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least Squares, Singular Values
¥*

and Matrix Approximations

Gene H., Golub

0. Let A be a real, mXn matrix (for notational convenience we assume

that m > n ). it is well known (cf. [6]) that

(0.1) A =U,

where UU =I , VW =I and
m n

ay 0
T= "

0

. O ) (m-n)xn .
The matrix U consists of the orthonormalized eigenvectors of AAT » and

the matrix V consists of the orthonormalized eigenvectors of ATA . The

diagonal elements of T are the non-negative square roots of the eigen-

values of ATA ; they are called the singular values or principal values

of A . Throughout this note, we assume

* 0 > J0), 29,5 2 20,2 0

Thus if rank(A) = r , 04) = Opyp = ++» = 0, = 0. The decomposition (0.1)

is called the singular value decomposition.

*

To be presented at the conference on “Basic Problems of Numerical Mathematics”
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1. ~The singular value decomposition plays an important role in a number of
IN

least squares problems, and we will jllustrate this with some examples.

Throughout this discussion, we use the euclidean or Frobenius norm of a

2.1/2matrix, viz. [All = ( L la, |) /2
-_ iJi,J

A) let u be the set of all nxn orthogonal matrices. For an

arbitrary nxn real matrix A , determine Qe such that

la-al] < lla-x| for any Xe .

It has been shown by Fan end Hoffman [2] that if A = UIV? , then Q = UV .

B) An important generalization of problem A occurs in factor analysis.

For arbitrary nxn real matrices A and B , determine Qel such that

|a-B_}| < jja-Bx}| for any XeU

It has been shown by Green [5] and by Schonemann [9] that if

BTA= USV® , then Q = UV® .

C) Let mn) be the set of all mn matrices of rank k . Assume’

(r) (k)
Adm, 1 . Determine BM, 1 (k <r) such that

IA-B] < Axl for an Xem™)- LL ’

It has been shown by Eckart and Young [1] that if

T | T
(1.1) A=ULV' , then B=1UV ,

vhere

2



ay 0
%2

%k

Note that

2 21/2

D) An nXm matrix X is said to be the pseudo-inverse of an

mxn matrix A if X satisfies the following four properties:

i) AXA = A

1i) XAX =X

iii) ax)” = AX

wv) xa) =x,

We denote the pseudo-inverse by At . We wish to determine at numerically.
It can be shown [8] that at can always be determined and is unique.

It is easy to verify that

(1.4) at = va?

where

1

°1 0
pe

A= %

0 =of
r

0 n Xm
3



In recent years there have been a number of algorithms proposed for

computing the pseudo-inverse of & matrix. These algorithms usually

depend upon a knowledge of the rank of the matrix or upon some suitably

chosen parameter. For example in the latter case, if one uses (1.4) to

compute the pseudo-inverse, then after one has computed the singular

value decomposition numerically it is necessary to determine which of

the singular values are zero by testing against some tolerance.

Alternatively, suppose we know that the given matrix A can be

represented as

where &B is a matrix of perturbations and

lef <n.

Now, we wish to construct a matrix B such that

la-Bl| <n

and

rank(B) = minimum .

This can be accomplished with the aid of the solution to problem (C). Let

T . .

B, = ORV as in equation (1.2).

Then using (1.3),

B=2B
P

if

2 2 2,1/2
+ caeLY Inte * ro) en

and

2 2 2.1/2
+ + >(a) aoel - a) (|
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Since rank(B) = p by construction,

° T
8° = wut.

P

Thus, we take B as our approximation to A ,

E) Let A ve a given matrix, and let b be a known vector.

Determine a vector x such that for

[o-ax|l, = min.

and |[x|l, = min.,

where llyll, = (5y3) 3/2 for any vector y . It is easy to verify
that » = A'b .

A norm is said to be unitarily invariant if [AU] = [VA] = [IA]
* +*

when UU=1I and VV =1I. Fan and Hoffman [2] have shown that the

solution to problem (A) is the same for all unitarily invariant norms

and Mirsky (7) has proved a similar result for the solution to problem (C).

2. In [4] it was srown by Golub and Kahan that it is possible to

construct a sequence of orthogonal matrices (p{Kye , rq!kyn-2
via Householder transformation so that

plnlp(n-1)  p(1),0(1)(2)  o(n-1) o glo _ 5

and J is an mXn bi-diagonal matrix of the form

c



a, oN . 0

0 | Pr-1
a

————————————

0 JT .
The singular values of J are the same as those of A ., Thus if the

singular value decomposition of

J = Xgyt ,

then

A = PXEYQL

so that U=PX , V =QY.

