
- ab &35230

AN ALGORITHM FOR AN AUTOMATIC

GENERAL POLYNOMIAL SOLVER

BY

M. A. JENKINS

J. F. TRAUB

TECHNICAL REPORT NO. CS 71

JULY 21, 1967 |

RECEIVED

AUG1 1967

CFSTI

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY



AN ALGORITHM FOR AN AUTOMATIC GENERAL POLYNOMIAL SOLVER"

by

M. A. Jenkins

Stanford University

Stanford, California

and

J. F. Traub

Bell Telephone Laboratoi ies, Incorporated

Murray Hill, New Jersey

Presented at a Symposium on Constructive Aspects of the Fundamental
Theorem of Algebra at Riischlikon, Switzerland, held June 5-7, 1967.
*

This work was surported in part by the Rational Science Foundation
and the Office of Naval Research.



TABLE OF CONTENTS

Page

1. Introduction . . ©. . . « ¢ oc ¢ « ¢ 0 4 cs 0 ese sae 1

2. The Mathematical Algorithm . . . . . . « «+ « + « + + + 4

3. Properties of the Mathematical Algorithm . . . . . . . . 7

L, Decisions to be Made in the Program . . . . « + +» + . 12

5. The Termination of Stage One . . « + « + + + + + « + + » 13

6. The Translation of the Polynomial . . . . . . . . «. « . 16

To SCALINE « « « + + o 4 4 4 st eee ee eee... 18

8. Termination of Second Stage Iteration . . . . . . . . . 19

QO. Numerical Results . . . . . . « + + « os ¢ a o o » « + = 20

10. Summary . . « . « + rT 27

11. Acknowledgments . . . . « ¢ « ¢ + ¢ + = ® +o so + 0 oa 29

Bibliography « « « « « ¢ ¢ ¢ 5 + sv so + 4 ve eo 8 se soe 30

Appendix - FLOWCHATES + « « vv vv vv eo eee eo eo 32



1. INTRODUCTION

A general automatic equation solver should be based

on a restriction-free mathematical algorithm, By this

we mean the algorithm should be suitable for all poly-

nomials and not depend on the properties of certain

classes of polynomials, In this paper we will describe

a restriction-free algorithm and discuss a program

which implements it.

The algorithm enjoys a basic simplicity and requires

few decisions. We devise procedures by which the com-

puter may automatically make the major decisions required,

We do not concern ourselves here with programs used in

an interactive environment. Routines to be used in such

an environment might have different characteristics,

We summarize a few of the desirable characteristics

of the algorithr, It is basically iterative with a pre-

processing stage which guarantees that the iteration will

converge. Often the most difficult problem associated with

an iterative method 1s the value of the initial iterate.

This is easy for us to handle because the mathematical

algorithm will converge for essentially all initial

approximations while our implementation of the algorithm

actually supplies us with a good initial approximation.

Multiple zeros require no special handling. Finally,

the importance of finding the zeros in roughly in-

creasing order of magnitude to ensure stable deflation



has been stressed by Wilkinson (11, p. 465) who observes

there seems no reliable method for ensuring this, Our

algorithm does find the zeros in roughly increasing

order of magnitude,

The last point merits some amplification. If the

geros are found in decreasing order of magnitude, then

the backward deflation is stable. What 1s really crucial

is that at each stage of the deflation elther one of the

smallest or one of the largest zeros is calculated.
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The elgorithm may be applied to polynomials with real or complex

coefficients. Polynomials with complex coefficients are easier to

deal with for the following reason. Let k be the number of dic.inct

smallest zeros of equal magnitude. Although theoretically the kind

of method which we will describe could be extended to handle zero

distributions with any value of k, the simplicity of the implementa-

tion depends on k being small. In the case of a polynomial with

complex coefficients we can, after a complex translation, ensure

k=1. For a polynomial with real coefficients, we are left with

the cases k =1 and k = 2 if we restrict ourselves tc real

{ranslations.

