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Abstract

A general approximation theory for linear and nonlinear

operators on Banach spaces is presented. It 1s applied to

numerical integration approximations of integral operators.

Convergence of the operator approximations 1s pointwise rather

than uniform on bounded sets, which 1s assumed in other theories.

The operator perturbations form a collectively compact set, 1.e.,

they map each bounded set into a single compact set. In the

nonlinear case, Frkchet differentiability conditions are also

imposed. Principal results include convergence and error

bounds for approximate solutions and, for linear operators,

results on spectral approximations.





Chapter I

APPROXIMATE SOLUTIONS OF EQUATIONS

1. Introduction

Consider a Fredholm integral equation of the second kind

1

AN x(s) - J k(s,t) x(t) dt = y(s), 0<s< 1 (1.1)

where x(s), y(s), and k(s,t) are continuous, real or complex valued

functions for 0 < s, t < 1 and MN £ 0.

In a classical method of approximate solution based on numerical

integration, the integral in (1.1) 1s replaced by a summation to obtain

n

A x (s) - )) wo sk(st, x (8) 0) = y(s), 0 < s < 1. (1.2)
J=1

If we replace the free variable by subdivision points we get a finite

linear algebraic system

n

A x(t ,) - L LARICNPPLI NOW = y(t) i=1,2,...,n.
” (1.3)

The two equations (1.2) and (1.3) are effectively equivalent.

Certainly if x (s) satisfies (1.2) then the x (t:), 1 =1,2,...,m,
satisfy (1.3). Conversely, if (1.3) is satisfied, then (1.2)

determines x (s) explicitly in terms of the x(t ;) —— in effect, (1.3)

serves as an interpolation formula.

The technique of replacing an integral equation by a finite system

goes at least back to Fredholm [ 26]. Hilbert [28] gave convergence

proofs for approximate solutions using the rectangular quadrature
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formula. The idea of using (1.2) goes at least back to Nystrbm [35]

in the mid 1920's. The advantage is that equations (1.1) and (1.2) are

defined in the same space. In particular cases this technique has been

studied by Blickner [PLka, 2b], Kantorovitch [29], Mysovskih [30, 31, 32],

Wielandt [37], and Brakhage [22, 23]. In all cases rather particular

assumptions were made.

Basic problems to be considered are the solvability of the

equations, convergence of the solutions, error bounds, and the eigén-

value problems associated with these operators. Also to be considered

are 1ntegral equations with discontinuous and even singular kernels,

problems in higher dimensions, unbounded domains and nonlinear integral

equations.

Applications can be made 1n the field of radiative transfer. The

transport equation 1s an integrodifferential equation which yields a

system of ordinary differential equations when the integral 1s replaced

by a sum. This problem can be cast so that it can be treated by the

theory to be presented here (see [ 5,7, 34]).

) An abstract theory concerning equations 1n a Banach space will be

presented. Thus all the applications will simply be special cases of

the general theory. The abstract theory has been developed within the

last four or five years. Other principal contributors to the theory

have been R. H. Moore, T. W. Palmer and K. E. Atkinson.
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2. Banach Space Fundamentals

Let X denote the Banach space of real or complex continuous

functions x(t), 0 < t < 1, with the uniform norm |x| = max|x(t)]|.The

unit ball will be denoted by #. Thus,

B= {xex: |x| < 1) . (2.1)

The symbol [X] will represent the space of bounded linear operators on

X into X with the usual operator norm, lif = sup| fix | for Ke[X].X

Lemma 2.1 Let K and K be elements of 0. Then
Ix -K|| - 0 iff ||K x-Kx|| - 0 for all x€X uniformly for x€8 (or any
bounded set).

In the general theory as well as the applications to be discussed,

the convergence of the operator approximations 1s only pointwise and not

uniform in the operator norm. Nevertheless, for the sake of motivation,

suppose we have convergence 1n the operator norm, that is, IK -K|| - 0
as n = ®, Then we have the following lemma.

Lemma 2.2 Let IK -K|| - 0. Then there exists (M-K) "Ye[X] iff for
. all n sufficiently large there exist (n-K_) E(x] bounded uniformly in

n.

In either case,

lox)7H) 7 » 0asn— oo. (2.2)

A constructive proof of lemma 2.2 also provides error bounds.

In order to prove the lemma however, let us first state two further

results.
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Lemma 2.3 Let T&[X] and ||1|| < 1. Then there exists
-1

(1-7) =y  t[X] and
n=0 |

-1 |

(2-7) < 1/ (2-{lTiD). (2.3)

This 1s the well known Neumann series for (1-1).
-1 -1

Lemma 2.4 Assume there exists T €[X] andA = \T | ||7-s|| < 1.
-1

Then there exists § ~€[X] with

-1

eH) <E (2.4)
and furthermore --.

-1,2

-1 -1y Hoo” lr-s)] >

-1

To prove this we can write (since T exists)

-1 (2.6)S = T-(T-S) = T{I-T ~(T-S)] .

Hence, there exists

s™t = [1-7 Y(T-8)17 rt (2.7)

and an application of Lemma 2.3 yields (2.4).

To prove (2.5) we write

g7t-p7t gH(r-g)r™? : (2.8)

Taking the norm of (2.8) and using (2.4) gives (2.5) immediately.

Now we can easily show (2.2) and give the error bound by using

(2.5) with T =(h-K) and S = (MK). We obtain
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lox)00) 7) < lo-K 1 8 en (2.9)
where

By = 1O-B)TLlll (2.10)

Since’ Ik -k|| - 0 and ||(A-K) 7} is bounded, (2.2) follows.

Notation

The notation K, = K will be used for pointwise convergence.

That 1s, K, ” K LEE [|K x-Kel| - 0 for all x&X.

Lemma 2.5 If K, = K for bounded linear operators K, and K, then

the sequence {K} is bounded. That is, there exists a bound, b < ® ,

such that IE | < b for all n.
This 1s an application of the principle of uniform boundedness.

Lemma 2.6 If K = K then the convergence 1s uniform on each

compact set in X.

Before proving Lemma 2.6 a brief discussion relating the concepts

) of compact, sequentially compact and totally bounded 1s 1n order. A

compact set 1s a set such that any open cover has a finite subcover.

A set S 1s sequentially compact ify given any infinite sequence taken

from S, 1t has a convergent subsequence (the limit may or may not be

in S). A set S is totally bounded iff for each e€> 0 there exists a

finite set (an e—net),  SEREEER SY such that for any x£8,

min||x-x, || < €. These three concepts are closely related. First, in
l<icm  *
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a complete metric space, sequentially compact and totally bounded are

the same. Secondly, compactness 1s the same as either one or the other

concepts if the set S is also closed. And thirdly, a set S is totally

bounded (or sequentially compact) 1ff the closure of S 1s compact. The

third concept, total boundedness, 1s the one to be used in the following

discussion.

Lemma 2.6 can be stated for either compact or totally bounded

sets and the two statements are equivalent. The proof 1s now given for

totally bounded sets.

Let T, = KX - 0 and let S be a totally bounded set. Since we
maymultiply by a scalar we may, without loss of generality, assume

IT | <1 for all n. Fix €> 0. Then there exists a finite e-net,

XqseeesX, such that min flx-x, || < e¢ for any x€3. Since Iz. || - 0
1<i<m

pointwise, there exists N such that [Tx || <e for 1 = 1,...,m and

n> N. Hence, by the triangle inequality we have

Tx < IT x. |l + IT, (xx. ) | < 2¢ (2.11)

which proves Lemma 2.6.

Lemma 2.6 is a special case of a more general proposition. Here

we had pointwise convergence of uniformly bounded operators. Recall

that an operator 1s bounded 1ff it 1s continuous. Similarly, a set of

operators 1s uniformly bounded iff 1t 1s an equicontinuous set of

functions. In much the same fashion it can be proved that pointwise

convergence of equicontinuous functions from one metric space to

another 1s always uniform on totally bounded sets.
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In the approximation theory and applications to follow, results

will be obtained for pointwise convergence which are quite analogous to

those which hold for operator norm convergence.

