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1. INTRODUCTION

The first task in devising a numerical procedure for solving a
given problem is that of finding a constructive mathematical solution
to the problem. But even after such a solution is found there is much
to be done. Mathematical solutions normally involve infinite processes
such as integration and differentiation as well as infinitely precise
arithmetic and functions defined in arbitrarily involved ways.
Numerical procedures suitable for a computer can involve only finite
processes, fixed or at least bounded length arithmetic and rational
functions. Thus one must find efficient methods which yield approximate
solutions.

Of interest here are the initial and boundary value problems for
compressible fluid flow. Constructive solutions to these problems can
be found in [Bl. As presented there, solution of the boundary wvalue

problem is limited to the subsonic region, and is given symbolically

as a linear combination of orthogonal functions. A numerical continuation
of this (subsonic) solution into the supersonic region can be done by
using the (subsonic) solution and its derivative to set up an initial
value problem. The solution to the initial value problem may then be
valid in (some part of) the supersonic region. Whether this continuation
will lead to a closed, meaningful flow is an open question. In this
paper, we deal with the numerical solution of the initial value problem.,

We are currently working on the rest of the procedure described above.
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2. THE INITIAL VALUE FRJBLEM

The partial differential equation describing the flow of a compressible
fluid is nonlinear when considered in the physical plane (x,y-plane)
However, when transformed into the so called hodograph plane (H,6-plane) ,

this equation becomes a linear one, namely

¥ 4 2y 1- M
2.1 ¥+ 4w ¥ <o p(m) = =M
(&) S ) e ) ;2
where
v
(2.2) H=H(v) =] %dv
V1
(23) o = (1= 3k - 1) (DAY
(2.1) M= V/(ai - %(k-l)ve]%

and 6 is the angle which the velocity vector forms with the positive
direction of the x-axis, v is the speed, WGLG) is the stream
function, M is the Mach number, p is the density, v is the

speed when M-= 1 (i.e., the speed on the sonic line), k is a constant
depending on the fluid and a is a conveniently chosen constant.

We shall describe a numerical procedure for solving the initial

value problem in which the stream function, ¢(HO,6) = f(6) , and its

ov(H,6
derivative, ( ﬁ ) = g(l)(B) , are specified on an arbitrary
H=Ho
line, H= Ho . The basis for this procedure is provided by the
following:




Theorem 2.1. (See [B, p. 895 ] ). Let @ and B satisfy
a<B <H(a0\/27(k-15). Suppose that, for |6] < 91 and a given.
Hoe[Oi,B] we have

Oy(H,6
H

(2.5)  (H,,0) = ) c 6" = £(0) ,

=) nDnGn_l = g(l) (e)
n=o =0

H=H n
o

where the series ZCnen and EDnen converge uniformly and absolutely
2
for |6] < 6, . Suppose that l£(H)] < ¢, 0<ec<e for Hela,B]

Let us define functions sm(H,HO) by SO(H,HO) =1, sl(H,Ho) = H--Ho ,
n i Bt
(2.6) sm(H,Ho) =HIHI2(H2)I§ J z(Hu) coo QH GH o ..ldH

(o] (o]

o H
o

and for m = 2,3,...

- Then, for H and 6 satisfying \Gl +c \H-HO\ < 61 and Hel[a,B) ,

(2.7)  4(m,0) = £ (0) + s, (m,1)e ) 6) )

@© .
J
Z_ (-1) {sej(H,HO Sp341
J=0
. . . . (1) _ af
is the (analytic) solution of (2.1) satisfying (2.5). Here f 35
(2) _ a°f
f = EE etc.
ae

Proof: It is easy to check that (2.7) satisfies (2.1) and (2.5). For

a proof of (absolute and uniform) convergence see [3B, p. 896].

(However, there is an incorrect specification of the domain of convergence
in this reference. The domain stated there is ‘9|.+C\H-Hol < 91,

whereas the domain of convergence actually established by his proof is
{(m,0)| lo| + cla-n | < 6, and |H-H| < BT .

The constraint \H-Hol < H, corresponds to our constraint, He[Q,B].)
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The domain of convergence guaranteed by this theorem is pictured
in Figure 2.1. If the initial conditions are specified as a Fourier
series instead of a power series, then a theorem similar to this one can

be proved. 1In that case, the domain of guaranteed convergence would be

rectangular.

l

l
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l

Figure 2.1

In numerical evaluation of the right hand side of (2.7) we have to
approximate all functions in a convenient way and we must truncate the
series. We shall denote approximation functions by adding a horizontal

bracket (rﬂ)' over the function. In this manner (2.7) becomes

! "(25+1)
(H,Ho)g J (9>

(-1)3{55.(H,H0)f(23)k9) L)

(2.8) ﬂgn(H,HO,G) = i ; 2341

Al

where n 1is an (arbitrary) positive integer denoting the degree of

truncation. (Notice the approximation, r\-y:l , to § depends on H_,
o}

whereas { does not.) Since computers can only perform the basic

operations + , -, X, 3, we must use rational approximations, The

-4




following remarks about f(QJ) will apply to g(2J+l> as well. In

L N r(25)
general, obtaining approximations f s for j = 0,1,...,n, is not
difficult. In fact, in the usual application of this of this procedure,

f(ea) will be defined in terms of functions customarily available on

computers, such as sine, cosine, etc., and it will be possible to
(23) to almost full machine accuracy. 1In such cases the
- (23]
fact that we are really calculating a £

calculate f
is somewhat obscured by
our ability to express it, in current programming languages, in precisely
the form of its formal definition. For example, the Algol statement
to calculate an approximation to f(x) = sin x is just "f(x) := sin(x)".
However, when only ?ﬂ, and not f , is' known, perhaps as the result of
solving the boundary value problem alluded to 'earlier in this paper,
a severe error is incurred. This is why we keep track of f<2j) - ;TESY
in what follows.
23, . o
The values of ¢ (8) may be derived from an approximation, 'f .
For example, if f 1is given as in (2.5), we can truncate that series
to obtain Ej. We can then use an iterative synthetic division scheme

to evaluate ?EHFT , for 3 = 0,1,...,n .

r( 25)

Of course the error of

incurred by such a procedure increases as j grows. However, if
2] . . .