The algorithm to be introduced in this paper is a member of a

class of two-stage methods introduced by Traub. This type of method

was first announced in [5]. The calculation of the largest zero of

a polynomial was discussed in detail in [6] and globai convergence

was proven for a class of methods. For the largest zero the first

stage involves the generation of G polynomials. The proof of

global convergence of an algorithm for computing complex conjugate

zeros was announced in [7] while the calculation of the smallest zero

and of multiple zeros as well as the extension to analytic functions

appears in [8].

The calculation of the smallest zero involves H polynomials.

G polynomials and H polynomials have a simple relation and any

result involving one can be translated into a result involving the

other. Calculating the smallest zero first makes translation more

effective. Hence, we shall be involved with H polynomials.

-2-



Bibliographic remarks and rather extensive bibliographies may be

found in Traub (6), (8].

The papers cited above deal with finding one 2z<ro or a complex

conjugate pair and focus on mathematical properties. In this paper,

we focus on a particular algorithm out of a class of possible algo-

rithms and discuss its feasibility as the basis for a general auto-

matic polynomial equation solver.

-3-



2. THE MATHEMATICAL ALGORITHM

Let

n n-3
P(t) = )) a.t ’ a. =1J 0

J=0

a # 0

be a polynomial with € distinct zeros py of multiplicity m, -

Stage Ora2

We generate a sequence of polynomials as follows. Let

HO,t) = P‘(t)

\ 1 H{x,O0

(2.1) H(#*1,t) = LE . as) ro] s A =0,1,000, A
Observe that the polynonials are of degree at most n - 1 .

Stage Two

Let k be the number of distinct zeros of smallest magnitude.

If k > 2, translate ‘he polynomial 80 that k= 1 or 2 . Observe

that the distinction between k = 1 and k = 2 is of importance only

for the case of real coefficients.

We introduce the following notation to help us describe the

Stage Two iteration. Let h(t) be a polynomial of degree r. Then

h(t) is the polynomial h(t) divided by the coefficient of tT .

4.



Let to be the initial iterate. Then we generate a

sequence of iterates by t, . = Vi (ty,1) where f 1s the
function whose zero we seek. (In this notation,

Newton-Raphson iteration is defined by ¥(t,f) = t - £/f.)

We can now give the formulas of the iteration func-

tions for k = 1 and 2,

kK =1

let

tia = Va(tyo1)

where

!

v(t, 1) = - f/f ’
and

r= V(a,t) = P(t)/H(a,t)

k = 2

Let

ty = Yolty,f)

where

2f

v,(t,f) = tt -TT172er’ rf + ((f )°-4r)

and

r= WA,t) = P(t)/T(a,t) ,

I(a,t) = 8(A-1)E(A,t)-8(A)H(A-1,t)
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with 5(a) the coefficient cf t"~% in H(A,t). Let the

zero be labeled a. If k = 1, the polynomial P(t)/(t-a)

18 formed. If k = 2, the polynomial P(t)/[(t-a)(t-&)]

is formed. We then return to Stage One with the new

polynomial,

6 -



3. PROPERTIES OF THE MATHEMATICAL ALGORITHM

We shall now state a number of results which exhibit the power

of the mathematical algorithm, Results analogous to results stated for

the case k = 1 may be found in Traub [6]. Proofs of results for the

case k = 2 will appear elsewhere. The notation is the same as in

Section 2. We shall use )\ as a running index and A as a fixed

integer.

Most of our results follow from the formula given in

THEOREM 1.

For all ),

Lo
eS _ ) 1P 4P(t top,

1=]

The key property of H(\,t) is given in the following two

theorems.

THEOREM 2.

Let |p; |< |p; |, 1>1. Then for all finite t,

lim V(),t) = t - py
Ao
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THEOREM 3.

Let |p, |< |p; | and |p, |< | p; | » 1>2. Then for
all finite +t,

lim W(x,t) = (t-py)(t-py)
A ~m

Note that the hypothesis of Theorem 3 includes the case k = 2 .

Generalizations of these theorems hold for the case of k smallest

zeros in magnitude. The rate of convergence is of Bernoulli type.

