If Sl and 82 are regular sets then SlUS2,Sl+SE,
and 8152 are regular sets.

Lemma 2.8 If S is a regular set thenlSI is a regular set.

Hence, regular sets behave much like totally bounded or compact
sets and may be combined and operated in much the same way. A con-
vex combination of regular sets is also regular.

By using these properties we may obtain further examples of
reqular sets. For example, regular classes of step functions and

of piecewise continuous functions may be constructed from the set

of all characteristic functions.
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There are several equivalent forms of the definition of a regular
set. For example, in Definition 2.1 the functions X, and x* could be
required to be Riemann integrable instead of continuous. Secondly, the
requirement that Se and S¢ be totally bounded can be replaced by re-
quiring St and S¢ to be finite.

The preceding remarks are a special case of an abstract theory.

If we work in any partially ordered Banach space and ¢ and @n are
positive linear functionals which converge pointwise, then we can define
g-regular in precisely the same manner as we defined regular, and point-

wise convergence is uniform on any g-regular set.

3. Integral Operators

Let K be a linear integral operator on R and consider the equation

1
(kx)(s) = [ k(s,t)x(t)dt , x€R, O<s<1 . (3.1)
0

Definition 3.1 A real kernel k(s,t) is uniformly t-integrable iff

for each ¢ > 0 there exist real continuous kernels ks(s,t) and k?(s,t)

such that
k (s,8) < K(s,8) < K (s,8) , O<s,tel (3.2)
J x5(s,t) - x (s,))at < e, O<s<l (3.3)

An arbitrary kernel k(s,t) is uniformly t-integrable iff Re k(s,t)

and Im k(s,t) are uniformly t-integrable.
Examples of uniformly t-integrable kernels are continuous kernels,

continuous kernels for the Volterra operator, and mildly discontinuous

kernels.
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In what follows we use the notation:

ks(t) =k(s,t),
kZ(t) =k€;(s)t)’

ks(t) .k (s58) .

Theorem 3.1 Let the kernel k(s,t) be uniformly t-integrable.

Then

{kS: xs<l} is a regular set in R, (3.4)

-

CP;(1,kS - ks-ii.) - 0 as s-s'~ 0, uniformly for <s,s'<l . (3.5)

Proof. A check of the definition gives (3.4t). To prove (3.5)

define functions f, £% such that

£,£%: [0,1] - £,(0,1), (3.6)
£(s) =k, £5(s) = k. (3.7)

Then fe is continuous for each & > 0and
£ - £ uniformly as ¢ » 0 . (3.8)

* Thus f is the uniform limit of continuous functions so f is continuous,

proving (3.5).

The properties of any uniformly t-integrable kernel, given by

Theorem 3.1, allow us to describe a larger class of kernels which we

can deal with.
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Proposition 3.2 Let k(s,t) be a kernel such that (3.4) and (3.5)

hold. Then KR € C, K is compact and HK\\ = max (p(]k L) = max l\|lkSHl-
0<s<l s O<s<l

Proof. py (3.1),
&x)(s) . @k x) . (3.9)
By (3.4), k €R for all s so CP(ka) exists. Secondly,
| (kx)(s) | < mex lke Ml ll 5 (3.10)

where the maximum exists because in (3.7) f is continuous on a

compact set .Thirdly, consider
| () (s) - () ()] < g, [l lixl) - (3.11)

By (3.5), the quantity Hks-ks,\\l—' 0 and we have KR C C. For x5,
the unit ball, (3.5) and (3.11) imply that the functions (Kx)(s) are
bounded and equicontinuous. So by the Arzela-Ascoli lemma, K is a
compact operator.

To sketch an alternate proof, consider Definition 3.1. This
proof is for the real case in that definition.

Define the integral operator K® with the kernel ¥ . Then ¥
.compact and HKE'-KH < € imply K compact as follows.

Since
\'\Kex - Kx|| < € for all x5, (3.12)

K& is totally bounded and is also an e-net for KB. Hence K& is

totally bounded and K is compact.
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L, Operator Approximations

Consider the operators Kn on R defined by
n
(Knx)(s) = Ezlwnjk(s,tnj)x(tnj) , Ks<1 , (4.1)
where k(s,t) satisfies (3.4) and (3.5) and
k(s,t) is s—integrable for Xt1 . (4 +2)

The quadrature formula satisfies the conditions in Section 2,
Since dim KE R < =, each Ky is compact.

Theorem 4.1 The operators Kh satisfy

K RCR, (4.3)
K =K, (L.4)
{Kn} collectively compact. (4.5)

Proof From (4.2) it follows that (4.3) holds. From (3.4) we

have that
(K %) () - (Kx)(s) =9 (kx) -k x) = 0 uniformly (4 :6)
in s.
This proves (4.4). To prove (4.5), let x vary in B and note that

[(kx)(s) - (K x)(s)| <o (|, -k, |) . (4.7)

St

But by (3.4) we have



Qn(lks-RS'J) - o(lx gk:sl) uniformly in s,s', (% .8)
and by (3.5) we have

¢([ks-ks,|) - 0 as s-s'— 0 . (4.9)
Now, for each ¢ > 0 , there exist 6(g) > 0 and N = N@) such that

|(Knx)(s) - (Knx)(s')l <eif n> N, |s-s'|< 6, and x€5. (4.10)

We already know that

I(Knx)(s) | < M for x€8, &Xs<1 and n = 1,2,3,... . (% .11)
It follows that (Knx: n > N, XGB] has a finite e-net of step functions.
N-1
Since each Kn is compact, U {Knx: x€B} , also has a finite
n=1

e-net. Therefore tne set {Knx:.n > 1, XEB] has a finite s-net. By

definition then, the set [Kn} is collectively compact, proving (%.5).
Since (4.4) and (4.5) hold, the general approximation theory

concerning convergence and error bounds applies to this case.