(some norm of) the f( J) , considered as functions of j , does not

increase too rapidly for j < n , then the absolute errors of

.f'\'aa)

. . . , *%
SEJ will not increase as j grows and remains < n .——/ This is

* (] f '
—/Note that ?(m) denotes the m-th derivative of f and £(m) denotes

an approximation to f(m) N ?(m) need not be a very good f(m)

*% / ) . . . , ,
This is discussed more precisely in Section 5.




because Sy~ 0 rapidly as m —® since, as indicated in [B],

6-1

m m m
(2.9) s, ()| < == "|H-H_|

where 5m= ¢ for m odd and Sm = 1 for m even, and c is the
constant in Theorem 2.1.

The determination of E; presents more challenging problems. Due
to the nature of R(H) , an exact formula for Sm has not been found.
The numerical procedure which evaluates rE; will be used to trace the
streamlines W(H,@) = const. Such curves, when transformed into the
(x,y)-plane, describe the fluid flow. This means that many evaluations
of 'EL will be required (we use approximately 1500 per run), and so the
Thﬂ in (2.6) must be chosen to yield an efficient scheme. In the next
section we derive such an approximation to £(H) and thus to sm(H,HO) for

the special case in which the fluid under consideration is air. In

this case

(2.10) vy 2\ /5/6 k=1.4

and we choose a_ =1 (see (2.3) and (2.4)). The function Z(HQ
takes the form shown in Figure 2.2. It has a singularity at

p = .25125... and is asymptotic to unity as H = - . Its only zero
is at H=0. This information will prove most useful in the next
section.



P

Figure 2.2
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3. THE INTEGRALS smGLHO) AND THEIR APPROXIMATION

The Sm of egn. (2.6) satisfy the recurrence relation

H H
(3.1) s (HH ) = I t(Hy)s, o (H,,H )aH,aH, for m > O
H H

with the starting values
(3.2) sO(H,HO) =1 sl(H,HO) = H-H_

where H = HO is the line on which the initial conditions of (2.5)

are specified. We will consider Ho satisfying Ig < .25125... = p ,
since as H - p the Mach number, M(H) , approaches infinity. A major
problem in this implementation was the construction of an approximation,

()
£(H) , to £(H) over some subinterval of (- «,p) which yould allow

a relatively simple expression for f5' | The approximation of [B—E—K]
m
was not satisfactory for our purposes. It consisted of two tenth degree

polynomial approximations, one for the region [-1,0] .n4 the other
for [0,.2] . In [B--x] , H, was fixed at zero and so their
approximation lead to two expressions for rs—r'n(H’Ho)’ qe valid in [-l,O] ,
and the other in [0,.2] . In our work Ho is arbitrary and will vary
from run to run, so we must have a single representation for rs-:n

An adequate approximation to £(H) over [-1,.22] was found

by observing that (for k = 1.4 ) the singularity of R(H) at p is

of order 12/7 , and that £(H) has the expansion

© 2 1-6)
(3.3) 1(H) = Zg,.(p-H) 7

J=o




-
O OCPNO D g

b
m

“1,77922350435€=01
-4,136431403879=02
9.,106620273008=02
1,820571898088=01

2,220908576430=01
2,185710181748=01
1.86381855591f=01
1,410670846956=01
9,494812532608=02
5,572400863608=02
2.,674319234338=02
8,127266108300=03
~1,891816615770=03
«5,815650047500=03
“6,0769789476008=03
“4,60812991016€=03
“2,701697787308=03
=1,069143841928=03
2,25378894809@=05
5,69021882908808=04
7.113560015508=04
6,151420789908~04
3,930119971220~04
2,418540485718=04
=2,351980168900=06
5.995362172200=05
=3,245175563220=04
4,072214230600-04
~8,80318119550@=04
1.,4883464267968=03
=3,593330687618=03
7.716102536200=03
"1.384197265420=02
2.487067413430-02
=5,612488427808~=02
1.,4417583813568=01
=3,512306740140=01
7.850808119308~01
-1,683977149188+00
3,612907356320+00
-7,505375188708+00
1,310446062230+01
1,2736736042104+01

(a)

Single Precision (lo-digits)

Table 3.1

DO . b Pob . pua b b b o
COCXNON P WN=OOOVNOU & 0 O . 5

N
DO s

b
m
=1,779223504330=~01
=4,136431403910=02
9,1066202756008=02
1.820571897486=01
2.,2209085771508=01
2,185710180808=01
1.863818557988~=01
1.,410670841338=01
9,494812638108=02
5,572400743108=02
2.674319225808«02
B8.127271074708=03
=1,891832426049=03
=5,815614293100=03
~6,077052443600=03
“4,60797048296€=03
=2.,702040723138=03
*1.,06852395106@8=03
2.161812372450=05
5.703212872808=04
7.111631485300=04
6,103065319400-=04
4,1021529668268=04
2,073029866240=04
5.161739045088=05
-4,2357800521768=05%
~8,181219922308=05
»8,339706181108=05
«6,472657819108~05
“3,976938042310~05
“1.,731844905438~05
*1,40752984364P=06
7.361391213300=06
1,03263459349€=05
9.534607635300=06
6.933415846408=06
3,968302345620-06
1.487653559608=06
“1.,701597464316=07
=1,01371116270€=06
=1,233148790398-06
*1.07119981352@=06
=~7.4325857691098=07