A number of algorithms were proposed in [4] for computing the

singular value decomposition of J . We now describe a new algorithm,

based on the QR slgorithm of Francis [3], for computing the singular

value decomposition of J .

Let

0 a

a, 0 By 0)
8 Q o

2
K = . .

a, . .

() L4 » (4n
Q 0

a 2nx2n
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It can be shown [4] that K is a symmetric, tri-diagonal matrix whose

eigenvalues are + singular values of J . One of the most effective

methods of computing the eigenvelues of a tri-diagonal matrix is the

QR algorithm of Francis, which proceeds as follows:

Begin with the given matrix K = K, . Compute the factorization

K =MR
0 oO

where MM = 1 and R, is an upper triangular matrix, and then
multiply the matrices in reverse order so that

K, = RM = MKM0 © 000

Now one treats K in the same fashion as the matrix K, , and a

sequence of matrices is obtained by continuingad infinitum. Thus

K, = MR, and

Kien = BiMs = MiReay

so that

T

Kap = MEM;

T,.T T

= MM, 5. . M_KM M,. . -M, .

The method has the advantage that K, remains tri-diagonal throughout

the computation.

For suitebly chosen shift parameters Ss; » we can accalerate the

convergence of the QR method by computing

(K;-s,I) = M;R,

(2.1)

RM, + 8,1 = K. 1 .

7



Unfortunately, the shift parameter s; may destroy the zeroes on the

diagonal of K,

Since the eigenvalues of K always occur in pairs, it would seem

more appropriate to compute the QR decomposition of

2

(K,=5,I)(K+s I) = K-55

so that

2

MR, = Ko-sST

It has been shown by Francis that it is not necessary to compute (2.1)

explicitly but it is possible to perform the shift implicitly. Let

(i.e., the elements of the first column cf N are equal to the elements

of the first colum of M ) and

T

N,N, =1

Then if |
T

1) Typ = NEN

ii) Ty,, is 8 tri-diagonal matrix,

iii) K, is non-singular,

iv) the sub-diagonal elements of T.h1 are positive,

it follows that Tenn = Kil .

The calculation proceeds quite simply. Dropping the iteration

counter 1 , let :

8



(p) (p+1) (p+2)

1 -

1 )
cos 68 0 sin © (p)

P P

z= 0 1 0 (p+1)
sin 0, 0 -cos 8 (p+2)

1

) Lo
oi

(2nx2n) .

Then cos 9, is chosen so that

2

Then the matrix

—

0 a 0 dy
|} J

a 0 Bi ()LJ . 1}

0 BJ a;

2,k, =| 9 a PB ;

B, . ]

n

(8 / 0
0 _

and
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T = Zope v2 K2 Zoo ’

where Zaye so rly a are constructed so that T is tri-diagonal. The
product of all the orthogonal transformations which gives the singular

values yields the matrix of orthogonal eigenvectors of K . For ease of

notation let us write

Then explicitly, the calculation goes as follows: Drooping the iteration

counter 1 ,

= 2_.° a =
0="N ! o~T172

For J = 0,1,004)2n-5 J)

ro (y24a2)1/2
J J J

sin 6, = 4,/r cos 0, = r3 = 4/ry = 7475

735%

7541 = 7541 cos F + 7 542 sin 9, s

7540 w 7541 sin 0, - 7 jap cos 6, ,

Ties = ges 0% Oy 0

d = sin © .
3¢1 = 7343 J

In the actual computation, no additional storage is required for

10



since they may overwrite {7,1 . Furthermore, only one element of

storage need be reserved for {d,} . When 17, J is sufficiently small,
75,1] 1s taken as a singular velue and n is replaced by n-1.

Now let us define

(p) (p+1)

BB
p

.

cos © sin ©  (p)

P sin 8 -cos 6 | (p+1)
| p p

| 1 |
| |

nxn

where cos % is defined as above. It has been pointed out to the
author by J. H. Wilkinson that the above iteration is equivalent to

forming

where J is again a bi-diagonal matrix. Thus,

_ (1).(1) (1)