Consider
(M-K)x =y , (K-Kn)xn =y (4 .12)

with M £ 0 and y€C. Suppose (%-K)_l and(>\-Kn)_1 exist. Since

-1 -1 .
KRcC C, x=A (kx + y) €C and (M-K) "C © C. But xnﬁ C in general
since KnC ¢ C for discontinuous kernels. That is, 1if the given function
in an integral equation is in C, the solution will be in C. The

approximate solutions would only be in R. However, we have the familiar
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situation of discontinuous functions converging uniformly to continuous

functions:
xn(discontinuous) - x (continuous) uniformly. (4.13)

An abstract generalization of the result, Kn - K, and {Kn}
collectively compact, can be given after verifying one additional

property, namely
K= Nkl (.1k)

This follows from ||K|| = max (P(1ks1) and HKnH sup @ (1 J) For the
Xs<1 0§s§l
case involving a kernel, k(s,t), which is uniformly t-integrable,

there exist continuous kernels é{ and k% such that k ¢ < k < K.

Con-
sidering the continuous kernel, ke, we can define the corresponding
integral operator ¥ and we can use numerical integration to define the

approximate operators

(K x)(s) = Zw kE(s, t )x(t ) (4.15)

jopninm
y (3.3) and (4.14),

-k |l = [I(&%-K)_|| = |K"-K|| < e. (L.16)

In the abstract setting we now have

Theorem 4.2 If

K;-'K'E as n »», for eache > 0 , (4.17)
{K:; n > 1} collectively compact, for each e > 0, (4.18)
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K, compact, for n = 1, 2y vee, (& .19)

KE - = K <eas n- o, & 20)
then

K, " K, (4.21)

{Kn} collectively compact. (4.22)

Proof Kn - K by the triangle inequality. Fix ¢ > O. Then
there exists N =-N(e) such that HK;x-Kth <e¢ for all n > N and
x€/5. Hence the set {Kix: n > N, x€5} is a totally bounded s-net for
{Knx: n > N, x€5}. It follows from (4.19), by an argument similar to
the one used in the proof of Theorem 4.1, that {Kn} is collectively
compact.

This abstract version of the theorem is of interest since it
indicates a way to extend the theory. For example, suppose we have a
theory for integral equations with continuous kernels. Then we can
extend the theory so it holds for neighboring objects in some well
defined sense, This could be used to extend the theory to integral
equations in several dimensions with other kinds of kernels without
repeating the detailed analysis necessary to the development of the

initial theory.

5. Weakly Singular Kernels

The material in this section is adapted from Atkinson [19].

For x€C consider
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-

(kx) = [ k(s,t)x(t)at, O<x<l (5.1)
0
where ks(t) = k(s,t) satisfies
k& £(0,1) for all s , (5 .2)

iiks-ks'\\l~0ass-s'—'o. (5 '5)

As in Section 3 of this chapter, the quantity mgxnksul exists, and
the convergence in (5.3) is uniform for 0<s,s'<l.. Conditions (5.2)

and (5.3) imply
KC C C, K compact, ||Ki| # mgx“ksnl. (5.4)

The continuous and discontinuous kernels treated above satisfy

(5.2) and (5.3). Another example is
k(s,t) = r(s,t)]s-t|™" , (5.5)

where r(s,t) is continuous for 0<s,t<l' and K0K1l. More generally,

suppose
k(s,t) = r(s,t)o(s,t) (5.6)
r(s,t) continuous for s,t<l , (5.7)

and os(t) = o(s,t) satisfies (5.2) and (5.3). Then k  satisfies (5.2)
and (5.3), KC € C and K is compact. As in the example with

-
o(s,t) = |s-t| , the "singular part" of a kernel often can be

isolated in a simple explicit form. Now we have
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1
(kx)(s) = _Fb[r(s,t)x-(t)]c(s,t)dt :

Suppose we have operators An €[C] such that Anx - x for all x€C as

n - o. Then we define

L .
(k x)(s) = jD{An [r(s,t)x(t)] Jo(s,t)dat

where An operates with respect to t.

(5.8)

For example, suppose Anx is the piecewise linear interpolation

of x with subdivision points tn,j = j/n, J

(Knx) (s) reduces to

(K x)(s) = & s (et Dt 1)

Jj=o
where
y J/m
wnj(s) T Ia—l
n
J*l
n
1
2

(t- %?i)o(s,t)dt

G% - t)o(s,t)dt

= O,l,-..,n- Then

(5.9)

(5.10)

and o(s,t) = 0 for t¢[0,1] to make the expressions for wno(s) and

W (s) correct. Note that we must be able to integrate g(s,t) and

nn

to(s,t) with respect to t in closed form in order to obtain an explicit

expression for (Knx) (s).

If Anx is a piecewise polynomial inter-

polation of x, then (Knx)(s) has the form (5.9) with W, (s) defined

in terms of integrals of o(s,t), to(s,t), teo(s,t), etc.

Again consider the general situation.

Lemma 5.1

An[r(s,t)x(t)] ~r(s,t)x(t) uniformly in s,t .
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This follows from the fact that {r(s,t)x(t)} is a bounded
equicontinuous family of functions of t.