(v)

Double Precision (20-digits)




T

#1,00
~0,99
=0,98
=0,97
*0,96
=0,95
=0,94
=0,93
0,92
=0,.91
=0,90
=0,89
0,88
=0,87
=0.,86
=0,85
-0,84
-0,83
=-0,82

.=0,81

-0,80
-0,79
=0,78
“0e77
=0,76
-0.75
“0,74
=0,73
=0,72
=0,71
«0,70
“0469
=0,68
“0,67
=0,66
0,65
=0,64
*0.63
0,62
=0,61
=0,60
*0,59
«0,58
=0,57
=0,56
=0,55
=0,54
0,53
=0,52
0,51

v
0,28167511771
0,28462335096
0.28760501266
0,29062056684
0.29367048664
0,29675525492
0,29987536417
0.30303131719
0,30622362709
0,30945281770
0.31271942401
0,31602399239
0,31936708099
0.322749260 14
0.32617111272
0,32963323458
0,33313623498
0,33668073699
0,34026737802
0,34389681023
0434756970110
0,35128673394
0,35504860845
0,35885604110
0,36270976657
0,36661053696
0,37055912358
0,374556317 34
0,37860292%942
0,38269979202
0,38684775927
0.39104770801
0,39530053840
0,39960717605
0.%0396857077
0,40838569977
0,412859567¢66
0,41739120787
0,421981068374
0,42663208987
0,43134355341
0,43611723553
0,44095433288
0,44585607911
0,45082374659
0.45585864892
0,46096214040
0,46613562107

0,47138053691 .

0,47669838267

Table 3.2

L)
0.99592948542
0.99574960836
0.99556146560
0.99536465588
0.,99515875701
0,99494332463
0.,99471789097
0.99448196347
0.99423502334
0.99397652406
0,99370588967
0,99342251315
0.99312575440
0,99281493842
0.99248935304
0,99214824679
0.99179082647
0.99141625444
0.991023604603
0,9%06 1206653
0.99013052799
0,98972798590
0,98925333550
0.,98875540802
0,98823296630
0,98768470053
0,98710922337
0,98650506473
0.,98587066627
0,.98520437540
0,98450443888
0.98376899584
0,98299607032
0,98218356320
0.98132924343
0,98043073886
0,97948552555%
0.97849091728
0,97744405330
0,97634188549
0,97518116428
0.97395842344
0,97266996343
0.97131183347
0.96987981187
0.,96836938440
0,96677572165
0,96509365270
0.96331763782
0,96144173773

-
£ (H)
0,99592842099
0,99574867754
0.995560656433
0,99536395142
0,99515814775
0,99494280004
0,99471744152
0,99448158058
0.,99423469920
0,99397625166
0,99370566268
0,99342232592
0,99312560183
0,99281481595
0,99248925660
0,99214817279
0,99179077166
0.99141621597
0.99102362139
0.99061205349
0,99018052460
0,98972799042
0,98925334646
0.98875542408
0,98823298638
0,98768472364
0,98710924870
0,9865050915%7
0,98587069401
0,98520440357
0,98450446705
0,98376902365
0,98299609751
0,98218358956
0,98132026883
0,98043076308
0,97948554856
0,97849093901
0.,97744407372
0,97634190460
0,97518118208
0,97395843994
0,97266997868
0,97131184748
0,969879682466
0,96836939618
0,96677573239
0,96509366245
0,96331764663
0,96144174570

n
2(H) , using the first 43 coefficients of the

expansion of £[HI]

10

RESJDUAL
1,068=06
9.,316~07
8,119=07
7.,048=07
6,098=07
5,258=07
4,498=07
3,838=07
3,248=07
2,728=07
2.,270=07
1,878=07
1,5308=07
1.220=07
9.6480=08
7,408=08
5.,480~08
3.,858=08
2,468=08
1-309'08
3.408=09
=4,520=09
=1,100=08
"1.,618~08
-2,01@8=08
.20319'06
~2.538-08
-2,688=08
“2,778=08
=2.,8208=08
-2 0820'08
~2.,788=08
=2.7208=08
~2,640-08
=2,538=D8
=2,420=08
«2,300-08
=2.,170=08
=~2.048=08
-1,910=08
=1,78€=08
= 1 4658-08
=1,520«08
=1,400=08
=1 ,280=08
~1,18€0~08
=1 ,078=08
=9 ,750=09
=B 82609
=7.,978=09



=0,50
-0.49
0,48
-0.47
*0.46
-0.45
-0.44
=0,43
-0.42
-0.41
-0.40
-0.39
=0,38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
-0.30
=0,29
-0.28
—-=0,27
0,26
-0.25
-0.24
«0,23
-0.22
-0.21
-0.20
-0.19
«0,18
-0.17
-0.16
-0.15
-0.14
'0.13
0,12
-0.11
=0,10
-0.09
=0,08
-0.07
~0,06
-0.05
-0.04
“0,03
-0.02
-0.01
0.00
0,01
0.02
0.03
0.04

V

0.48209070409
0.48755910044
0,49310522728
0,49873079916
0.50443759283
0.51022745033
0.51610228252
0.52206407277
0,52811488091
0.53425684745
0,54049219802
0.54682324844
0.55325240973
0.55978219385
0.56641521962
0.57315421933
0.58000204573
0.58696167951
0.59403623759
0,60122898198
0,60854332935
0.61598286152
0.62355133673
0.63125270214
0,63909110717
0,64707091832
0.65519673633
0,66347341024
0.67190606164
0,680500103318
0.68926126276
0,69819560954
0.70730958293
0.71661002450
0,72610421358
0.73579990712
0,74570538399
0.75582949491
0.76618171840
0.77677222404
0,768761194391
0,79871265383
0,.81008706579
0,82174893378
0,83371317518
0,84599601072
0.85861512670
0,87158986355
0,88494143649
0,89869319491
0,91287092921
0.92750323574
0.94262195453
0.95826269685
0.97446548596