Results concerning the zeros and poles of V(),t) and WwW(),t)

are given in the following group of theorems. Note that no restrictions

nave been imposed on the multiplicities of the zeros of P . The

following theorem is a generalization of the statement that the

rational function P/P’ has only simple zeros. Observe that v(o,t)

is proportional to F/P’ .

THEOREM 4.

For ail finite a, V(A,t) and W(),t) have only simple zeros

and these are the zeros of P.

THEOREM 5.

Let | 0, | < | N | 5 i>1. Let K, be the union of circles

with arbitrarily small fixed radii centered at the py” i>1.
Then for ) sufficiently large, the poles of V(),t) are contained

in Ko.
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THEOREM6.

Let lop I<log ls lop l<lop |,1>2. Let K, be
the union of circles with arbitrarily small fixed radii centered at

the py” 1>2. Then for )\ sufficiently large, the poles of

W(p,t) are contained in K, -

We now state some theorems concerning the iteration functions

UY and LI « As usual we define the order of the iteration as follows.

Let t. ~g « dlhen if there exists a constant p and a nonzero c¢on-

stant C such that

(t,, ,-a)

tia (t,-a)

then p is called the order and C the asymptotic error constant.

For our iteration functions, C = C, (A) . We then have

THEOREM 7.

¥, and §, are second order iteration functions. Furthermore,
t

(3.2) lim C,(A)= 0, k=1,2.
Aw

We comment on this result. The iteration is done for a fixed

“ «value of )\ = A . Theorem 7 shows that if A is large, Cy (A)
will be small. Hence, although the iteration is of second order, the

error at each iteration will be the product of three small numbers

and hence will appear fasler than the usual quadratic convergence.
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Additional discussion of C(A) may be found in Traub

(6, Section 6] and (8, Section 7].

The speed of convergence 1s Llllustrated by the

following simple example which we take from Traub [6].

In this example an earlier program is used which cal-

culates the biggest zero first and which does not

make decisions automatically.

Let

P(t) = t* - 46t3 + 528t2 - 1090t + 2175.
The largest zero is 29. Take A = 16, Let

ts = 100 000.
Then

t, = 28,99963

t, = 28.9999999999997

- 9a -



We hope the following discussion will offer some insight into

the choice of §, and §, sand will clarify the reason why (3.2) holds.

Let v(t) = (t-p, Js w(t) = (t-py)(t-p.)- Then Theorems 2 and 3
may be restated as

lim V(a,t) = v(t) »
Ao

lim W(.,t) = w(t) .
A oe

Now,

py = 4 [tov(t)) )

Thus if k = 1 and we have taken ) to wo, then starting with any

tyr the iteration with ¥ would have delivered the exact zero in
one iteration and analogously for k = 2 and 2 .

We now state theorems on global convergence of the iterations

defined by V1 and “n°

THEOREM8.

Let | N | < | Py | , i>1. Let t, be an arbitrary point

in the extended complex plane such that t £op i>1 and let

-10-



tia = v,(t;,V). Then for a sufficiently large but fixed,

the sequence Cy 1s defined for all i and ty = Pye

THEOREM 9.

Let |pyl<legl slepl<lpgl, 1>2. Let t, be |
an arbitrary point in the extended complex plane such that

to # Py,» 1 > 2 and let t, , = Vo (ty ,W). Then for A

sufficiently large but fixed, the sequence ty 18 defined

for all 1 and t, = Pye

These theorems require a few words of comment, The

formulas for vy and 12 as given above make it appear as if

these functions are not defined at » . However, v; and ¥,

may be rewritten so that they are defined at « , (Observe

that this 1s not a property shared by the Newton-Raphson

iteration function.)

The iteration Vs 1s multivalued because of the ¢

sign, However, a strategy is available for making the

lteration converge to either Pq OF Ps. A discussion of

this in a somewhat different setting is given by Traud

(8, Section 12].