Lemma 5.2 The set [Aﬁ[r(S,t)th)]t n > 1) is bounded and
equicontinuous.

In general, if Fn and F are continuous functions, and F » F
uniformly, then {an > 1} is equicontinuous.

Proposition 5.3 The following two facts hold.

{Kn} is collectively compact, 500
K - K . (5 .13)

Proof By (5.2), (5.3), Lemma 5.2 and a simple triangle

inequality argument,
{Kn;: n > 1, x€8} is bounded and equicontinuous . (5 .14)

Hence {Kn} is collectively compact. Let £, = & - I. Then E -0,

and

nKnx—KxH < supHEn[r(s,t)x(t)]Hsug“osnl ~0asn - . (5.15)
S

I

Thus K - K.
n

In view of Proposition 5.3, the general approximation theory

applies.

33







Chapter III

SPECTRAL APPROXIMATIONS

1. General Properties of Collectively Compact Sets

Again let X be a real or complex Banach space. Recall & C [X]
is collectively compact iff X5 is totally bounded. If ¥ is
collectively compact then each K&H is compact and ¥ is bounded.
Finite unions and sums of collectively compact sets are also

collectively compact.

ProposiEion 1.1 Let K be collectively compact. Then each of

the following sets is collectively compact:
(a) ¥M for each bounded McC [X];
(b) MK for each totally bounded Mc [X];
(c) the strong and norm closures of X;

N N
(a) {};‘l_lann: K €K, ngll?\nl < b} for each b < @, N< =

(e) {I K(N)dr: K(N)EK, 4(T) < b} for each b < «,
r

where ' is an interval or rectifiable arc of finite length #(I') and
the integral is the limit in operator norm of the usual approximating
sums .

We shall study operators in [X] such that
T-T, {Tn - T) collectively compact. (1.1)
n
The special case,

Tn -7, {Tn} collectively compact,
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includes the integral equations examples.

Lemma 1.2 Let T, THE[X]. Then

Tn -7, (Tn} collectively compact (1.2)

T,~ T, {Tn-T} collectively compact, T compact. (1.3)

Resolvent sets and spectra

Let T€[X]. Recall:

(1) Nep(T), the resolvent set, iff there exists (K-T)-le[x]§
(ii) the spectrum o(T) is the complement P (T);
(iii) a(T) D {eigenvalues} (for example, if T is compact, the

eigenvalues of T form a finite set or an infinite sequence

converging to 0);

® Tn
(iv) if |A] > |7l then Mep(T), (A1) 1= Z Zmtl €[X]
and
‘ -1 1
L O-T) Tl < SBEiE (2.1)

(consequently |A| < ||T|| for'all r€o(T));

(v) po(T) open, a(T) closed and bounded (compact);

(vi) the map M - (h-T) is continuous on o(T) and is uniformly
continuous on each closed set in p(T);

)

(vii) {(h-T : M A) is totally bounded for each closed

A C p(T).
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The following identity will be used several times.

(ves) o) E = (es) H(s-1) (-T) T (2.2)
Lemma 2.1 If KE[X) and ||| < 1 , then (I-K)"Y€[X] and

(I-K)™* = ()N + ®) (2.3)

07 < ARl (2.)

Theorem 2.2 Assume T = TiTn-T} collectively compact, and A
arbitrary. Then
(a) Nep(T)
iff
(b) there exists N such that Mp(T) for all n > N and
{(A—Tn)—l: n > N} is bounded.
Either (a) or (b) implies

- -1
© (1) (em) T

Proof Assume (a). Then verify
A-T = (I-K )(M-T) , (2.5 )
n n
K = (7 -1)(n-1)7" (2.6)
n n
K, =0, {Kn] collectively compact. (2.7)

From Theorem 5.1 of Chapter I, there exists N such that
(I—Kn)-le[X] for n > N, (2.8)
{(I-Kn)-l: n > N) is bounded, (2.9)
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-1
(I—Kn) - I.
Therefore,
-1 -1 -1
(A1 )77 = (A1) ( IK )

and (a) implies (b), (c).

To obtain error bounds, note
2”
K fi- 0 .
n

Whenever HKi“< 1, (2.11) holds,

LOo=m) "M T + k]
1 - i)

~ 1.
W=7 ) T <

(-2 )7 (em) T = (T )T
0= ) - () ] < - ) il = 0
Now assume (b). Then (A-T)x = 0 implies
[ s R O B Y R
which implies x = 0. Hence, (n-1) ! exists. For n > N,

AT = (I-1 ) (A-T),

-l
- _ N .
L = (T-T ) ( In) compact

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2 .18)

Hence, (%-T)-lEDﬂ by the Fredholm alternative. Thus (b) implies (a).

To obtain error bounds, note that {Ln} is bounded and
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L = (Ln-I)Kn s (2.19)
L - 0, (Lh] collectively compact, (2.20)

HLi| - 0. (2.21)

2
For iith <1,

(1)t = ()TN ) (2.22)
-1
(}\_T)'l H(K"Tn) H'HI + Lnn s
s T (@.23)
1,0 ™% o) el < || - izl o (2.24)

Theorem 2.3 Assume Tn - T and ﬁﬂ;m} collectively compact.
Let A be closed and A © p(T). Then there exists N such that

(a) A € p(T) for n > N,

(b) {(X-Tn)-l: MEA, n > N) bounded,
)-l

(c) for each x€X,(K-Tn X - (%~T)-lx uniformly for A€A.