Table 3.2 {(con't

1(H)

0,95945958045
0.95736432450
0.95514861883
0.95280455865
0.95032363681
0.94769669038
.94491384151
.94196443222
.93883695240
.93551895985
.93199699184
.92825646652
.92428157376
.92005515317
.91555855810
0.91677150368
.90567189672
90023564480
.89443644203
.88824552763
.88163141380
.87455957821
.86699211577
.85888734321
05019934976
.84087748432
83086576865
0,82010223053
0.80851812710
0.79603706029
0.78257395031
0,76803384757
0,75231055135
0.73528500001
0,7168233875
0.69677495230
0,67496937213
0,65121368205
0.62528861428
0.59694423179
0.56589469700
0.53181197270
0.49431820057
0.45297642975
0,40727927411
0,35663495387
0.30035000622
0.23760772770
0.16744109659
0,08869850144
=0,00000000026
=0,10031900480
-0.21428099099
-0.34436251289
~0.49362198301

eNoleolololoNoNoNa]

O OO0 OODOOOO O

11

(1)

0.95945958762
0.95736433093
0.95514862459
0.95280456377
0,950323064137
0,94769669444
0,94491384507
0,94196443536
0.93883695516
0.93551896230
0.93199699395
0.92825646835
0.92428157535
0,92005515455
0.91555855927
0,91077150471
0,90567189758
0.90023564554
0,89443644264
0.88824552811
0.88163141416
0,87455957846
0.86699211588
0.85868734317
0.85019934948
0,8408774681369
0.83086576879
0.82010223066
0,80851812721
0,79603706036
0.78257395040
0.76803384761
0,75231055137
0,73528500003
0,71682338751
0.69677495234
0.67496937217
0.65121368208
0.62528861430
0.59694423183
0,56589469704
0.53181197275
0.49431820061
0.45297642976
0,40727927413
0.35663495386
0.30035000626
0.23760772766
0,16744109661
0,08869850143
«0,00000000004
=0,10031900490
=0,21428099107
-0.34436251279
-0.49362199647

RESIDUAL

~7.,188=09%
=6,4368=09
~5,756=09
«5,120=09
~4,568=09
-4,068=09
=3.,566~09
=3,158=09
“2,768-09
-2.“5"09
=2,110-09
~1,846~00
=1,59@0=09
-1,388~09
=1,178=09
=1,038=09
~8,518~10
=7.,408=40
=6 ,000<10
~4,868=40
'3.62"10
=2,530=«10
=1.156=40

4,18f=11

2.808=10

6,248=~40
'10“6.'10
'1.33"10
=1,116=10
-6,550=11
=9,2860=11
=4,1868-11
~2,550=11
=2.,360~11}
=1{.8208=42
=3,820=41
=3,6408~=11
~3,860~1}
=2.,000-11
-4 ,738~1}
=4,000ay1
-5,280=11
~3,460~11
=1,820=11
=2,550=11

1.,000=y
-4,730=11

Q4,180-11
'2.36.-!1

1.270~11
=2.,220=10

1,060~10
8,008~41
=9 ,640=1]

1,350=08




V

0.99127555152
1,00874429275
1.02693050930
1.04590194092
.06573724600
.08652857057

, 10838493834
.13143680239
.15584227913
.18179588542
.20954110887
1,23938906804
1.27174725139
1.30716580707
1,34641635550
1.39063599246
1,44161618569
1,50246314780
1.57943776486
1,68924770653
1.,94538648089

I Lol =y

Table 3.2

2(H)

-0.66587160763
=0,86591152770
=1.,09985392433
=1.,37557841672
-1.70338381342
=2,0969395437¢6
-2.57470596257
=3,1621087046
-3.89496426965
-4.82505765359
-6.02957797020
=7.62781509130
-9.81233482410

-12.91111808070
-17.52191991450
-24.83478987800
-37.52253776940
-62.74095549100
-125.95313124800
-387.33409698600
-17160.52854390000

12

(cod-t)

"(H)

-0.66587161183
«0,86591152920
-1.09985392442
-1.37557841692
-1.70338381332
-2.09693954328
~2.57470596209
-3,16210870343
-3,89496427141
-a,82505765285
-6.02957797010
~7.62781509290
-9.81233482030

=12,911118081230
-17.52191991630
=24,83478990340
=37,52253910010
-62.74095589500
*125.95313135300
=387,33409694500

-17160.53556070000

RESIDUAL

4,200-09
1.,508=09
80739"1
2,048=10
—1 +020=10
=4,808=10
-4,800~40
-1,180«09
1.760=09
«7,426=10
=1 431810
1.,596=09
-3 08...09
5.82€6=10
1,75€«09
2'5“..03
1,330=06
3,738-09
1 +040=07
=4,100-08
7,020«03




The first 43 coefficients, bo"”’bhz , were calculated in both single

and double precision (10 and 20 decimal digit accuracy) on a B5500 computer;
they are listed in Table 3.1. The residuals listed in Table 3.2 indicate
that these coefficients yield a very good approximation to £(H) . The
program which calculated these coefficients is included in the appendix.
Equation (3.3) follows from (2.1) and (2.2) by substituting 5(1-7)

for v2 so that

Y - T T
(3.4) H =L[1-.2v2)2'5 d—;’ = - %I "l__f"= _%
2
6

V3

(1'5/2+T7/2+. ..)ar

oV e—

(3.5) pH =+ 5t

(3.6) R(H) = —Z

Our approximation,
7 2j-12
(3.7) ) = ) a.(e-H) ‘

J=o

was found by using the Remez algorithm, as adapted for the B5500
computer by Golub and Smith [G-S], to calculate the best values, in
the Chebyshev sense, for 8,081 5000,8,