5. Collectively Compact Sets of Operators

The integral operators to be used are compact (or completely

continuous). Some definitions and theorems concerning this class of

operators will now be given.

Definition An operator K€[X] is compact iff K maps 8B, the unit

ball, into a totally bounded set; equivalently, the closure of KF is

compact. h

Definition A set of operators,KC[X], is collectively compact

iff the set 8 = (Kx: KEK, x€B} is totally bounded (or has compact

closure).

It will be shown later that approximations to integral operators

defined by sums form a collectively compact sequence.

Theorem 3.1 Let T »Te[X] and T= T. Then, for each compact

operator K,

l(z,-m)Kl|= 0. (5.1)

-Moreover, the convergence is uniform for K&K, where XK is any

collectively compact set.

To prove this, recall that convergence 1n norm 1s the same as

pointwise convergence uniformly for x&8. Consider

(T -T)kx - 0. (3.2)
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If x is some point in B and K is either fixed or is some element of a

collectively compact set, then the argument, KX,is some element of the

set HE which is totally bounded by definition. But, pointwise conver-

gence 1s always uniform on a totally bounded set so in (3.2) the con-

vergence 1s uniform when both K and x vary.

This 1s an important theorem in that pointwise convergence has

been used to give us a form of convergence in norm. Two corollaries

follow.

Corollary 3.2 If K, = K and (K_-K] 1s collectively compact, then

I(x_-K)| =o (3.5)

Corollary 3.53 If K -K and {K } is a collectively compact set,
then

i) K is compact and {K -K] is collectively compact,

ii) I(k_-K)K]| - 0,

iii) |X -K)K || = o.
The general theory will be continued in more detail later. First,

examples from the field of integral equations are presented.

4. Integral Operators

Now the integral equations setting will be shown to be a valid

application of the theory. As before, we will assume our functions are

in real or complex C = C[0,1], with the maximum norm, |jx|| = max Ix(t)\.
tl

Thus , |[x_-x|| =» 0 1ff x,(t) = x(t) uniformly.

8



Define bounded linear functionals ¢ and PD > 1, by

ox = [x(t)at, | (4.1)
0

n

PX = z wy 5%(8 5) (4.2)
; It 1s necessary to assume that

?, = (4.3)
This convergence holds for most of the usual quadrature formulas such

as the rectangular and trapezoidal and those of Simpson, Weddle,

Gauss, and Chebyshev. The Newton-Cotes: quadrature rule however, does

not satisfy (4.3).

Lemma 4.1 Given , as above, there exists B < ® such that

} I

le | = 2 lo] < B for n = 1,2,.... (4.4)
This follows from the principle of uniform boundedness and an elem-

entary calculation

The convergence in (4.3) is pointwise convergence which is

automatically uniform on a totally bounded set, The Arzela-Ascoli

lemma tells us that a totally bounded set in C[0,1] is a bounded

" equicontinuous family of functions. In other words, ?.x PX

uniformly for x in a bounded equicontinuous family of functions.

To illustrate this uniform convergence, suppose that we have a

family of differentiable functions that satisfy a Lipschitz condition,

|x (s)-x'(t)] < m |s-t]. (4.5)

9



Then, for the trapezoidal rule for example, the error in numerical

integration 1s given by

mm

o x-0x| < —25 Lo
12n

It follows, since x does not occur on the right side of (L.6), that

the convergence ¢,”9 1s uniform for functions satisfying the

hypotheses, which form an equicontinuous family,

It 1s easy to demonstrate that we do not have convergence 1in

norm.

Lemma 4.2 lo - © | ~ oO.
To show this consider a function which 1s identically zero

except 1n the neighborhoods of the subdivision points. Then the

numerical integral and the integral are far apart.

Now consider an integral operator with a kernel, k(s,t), which

is continuous for 0 < s, t < 1 and let

M = max |x(s,t)]
O< ss, t<1

A formal definition of the integral operator and the approximate

operator 1s as follows,

Definition K, K, € [C!] are defined by

-L

(kx) (s) = [ k(s,t)x(t)at , (&.7)
0

n

(K x) (s) = )} wo k(s,t) x(t J) . (4.8)
J=1

These operators are bounded,
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Lemma 4.3

1

rH = max | [k(s,t)]at < M , and AN
0<s<160

n

K'| = mex )} Jw, (st) < MB (4.10)
O0<s<1l j=1 J

for n = 1,2,... , where B is from (4.4).

Proposition k.h. K converges to K pointwise. That is,

K_ =» x , but ix -xil # o (unless k = 0). (4.11)

Define k(t) = k(s,t). Then equations (4.7) and (4.8) yield

(kx)(s) = 0 (kx) and. (4.12)

= X) Loa(x_x)(s) = o (kx) (4.13)

Since k(s,t) 1s a continuous function on the unit square, the

family of functions tk 6 < s £1) 1s equicontinuous and the products

. k x share this property. Polntwise convergence 1s uniform on such a

family so we have uniform convergence for each fixed x in (4.11).

It is easy to showcthat K8 and {K x: n > 1, x68} are bounded and

equicontinuous. Thus, we have

Proposition L.5. K is compact and KJ} 1s collectively compact.

These are basic properties needed 1n the approximation theory.

In particular, they yield the following results involving norm con-

vergence.

11



Proposition 4.6 In the integral equations case we have

e, > [i(k -K)Kll - 0 and (k.14)

Be > I(x_-K)K_| - 0, (4.15)

where

oe = max (o_-¢ )[K(s,w)K(u,t)]]| - 0 and (4.16)
: 0< 8,1 <1 .

¢ and ® operate with respect to u.

The estimate, e comes from the numerical integration and shows that

| (x _-K)K - 0 and || (K -K)K | -» (0 independently of the abstract theory.
The quantity, [K(s,u)X(u,t)] is an equicontinuous family of functions

of u parameterized by s and t , so ¢, 79 uniformly on that set.

Hence, the maximum goes to zero, and e~0. If an error formula

for the numerical integration 1s known, 1t can give a computable

estimate for e,

5. Abstract Approximation Theorems

. Again consider bounded linear operators K ,Ke[X], where X 1s a
Banach space. The principal hypotheses are:

(1) Pointwise convergence, K,~” K,

(2) {K } collectively compact. As before, we infer

(3)K is compact.

We wish to compare the equations

(M-K)x = vy, (5.1)

(MK )x = y (5.2)

12
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and the inverse operators

(n-K)"Le[x] (5.3)

(AK )7Helx] . (5.4)

The Fredholm alternative asserts that (MK) exists iff (h-K)X = X.

If (An-K)~* exists, it is automatically bounded.

The type of result we will obtain 1s illustrated by the next

theorem.

Theorem 5.1 Let K,K €[X] for n >1l. Assume (1) and (2) hold and

A 4 O. Then

(a) (A-K)™e[X] exists iff

(b) for all n sufficiently large (AK )“Ye[x) exists and is bounded
uniformly with respect to n.

In either case,

(¢) (MK)™H = (hk)?
Proof Assume (Db). Then (A-K)x = 0 implies

[ll < OK): lOv-k x = 0 which in turn implies that x = 0. Hence
(b) implies (a) by the Fredholm alternative. Now assume (b) fails.

Then there exist {n,} and (x such that
1

ES | =1, (XK, Jw, - 0 .

Since (K] is collectively compact, there exists {n, } and y€X such

that K, x = vy. Then x -= y/A y V 4 O, and ’
1, i, 1,

(AK x = (MK)y/A = 0.
1, 1s |

Thus (a) fails. Hence, (a) implies (b). Since

15



-1 -1 -1 -1
- - (N= = - - N=(MK) T= (AK) (MK ) T(K -K)(A-K) —

we also have that either (a) or (b) implies (c).