Proof In the proof of Theorem 2.1 write Kh(K) for Kn. Thus

)-l

K, = (T,-D) (- (2.25)

and
\\[Kn(x)]ell -0, \\Kn(x)x” ~ 0 for all xEX. (2.26)

These functions of M are equicontinuous on A. Hence the convergence
is uniform for AEA, and the desired results follow as in the proof

of Theorem 21.
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The next theorem is essentially a corollary of Theorem 2.3.

Theorem 2.4 Assume Tn - T and {TT-T} collectively compact.

Let © be open and a(T) € Q. Then there exists N such that

o(Tn) C Q for all n > N. (2.27)
Proof Let Q& = complement A in Theorem 2.3.
To illustrate, suppose we have operators Kn and K such that
K ~ K {Kn} collectively compact. Then the following apply .
Lemma 2.5 Assume Knxn: I S £ 0O, \[xnu = 1. Then
there exists a Subsequence {ni} and an x such that
X, —x, Kxo=ux, | =1 = 2. (2.28)
1
The proof is similar to that of Theorem 5.1 in Chapter I.
Lemma 2.6 If in addition, x is unique, then
X - X (2‘29 )
n

This follows from the facts that {xn} has a convergent sub-

sequence and has at most one limit point.

‘3. Functions of Operators; Projections

For further details on the material to appear in this section

see [1] and [ 3], for example. Let X be a complex Banach space. For

each TE[X] let

F(T) = {f: £ locally analytic on an open domain (%.1)
8(f) o o(1)].
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For each f&#(T) there exists a contour I' € o(f) with a(T) inside T.

Define

! -1
£(T) = 57 jrf(x)(x-T) ar

as the limit in norm of the usual approximating sums.
Lemma 3. 1 f(T) is independent of T.
n
Examples: f(T) = I, T, T , polynomials in T.

Lemma 3.2  If £,g¢%(T) then
(£ + g)(T) = £(1) + &(T),
(fg) (1) . £(T)e(T) |
If in addition
fn(%) - f(N) uniformly on T
then
£, (T) - £(T)|| » 0 -

Example Limits of polynomials.

Theorem 3.3  Assume Tn - T and.[Tn-T} collectively compact.
Let f<%(T). Then there exists N such that

(a) ft?(Tn) for all n > N,

(0) £(T) - £(T),

(c) {f(Tn) - £(T): n > N} collectively compact.

Proof Theorem 24implies (a). For n> N,
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2(7)-5(1) = gz [ EOO-1) ™ 0e)
= %1- f(x)(x-T)'l(Tn-T)(x-Tn)’ldk. (3.10)
r .

Theorem 2.3 (c) then implies (b). Proposition 1.1 (a), (b), (e)
implies (c).

Definition 3.1 Complementary spectral sets o, o' associated

with T are disjoint closed sets o, ¢' such that ¢ U o o(T).
Lemma 3.4 There exists a contour! with o inside and ¢' outside.
Conversely, each 'e¢p(T) determines complementary spectral sets o and o'.

With this notation let

B = B (1) = 5 [T RN (3.11)
Note that
E- (D) , (3.12)
where
e€%(T), e =1 ong,e =0 on ¢'. (3.13)
Lemma 3.5 : e2 =e. = E2 = E. Thus, E is a projection.

Definition 3.2 EX is the spectral subspace associated with T

and ¢ (or T).
Example If o consists of a single isolated eigenvalue,

o = {u3, and if T is compact and u ﬁ 0 we may have
EX = n(p-T), an eigenmanifold, (3.14)

or
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EX= N[ (u-1)"], a generalized eigenmanifold, (3.15)

where h(T) is the null space of T. _

Lemma 3.6 Let E' = I-E. Then
X = EX ® E'X, (3.16)
TEX C EX, TE'X C E'X. (3.17)
If in addition we let Tp = TIEX ; Tg = T|piy + then
O(TE)\? o, U(TE,) =o', (3.17)

The next theorem is a specialization of Theorem 3.3 to operators
which are projections.

Theorem 3.7 Assume Tn - T and Uh-T} collectively compact. Let
I be a contour in p(T) around a spectral set o. Then there exists N
such that T c p(Tn) for all n > N. The part o, of O(Tn) inside T
is a spectral set for T . Let E = EP(T) and E_ = EP(Tn)' Then

(d) E -E,

(b) {En-E] collectively compact,

(C) dim EnX = dim EX (finite or+ oo)
for all n sufficiently large.

Proof  Theorem 3.3 implies all but (c). We assert, for

projections that (a), (b) imply (c). We also assert that Tn,T€[X],

Tn -+ T imply

dim T X > dim TX eventually. (3.19)
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To prove (3.19) let {‘Ibcj: j =1, «+., m) be linearly independent and

m
define C = {z c..X.: ma.x|c.\ = l}. Then C and TC are compact, so
ey Jd J |

T - T uniformly onC and min|T || > 0." So eventually min|[T x|| > 0 and
n X T n

%€ x€C
{TnxJ.: j=l, . . . . m} is linearly independent. The result, (3.19),
follows. Now we show < in (c). Without loss of generality dim EX < «.

Then E is compact and {E“} is collectively compact. Suppose that

dim EnX}_ m for n> 1. By the Riesz lemma, there exist linearly in-

dependent sets {xnk: k=1, . .., mc Ex, n > 1, such that
k-1

Hxnk“ =1, Hxnk = Z=JC_:JXHJH > 1 (3.20)
for all n, k and {cj}. Since Xy = Enxnk E{En}/s, which 1s precompact,
there exist a subsequence [ni} and elements XKEX such that X g =
En{xnik ? X for k=1, . . . . m Then

| k-1
bl = 15 g - X el (3.21)
j=1

for all k and {cj}, SO {Xk: k=1, . ... m} is linearly independent.