We now give a representation theorem for r;:n , our approximation

r
to S based on Z(H):

Theorem 3.1. Let the l's—r'n be connected by the recurrence relation

13




———

H H
lr‘r m
(3.8) 'é:n(H,HO) =5 I £(u,)s  (Hy,H ) aH for n>2
H H
@] @]
where
™ i
(3.9) so(H,Ho) =1 sl(H,HO) = H-H_
~ 2j-12
7

(3.10)  IH) = Y a,(p-H) and 7 <N <

J=0

(o]
Then s, can be expressed as

— = 3/
(3.11) sm(H,HO) ::.E:Cnbj(p_H) m = 0,1,2,...
J=0
where Cm,l = cm,3 = cm,5 = 0 for all m . The Cm,j and Cm—2,j

are connected by the following recurrence relations:

(3.12) Cm,j = " Z—'Bm,j—2 for j = 2,3,00.,mN  with J # 7
-2 J7;5
(3.3)  epq= L By s(p-H)
J=o
gl q
(3.14) cm,o = - Z;zcm’j(p H )
J._.
where
(3.15) Bm,l = Bm,3 = 5m’5 =0

and for Jj = 0,2,%,6,7,8,...,mN-2, with [+] denoting the greatest integer

function,

14



(3 min{j,oN-2}]

S
(3.26) By 5 =53 .;z %k°m-2, j-2k
k=% + % max{0,j-(m-2)N}]

Proof: Equation (3.11) holds for m = 0,1 . We proceed by induction,
assuming that (5.11)-(5.16) hold for, m-2 and proving them for m .

We have

2j-12 (m-2)§

. N-1 =
1 ™ _ 7 : 7
= .(p-H -
(3.17) s J(E)EEH) = T a(p-H) Z Cpep, i (P-H)
J=0
k=0
-2 1%12
= Z am J-(P'H)
j=o ™
where, for J = 0,l,...,mN-2
[é min{ 3;21\1'2}]
.18 a =

(5.18) a5 *kn-2, j-2k

k=[% + % max{0,j-(m-2)N}]
Since (3.17) is to be integrated, we.must show that « =0, so

m,5

that the term o 5(p-H)-l drops out of (3.17) and no log(p-H)
)

terms enter. Part of our induction hypothesis is o

“m-2,5-2k
for k = 0,1,2, and so
[# min{5,2oN-2}]

(3.29) a5 = 2 %k°m-2,5-26 ~©  *
k=% + % max{0,5-(m-2)N}]

The rest follows as a formal calculation. 0.E.D.

15




This procedure of approximating a singular function which is to be

integrated many times, 1s more general than it may at first appear.

If a logarithmic term had appeared in the above, we would simply have

. m C e .

started our series for £(H) at ao(p-H) , for some suitably
chosen small constant € . (As a matter of fact, we have had to do
just this in the implementation of the solution to the boundary value
problem.)

The values of %. for 3 = 0,1,...,7 are listed in Table 3.3.

It follows from the Remez algorithm that

(3.20) max  |£(H) - WH)| = 4.10555 x 107

and the values of !(H)—EYH) in Table 3.4 confirm this result.

%
-0.1505866818
-0.4018655347

2.0945191543
-5.8821787341
10.9583158033

-10. 7524447788

5.9416272229

-0. 8198101027

C.

~ O U1 &= W o o

Table 3.3

For computational purposes, it is useful to decompose E; of

(3.11) into seven subsums, X (H,H ) :
m, k o]
mN-k
(===
= = - j =
(3.21) xm,k = Xm’k(H,Ho) z:‘ cm’7j+k(p H) for k = O,...,6
j=o

16



-1.00
-0.95
-0.90
-0.85
=0,80
-0.75
-0.70
=0,65
=0,60
'0.55
-0.50
-0.45
-0.40
=0,35
«0,30
-0.25
=0,20
“0,15
=0,10
-0.05
«pO
0.05

0,10

0.20

0022'

£(H)
0,9959294854

0,9989433246
0.9937058897
0,9921482468
0.9901805280
0.9876847005
0.9845044389
0,9804307389
0.9751811643
0.9683693844
0.9594595805
0.9476966904
0.9319969918
0,9107715037
0,8816314138
0.8408774844
0.7825739504
0,6967749524
0.5658946971
0.3566349540
0,0000000004
-0.6658716068
-2.0969395414

-6.0295779653

=24,8347898435

~62,7409553870

Table 3.h4
(1)
0.9959705387

0.9949469612
0.9936842046
0.9921121400
0,9901395036
0.9876466686
0.9844755284
0.9804151337
0,9751809776
0.9683845936
0,9594880509
0.9477343230
0.9320380440
0.9108091401
0.6816585552
0,8408880189
0,7825643555
0.6967462574
0,5656544750
0.3565983358
=0,0000128543
=0,6658472800
-2.0969003767
-6.0296000934
-24.8347511783

-62.7409143510

17

RESIDUAL
-0,0000410532

-0,0000036365
0,0000216851¢
0.0000361068
0,0000410244
0,0000380319
0,0000289105
0,0000156052
0,0000001867

=-0,0000152092

=0,0000284704
=-0,0000376326
=0,0000410522
=0,0000376363
=0,0000271414

-0.0000105345
0,0000095949
0,0000286950
0,0000402221
0.0000366182
0,0000128546

=0,0000243268

«0,0000391647
0,0000221281

-0,0000386653

-0,0000410362




6
o k/7
(3.22) sm(H,ho}. =X ot 1\;lxm,k(p-ﬁ)

In this way the evaluation of ?m involves the calculation of up to

the sixth power of (p—H)l/7 and up to the [%g]-th power of (p-H) ,
. 1/7 . . —
instead of the mN-th power of (p-H) . This calculation of Sy

is roughly equivalent to the evaluation of seven [g%ﬁ-th degree
polynomials in (p-H) . For m = 10 and N = 8 , 1l-th degree
polynomials are evaluated instead of 80-th degree polynomials. Thus,
approximation with negative, fractional powers of the variable (p-H)

has several beneficial side effects:

(1) More coefficients are used per unit degree of the approximation;
e.g. a 2nd degree polynomial approximation has 3 arbitrary
coefficients, whereas a 2nd degree approximation in powers
of 2/7 has 8 arbitrary coefficients. Freedom to choose

more coefficients aids in minimizing error.