A proof of Theorem 8 for the case where P has only

simple zeros 1s given by Traub [6, pp. 121-123). The

extension to multiple zeros 18 not difficult.

These theorems show that 1f we apply our two stage

algorithm to any polynomial, with perhaps a translation

to ensure k = 1 or 2, then provided pA 1s sufficiently

- 11 -



large, the mathematical algorithm is guaranteed to con-

verge. For the remainder of this paper we discuss the

implementation of this algorithm on a digital computer,

- lla -



4, DECISIONS TO BE MADE IN THE PROGRAM

We enumerate the major decisions that have to be made automatically

by a program implementing this algorithm. A number of the decisions

are not crucial and are made on an ad hoc basis. Other decisions are

crucial and are made on the basis of certain calculations.

We summarize the major decisions toc be made in the calculation

of each zero or pair of zeros:

a) What is A, the value of ) for which we terminate Stage

One and switch to Stage Two?

bp) Is k=1,2, or is k > 27

c) If kx > 2, by how mu h should we translate?

d) What value should be assigned to to? the initial iterate

for Stage Two?

e; What is the termination criterion for the Stage Two iteration?

Decisions a, b, and d are made as the result of the same calcu-

lation. Indeed, Stage One is terminated when k can be determined

as equal to 1 or 2. If such a determination cannot be made by the

time that ) has reached a certain value LV a translation is

carried out.

Decision 4, which is often the most difficult decision to make,

is available here as a byproduct. However, Theorems 8 and 9 show

that the choice of 0 is not crucial.

The methods for making decisions c and e are described in Sections

6 and 7, respectively.

-12-



5. THE TERMINATION OF STAGE ONE

If there are k smallest zeros in magnitude, tnen for

sufficiently large

=A

H(t) 3 "P14P(t i= top,

Hence H(\,t) , -.. , H(A+k,t) will epproximately satisfy the k-th

order recurrence

k

(5.1) y c, (HO, t) = Q, Co = 1,
1=C

where the c, are related to the zeros of P by

k
i -1

c t = (t-p. ) .& kod hi 1

We wish to test the hypothesis that the H(),t) satisfy a

recurrence of the form (5.1) with k =1 or 2. For a fixed value

of )\ we test the hypothesis k = 1 and if that seems to be false

4e test k =2 . If that is also false, we increase ) by a certain

amount and test again. This is continued until a preset upper limit

of ) is reached. At that point the polynomial is translated and

we start again.

-13-



We describe the test for k = 2 . The test for k =1 is the

appropriate simplification. Let

i -\(a) = m,
= ivi

denote the leading coefficient of H()\,t) . Let h, denote the vector
of coefficients of the polynomial H(\A,t) . We apply two tests, the

second being more expensive than the first and applied only if the

first is passed.

We first test for a second order scalar recurrence. If this

is passed, we test for a vector recurrence.

Let

[Soe oo)DOV = J gas) 80)

_ Dy+lR(A) = Bln)

If §(\) satisfies a second order scalar recurrence, R()\) converges.

Hence the first test is

Riaz+l) « R

(5.2) Leber) = p00 | <e .

If this test is passed, we test for the vector recursion as

follows.

-14-



Choose t., 8, so that the quantity

. = + + h(5.3) A Uo The ta Wh WO

is minimized in the L, norm and test if

(5.4) Th <g .h

in WN

That is we solve a n x 2 least squares problem. If (5.4) holds,
2 -1

we calculate the zeros q and q, of t + et + e, and use 9

or ag as the value of the initial iterate ty in the second stage.
A similar least squares technique is used by Zurmiihl [12] whose

purpose it is to calculate approximations of equimodular eigenvalues

using vectors generated by the power method. Zurmiihl proves that he

obtains Rayleigh approximations in this way. He does not use this as

a criterion for termination.

We emphazise that the test tells us

a) When to switch from Stage One to Stage Two.

b) The value of k .