- i i - = S .
Now En E implies Enlxnik Exk, so that X Exk EX for all k. Thus
dim EX > m for all n = dim EX > m. (3.22)

“Apply this result to an arbitrary subsequence of {En} to conclude

that
dim E X < dim EX eventually. (3.23)

Since we now have (3.19) and the reverse inequality (3.23), (c)

follows.
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In Theorem 3.7, let ¢ = {u}, o, = {un}' Then By T by Theorem

2.4. If dim EX = 1, then E -E implies convergence of eigenvectors
as follows. Suppose Tx = px and [lxff = 1. Then Ex = x. Let X =

Then T X =y X and X =X
nn nn n

Proposition 3.8 For some n, let I' C p(T)(\p(Tn)_ Define
E= EF(T) and En = EP(Tn)' Let ¢ and °, be the parts of o(T) and

o(Tn) inside [+ Assume

T X = p %X w, S0, ”Xn“ = 1.

then

-1
L(r LO-T) 7 g
" —éﬁl max k'“n ””nxh._ TXn“'

x - Ex ﬂ <r
”Xn n = \ET

n

Now assume r, < 1. Then Ex # 0, E# 0 and 0 is nonvoid. Let

v o= Exn/uExnn. Then y_ éEX,“yn“ = 1 and

- < 2
ly, - x I < 2r
Proof Note that

B - B = (-1)7HT,-1) (T

-1 -1 _ _
(K:Tn) X, = (x-pn) x_ for \Er, and Enxn =.X

n n -

Hence,

-1
1 (A-T) .
X, - B Tomtir Ay A (”nxn xn)
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and ”Xn - Exnﬂ S r - For r, <1,

vy = x < llyy - Bl + llEx - x|

<li-llEx ] + r,

- E < 2r_.
<=, - Bx | 4+ ¢ <2r
In Proposition 3.8 suppose that dim EX < o (e.g., T is compact
and 0 is not inside I'). Then Y, is an eigenvector of T. The

corresponding egigenvalue by lies inside I' and is determined by

TV = wp¥y:

Now assume dim EX < « and that the hypotheses of Theorem 3.8
are satisfied for all n > N. By Theorem 3.4 there is a 6§ > 0 such

that I)\-p.nl > § for all Ml and n > N. Note that

lux, - Tl (2 -T)E % <l (T -T)E ]I .

Since E is compact and {En-E} is collectively compact, {En} is

collectively compact. Hence, || (Tn—T)En" - 0 and
L - 0,
e - Bx || = 0,
ly, - x|l = o

In order to estimate r , we may use the inequality (2.23) for

-1y -1
| (\-T) l“ in terms of H(}\-Tn) -
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As an application of Theorem 3.8, suppose that, by computational
evidence, certain eigenvalues by of Tn seem to converge to some value

near ), as n - . Fix n and ¢ > O such that Iun-x0|< e and
r=m: Il = el ep(mnp(T)

Then £(r) = 2me and

-1
r < ¢ max gﬁfT I

lpx - Tx |
\ET My nn n

If dim EX < ;Aand rn < 1, there is an eigenvalue p of T with
IM‘XO' < €. The calculation of r presents a problem when € is small,

. =1, .
since then ||(A-T) |l is large and.lx-pnl is small for »€I'. Thus,
¢ should not be taken too small. This limits the practicality of
Theorem 3.8. For further details, see Atkinson [21].

In Theorem 3.7, let o = {u}, EX = ?H(u-T)v], where v is minimal.

Then o, = {unk: k = 1,000, kn}’ mixlpnk- u]~+ 0, and

k

n A%
EX = @ 2 (uy-T,) ™I, (5.24)
k=1

where the Vo are minimal. Let

kn vnk
PO) = )Y B(A) = 0 (uy-n) (3.25)
n k=1
Then
EX = R[P(T)], EX = m[Pn(Tn)]- (3.26)
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k
n
Let v, T degree Pn = z v

Theorem 3.9 There exists N such' that Vg >y for all n > N.

Proof EP(T) = 0 and P(h) divides Q(x) for each polynomial Q such
that EQ(T) = 0. Similarly, EnPn(Tﬁ) = 0. Suppose

v = a for some {n,} C {n}. (3.27)
n, i

Then

14

o _
0 = E-ﬁ'Pn.(Tn_) - E(u-T)* = 0
1 1 1

so ¢ > v+ The result follows.

Theorem 3.10 There exists N such that dim m(unKJRJ < dim m(u-T)

for all n 2 N and for all k.
Proof See [17, p. 12].

Theorem 3.10 There exists N such that for all n > N

k
dim m[zn: (unk-Tn)dnk] < dim R (u-1)% (3.28)
k=1

-whenever
k
n
0 < < =
S SV X andk2; ank a

n

Proof See [17].
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Chapter IV

FURTHER TOPICS

1. An Alternative Method

Again let X be a real or complex Banach space. Consider

K, Kn€[X] for n > 1, with
K =K {Kn} collectively compact, K compact. (1.1)

As noted before, the first two conditions imply the third. We

-

wish to solve
(I-K)x = y (1.2)

or to determine (I-K)_l.