(2) Beginning the fractional power expansion at a negative power

again allows more coefficients.

These advantages more than compensate for the problems caused by the

presence of a singularity of £(H) near the domain of integration.
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4, EXAMPLES

In this section, the (approximated) solutions to four initial wvalue
problems are presented in the form of tables and graphs in the hodograph

and physical planes. This was done in the following way:

(1) the line H = HO was specified (H0 = -.2 was used in all
four examples), and the procedure FANDG was supplied for
. = (1) . .
evaluating f£(8) , g~ /(6) and their derivatives (these two

functions are the initial values for the differential equation);

(2) the coefficients for I-s_['n(H,HO) , for m = 0,1,... ,41 wyere

computed, using the recurrence relations in Theorem 3.1;

L a
(3) the coefficients for d—H-rg'm(H,Ho) were computed from

(o]
those of sm(H,Ho) ;
(4) three streamlines were traced in the hodograph: y(H,6) =T(o’1,5) ,

o m
¥(H,0) = ¥.05,1.5) and ¥(H,8) = ¥(.1,1.5) ;
(5) these streamlines were numerically transformed into the physical

plane, using the relations

2
_ cos S MT-1
X = j—p. [——V2 ‘WG dv + ‘va de]
(h.1)

. 2
sS4 P M -1
v=] P [vz Vo AV + ¥, 6]

(See [BH-K, p: 21l for further details and references.)

The values of H and 6 making up a streamline V(H,8) = constant,

m -
were chosen so that |¥(H,8)-constant| < 10 > During each calculation

m
of V(H,0) , terms in (2.8) were added in until the last term added was

19



< 10-6 x I(the current value of the sum)| . An average of six terms
(involving '?o,"s"l,...,?ll) of (2.8) was used in computing T(H,e)
for these examples. FEach example took about 13 minutes on the B5500,
and used STRFNC about 1300 times.

In the first example, FANDG computed the initial values for the

Ringleb solution:

(k.2) f(e) = 2’53?}13%11 ré , g(l)(e) - 2.538 sin ré
° v(H )(1-.2v3(E_))?*?
o 0
with r = 1 . Examples 2, 3 and 4 used (4.2) withr=.8, 1.2 and 1.5,

respectively. A closed form solution for V(H,8) in these last three

examples is not known.

20



EXAMPLE1L

RINGLEB SOLUTION

-——- sonic line

streamline
HODOGRAPH PLANE
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0. 500 .50 - 3.500

-2 500

-4, 500

EXAMPLIE I (con't.

L~

¥(0,1.5)

¥(.05,1.5)
~¥(.1,1.5)

-A. 500

5000

PHYSICAL ~LANE

22

---~- sonic line

streamline




~0,357181
=0,246264
=0,163745
=-0,102783
=-0,058670
=0,028118
«0,008889

0.000000

0,001588

0,000478
-0,002931
-0,008703
-0.016940
-0,027792
«0,041457
-0,078271
=0,102096
=0,130099
-0.162807
=0,200855
=0,245001
=0,296167

EXAMPIE I (con't.)

W(H)e) =

0.670000
0,790000
0.910000
1.030000
1.150000
1.270000
1.390000
1.500000
1.570000
1.630000
1.690000
1.750000
1,810000
1.870000
1.930000
1.990000
.050000
.110000
.170000
.230000
.290000
2,350000
2.410000

NN DN

2.77327

0.569304
0,450090
0.722525
0,784569
0.835328
0.874074
0,900247
0.912871
0,915163
0.913560
0,908669
0,900508
0.889106
0.874504
0.856755
0.835923
0,812082
0,785318
.755729
.723419
.688506
.651115
.611380

OO OO O

23

~2,242512
-3,116098
-3.682120
-4,078386
=4,367205
=44,575625
-4.713453
-4,779586
-4.791589
“4,783195
-4.757582
-4.714820
=4 ,654953
-4.577906
=4,483338
-4.370461
-4.237791
-4.082835
-3.901659
~3,688295
-3.433854
-3.125191
-2.742776

4.519349
3.743652
3.102722
2.526454
1.973886
1.422097
0,861072
0.338178
0,003021

-0,284338

-0.570692

-0,855155

-1.137109

-1.416323

-1.693063

-1.968194

-2.243268

-2,520634

=-2,803553

-3.096367

-3.404747
-3,736064
-4,099968




EXAMPLE I (con?,)

V(H,8) = 2.55392

H 8 \ X Y
-0.608494 0.,444513 0.427338 1.069939 - 5,921173
-0.488494 0.513757 0,488389 -0.432149 5.145598
-0.368494 0.599576 0,560775 =1,602965 4.422127
-0.249132 0.710000 0.647770 "2.523155 3.721549
=0,152526 0.830000 0.733331 -3,144892 3.122730
-0.081516 0.950000 0.808345 -3.564248 2.607194
-0.029892 1.070000 0.871732 =3,869102 2.122954