¢) The value of ty

-15-



6. THE TRANSLATION OF THE POLYNOMIAL

If the tests described in Section $ have not been passed by a

certain value of ) = Aes we translate the polynomial. Since we wish
Lo calculate the zeros in the order of increasing magnitude, we do not

want to shift by an amount wnich would place near the origin a zero with

a significantly larger modulus than the smallest zeros. To ensure

that this does not happen, we calculate a lower bound on the moduli

of the zeros and use this quantity for a shift along the real axis.

The lower bound we vse, (Marden [4, p. 93]), is the unique positive

zero of

n=l

(6.1) Qt) =- FF | a, 3 4 a | .
J=0

The positive zero of (6.1) is easily found by Newton-Raphson iteration.

It need not be found very accurately.

One may construct examples which show that the smallest zero of

the translated polynomial need not be the translated smallest zero

of the original polynomial. However, these examples are based on

near equimodular zero distributions and hence will not effect our

statement that we can ensure stable deflation. However, this shows

that the translated polynomial may have more than two equimodular

smallest zeros. In the program we try shifts in both directions. An

example of this may be seen in Example 3 of Section 8.

-16-



We now show how we may perform the translation and still use the

original polynomial in the Stage Two iteration. This is clearly desir-

able numerically.

Let p(t) = P(t-s) be the translated polynomial. With s > O,

this means the zeros of P are shifted s units to the right. Let

{h(r,t)] be the "H polynomial sequence" for p(t) and let Tn, be

the smallest zero of p(t) . [We assume for simplicity of exposition

that p(t) has a smallest zero. This is not essential.] Let

N{(A,t) = h(A,t+s) . Let

P(t

(Ast)

Then we have

THEOREM 10.

Let p(t) have zeros LF} with | 10 | < | LA | , i> 1.

Let t.,. = ¥,(t, 50) . Then t, =; - 5.

An analogous result holds if the translated polynomial has two

smallest zeros. After the zero has been calculated, the deflation is

carried out in the original polynomial. Although this scheme requires

two translations, it is not sensitive to roundoff error since the

iteration is done in the original polynomiel and hence the translations

need not be done in higher precision than the rest of the calculation.

-17-



[- SCALING

We turn first to thesceling oftheH polynomials. From (3.1),

we see that as ) increases the coei’icients of the H(A,t) grow or

diminish depending on whether | N | <1 or | N | > 1. Thus the
coefficients must be periodically scaled. To minimize roundoff error

it is desirable to scale by a power of the radix ( a power of 8 on

the Burroughs B5500). This seems preferable to the scaling strategy

proposed by Traub [6, Section 9].

We scale the least squares problem by replacing the problem of

minimizing (5.3) with the problem cf minimizing

«1 - + » + ~(7-1) s, =Dh + &Dh + &pDh,

vhere I is the diagonal matrix whose j-th diagonal element is the

average of the j-th component of hops b> hy 41 . If this scaling
is not done, the minimization of (5.3) may reflect only one very

large component which might satisfy a three-term recurrence whereas

the vector does not.

-18-



8. TERMINATION OF SECOND STAGE ITERATION

A problem commcn to all iterative methods is when to terminate

the process. Generally, the decision to terminate has been based on

an ad hoc criterion such as | tt 1/1 t, | < ¢ , with the parameter

¢ chosen a priori.

In our program we terminate iteration on the basis of a technique

due to Kahan. He derives an a posteriori bound on the roundoff error

in evaluating a real polynomial at a real point and suggests that

iteration be stopped when the computed value of the polynomial is less

than a small integer multiple of this bound. Kahan's technique

appears without explanation in Kahan and Farkas [3]. Adams [1] analyzes

the case of a real polynomial evaluated at a complex point and shows

that the bound is tight enough so that the iteration is not stopped

prematurely. Our experience with this leads us to the conclusion that

it is an excellent way in which to terminate the second stage.

«19.



9. NUMERICAL RESULTS

An ALGOL program has been written for the Burroughs B5500 to test

the algorithm described in this paper. The Stage One calculation is

done in single precision (13 octal digits) and the Stage Two iteration

is done in double precision (26 octal digits).

The program makes good use of the recursive facility of ALGOL.