We shall give another proof which yields error bounds. First

recall that

I(x -K)K|| = 0, (5.5)

- - 0, 6I(x -K)K|| = © (5.6)

The following auxiliary theorem will be needed.

Theorem 5.2 Let S,T €[X]. Assume (n-T) "Le[x] exists and

“)- (5.7)a = 0-D 7H lis-msll <r]© 5-7

-1
Then (A-S) ~ exists,

1 I+ (n-T) "1s
f-8)7 < IA -2 (5.8)

and for any y&€(M-S)X ,

Nn 1 | AT) T  ||Sy-Ty ||+A A-T) +
: [(M-8)"Ty-(M-T) Ty] < NEA (5.9)

To prove this we first consider the following identity where we

-1
use the resolvent operator to express (MT) ~.

NTT + (A=T) 17] (A=1) = 1. (5.10)

We want to express the inverse of (h-S). If we consider

HT + (eT) ts] as an approximate inverse of (h-S) and substitute

the expression for (h-1)"* from (5.10) we obtain

1h



~ - -1 ~-1
NTH (-T) Is] (A-8) = INT (A-T) TT (s-T)s i Nun’

By the hypothesis (5.7) the operator on the right has a bounded

inverse and we have an expression for (A-8) 7%:

- - - - - -1

(A-8)"T = NTH TATE (om) TH (s-m)s1 Th [ TH (AT) TS]. (5.12)

Taking norms in (5.12) we see that (5.8) holds. By subtracting the

-1
expression for (N-T) given by (5.10) from (5.12) we obtain, after

some manipulation,

(n-8)"to (v-m) t=AHAer) TY (sem) 81 TL
ET 1 (5 .13)
‘(N-T) TI(8-T)+(8-T)s(A-T) 7]

Application of this operator on y€(A-S)X and taking the norm yields

50.

Theorem 5.2 can now be used to prove Theorem 5.1 by substituting

K for S and K for T. Thus we obtain

« xl =o.le -x]| ~ 0 50

Moreover we obtaln the error estimate

-1 |

Ok) TH IKy-K off ix |
lx-x| < —————————— =~ 0, 50%)

MO - A
n

whenever

-1
AN = N= * -— *= OK) TH KK] < |] (5 .16)
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The roles of K and K may be interchanged to obtain an inequality

similar to (5.15).

The convergence to 0 in (5.15) follows from the boundedness of

| (MK) ml and lx | and the convergence to 0 of IK y-Ky| and A The
convergence A” 0 follows from the boundedness of f|(n-k )™| and (5.5)
or (5.6) if the roles of K and K are interchanged,

The estimate given by (5.15) is computable in the integral

equations case 1f the error in numerical integration 1s known. The

only quantity not due to error in numerical integration is lok)
whica can be estimated as follows.

Lemma 5.3

10-5)7H < ITEEsa (5.17)

Here IK || 1s given by (4.10) and a) is the maximum row sum of the

inverse of the coefficient matrix, A from the system of equations

(1.3).

The following chapter will apply the abstract theory to integral

"operators with discontinuous or singular kernels. It will be shown

that these operators do satisfy the hypotheses so that the desired con-

clusions can be drawn.

In Chapter III, the abstract theory will be extended to the eigen-

value problems and more general spectral properties of operators. Non-

linear problems will be treated in Chapter IV. This involves combining

the linear theory with the abstract Newton's method.
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Chapter II

INTEGRAL OPERATORS WITH

prscoNTINUoUs OR SINGULAR KERNELS

1. Introduction

Consider a Fredholm integral equation with functions in real or

complex C = C[0,1], with the maximum norm, lil] = max Ix(t)\. We have
Kl

@x) (s) = [k(s,8)x(t)at, o<s<1 , (1.1)
0

for the integral operator and

3 1.2)
(X x) (s) = Logs x(t) , Ks<1, (1.

for the approximate operators defined by numerical integration.

The kernel, k(s,t), is assumed to be bounded and possibly dis-

continuous. We include Volterra and other "mildly discontinuous"

kernels which are discontinuous on a finite number of continuous curves

t = t(s) in the unit square, and bounded uniformly. More general

) classes of kernels will be defined explicitly later.

With these discontinuous kernels, the integral operator, K, maps

C into C but the approximate operators, K do not map continuous

functions into continuous functions. That 1s,

KC © C but KC¢ C . (1.3)

Therefore we cannot regard K and K, on the same space C as was the

case for cont Las kernels. To circumvent this problem we define a

new and larger space. ’

17



Definition Let R denote the normed linear space of proper

Riemann integrable functions x(t), O<t<l, with the supremum norm,

Ixll = sup|x(t)].

Lemma 1.1 R 1s complete; hence R is a Banach space.

To show this note that x€R iff x is bounded and x is continuous

almost everywhere. From these two facts the completeness follows

immediately.

Lemma 1.2 C 1s a closed subspace of R.

The space R 1s chosen since it 1s a rather minimal extension of

C which includes step functions and other piecewise continuous

functions.

We will show that the operators K and XK, map R into R, that

K —K pointwise, that (K } is collectively compact and that K is
compact. Hence, the general theory of Chapter I will apply as well

as the approximate spectral theory in Chapter III.

18



2. The Quadrature Formula

To examine the quadrature formula we introduce linear functionals

expressing integration,

1

ox = [ x(t)at , for x€R, (2.1)
0

and numerical integration,

n

7X = 2 wot) , for x€R. (2.2)
J=1

We assume that the weights in the quadrature formula are all

non-negative. Thus,

Wy > 0, Kn . (2.3)

So we have bounded linear functionals cp, Pp ER* with norms
n

oll = 1 loll = Xv. (2.4)
J=1

In addition to (2.3) we hypothesize that

¢, *¢asn-, onC, (2.5)

and note that for the usual quadrature rules (New-ton-Cotes excepted)

* these two assumptions hold.

Before proving that the hypotheses also hold on the space R we

show that the norm, lo, | 1s bounded. Since ¢, 7% on C,

3 w. = ¢1-0l =1. (2.6)
] ng] n

19



The sum of the weights 1s bounded uniformly 1n n since 1t converges.

Thus we have the inequality

n y

op 1 = Yw ,<B< oo. (2.7)
‘n't ~_ nj —

J=1

The next lemma states that¢ and ?, are positive and monotone

linear functionals.

Lemma 2.1 For x,y € R,

x > 0 implies ¢x> 0 and RS > 0, (2.8)

Xx > y implies ¢x>Qy and ?, X 20 (2.9)

We also have for complex functions the following fact.

Lemma 2.2 xR iff Re x, Imx €R.

The next lemma will be used to extend (2.5) to the space R.

Lemma 2.3% A real function x 1s in R 1ff for any€ > 0 there

£

exist real functions Xes X €C such that

Xe s Xx < x" b (2.10)

€

Px - Px _< E . (2.11)

This follows easily from the usual definition of R in terms of

upper and lower integrals. By Lemmas 2.1 and 2.3 we have

£

Px -O0x and Px _ + Px as € =» 0 . (2.12)

Now 1t can be proved that the numerical integral converges to

the integral on R.

20



Proposition 2.4 If x€R then

¢ X= gx , X€R . (2.13)

Proof By Lemmas 2.1 and 2.3 we have

£

PpXe SP XS 9X, (2.14)

£

Px -€ <PX<QXg+ € . (2.15)

Subtracting (2.15) from (2.14) Yields

- - a E _opx® + E .
PE, “Px -€< PX -PxXx<Px Px (2.16)

Since Xe x“€C and (2.5) holds, it is easy to see that

Rs -Px - 0 as n — «,

For our theory to apply, 1t 1s necessary to know for what

classes of functions in R there is uniform convergence in (2.13)

A standard answer 1s that on any totally bounded set P =

uniformly, However, in the present case this can be extended. To

this end, we introduce the following concept.