X = [1043 UNE Py

vo TT w(ihg(d) (1)
y= [] (Wty) :

i

An AIGOL procedure embodying these techniques will soon be published

by Dr. Peter Businger and the author.
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l=

procedure singular values decomposition

(a, m, n, u desired, vt desired, eta) resulta: (sigma, u, vt) 3

value m, n, u desired, vt desired, eta ;

real array a, sigma, u, vt ;

integer m, n 3

boolean u desired, vt desired ;

real eta ;

comment Householder's and the QR method are used to find all singular

values sigmafi]}, (1=1, 2, «vey Nn) Of the given matrix ais, 1in],

(n®n), The orthogonal matrices uf1 sm, 1sm] and vt(1:n, 1in] which
effect the singular values decomposition a=u sigma vt are computed

individually depending on whether u desired or vt desired, The input

parameter eta 1s the relative machine precision 3

begin

procedure Householder bidlagonalization

(a, my n, u desired, vt desired) results; (alpha, beta, u, vt) ;

value m, n, u desired, vt desired ;

real array a, alpha, beta, u, vt ;

integer m, n 3

Boolean u desired, vt desired ;

comment Householder transformations applied in turn on the left and

the right reduce the given matrix a(1:m, 1m], (m®n) to upper bla

diagonal form J. The diagonal elements of J are returned as alpha (11,

(1=1, 2, s.s, Nn), the superdiamgonal elements as beta[1], (1=1, 2,

tees N=1), beta[n]=0, The orthogonal matrices ul thi, 13m] and

ve(1 in, 13n] which effect the decomposition a=u J vt are computed
individually depending on whether u desired or vt desired ;



le

begin

real procedure inner product (i, m, n, a, b, ¢) 3}

valuem, n, ¢ § reala, b,¢ 3 integeri, m,n }

begin

for 4 s= m step 1 until n do o=c+axdb ; inner product=c

end inner product j

real 8, b j

‘integer 1, J, k 3
if u desired then

for 11=1 step 1 until m do

begin

uf1,1] 1=1.0 ; |
for js=i1+1 step 1 until m do ufi, fk=ul),i}s=0.0

end 1

Af vt desired then

for 11=1 step 1 until n do

begin

ve[1,1] 1=1.0 3
for ji=i+l step 1 until n do vt[1,3]1=vt(3,1]1=0.0

end 1 3

for ki=1 step 1 until n do

begin

8 s=inner product(i, k, m, af1,x], a[1,x], 0.0) 3

alpha[k]s=if a[k,k]<0.0 then sqrt(s) else -sqrt(s) ;
Af 870.0 then

begin comment transformation on the left ;

bi=s-a[k,k]*alpha[k] 3
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a[k,k]s=a[k,k]-21pha[k] ;
for Ji=k+1 step 1 untiln do

begin

st=inner product(i, k, m, a[1,k], a(1.4), 0.0)/b 3
for 1:=k step 1 until m do

aft,3]s=a1,3]-a{1.x]xs
tad J 3

{f u deslred then

for 11=1 step 1 until m do

begin
ss=inner product(J, k, m, u(1,3], afl1,x], 0.,0)/b 3
for ji=k step 1 until m do

uf1, J] e=ul}, 3] -sxa[y,x]
end 1

end transformation on the left 3

if k¥n-2 then

begin

8s s=inner product(j, k+l, n, a[k,3], alk, ¢], 0.0) 3
beta [k]s=1f ali, k+1]< 0.0 then sqrt(s) els3 =-sqrt(s) ;
Af 8#0.0 then

begin comment transformation on the right

bi=s-a[k,k+1]x veta(k] $
a[k,k+1] 1=a(k,k+1] -beta[k] 3
for 1:=k+l1 step 1 until m do

begin

st=inner product(J, k+l, n, a[x,J], a[1,1], 0.0)/b 3;
for ji=k+l step1 untiln do

aft,3])s=a(1,s)-alk,J) xs
end 1



i (

if vt desired then

for J:=1 step 1 until n do

begin

s3=inner product(i, k+i, n, a(x,1], ve(1,3], 0,0)/b 3

for 1:=k+1 gtep1 untiln do

ve[1,3])s=ve(s,3] -a[k,1]xs
endJ

endtransformation on the right

end k from 1 to n-2

else beta[k]}s=if k=n then 0.0 else a[k,n]
endk

endHouseholder bi-llagonalization j;

procedure QR dlagonalization

(gamma, m, n, u desired, vt desired, eta) result: (sigma)

transientss (u, vt) 3

value m, n, u desired, vt desired, eta ;

real array gamma, sigma, u, vt j

integer m, n j

Boolean u desired, vt desired ;

comment The (OR algorithm diagonallizes the glven symmetric tridiagonal

| matrix T or order 2n by 2n whose diagonal elements are zero and

whose super- and subdiagonal elements are gamma{1], (1=1, 2, ...,

2n-1), ganna [0 ]=gamma 2n]=0. If u desired then the odd numbered
rotations of the QR algorithm are also applied to ulm, 1sm] from
the right. If vt desired then the even numbered rotations are also

applied to vt(2n, 11n] from the left, The input parameter eta is
the relative machine precision. The nonnegative eigenvalues of T
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are returned as sigma[1], (1=1, 2, +eey Nn) 3

begin

real kappa, 4, r, sinphi, cosphi, g0, g1, &2, 8&3, epsilon, rho 3

integer i, J, k, s, 80, t, tO, t2 3;