Flowcharts of the program may be found in the Appendix.

The procedures for automatically making the important decisions

listed in Section 4 have been described earlier. A number of other

parameters, whose values do not play a critical role, are chosen on an

ad hoc basis. Wediscuss the values assigned these parameters in our

program. |

The switchover test is applied each time that ) has been

increased by 4 . The maximum value of ) permitted in Stage One

is ) = 200 . If the switchover test has not been passed by this

time, we translate.

The maximum number of iterations permiited in Stage Two is € .

This choice is baced on the assumption that there will be at least

1 correct figure in the initial approximation and with quadratic

convergence 6 iterations will produce a double precision answer.

(Double precision on the Burroughs B5500 is 23 decimal digits.)

The number ¢ appearing in (5.2) and (5.4) is initially set at

«001. If the switchover test is passed and then iteration does not

converge we replace g by e/10 and restart the Stage One calcula- |

tion. |

-20-



If the switchover test is not passed for ) = 200 and iterations

following translation in both directions fail, then we increase the

upper limit on \ and restart Stage One with ¢ replaced by 10 ¢ .

We turn to three rumerical examples. We tried the program on

some of the hardest problems we could find. Examples of how this

type of method does on simple problems may be found in Traub [6,

Appendix].

Wheti are hard problems for zero finders? Multiple and near

multiple zeros cause difficulty for most methods. Wilkinson [9]

points out the difficulty in solving a polynomial whose zeros lie in

an arithmetic progression. Equimodular and near equimodular zeros

are difficult for methods involving zero separation such as Graeffe's

method and power methods. Since Stage One of our algorithm can be

interpreted as a power method, this presents us with our hardest

problem.

Example 1. This is the 20-th degree polynomial with zeros at

l, 2, ... , 20 discussed by Wilkinson. All the zeros are found to

at least 10 decimal places of accuracy. Table I gives the zeros

in the order in which they vere found. Note that the zeros were

calculated in strictly increasing order and that except for the zeros

at 17 and 18 the value of A required to pass the switchover

test increases as the ratio of the smallest to the next-to-smallest

zero increases. As this ratio increases, the initial approximations

become less accurate but

-21-



Table 1

Zero A Estimate from Stage One Number of Iterations

1 12 1.0002 2

2 16 2.0014 2

3 16 3.00% 3

by 20 4.011 >

5 20 5.026 3

6 2b 6.025 p

7 2k 7.042 5

8 2k 8.064 3

9 28 9.055 b>

10 28 10.075 bp

11 28 11.097 3

12 28 12.12 3

13 28 13.15 4

14 32 14.12 4

15 52 15.15 in

16 32 16.17 4

17 28 17.25 iN

18 y 18.14 5

19,20 Found Directly From the Final Quadratic Factor.

l=



in all cases are wi<hin 2% of the zero. Thus our automatic switch-

over criterion is working very well. Since k = 1, ¥ is used

throughout.

Example 2. This is the 19-th degree polynomial whose zeros are

025 & .035i, -.04 & .03i, .27 * .37i, -.b * .3i, 2.9 + 3.9i, -L4 & 3i,

10 + 2i, -20, 20, 30, 30, 30 . The first six pairs of complex coun-

jugate zeros were chosen to test how the algorithm behaves with complex

zeros of nearly equal modulus which are not clustered. The zeros at

20 and -20 test the algcrithm on equal real roots with opposite

sign and the triple zero at 30 tests the behavior of multiple zeros.

Table IT gives the results in the order the zeros were found. The

zeros are found by the algorithm to eleven significant figures except

for the multiple zero at 30 for which the last two approximations

agree only to 7 significant figures. This is all one expects for

a triple zero. The results show that as the ratio of the smallest

modulus to the next-to-smallest modulus increases, the switchover

value of A increases. For the first two pairs of zeros the ratio

is .860 and A is 68 . For the next two pairs the ratio is .916

and A is 100 . For the last two pairs in this group of zeros the

ratio is .972 and the test is not passed for any A < 200 . In this

case the program automatically shifts the zeros by <.93, the test is

now pissed withA = 12, and the algorithm converges to the zero at

“4+ 31.