Definition 2.1 A set, S, of real functions such that

S CR 1s regular iff for each x5 and each€¢ > 0 there exist real

© functions Xe x° €C such that (2.10) and (2.11) hold and, for each
fixed € > 0, the sets

_ . € _ e,
S, = tx: x€S} and S° = {x": x€8} (2.17)

are totally bounded (or bounded and equicontinuous -- by the Arzeld-

Ascoli lemma). An arbitrary set, S C€ R, is regular iff Re S and Im S

21



comprise regular sets.

Using this definition the following theorem holds.

Theorem 2.5 The convergence in. (2.13) is uniform on each reg-

ular set S CR.

Proof By (2.5) and (2.17), for each fixed e,

P Xe - Px. , ® x = ox" uniformly for x€8S. (2.18)

Now (2.16)and (2.18) imply that the convergence in (2.13) is uniform

for xtS.

To illustrate the concepts just developed, consider the following

examples.

Example 2.1 The set of all characteristic functions of

intervals in [0,1] is a regular set but not totally bounded.

This follows from the fact that this set can be approximated in

the sense of Definition 2.1 by sets of trapezoidal functions which

are bounded and equicontinuous.

Any regular set 1s bounded since So and S§% are bounded. The
: converse 1s false as shown by the next example,

Example 2.2 Let x, (t) = cos(2nnt).Then {x = 1,2, . ..]

is bounded but not regular.,

Proof For an indirect proof, use the rectangular quadrature

rule:

1 &
PX == y x(k/n) . (2.19)

CT k=l

Then Px = 1 and Px = 0, n > 1. Therefore, by Theorem 2.5, the
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set {x : n > 1} is not regular.

Based on these two examples, we can now state the following

result.

Proposition 2.6 Given a set S C R,

Stotally bounded = S regular , (2.29)

S regular = S bounded , (2.21)

but neither reverse implication holds.

Without proving it here, we state that regular sets may be very

much larger than totally bounded sets. Regularity is essentially a

requirement of compactness or total boundedness in one dimension only.

Any regular set 1s totally bounded with respect to the Ly semi-norm

but the converse 1s false. We observe that the pointwise convergence

1s uniform on much larger sets when the operators are positive than

when they are not.

From the definition of regular sets we have the following.

Lemma 2.7 If S51 and S, are regular sets then S, US,,5; +5,,

- and 5.55 are regular sets.

Lemma 2.8 If S is a regular set then |S] 1s a regular set.

Hence, regular sets behave much like totally bounded or compact

sets and may be combined and operated in much the same way. A con-

vex combination of regular sets 1s also regular.

By using these properties we may obtain further examples of

regular sets. For example, regular classes of step functions and

of piecewise continuous functions may be constructed from the set

of all characteristic functions.
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There are several equivalent forms of the definition of a regular

set. For example, in Definition 2.1 the functions x, andx* could be

required to be Riemann integrable instead of continuous. Secondly, the

requirement that 8, andS® be totally bounded can be replaced by re-

quiring S, and S° to be finite.
The preceding remarks are a special case of an abstract theory.

If we work in any partially ordered Banach space and @ and %, are

positive linear functionals which converge pointwise, then we can define

g-regular in precisely the same manner as we defined regular,and point-

wise convergence 1s uniform on any g-regular set.

5. Integral Operators

Let K be a linear integral operator on R and consider the equation

1

(kx) (s) = J els,e)x(t)at , x€R, Xs<1 . (3.1)
Definition 3.1 A real kernel k(s,t) is uniformly t-integrable iff

for each ¢ > 0 there exist real continuous kernels k (s,t) and KE (s,t)
such that

5(5,8) < K(s,8) < K*(s,t) , O<s,t<l , (3.2)

J [x (st) - k(s,t)]at <'e , O<s<L (3.3)

An arbitrary kernel k(s,t) is uniformly t-integrable iff Re k(s,t)

and Imk(s,t) are uniformly t-integrable.

Examples of uniformly t-integrable kernels are continuous kernels,

continuous kernels for the Volterra operator, and mildly discontinuous

kernels.
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In what follows we use the notation:

k(t) =k(s,t), :

k(t) =k (s,t),

kot) ok (s,8).

Theorem 3.1 Let the kernel k(s,t) be uniformly t-integrable.

Then

lk: Xs<1l} is a regular set in R, (3.4)

PD (lk - kit) -+ 0 as s-s' 0, uniformly for Xs,s'<l . (3.5)

Proof. A check of the definition gives (3.4). To prove (3.5)

define functions f, £€ such that

.€

£,£7: [0,1] = £,(0,1), (3.6)

)

f(s) =k, £(s) =k; . (3.7)

Then £° 1s continuous for each & > 0and

£° = f uniformly as ¢ =» 0 . (3.8)

" Thus f 1s the uniform limit of continuous functions so f 1s continuous,

proving (3.5).

The properties of any uniformly t-integrable kernel, given by

Theorem 3.1, allow us to describe a larger class of kernels which we

can deal with.
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Proposition 3.2 Let k(s,t) be a kernel such that (3.4) and (3.5) B

hold. Then KR C C, K is compact and |K|| = max ¢(]k _}) = max lk lly -
O<s< 5 O<s<]

Proof. Ry (3.1), :

®x)(s) . @(kx) (3.9)

By (3.4), k €R for all s so P(k x) exists. Secondly,

| (xx) (e) | < max [ie lp lel (5.10)
O<s<1

where the maximum exists because in (3.7) f is continuous on a

compact set.Thirdly, consider

| (kx) (s) - (Kx) (87) | < (Pekfly ll] (3.11)

By (3.5), the quantity (E30 0 and we have KR C C. For x5,
the unit ball, (3.5) and (3.11) imply that the functions (Kx) (s) are

bounded and equicontinuous. So by the Arzela-Ascoli lemma, K 1s a

compact operator.

To sketch an alternate proof, consider Definition 3.1. This

proof 1s for the real case in that definition.

Define the integral operator kK with the kernel ¥. Then K
: £

.compact and lhe -K|| < € 1mply K compact as follows.

Since

Kx - Kx|| < € for all x9, (3.12)

K*5 is totally bounded and is also an e-net for K&. Hence KG is

totally bounded and K 1s compact.
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4. Operator Approximations

Consider the operators K on R defined by

n

(Xkx)(s) = 2 a gh(8 gy x(t) , Ks<1 (4.1)
where k(s,t) satisfies (3.4) and (3.5) and

k(s,t) is s-integrable for il . (4 +2)

The quadrature formula satisfies the conditions 1n Section 2,

Since dim Kp R_< =», each Kj 1s compact.

Theorem 4.1 The operators K satisfy

K ROR, (4.3)

K ~K, (4.4)

{K } collectively compact. (4.5)

Proof From (4.2) it follows that (4.3) holds. From (3.L) we

have that

(Kx) (s) - (Kx)(s) =¢, (k x) - p(k x) = 0 uniformly (4 6)
in s.

This proves (4.4). To prove (4.5), let x vary in # and note that

- ! -

|(Kx)(s) - (Kx)(s')]| <o (x, -k_ |). (k.7)

But by (3.4) we have

27



? (lk k,l) P( |x Sk 4 ) uniformly in s,s’, (4 .8)

and by (3.5) we have )

(fk, |) = 0 as s-s'= 0 . (4.9)

Now, for each € > 0 , there exist §(¢) > 0 and N = N(e) such that

| (Kk _x)(s) - (Xk x)(s*)| <e if n> N, |s-s'|< 6, and x€B. (4.10)

We already know that

| (Kx) (s) | < M for x€F, Xs<1 and n = 1,2,3,... . (4 .11)

It follows that (Knx: n > N, x€8} has a finite e-net of step functions.
N-1

Since each K 1s compact, U {K x: x€F} , also has a finite
n=1

e-net. Therefore tne set {Kx:n > 1, x€6} has a finite s-net. By

definition then, the set (x } is collectively compact, proving (4.5).