0.006672 1.190000 0.922581 -4.097494 1.639303
0,031190 1.310000 0.960161 -4.263252 1.140478
0.045677 1.430000 0.983931 =4,368588 0.622701
0.050000 1.500000 0.991276 -4.401377 0.313843
0,051449 1.570000 0.993765 =4,412524 0.002462
0.050436 1.630000 0.992024 -4.404726 -0.264560
0.047323 1.690000 0.986713 =4,380088 -0.530016
0.042044 1.750000 0,977851 -4.341542 =0,792479
0.034492 1.810000 0.965470 =4 ,286697 -1,050833
0.024513 1.870000 0.949614 -4.216739 =-1,304410
0.011902 1.930000 0.930340 -4.131775 =1.553100
-=0,003598 1.990000 0.907719 -4.031549 -1.797441
~0.022304 2.050000 0.881830 -3.915211 -2.038697
-0.044599 2.110000 0.852768 -3.781024 -2,278924
-0.070943 2.170000 0.820637 -3,625991 -2.521052
=0,101882 2.230000 0.785552 =3,445338 =2,769003
-0.138072 2.290000 0.747640 "3.231767 -3,027870
-0.180295 2,350000 0.707038 -2.974333 -3.304213
-0.229501 2.410000 0.663891 “2,656649 -3.606528
-0,286848 2.470000 0,618354 =2,253924 -3.946017
-0.346848 2.524202 0,575301 -1.785603 =4,297146
-0.406848 2.571660 0.536212 ml . 259398 -4.651499
~0,466848 2.613762 0.500521 =0,665216 -5,014157
=0,526848 2.651492 0.467781 0.007538 -5.388860
-0,586848 2.685571 0,437635 0.770293 =5,778577
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EXAMPLE I (con?.)

Vv(H,8) = 2.33002
H ] i X Y

-0.695135 0.365072 0,388885 2 877149 6,042925
-0.575135 0.419169 0.443331 1.086153 5.306357
-0.455135 0.484400 0.507244 -0,299229 4.638221
-0.335135 0.565182 0,583374 -1.371249 4,022005
S0.214730 0.670000 0,676414 -2.210618 3.430994
-0.112822 0.790000 0.773758 -2.792562 2.914211
-0.03' 8940 0.910000 0.859974 -3.175934 2.479842
0.014219 1,030000 0.933820 =3,455529 2,072781
0.051722 1. 150000 0.994235 “3,671452 1,659033
0.077' 119 1.270000 1.040351 -3.837091 1.,219706
0.092822 1.390000 1.071503 ~3,952436 0.749280
0,100000 1.500000 1.086529 -4.009656 0,296088
0,101277 1.570000 1.089257 -4.020179 0.002022
0,100385 1.630000 1.087349 -4,012814 -0,250218
0,007639 1.690000 1.081527 -3.990475 «0,500118
0.092973 1.750000 1.071814 =3,953605 -0.745516
0.086275 1.810000 1.058243 ~3,902856 -0,984653
- 0.077386 1.870000 1.040863 -3,838958 -1.216335
0.066094 1.930000 1,019738 =3,762548 -1.440055
©0,052132 1.990000 0.994943 =3,673967 -1.656067
0.035170 2.050000 0,966566 -3.573032 -y,865437
0.014809 2.110000 0.934712 3,458758 -2.070062
-0.009428 2.170000 0.899493 3,329036 "2 272702
-0.038112 2,230000 0.861037 -3.180191 -2,477026
-0.071924 2.290000 0.819483 »3,006377 »2,687728
=0,111678 2.350000 0.774978 ~5,798648 -2,910730
~0.158355 2.410000 0,727685 -2.543488 =3,153551
=0,213152 2.470000 0.677773 -2.220378 -3.425923
-0.273469 2.526471 0.628566 ~-1,826024 -3.720823
-0.333469 2.575149 0.584534 =1,384301 -4,016389
»0,393469 2.618009 0.544616 -0.884102 -4,318997
=0,453469 2.656191 0.508209 -0.316058 ~4,632029
-0.513469 2.690517 0,474845 0.329813 -4.958083
-0.573469 2.721602 0.444148 1,064386 -5.299320
=0,633469 2.749916 0.415812 1.899670 -5,657649
«0,693469 2.775832 0.389585 2.849030 -6,034841
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EXAMPLE TII

r =.8

--—— sonic line

streamlines

HODOGRAPH PLANE
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EXAMPLE II (con't.)

S 500

] .GA.Om»H.mv

XA.H‘.H.WV

2 500 4. 000

1,000

-0. 500

-2 000

fre—
e ———

1000 —500 -2/000 -01500 17000 21500

-5. 000

---- sonic line

streamline

PHYSICAL PLaNE



-0.459174
-0.339493
~0.239967
~0.163568
~0.104582
~0.059066
~0.024239
0,000000
0.012136
0.020706
0.027702
0.033211
0.037303
0.040028
0.041421
0.041497
0.040259
0.037690
0.033760
0.028419
0,021600
0.013219
0.003167
~0.008685
-0.022495
-0.038448
~0.056767
~0.077711
-0.101592
-0.128776
~0.159699
-0.194881
~0.234948
-0.280655
-0.332926

EXAMPLE II (con't.)