83=803=t0:=0 § ti=2xn 3;

kappa s=g1:=abs (gamma [1)) 3

for 1:=2 step1 until t do

begin comment find the infinity norm of the tridlagonsl ‘matrix T 3

g231=abs(gamma[1] ) $s ds=gl+g2 ; if d>kappa then kappa:=d 3;
glsi=g2

end 1 3 |

epsiloni=etaXkappa 3

inspects

comment scan for lower block limit t

gamma (8) s=gamma(t] :=0.0 ;

for 1:=t-2 while abs (gamma [1] )4epsilon do

begin comment pick up computed value ;

t23=t22 3; sigma [t2]) s=abs (gamma (t-1] ) 3

Af gamma [t-1}0,0 A vt desired then

for Ji1=1 step 1 until n do vt{t2,3)i=-vt[t2,1] ;
ti=l 3; gamma (t] $=0.0 ;

if t=0 then go to return

end ;

si=t=4 3 comment scan for upper block limit s }

for 1i=g=2 while abs (gamma [s])>epsilon do si=} j
comment did block limits 8s, t change .



«b=

if s#sOVt#t0 then

begin

zero shift:

gama 5) $=gamma [s+1] N d 1=gamma [5+2] i go to QR sweep

end zero shift ;

comment does matrix break ;

if abs (gamma [s+1] x ganma[s+2] )éepsilon then go to zero shift 3
for 13=s+1 step 2 until t-1 do

if abs(gamma[1])€epsilon then go to zero shift

comment did bottom value settle down ;

if abs(abs(gamma(t-1])-rho)>0.1xabs(ganma(t-1} ) then

go to zero shift ;

comment determine the origin shift kappa 3

g0s=ganma|t-1]4 2+ganma (t-2)42+ganma[t-3}42 ;

gl st=gamma | t-1]4 2xgamma [t-$)42
£2120, 5x(g0+sqrt (g0t2-4,.0xg1)) 3

g31=g1/82 3

kappas=if abs (gamma [t-1}{2-g2)<abs (gamma [t-1112-g3) then g2 else &3

gamma [s) 1=gamma [s+1#2-kappa ; di=gamma(s+1)x gamma(s+2] ;
QR sweep: |

comment save previous block limits and bottom element ;

803=s j; tOs=t ; rhos=abs(gamma[t-1]) ;

for 1i=s step 1 until t-3 do

begin

somment does matrix break ; |

if d=0.0 then go to inspect ; |
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g0s=gamma[1) : gl 1=gamma [1+1] 3

g21=gamma (1+2] ; g3:= gamma(i+3] ;

rs=sqrt(got2+df2) ;

sinphit=d/r ; cosphls=g0/r ;

gamma [1] $=T 3
gamma [1+1] 1=g1xcosphi+g2xsinphi ;

gamma 1+2] s=glxsinphi-g2xcosphl j

gamma [1+3k=-g3xcosphi H
d s=g3xsinphl ;

if u desired V vt desired then

begin

ki=142 ;

if 1=2xx A vt desired then

for Ji=1 step 1 until n do

begin

g1i=vt[i+1,3] ; s2s=vt[k+2,3]) 3

vt{k+1,J] 1=g1Xcosphi+g2Xxsinphl ;

vt [ic+2 ’ 3] s=glXsinphi-gdicosphi
end J 3

if 1#2xk /A u desired then

for Ji=1 step 1 until m do

begin

gli=u],k+1} ; g2s=u[),k+2] H
ul), k+1) s=gixXcoaphi+g2)sinphl }

u[J,k+2] 1=g1xsinphi-g2Xcosphi |

end ]



Be

end 1f u desired or vt desired

| end 1 3;

go to inspect

returnt

end QR diagonallzation

real array alpha, beta[lin], ganna [032xn] ;
integer 1, J

Householder bidiagonalization

(a, m, n, u desired, vt desired, alpha, bets, u, vt) 3

for 13=1 step 1 until n do

begin

ganma[2x1-1] 1=alpha1] ; samma[2x1] s=beta(1]
end 1 ;

ganna [0] s=gamma2tn] 1=0.0 3
QR diagonalization

(gamma, m, n, u desired, vt desired, eta, sigma, u, vt)

3nd singular values decomposition