Since (4.4) and (4.5) hold, the general approximation theory

concerning convergence and error bounds applies to this case.

Consider

(Kx = y , (MK)x =v (4 .12)

-1 -1

with A £ 0 and y&C. Suppose (M-K) © and (MK) exist. Since
-1 -1 |

KRCC, x= A (Kx + y) €C and (M-K) C © C. But x f C in general

since KC a C for discontinuous kernels. That is, 1f the given function

in an integral equation 1s in C, the solution will be in C. The

approximate solutions would only be in R. However, we have the familiar
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situation of discontinuous functions converging uniformly to continuous

functions:

x (discontinuous) —» x (continuous) uniformly. (4.13)

An abstract generalization of the result, K - K, and (K_}

collectively compact, can be given after verifying one additional

property, namely

Ka = {]] (1.14)

This follows from IX] = max P(1k,1) and x = sup 9 (Ix 1). For the
<s<1 OCs<1

case involving a kernel, k(s,t), which is uniformly t-integrable,

there exist continuous kernels x and k° such that k< k < k*. Con-
sidering the continuous kernel, kK we can define the corresponding

integral operator K and we can use numerical integration to define the

approximate operators

€ So
: _ © i

(xx) (s) Liga (8r8 3% (80). (4.15)
. By (3.3) and (4.14),

IKE-K || = ||(K®-K)_|| - |iK*-K|| < e. (4.16)n n n

In the abstract setting we now have

Theorem 4.2 If

kK -» K* as n »®, for each e > 0 , (4.17)

(x: n > 1} collectively compact, for each e > 0, (4.18)
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K compact, for n = 1, 2, ves, (4 .19)

IKE = K || = [IK*-K]| < cas n =, (i .20)

then

K —-K, (4.21)
n

(KJ collectively compact. (4.22)

Proof K ~ K by the triangle inequality. Fix e > 0. Then

there exists N =-N(¢) such that IK Fx - K x| <¢ for all n > N and

xc/5. Hence the set (Kk x: n > N, x€5} is a totally bounded s-net for

Kx: n > N, x€5}. It follows from (4.19),by an argument similar to

the one used in the proof of Theorem 4.1, that LK} is collectively

compact.

This abstract version of the theorem 1s of interest since it

indicates a way to extend the theory. For example, suppose we have a

theory for integral equations with continuous kernels. Then we can

| extend the theory so it holds for neighboring objects in some well

defined sense, This could be used to extend the theory to integral

equations in several dimensions with other kinds of kernels without

repeating the detailed analysis necessary to the development of the

initial theory.

5. Weakly Singular Kernels

The material in this section is adapted from Atkinson [19].

For x€C consider
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Tl

(kx) = | k(s,t)x(t)at, 0x1, (5.1)
0

where k(t) = k(s,t) satisfies )

k € £ (0,1) for all s , (5 .2)

jk, -k |, ~0Oass-s" ~0. (5 .3)

As in Section 3 of this chapter, the quantity max|jk_[|, exists, and

the convergence in (5.3) is uniform for <s,s'<l. Conditions (5.2)

and (5.3) imply

KC © C, K compact, ||K|| * max||k |, (5.4)

The continuous and discontinuous kernels treated above satisfy

(5.2) and (5.3). Another example 1s

-Q

k(s,t) = r(s,t)|s-t]" , (5.5)

where r(s,t) 1s continuous for 0<s,t<l' and X11. More generally,

| suppose

k(s,t) = r(s,t)o(s,t) ) (5.6)

r(s,t) continuous for Xs, , (5.7)

and 0 (t) = d(s,t) satisfies (5.2) and (5.3). Then K, satisfies (5.2)

and (5.3), KC € C and K is compact. As in the example with
-O

o(s,t) = |s-t]| , the "singular part" of a kernel often can be

isolated in a simple explicit form. Now we have
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1

(kx)(s) = [ [r(s,t)x(t)]o(s,t)at .
0

Suppose we have operators A e[C] such that AX -x for all xeC as
n — o. Then we define

. .

n on

where A operates with respect to t.

For example, suppose A x is the piecewise linear interpolation

of x with subdivision points th = j/n, J = 0,1,...,n. Then

(K x)(s) reduces to

] n

(k_x)(s) = I (s)r(s,t x(t ) , (5.9)
where

p 3/m j-1= = - £2), .10wis) =2 (t= £=)o(s,t)at (5.10)
J = +4

n

atl

, 0
+ = [ (£ - t)o(s,t)dtn J, n

nym

and o(s,t) = 0 for t¢[0,1] to make the expressions for wo (s) and

wo (s) correct. Note that we must be able to integrate g(s,t) and

to(s,t) with respect to t in closed form in order to obtain an explicit

expression for (K x)(s). If A x is a piecewise polynomial inter-

polation of x, then (Kk x) (s) has the form (5.9) with Wo (8) defined
in terms of integrals of o(s,t), to(s,t); t7o(s,t), etc.

Again consider the general situation.

Lemma D.1

A [r(s,t)x(t)] ~ r(s,t)x(t) uniformly in s,t . (5.11)
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This follows from the fact that {r(s,t)x(t)} 1s a bounded

equicontinuous family of functions of t.

Lemma 5.2 The set {A [r(s,t)x(t)]: n > 1) 1s bounded and

equicontinuous.

In general, if F and F are continuous functions, and | = F

uniformly, then (Fo > 1} is equicontinuous.
Proposition 5.3 The following two facts hold.

03

{K } is collectively compact, LL

K - XK. (5 .13)
n

Proof By (5.2), (5.3), Lemma 5.2 and a simple triangle

inequality argument,

(K x: n > 1, x68} is bounded and equicontinuous . (5 .14)

Hence (K } is collectively compact. Let BE = A - I. Then BE = 0,
and

lkx-Kx|| < sup |B, [x (s,8)x(t)][|suplloll; ~0asn-=. (5:15)
!

Thus K — K.
n

In view of Proposition 5.3, the general approximation theory

applies.
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Chapter III

SPECTRAL APPROXIMATIONS

1. General Properties of Collectively Compact Sets

Again let X be a real or complex Banach space. Recall #4 C [X]

is collectively compact iff #5 is totally bounded. If ¥ is

collectively compact then each K&H is compact and ¥ is bounded.

Finite unions and sums of collectively compact sets are also

collectively compact.

Proposition 1.1 Let XK be collectively compact. Then each of

the following sets 1s collectively compact:

(a) ¥M for each bounded Mc [X];

(b) "M{ for each totally bounded Mc [X];

(c) the strong and norm closures of K;
N N

(a) {3 MK: K€, > In| <b} for each b < =, N< =;
n=l n=1

(e) {f K(N)ar: K(N)EX, 4(T) < b} for each b < =,
I

where [' is an interval or rectifiable arc of finite length #(I') and

the integral 1s the limit in operator norm of the usual approximating

sums.

We shall study operators in [X] such that

TT, {T_ - T) collectively compact. (1.1)n

The special case,

TT, (Tr } collectively compact,
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includes the integral equations examples.