The basic idea of the present method is to find operators

T,L&[X] such that T-l€[X], L is compact, and
T(I-K) = I-KL, (1.3)
-1
I-K = T ~(I-KL). (1.4)

Then the operator I-KL is approximated by I-KnL. By Theorem 3.1

of Chapter I,
[k L-KLf ~ 0. (1.5)

Therefore, the standard approximation theory given in Section 1 of

Chapter I applies. Thus, (I—KL)-l exists iff (I-KnL)-l exists and
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is uniformly bounded for n sufficiently large, in which case
-1 -1
H(I-KnL) -(1-x)"7|| = o, . (1.6)

and there are error bounds.

Clearly, (I-K)-l exists iff (I-KL)-l exists, in which case

(I-K)™ = (k1) ™7, (1.7)
n(I-KnL)‘ T-(I-K)‘ln < H(I-KnL)'l-(I-KL)'lH-\\TH, (1.8)
n(I-KnL),'lT-(I-K)'lH -0, (1.9)

and error bounds are available.
Such operators T and L exist. They can be determined in a

variety of ways. For example, if (I + K)™* exists, then

(I +K (I-K) =1- KE, (1.10)
I-K= (I + K)'l(I - KQ). (1.11)
+Thus, T =1+ K and L = K in this case.
More generally, let
T=I+K+ ... +K ! (p> 2). (1.12)
Then
™MI-K) =1-K, (1.13)
MI-K =1I-K., L=x""1 (1.14)




We show that Pt exists if p is a sufficiently large prime. Without
loss of generality, X is complex; otherwise extend T to the space
x + ix. Note that

b

T=1 (K-aqu), (1.15)

g=1
where the apq are the nontrivial pth roots of unity. For p prime,
the apq are distinct numbers of absolute value one. Since K is
compact, the eigenvalues of K form a finite set or an infinite sequence
converging to zero. Therefore, only a finite number of the apq can be

eigenvalues and

- p —
7 o1 (K )7t (1.16)
1 Pa

for p sufficiently large. Usually p < 5 will suffice.

Another possibility 1is
2
T=1+K + cK, (1.17)

where the constant ¢ is chosen such that T_1 exists. Then

T(I - K) =I~-KL, L =(1-c)K + Ko, (1.18)

If K and L are integral operators on C[0,1] with continuous
kernels, and Kn is defined by means of numerical integration, then the
determination of (I-KnL)-'L is equivalent to a matrix problem (cf. [14]).
Each matrix element is an integral over [0,1]. This contrasts with
the method of Chapter I, where the matrix elements were simply values

of given functions. The two methods also differ in that
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hr - KnL)“l-(I-KL)-lH ~ 0, (1.19)

whereas there is merely pointwise convergence of

(I - Kn)'l - (I - K)’l. (1.20)

Thus, the present method requires more work but gives stronger results.
Integral equations of the form (I - KL)Xx = z sometimes arise
directly from physical problems. For examples in mechanics, electro-

magnetic theory, and radiative transfer, see [5, 7, 8, 9, 14, 34].

In such cases, we can proceed directly to the approximations

I -K L.
n

2. Collectively Compact and Totally Bounded Sets of Operators

We have shown in Chapters I and III that operators T, Tne[X]

such that

T, {Tn-T} collectively compact, (2.1)

have many of the properties of operators for which |[T -T|| - O,
Since the analysis simplifies in the latter case it is important to
determine when T~ T but HTn-TH 0. It is easy to prove

Lemma 2.1 |[T_-T|| ~ 0 iff T - T and {7 -T} is totally bounded
(equivalently, sequentially compact).

Thus, the theory presented above is intended mainly for operators
such that T~ T, {Tn-T} is collectively compact, but {Tn-T} is not
totally bounded. We shall compare collectively compact and totally

bounded sets in [X].
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Proposition 22 Every totally bounded set ¥ of compact operators

in[¥] is collectively compact.
Proof Fix ¢ > 0. Then there-exist KiEH,i=l,. . um, such that

minHK-KiH < ¢ for each KE€K. Hence,
i

minqu—KixH < € foriall K&K, x€5. (2.2)
: ‘
m
It follows that S = UK{? is an s-net for XA. Since each Ki is
i=1

compact, S is totally bounded. Therefore, X& is totally bounded and
K is collectively compact.

The next-example shows that the converse of Proposition 2.2 is
false.

2
Example Let ¥ be the set of operators on I  such that
Kn(xl,...,xn,...) = (xn,0,0,...). (2.3)

Then ¥ is collectively compact. Since HK&-KnH 2 for m £ n, X is
not totally bounded.

It was proved in [16] that the converse of Proposition 2.2
holds for any set X of self-adjoint operators on a Hilbert space.
The proof involved the spectral theorem. More generally, it was

established that:

Theorem 2.3 Let K be a set of compact normal operators on a
Hilbert space. Then ¥ is totally bounded iff both ¥ and ¥* are
collectively compact, where ¥K¥ = (K*: KEX}.

From this, it follows that:

Theorem 2.4 Let X be a set of compact operators on a Hilbert
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space. Then K is totally bounded iff both K and ¥¥ are collectively
compact.

Later, the same result was obtained in [13] for any set ¥ of
compact operators from one normed linear space to another such that
(dim KX: K€k} is bounded, In [18] this was extended to other sets in
[X] by means of spectral theory. Finally, Palmer [3%6] recently found
a quite direct proof of Theorem 2.4 for an arbitrary set of operators
from one Banach space to another. 1In fact a somewhat stronger result

was obtained.