-23.



Table 11

Estimate From Number of
Zero Modulus A Stage One Iterations

.025 & .0351 .0430 | 68 .0250015 + .0350012i 3

-.04 * .0%i . 0500 8 -.03999988 + .0300002i 2

27 # 371 .458 [100 26997 + .369931 3

4 oe L3i . 500 8 -. 400002 + .2999961 2

-4. * 3.4 5. 00 12% | -4,0005 + 3.00031 z

2.9 + 3.9i 4.86 12 2.9004 « 3.000091 3

10. + 2.1 10.198 20 9.996 + 1.99i 3

-20. 20 12 | -20.0089 2 |

20. 20 b 20. 0000006 2

30. 30 b | 29.999999995 0

30,30 . Found Directly From the Quadratic

*Switchover test not satisfied at A = 200 . Shift the zeros by 2.95

and the test is passed with A = 12 .

24-



Example 3. This is the 36-th polynomial whose coefficients were chosen

randomly by Henrici and Watkins [2]. All its zeros lie close to the

unit circle which make this example a difficuit one for our algorithm.

The polynomial is P = 965.3420 + 6466" - b2. 0150" + 70.3117"

+ 3072. bt-° + 2.953¢ + + 5.6163" ° + 870.7567 - 7.914158 - 74. 110t57

- 22. 964420 + 9. 2052¢57 - 2. hoB7te - 30, 055450 + 6.58107 - 6.84611

- +, 8867t°° - 30,1514 - 3.637410 + 67.9167 - 300. 57410 + 60. 247117

+ 265.74 1 - 453, 86¢°~ - 7015. 681° - 309. 674% - 2.0574" - 85.561t7

. Je 594tC - 20.775t" + 49. 225° + 502k. 5” - 083830 + 73.9411"

+ 0. 04 9060L° + 88,%12¢t - 993.56 .

Many of the zeros reguired shifts before they were found. The

column "number of shifts" in Table III has the following meaning. If

the entry is 1 a shift of the zeros to the right has succeeded. If

2, then the first shift has failed tc¢ produce a polynomial wacse

smallest root or pair of roots could be found, but a subsequent shift

of tne zeros to the left succeeded. If the entry is 2, then both

the shifts have failed and the original Stage One calculation has

been restarted. Note that one of the largest zeros has been calculated

first. Since ali the zeros are of comparable magnitude this does

not cause trouble during deflation. Purification in the original

polynomial produces no change in the approximate zeros in the 10

significant figures which are quoted in Table III,
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Tabie 111

Number Number of

Zero Modulus of Shifts A Iterations

-.9828508293 & .1124801357i .989 1 Lb 3

-. 5871954694 + .L4B1968B6LOTI  .T60 1 L3 3

.2208328178 + .700004L6711 T7354 0 60 3

.8127598823 + .06147G74641 .815 o) 96 3

-.8845981101 ¢ .30151966251 -935 1 108 L

-.8372852532 + .39629609161  .926 1 72 3

-. 7466486856 + 60412345111 . 960 1 He 4

6330847696 + .6931k12366i  .959 2 92 b

-.2094825011 + .89936162031 . 92k 0 152 3

-. 5831113093 + ,7852246824i .978 1 184 lL

-. 3772294487 + .B980728714i 97 1 96 4

-.0725823577 + 99087572151 99% 1 164 b

. 5788786350 « .77200999871 . 965 0 120 3

3926236740 ¢ 92499864131 1.005 2+ 384 5

.1585296127 + .1000%29321i 1.013 i 68 4

8264593743 ¢ .5773500L671 1.008 4) 188 5

| . 9538469054 + .36071272241 1.020 0 9 4

1.053012577 + .0B77037032i 1.057 Found Directly From the
Quadratic
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10. SUMMARY

Our major conclusion is that the algorithm described here can

be used ag the basis for a program which automatically calculates all

the zeros of a polynomial and finds them in roughly increasing order

of magnitude.