Lemma 1.2 Let T, T ElX]. Then

I - 1, (T,} collectively compact (1.2)

iff

T ~T, {T -T} collectively compact, T compact. (1.3)

2. Resolvent sets and spectra

Let TE[X]. Recall:

-1

(1) MP(T), the resolvent set, iff there exists (M-T) “€[X];

(ii) the spectrum o(T) is the complement P(T);

(111) a(T) DO {eigenvalues (for example, 1f T 1s compact, the

eigenvalues of T form a finite set or an infinite sequence

converging to 0); n
© T

-1 —

(iv) if |M| > ||7]| then Aep(T), (M-T) "= ) jm+l €[X]
n=0

© and

1. "
StDR |S a oe 7 (2.1)

(consequently [A] < ||T|| for'all réo(T));

© (v) p(T) open, a(T) closed and bounded (compact);

(vi) the map MN = (h-T) * 1s continuous on o(T) and 1s uniformly

continuous on each closed set in p(T);

(vii) ((h-1) 7 Ne A) is totally bounded for each closed

Ac o(T).

35



The following identity will be used several times.

-1 -1 -L A-T) "+ 2,2)(A=8) "T= (N-T)"" = (N-8) 7 (s-T)(M-T) ~. (2.

2 -1

Lemma 2.1 If KE[X] and |x | <1, then (I-K) “€[X] and

- 2. -

(1-k)™ = (TK) HI + K) (2.3)

-1 | + Ki| o

Theorem 2.2 Assume T ~ TAT -T) collectively compact, and A

arbitrary. Then

(a) Nep(T)

iff

(b) there exists N such that Mp(T) for all n > N and

(v1) n > N} is bounded.
Either (a) or (b) implies

-1 -1

(c) (h-T ) -» (N-T) ~.
Proof Assume (a). Then verify

MT = (I-K )(A-T) , (2.5)
n n

K = (T-T)(A1)7" (2.6)
n n

K = 0, {K 3 collectively compact. (2.7)

From Theorem 5.1 of Chapter I, there exists N such that

(1k )Y€[X] for n 2 N, (2.8)

-L, (2.9){(I-K ) : n > N) is bounded, .
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-1
- — 2.10

(I K_) I. )

Therefore,

«=-1 -1 -1
- = - ( I~ 2.11(ner) = (em) (Tk) (2.11)

E and (a) implies (b), (c).

To obtain error bounds, note

I&.l1- 0 2:12)
al

211 ~

Whenever xl 1, (2.11) holds,

| 1. (=m) "HiT + K |
(MT) |< == 5 ’ (2.13)

| 1 - ix |

-1 -1 -1 21k(M17) -(A-T) T= (AT) TK, (2.14)

. “1 -1 i

107) =0m) He < lOve) Hfxl] = 0 (2.15)

Now assume (b). Then (M-T)x = 0 implies

<n 2) ez) = 0 (2.16)
-1

which implies x = 0. Hence, (A-T) exists. For n > N,

mo (rT _ (2.17)AT = (11) (T,),

-1= (T-T ) (nT) 2.18)L, (T Tr) T) compact (

-1

Hence, (M-T) "€[X] by the Fredholm alternative. Thus (b) implies (a).

To obtain error bounds, note that {L} is bounded and
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L = (L -I)X , (2.19)

L - 0, (L } collectively compact, (2.20)

2
- 0. 2.2lz| =o (2.21)

21

For il | < 1, :

(A-1)™F = (A-1)"H(1-1) 7H, (2.22)
n n

~1y LO-r) ~HliT + L||I(-1) | < 5 ;

-1 -1 -1

01) xem) hel < Oe) HL fd (2.24)

Theorem 2.3 Assume I - T and (r,-C] collectively compact.

Let A be closed and A © p(T). Then there exists N such that

(a) A € p(T) for n > N,

(b) ((n-1 )7 MA,n > N) bounded,
-1 -1

(c) for each x€X, (MT) x = (MT) "x uniformly for MEA.

Proof In the proof of Theorem 2.1 write K (7) for K_. Thus

-1

K(A) = (T_-T)(A-T) (2.25)

| and

| 2

IK, (M)] | = 0, lk (Mx - 0 for all x&X. (2.26)

These functions of M are equicontinuous on A. Hence the convergence

is uniformfor AEA, and the desired results follow as in the proof

of Theorem 21.
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The next theorem 1s essentially a corollary of Theorem 2.3.

Theorem 2.4 Assume T ~ T and {T-T} collectively compact.

Let © be open and a(T) < Q. Then there exists N such that

o(T,) C Q for all n > N. (2.27)

Proof Let § = complement A in Theorem 2.3.

To illustrate, suppose we have operators K and K such that

K -K, {K 3 collectively compact. Then the following apply.

Lemma 2.5 Assume KX, = hxoo HH £ 0, [= = 1. Then

there exists a Subsequence (n,} and an x such that

Ky =x Kem x] = 1, (2.28)
1

The proof is similar to that of Theorem 5.1 in Chapter I.

Lemma 2.6 If in addition, x is unique, then

X — Xo (2.29 )
n

This follows from the facts that (x } has a convergent sub-

sequence and has at most one limit point.

3. Functions of Operators; Projections

For further details on the material to appear in this section

see [1] and [ 3], for example. Let X be a complex Banach space. For

each T€[X] let

F(T) = {f: £ locally analytic on an open domain (3.1)
(fr) 0 o(T)]}.
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For each f&¥(T) there exists a contour I' C 9(f) with a(T) inside T.

Define

i 1 (5.2)— - IN .

£(T) = 53 J £OI 7) d 3

as the limit in norm of the usual approximating sums.

Lemma 3.1 f(T) is independent of I.

n

Examples: f(T) = I, T, T , polynomials in T.

Lemma 3.2 If f,g€%(T) then

(£ + g)(T) = £(T) + &(T), (3.3)

(fg) (1) . £(T)e(T) (3.4)

If in addition

f(A) = £() uniformly on I (3.5)

then

if(1) = f(D} = 0. (3.6)

Example Limits of polynomials.

| Theorem 3.3 Assume T ~ T and {T -T] collectively compact.

Let f€%(T). Then there exists N such that

(a) £e#(T) for all n > N,

(v) £(T)) —- £(T),

(c) (£(T,) - f(T): n > N} collectively compact.

Proof Theorem 24implies (a). For n> N,
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1 -1 -1
- = — A - -(A-

£(T)-£(T) = gg [ fODTO-T) = (A-1) ak
1 -1 -1...

= hy J tO) (-1) (1,-1) (1) dn. (3.10)

Theorem 2.3 (c) then implies (b). Proposition 1.1 (a), (b), (e)

implies (c).

Definition 3.1 Complementary spectral sets o¢,0' associated

with T are disjoint closed sets o,¢' such that o U o-o(T).

Lemma 3.4 There exists a contour!with o inside and ¢' outside.

Conversely, each ['¢p(T) determines complementary spectral sets o¢ and o'.

With this notation let

I" AT) Tan
E = E(T) = gg JT) (3.11)

Note that

where

e€#(T), e=1 ono, e = 0 on o'. (3.13)

2 2
Lemma 3%.5 fe =e. = E = E. Thus, E 1s a projection.

Definition 3.2 EX 1s the spectral subspace associated with T

and o (or IT).

Example If o consists of a single isolated eigenvalue,

0 = us, and 1f T 1s compact andpu £ 0 we may have

EX = n(u-T), an eigenmanifold, (3.14)

or
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EX= n[ (u-1)"1, a generalized eigenmanifold, (3.15)

where h(T) 1s the null space of T. _

Lemma 3.6 Let E' = I-E. Then

X = EX @ E'X, (3.16)

TEX C EX, TE'X C E'X. (3.17)

If in addition we let Tg = T| gx , Too = T| gig , then

o(g)= 0, o(Ty,) = o" (5.17)

The next theorem is a specialization of Theorem 3.3 to operators

which are projections.

Theorem 3.7 Assume T ~ T and {T _-T} collectively compact. Let

I' be a contour in p(T) around a spectral set o. Then there exists N

such that I © o(T ) for all n > N. The part ¢ of o(T ) inside T

is a spectral set forI . LetE = E_(T) and E = E(T)). Then

(4) E_-E,

(b) (E_-E} collectively compact,

(c) dim E X = dim EX (finite or+ ©)

. for all n sufficiently large.