3. Nonlinear Operator Approximations

Consider a nonlinear operator equation
Tx = 0, (3.1)

where T maps a Banach space X into X. For example, this might be a

Hammerstein integral equation on C[0,1]:
1
(Tx) (s) = x(s)+] k(s,8)2(t,x(t))dt - z(s) = 0 - (3.2)
0

Assume that T is Fréchet differentiable on X. Thus, there exists

the unique Fréchet derivative T'(x)€[X] for each x€X which satisfies

I Gety) -Tx-1 Gyl , ¢ il - o. (3.3)
iiYii

Under reasonable conditions on k(s,t) and f(t,u) in the example,

T'(x) is the linear integral operator

1
(7" (0] (5) = ¥(e)+] K(s,2) S e(ex(t))y(t)at.  (3.4)
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Consider Tx = 0 in the Banach space setting. Suppose Tx¥ = 0,

Hx*-xou is small and T'(xo)_l€[X] exists. Then
T'(xo)(x*—xo) = Tx*-Ty = -Tx, (3.5 )

* = - x - T . .
X X, X = X - T (xo) TX (3.6)

Newton's method is based on

-1 B
X 41 = xm-T'(xm) Tx,o ™ = 0, 1, 2, wooy (3.7)

provided the --inverse operators exist. The Kantorovitch theorem [29],
gives sufficient conditions for the existence of the iterates X

for the existence of a locally unique solution x¥*¥ of Tx = 0, and for
me-x*H = 0. It also provides error bounds.

To apply Newton's method we must solve a linear problem or
invert a linear operator at each iteration. In the integral equation
example, and more generally, a second approximation method is needed
to deal with these linear problems. R. H. Moore [33a, 33b] has com-
bined Newton's method with the theory developed in Chapters I - III
for linear operators to obtain an approximation theory for nonlinear
operator equations in Banach spaces.

As Moore indicates, it 1is equivalent and somewhat more convenient
to first introduce nonlinear operator approximations Tn’ say with
dim TnX < ®, and then to solve Tngn = 0 by Newton's method. For
example, Tn can be defined by numerical integration when T is an

integral operator.

54




Theorem 3.1 For some xo€X and r > 0 let
(1) HTnX-TXH - 0 for Hx-xon < r;
(2) (Tn} equidifferentiable at X, i.e., the limit in the
definition of Tﬁ(xo) is uniform in n;
(3) {T } collectively compact, i.e., (T x: n > 1, x|k v}
n n = =
is totally bounded for each b < =,

Then

() o (x ) = T'(x);

(5){Tﬁ(xo)} collectively compact;

(6) T'(xo) égmpact.

The hypotheses are satisfied under reasonable conditions for
the Hammerstein operator, For the proof and further theory and

applications, see [33a, 33b] .

L. Collectively Compact Sets of Gradient Mappings

This material is adapted from [25] by James W. Daniel.

Let X be a real reflexive Banach space and El the real field

regarded as a Banach space with the absolute value norm.  Syppose

that f: X = E. is Frechet differentiable on some domain 8§ C X. Then

1

£'(x)€X* for all x€9 . The map vV f: #- X* defined by (Vf)(x) = £'(x)

is the gradient of f.
Now let & be a family of such maps f.

Theorem 4.1 If {Vf: f€F} is collectively compact then % is
weakly equicontinuous on each bounded convex set.

For a proof, see [25].
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Weak equicontinuity plays an important role in the approximate
solution of variational problems. This is indicated by the following
result.

Theorem 4.2 Let f and fn be weakly lower semi-continuous
functionals such that fn(x)-* f(x) for all x€B, a closed and bounded
set in X. Assume that {fn-f} is weakly equicontinuous on B. For
each n, let anB and fnbgg < inf. fn(X) + %ﬁ where En > 0 and

— XEB

e " 0. Then every weak limit point x' of h&& minimizes f on B.

For a proof and a number of related results, see [25].

-

56







BIBLIOGRAPHY

Books

1. Dunford, N. and Schwartz, J. T., Linear Operators, Vol. I.
Interscience, New York (1957).

2. Kantorovitch, L. V. and Krylov, V. I., Approximate Methods
of Higher Analysis. C. D. Benster, tr. Interscience,
New York (1958).

3. Taylor, A. E., An Introduction to Functional Analysis.
Wiley, New York (1958).

L. Tricomi, F. G., Integral Equations. Interscience, New York

(1957 .

Articles and Reports

5. Anselone, P. M., Convergence of the Wick-Chandrasekhar
approximation technique in radiative transfer.
Astrophysical Journal, 128 (1958), 124.

6. Anselone, P. M., Integral equations of the Schwarzschild-
Milne type, J. of Math. and Mech., 7 (1958), 557.

7. Anselone, P. M., Convergence of the Wick-Chandrasekhar
approximation technique in radiative transfer II.
Astrophysical Journal, 130 (1959), 881; also Math.
Research Ctr. Report No. 97, Madison, Wisconsin.

8. Anselone, P. M., Convergence of Chandrasekhar's method
for the problem of diffuse reflection. Monthly Notices,
Roy. Astron. Soc., 120 (1960), 498; also Math. Research
Ctr. Report No. 136, Madison, Wisconsin.

9. Anselone, P. M., Convergence of Chandrasekhar's method
for inhomogeneous transfer problems, J. of Math. and

Mech., 10 (1961), 537-546.