It is clear that our program could not campete in terms of

computer time with a program which simply always uses Muller or

Newton-Raphson iteration, when these iterations converge. Note,

however, that if a problem is easy, then the switchover from Stage

One to Stage Two is made early. Hence, easy problems are handlec

relatively cheaply. Time is spent on the hard zeros. One may view

the technigue as one which involves a spectrum of iteration functions

with the appropriate iteration automatically selected.

Our program is designed to be a general polynomial solver. It

must be able to handle all polynomials. If one knows a priori that

one is dealing with a special polynomial, such as one with all

distinct real zeros, then Newton-Raphson or Laguerre iteration may

be used safely. Furthermore, a computer library should probably

contain special routines for handling quadratic, cubic, and perhaps

quartic equations. A general polynomial solver is needed to handle

the cases where special properties of the puvlynomial are not known

or if there is to be only one polynomial solver in the library.

The only difficult case for our algorithm is when there are

near equimodular zeros such that our translations don’t break the

near equimodularity. We are studying methods for handling this

-o7-



problem either by a suitable modification of the algorithm or by

switching to another method in case this difficulty occurs.

We are considering the feasibility of using complex translations

even in the case of real polynomials. This would mean only the case

k = 1 need be considered. It would also offer greater flexibility

in translation.

Our program is incomplete in that no attempt is made to give

a posteriori estimates of how good the calculated zeros are.

The numerical examples exhibited here, as well as other examples

we have run, indicate that the switchover test works quite efficiently.

In elmost every case the test is not passed until ) is large

enough so that the Stage Two iteration converges. "ie value of

A at tne switchover point increases as the ratio of the magnitude

of the :mallest zero to the magnitude of the next smallest zero

increases. Usually the approximation from Stage One 0 Stage Two

is good to between two to four figures which indicates the first

stage has not been carried too far.

Observe that very few iterations are required in Stage Two as

we would expect from the discussion of Section 3. Jur numerical

results confirm Wilkinson's conclusion [10, pp. 65) tha® there is

little to be gained by purification in the original polynomial pro-

vided that the zeros have been deflated in the proper order. We

have not found a single case where a zero is significantly improved

by purification. This also indicates that our procedure for ter-

minating Stage Two is working well.
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Flowcharts

These flowcharts are intended only to give the general flow of the

program,

wtart

lead devree

and coetticients oi” tb

N - DEG

Call smallestroot (P,a,false,c)

— tm No | Procedure( c= true? has failed
Yes

P(t) « Ble) _ P(t) « pe)
(t-0)(t-5) NO Is G real? et

N « N-2 — N «N-1

_ Yes N > 21)

No

Calculate last root

or pair of roots directly

on Flowchart 1

End Main Program
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smallestroot P: Polynomial (array of
(P,a,self,c coefficients)

a; output of a zero
Self: Boolean variable which 1i¢

true if smallestroot calls

upperlimit «~ 400 itself
limit ~ 200 ¢: output variable which is true

e + 1033) «0 if smalleestroot has been
: successful,

Por { «27A,,.., M+ 3

R(1+1,t) « 20H(1,6) - BQ) p(e))
AeA + 4

Is scalar recurrence satisfied No
with residual < e? 2

Yes

Is least squares satiafied No
with residual < e?

Yes

iterate with [Yes ©  -o\No J iterate with-

Hp (t,V) a ¥o(t,W) No

G « final iterate t Yee
6 «+ true if iteration converged

Flowchart 2 - Procedure smallestroot
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EET: (semis 3000 AD
Yes

Yes

No

Is this first shiftd—N°

Yes

P1(t) ~ Plo)call smallestroot (Pl,B,true,c)

a «ps , Yes - NG P(t) « P(t+n)a + p-s o = true? call smallestroot (P1,8,true,c)

ag NG limit « limit + 200

(= aa
Ye

(3) limit < upperlimit
No

Flowchart 3 - Procedure smallestroot (continued)
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