Proof Theorem 3.3 implies all but (c). We assert, for

projections that (a), (b) imply (c). We also assert that To» TX],

I, = T 1mply

dim TX >dimTX eventually. (3.19)

42



To prove (3.19) let {Tx j =1, «.., m) be linearly independent and

define C = (Y LIRSE mex |e, | = 1}. Then C and TC are compact, so
JEL }

T = T uniformly onC and min||T I > 0." So eventually min||T Xj > 0 andn X .''n
x€C %x€C

(Tx, : j=l, . . . . m} is linearly independent. The result, (3.19),
follows. Now we show < in (c). Without loss of generality dim EX < =.

| Then E 1s compact and {E_} is collectively compact. Suppose that

dim EX2> m for n> 1. By the Riesz lemma, there exist linearly in-

dependent sets x k=1, . . . , m}C EX, n > 1, such that
k-1

ell =1, lx, = Lexll 22 (3.20)
j=1

for all n, k and le }. Since X 1 = EX e{E Js, which 1s precompact,

there exist a subsequence (n,] and elements x,€X such that Xj =
1

"nn, k =? xX fork =1, . . . .m. Then
| k-1

j=1

for all k and te}, SO lx, : k=1, . . .. m} is linearly independent.

Now E E implies “n,*n,k Bx so that Xp BX) EX for all k. Thus

dim EX > m for all n = dim EX > m. (3.22)

Apply this result to an arbitrary subsequence of (E } to conclude
that

dim EX < dim EX eventually. (3.23)

Since we now have (3.19) and the reverse 1nequality (3.23), (c)

follows.
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In Theorem 3.7, let o = wh oy = {ut Then by by Theorem

2.4, If dim EX = 1, then E -E implies convergence of eigenvectors

as follows. Suppose Tx = ux and |x = 1. Then Ex = x. Let x, = EX.

Then TX = yu X and X -—X.
nn nn n

Proposition3.8 For some n, let I' © o(T)Nn p(T ). DefineP PAL,

FE = E.(T) and BE _ E.(T,) Let ¢ and g, be the parts of o(T) and

o(T,) inside I. Assume

( = X = 1.To¥n © bn%n’ TS, |,

then

[ Ex I <r £(r) max Lom hy, - Tx |Xn #2 = "nn 21 NET Ap Hn“n n

Now assume rj, < 1. Then EX # 0, E # 0 and ¢ is nonvoid. Let

Vv oo= Bx /lE% il: Then Yn €Ex, lly Il = 1 and

- X < 2ly, - = ll £2r

Proof Note that

1 -1 -1
- = — -T T -T -T d

(A-T ) Lx = (\-u ) for \€l, and Ex =.XMins nn n’ n ¢ nn n -

Hence,

-1

y 1 (A-T) y- = mm d - Tx

*n EX ani I Ap A (bn x)
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and |x -Ex || <r .Forr <1,
n n" — 'n n

i _ < _ _ |ly, = xl < lly, - Bx ll + llEx - x]

<|r-lEx || + r,

<=, - Ex || +r <r.

In Proposition 3.8 suppose that dim EX < o» (e.g., T is compact

and 0 is not inside I'). Then Y, 1s an eigenvector of T. The

corresponding eigenvalue by lies inside I' and 1s determined by

Vy = wg¥p

Now assume dim EX < « and that the hypotheses of Theorem 3.8

are satisfied for all n > N. By Theorem 3.4 there is a § > 0 such

that | A-p | > § for all MI and n > N. Note that

hp x, = Tx lL HT -TEx IF <I (T_-T)E|| .

Since E is compact and (E -E} is collectively compact, {E] is

collectively compact. Hence, | (1, -T)E| = 0 and

r = 0,
| n

Ix - Ex || - 0,

ly, - x | —- 0.

In order to estimate r » We may use the inequality (2.23) for
-1 . -1,

I=)" in terms of [[(A-T )77l-
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As an application of Theorem 3.8, suppose that, by computational

evidence, certain eigenvalues hy of IT seem to converge to some value

near Ao as n —»«. Fixn and ¢ >» 0such that br | <e and

r=: [aa] = el ep nplT)

Then £(r) = 2me and

-1
| (A=) .r < ¢ max lp x - Tx |.

n \ET I bo | nn n

If dim EX < »and r < 1, there is an eigenvalue u of T with
|= | < €. The calculation of r presents a problem when €¢ is small,

-Lly

since then |(A-T) || is large and |A-p_| is small for )&I'. Thus,
¢ should not be taken too small. This limits the practicality of

Theorem 3.8. For further details, see Atkinson [21].

In Theorem 3.7, let 0 = {u},EX = PN (u-T)V], where vy 1s minimal.

Then on = STINE k = lyee., k,}s 2x] bye n -» 0, and
Kn V

k

EX = @ A (b,-T ) 1, (3.24)n n n
k=1

where the Voge are minimal. Let

k VoyV | nn

PL) = (ua) BA) = I (epemr) (3.25)
k=1

Then

EX = o[p(T)],EX = w[P (T )]. (3.26)
n n' n
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k
n

Let v, = degree P = y Vo!
k=1

Theorem 5.9 There exists N such' that Vo > y for all n > N.

Proof EP(T) = 0 and P(h) divides a(n) for each polynomial Q such

that EQ(T)= 0. Similarly, EP (T) = 0. Suppose

v. =a for some {n,} C {n}. (3.27)
n, 1

Then

o _

ii 1

so g > ve The result follows.

Theorem 3.10 There exists N such that dim (pT) < dim R{u-T)

for all n 2 N and for all k.

Proof See [17, p. 12].

Theorem 3.10 There exists N such that for all n > N

k

. Ynk o
dim RY ( -T ) ™) < dim R[(u-T)") (3.28)nk n —

k=1

-whenever

k
n

0 < < =

SOS Vor and}. Qe a

Proof See [17].
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Chapter IV

FURTHER TOPICS

1. An Alternative Method

Again let X be a real or complex Banach space. Consider

K, K €[X] for n > 1, with

K = K, (K } collectively compact, K compact. (1.1)

As noted before, the first two conditions imply the third. We

wish to solve

(I-K)x = vy (1.2)

-1
or to determine (I-K)~.

The basic 1dea of the present method 1s to find operators

T,L&[X] such that rex], L is compact, and

T(I-K) = I-KL, (1.3)

-1
I-K = T (I-KL). (1.4)

Then the operator I-KL 1s approximated by I-K L. By Theorem 3.1

of Chapter I,

[xL-KL|| = 0. (1.5)

Therefore, the standard approximation theory given in Section 1 of

Chapter I applies. Thus, (1-x1) * exists iff (1- 1) exists and
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1s uniformly bounded for n sufficiently large, in which case

(zk 1)" (1-k8) | - 0, (1.6)

and there are error bounds.

-1 N=1
Clearly, (I-K) = exists iff (I-KL) ~ exists, in which case

-1 =n

(I-X) = = ( I-KL) "T, (1.7)

-1 oa=1 -1 -1

I(T-k1) T-(I-K) || < ||(T-K1)" "= (T-k0) "| -||zll, (1.8)

! -1 =-1

|(I-k L)"T-(I-K) "|| » 0, (1.9)

and error bounds are available.

Such operators T and L exist. They can be determined in a

variety of ways. For example, if (I + K) exists, then

2
(I + K) (I -K) =1-XK, (1.10)

- 2.

I -K= (I +K) Lr - x9). (1.11)

+ Thus, T =1 + K and L = K 1n this case.