10. Anselone, P. M., Convergence and error bounds for approx-
imate solutions of integral and operator equations.
In Error in Digital Computation, vol. 2, ed. by L. B.
Rall, Wiley, New York, (1965), 231-252.

57




11.

12.

13.

.

15,

16.

17 »

18.

19.

20.

21.

Anselone, P. M., Uniform approximation theory for integral
equations with discontinuous kernels. SIAM J. Num. Anal.

L (1967), 245-253.

Anselone, P. M., Perturbations of collectively compact
operators. Submitted for publication; also Math., Research
Ctr. Report No. 726, Madison, Wisconsin.

Anselone, P. M., Collectively compact and totally bounded
sets of linear operators. J. of Math. and Mech., to
appear; also Math. Research Ctr. Report No. 766, Madison,
Wisconsin.

Anselone, P. M..and Gonzales-Fernandez, J. M., Uniformly
convergent approximate solutions of Fredholm integral
equations. J. Math, Anal. Appl., 10 (1965), 519-53%6.

Anselone,~P. M. and Moore, R. H., Approximate solutions of
integral and operator equations. J. Math. Anal. Appl., 9
(196k4), 268-277 .

Anselone, P. M. and Palmer, T. W., Collectively compact sets
of linear operators. Math. Research Ctr. Report No. 740,
Madison, Wisconsin (1967).

Anselone, P. M. and Palmer, T. W., Spectral analysis of
collectively compact, strongly convergent operator
sequences. Math. Research Ctr. Report No.T74l,
Madison, Wisconsin (1967).

Anselone, P. M. and Palmer, T. W., Spectral properties of
collectively compact sets of linear operators. J. of
Math. and Mech., to appear; also Math. Research Ctr.
Report No. 767, Madison, Wisconsin.

Atkinson, K. E., The numerical solution of Fredholm linear
integral equations of the second kind. SIAM J. Num. Anal.
(to appear); also Math. Research Ctr. Report No. 686,
Madison, Wisconsin.

Atkinson, K. E., The solution of non-unique linear integral
equations, Numerische Math. (to appear); also Math.
Research Ctr. Report No. 686, Madison, Wisconsin,

Atkinson, K. E., The numerical solution of the eigenvalue
problem for compact integral operators. Trans. Amer. Math.
Soc. (to appear); also Math. Research Ctr. Report No. 686,
Madison, Wisconsin

58




22. Brakhage, H., Uber die numerische Behandlung von Integral-
gleichungen nach der Quadraturformelmethode., Numerische
Mathematik 2 (1960), 183-196.

23. Brakhage, H., Zur FehlerabschBtzung flir die numerische
Eigenwertbestimmung bei Integralgleéeichungen: Numerische
Mathematik 3 (1961), 174-179.

2ha. Blickner, H., Numerical methods for integral equations. In
Survey of Numerical Analysis, ed. by J. Todd, McGraw-Hill,
New York (1962).

24b. Blickner, H., Die Praktische Behandlung von Intergralgleich-
ungen. Springer, Berlin (1952).

25, Daniel, J. W., Collectively compact sets of gradient mappings.
Math,. Research Ctr. Report No. 758, Madison, Wisconsin

(1967).

26. Fredholm, I., Sur une nouvelle methode pour la resolution du
probleme de Dirichlet. Kong. Vetenskaps-Akademiens Fbrh.
Stockholm (1900), 29-46.

27 . Fredholm, I., Sur une classe d'equations fonctionnelles.
Acta. Math. (1903), 365-390.

28. Hilbert, D., Grundzlige einer allgemeinem Theorie der linearen
Integralgleichungen. Leipzig (1912).

29. Kantorovitch, L. V., Functional analysis and applied math-
ematics: Uspehi Mat. Nauk. Vol. 3 (1948), 89-185 (Russian).
(Transl. by C. D. Benster, Nat'l. Bur. 8tnds., Los Angeles
(1952)).

30. Mysovskih, I. P., Estimation of error arising in the solution
of an integral equation by the method of mechanical
quadratures. Vestnik Leningrad Univ., 11 (1956), 66-72
(Russian) .

31. Mysovskih, I. P., On the method of mechanical quadrature for
the solution of integral equations. Vestnik Leningrad U.
Ser. Mat. Nech. Aster. No. 7 (B2) (1962), 78-88 (Russian).

32. Mysovskih, I. P., An error estimate for the numerical solution
of a linear integral equation. Dokl. Akad. Neuk. SSSR,
140 (1961), 763-765 (Russian).

29




3%a. Moore, R. H., Differentiability and convergence for compact
nonlinear operators. J. Math. Anal. Appl., 16 (1966),
65-72.

%3b. Moore, R. H., Approximations to Newton's method and nonlinear
operator equations. (Submitted for publication).

34. Nestell, M. K., The convergence of the discrete ordinates
method for integral equations of anistropic radiative
transfer. Tech. Report No. 23, Dept. of Math., Oregon
State University, (1965).

%5, DNystrbm, E. J., Uver die Praktische Auflbsung von linearen
Integralgleichungen mit Andwendungen auf Randwertaufgaben
der Potentialtheorie. Comment. Phys.-Math. Soc. Sci.
Fennica, 4 (1928).

36. Palmer, T.W., Totally bounded sets of precompact linear
operators, Math. Research Ctr. Report No. 789, Madison,
Wisconsin.

37 . Wielandt, H., Error bounds for eigenvalues of symmetric

integral equations. Proceedings of Amer. Math, Soc.
Symposia Appl. Math. VI (1956), 261-282,

60