More generally, let

T=TI+K+ ... + KL (p> 2). (1.12)

Then

(I -K) = I - KF, (1.13)

p-1
T(I - K) = I - KL, L = kK ~, (1.14)
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We show that 7 exists 1f p 1s a sufficiently large prime. Without

loss of generality, X 1s complex; otherwise extend T to the space

Xx + 1x. Note that

p

T=1 (K-01), (1.15)
g=1

where the 5g are the nontrivial pth roots of unity. For p prime,
the %q are distinct numbers of absolute value one. Since K is
compact, the eigenvalues of K form a finite set or an infinite sequence

converging to zero. Therefore, only a finite number of the Qa can be
eigenvalues and

rl (Ko )~% (1.16)
q=1 bq

for p sufficiently large. Usually p <5 will suffice.

Another possibility 1s

T=1+K + ck, (1.17)

where the constant c¢ 1s chosen such that 71 exists. Then

T(I-K) =I-KL, L = (1-c)K + cK-. (1.18)

If K and L are integral operators on C[0,1] with continuous

kernels, and K 1s defined by means of numerical integration, then the

determination of (1-k L)™ is equivalent to a matrix problem (cf. [14]).
Fach matrix element is an integral over [0,1]. This contrasts with

the method of Chapter I, where the matrix elements were simply values

of given functions. The two methods also differ in that
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| -1 -1

I(x - kK 1)""-(1-k0) "|| =~ 0, (1.19)

whereas there 1s merely pointwise convergence of

(I - kK) - (I = K)™L. (1.20)

Thus, the present method requires more work but gives stronger results.

Integral equations of the form (I - KL)x = z sometimes arise

directly from physical problems. For examples in mechanics, electro-

magnetic theory, and radiative transfer, see [5, 7, 8, 9, 14, 34].

In such cases, we can proceed directly to the approximations

I -KL.
n

2, Collectively Compact and Totally Bounded Sets of Operators

We have shown in Chapters I and III that operators T, T CX]

such that

I - T, {T_-1} collectively compact, (2.1)

. have many of the properties of operators for which lz_-T|| ~ o.
Since the analysis simplifies 1n the latter case 1t 1s important to

determine when T = T but ||T_-Tj #0. It is easy to prove

Lemma 2.1 |T_-Tl| » 0 iff T 1 and {T -T} 1s totally bounded
(equivalently, sequentially compact).

Thus, the theory presented above 1s intended mainly for operators

such that T = T, {T -T} is collectively compact, but {T -T} is not

totally bounded. We shall compare collectively compact and totally

bounded sets in [X].
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Proposition 22 Every totally bounded set X¥ of compact operators

inX] is collectively compact.

Proof Fix ¢ > 0. Then there-exist KCK, 1=1, . . wn, such that

min||K-K, | < €& for each KX. Hence,

min|[Kx-K.x|| < € foriall KEK, x€5. (2.2)
m

It follows that S = UKE is an s-net for XB. Since each K, 1s
compact, S 1s totally bounded. Therefore, ¥5 is totally bounded and
X 1s collectively compact.

The next-example shows that the converse of Proposition 2.2 1s

false.

Example Let ¥ be the set of operators on 1° such that

K (X)5000% 5000) = (x ,0,0,...). (2.3)

Then K is collectively compact. Since x -K || V2 for m £n, X is
not totally bounded.

It was proved in [16] that the converse of Proposition 2.2

| holds for any set ¥ of self-adjoint operators on a Hilbert space.

The proof involved the spectral theorem. More generally, 1t was

established that:

Theorem 2.3 Let K be a set of compact normal operators on a

Hilbert space. Then X is totally bounded iff both XK and K¥ are

collectively compact, where X¥ = (K*: KEK}. |

From this, 1t follows that:

Theorem 2.4 Let X¥ be a set of compact operators on a Hilbert
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space. Then K is totally bounded iff both XK and HK¥ are collectively

compact.

Later, the same result was obtained in [13] for any set ¥ of

compact operators from one normed linear space to another such that

(dim KX: KEK} is bounded, In [18] this was extended to other sets in

[X] by means of spectral theory. Finally, Palmer [36] recently found

a quite direct proof of Theorem 2.4 for an arbitrary set of operators

from one Banach space to another. In fact a somewhat stronger result

was obtained. |

3. Nonlinear Operator Approximations

Consider a nonlinear operator equation

Tx = 0, (3.1)

where T maps a Banach space X into X. For example, this might be a

Hammerstein integral equation on C[0O,l]:

1

(Tx) (s) = x(s)+] kls,0)e(t,x(t))at - z(s) = 0 (3.2)
Assume that T is Fréchet differentiable on X. Thus, there exists

the unique Fréchet derivative T'(x)€[X] for each x€X which satisfies

IT Cety) Tx (x)y] = 0 as vl - 0, (3.3)
iii

Under reasonable conditions on k(s,t) and £(t,u) in the example,

T'(x) is the linear integral operator

[1 (x)y] (5) = v()+] kls,t) 5z £(t,x(t))y(t)at. (3.4)
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Consider Tx = 0 in the Banach space setting. Suppose Tx¥ = 0,

-1

[[x%-x || is small and T(x) €[X] exists. Then

' Wom = *_Tyx = -T (x) (x x.) Tx*-Tx Tx, (3.5)

al _ - T° : 6xX X), X] = X_ T(x) TX (3.6)

Newton's method 1s based on

X = x -T'(x ) "Lx m = 0, 1, 2, ..o (3.7)m+1 m m m’ Poort ’

provided the --inverse operators exist. The Kantorovitch theorem [29],

gives sufficient conditions for the existence of the iterates X

for the existence of a locally unique solution x* of Tx= 0, and for

[Ee = 0. It also provides error bounds.
To apply Newton's method we must solve a linear problem or

invert a linear operator at each iteration. In the integral equation

example, and more generally, a second approximation method 1s needed

to deal with these linear problems. R. H. Moore {[33a, 33b] has com-

bined Newton's method with the theory developed in Chapters I = III

for linear operators to obtain an approximation theory for nonlinear

operator equations 1n Banach spaces.

As Moore indicates, 1t 1s equivalent and somewhat more convenient

to first introduce nonlinear operator approximations T , say with

dim T X < «©, and then to solve TX. = 0 by Newton's method. For

example, T, can be defined by numerical integration when T 1s an

integral operator.
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Theorem3.1 For some x EX and r > 0 let

(1) [|rx-1x]] ~ 0 for [ox|| < rs

(2) (T } equidifferentiable at x i.e., the limit in the
definition of I) (x) is uniform in n;

(3) {7 } collectively compact, i.e., (Tx: n> 1, Ix] b)
1s totally bounded for each b < =,

Then

(4) T(x) = T'(x);

(5) {T} (x )} collectively compact;

(6) T(x) compact .
The hypotheses are satisfied under reasonable conditions for

the Hammerstein operator, For the proof and further theory and

applications, see [33a, 33b] .

L. Collectively Compact Sets of Gradient Mappings

This material is adapted from [25] by James W. Daniel.

Let X be a real reflexive Banach space and Ey the real field

© regarded as a Banach space with the absolute value norm. Suppose

that f: X = E, is Frechet differentiable on some domain ® € X. Then

£'(x)€X* for all x€8 . The map Vv f: #— X* defined by (vf)(x) = £' (x)

1s the gradient of f.

Now let & be a family of such maps f.

Theorem 4.1 If {vf: f€%} is collectively compact then ¥ is

weakly equicontinuous on each bounded convex set.

For a proof, see [25].
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Weak equicontinuity plays an important role in the approximate

solution of variational problems. This 1s indicated by the following

result.

Theorem 4.2 Let f and f be weakly lower semi-continuous

functionals such that £ (x) - f(x) for all x€B, a closed and bounded

set 1n X. Assume that lf -f} 1s weakly equicontinuous on B. For

each n, let x ¢B and f(x) < tnt f (x) + Es where £ > 0 and
e = 0. Then every weak Limit point x' of ix] minimizes f on B.

For a proof and a number of related results, see [25].
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