V(H,0) = 2.57676

0.679269
0.790000
0,910000
1.030000
1.150000
1.270000
1.390C00
1.500000
1.570000
1.630000
1.690000
1.750000
1.810000
1.870000
1.930000
1.990000
2.050000
2.110000
2.170000
2.230000
2.290000
2.350000
2.410000
2.470000
2,530000
2.590000
2.650000
2.710000
2.770000
2.830000
2.890000
2.950000
3.010000
3.070000
3.130000

0.504913
0.580352
0.655224
0.722694
0,7826143
0.834846
0.879234
0.912871

0.930691
0.943709
0.954620
0.963402
0.970038
0.974512
0.976815
0.976942
0.974892
0.970670
0.964286
0.955753
0.945089
0.932315
0.917455
0.900533
0.881574

0.860605
0,837649
0.812730
0.785869
0.757084
0.726393
0.693813
0.659359
0.623051
0,584913

28

-1,812304
-2.727762
-3.364548
-3.795537
-4 ,09R271
-4.309051
—-4.444491
-4 ,508365
=4,519884
-4.,511837
-4.487262
—-4.444184
-4,388683
-4.314920
-4.225152
-4.119744
-3.999158
-3.863940
=3,714694
-3.552046
-3.376607
-3.188915
-2,986392
=2,778270
-2.555531
-2.320820
-2.073343
-1.811749
-1.533953
-1.236917
-0.916324
-0.566118
-0.177819

0.260519

0.765920

4,573623
. 752560
.031989
.405731
.827095
269647
.718928
.214336
-0.107177
-0.382636
-0,657376
-0.930622
-1.201443
-1,46R790
-1.731545
~1.988560
-2,23R703
-2.480898
-2.714156
-2.937610
-3.150526
-3.353322
-3.542562
-3.720954
-3.887329
-4.041614
-4.183795
-4.313869
-4.431768
-4.537276
-4,620886
-4.708608
-4.771668
-4.016028
-4.836609
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[ EXAMPLE II (con?.)

3
i V(H,0) = 2.3662")
r H 8 \Y X Y
9
-0 ,585520 0.536424 0.438276 -0.075907 5.162148
-0.465520 n,613881 0.501277 -1.,21709%6 4.426613
' -0.345520 0.711196 0.576209 =2,.,129787 3.719365
e =-0,233100 9.830000 0.660891 =2.831001 3.043472
-0.147131 0.950000 0,738620 =3,295318 2.473098
3 -0.081466 1.,070000 0,808401 -3.619632 1.958474
g -0.931098 1.190000 0.870148 -3,851861 1.467296
r 0.007443 1.310000 0.923717 -4.013627 0,981091
0.036604 1.430000 0.968897 -4.113610 0.490122
0.050000 1 «500000 0.991276 —-4.144420 0.199956
0.061069 1,570000 1.010653 —-4.154897 -0.092914
I 0.068867 1.630000 1.024832 —-4.147507 -0.345590
0.075219 1.690000 1.036730 -4.124829 -0.599039
0.080214 1,750000 I1.046317 -4 ,086746 -0.852327
I 0.083919 1.810000 1.053568 -4.033233 -1.104342
0,086384 1 ,870000 1.058460 -3.964392 -1,353834
0.087643 1.,930000 1.060979 -3,880469 -1.599474
. 0.087712 1.,990000 1.06111~ -3.781864 -1.839901
E 0.086592 2.050000 1 .,058876 -3.669119 -2.073783
0.084269 2.110000 1.054259 -3.542901 -2.299864
0.080711 2.170000 1.047283 -3.403968 =2,517012
0.075870 2.230000 1.037966 -3.253130 -2.724253
0.069679 2.290000 1.026336 -3.091193 -2.920793
I 0.062055 2.350000 1 .,012421 -2.91~910 =-3,106034
0.052892 2.410000 0.996257 -2.736922 -3.279567
0,042060 2.470000 0.977878 -2.545694 -3.441163
i 0.029407 2.530000 0.957320 -2.345451 -3.590740
0.014748 2.590000 0,934619 -2.136110 -3.738369
-0.002135 2.650000 0.909607 -1.917195 -3.854155
-0.021498 2.710000 0.882916 -1.687735 -3.968263
-0.043648 2,770000 0.853971 -1.446136 =4,070814
I -0.068947 2.830000 0.822994 -1,1899903 -4.161810
-0.097826 2.890000 0,790003 =0,915842 —-4.241017
-0.130801 2.950000 0.755011 =0,61R780 -4.307807
-0.168494 3.010000 0,718028 -0.291913 -4.360904
I -0.211659 3,070000 0.679063 0.0744R8 -4.397997
-0.261219 3.130000 0,638128 0.494314 -4.415107
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-0.666839
-0.546839
-0.426839
-0.306839
=0,192046
-0.103968
-0.037519
.01297 44
.051272
.080161
.100000
.109838
.116742
.122350
.126748
.130004
.132166
.133270
.133330
.132349
.130311
.127185
.122923
.117460
0,110712
0.102574
0.092920
0.081597
0,068426
0.053192
0.035643
0.015479
-0.007656
-0.034185
-0.064618
-0.099569
-0.139786
-0.186188
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EXAMPLE TII

V(H,0) = 2. 15312

0.445646
0.506108
0.579952
0.673057
0.790000
0.910000
1.030000
1.150000
1.270000
1.390000
1,500000
1,570000
1.630000
1.590000
1,750000
1,810000
1.,870000
1.930000
1,990000
2.050000
2.110000
2.170000
2.230000
2.290000
2.350000
2.410000
3.470000
2,530000
2.590000
2.650000
2.710000
2,770000
2.830000
2.890000
2.950090
3.010000
3.070000
3.130000

0,400980
0.457464
0.523967
0,603528
0,696353
0,783281
0.861800
0.931902
0.993459
1.046215
1,086529
1,108021
1.123786
1.137044
1.147746
1 4155851
1.161326
1.164147
1.164302
1.161792
1.156625
1.148825
1,138424
1.125461
1.109985
1.092048
1,071704
1.049009
1.024017
0.936777
0,967334
0.935724
0,901978
0.866116
0.829150
0.788085
0.745920
0.701649

30

(con?.)

1.350616

0,024044
-1 .023706
-1 ,857063
-2.506193
-2.936194
-3.235730
—-3.453490
-3.610903
-3.716011
-3.767370
-3.776871
-3.770074
=-3,749061
-3.713520
-3.663283
-3,598372
-3.519023
=3,425700
-3.3190~1
-3.200031
-3.069550
=2.,928714
-2.778609
-2.620259
—-2.454558
-2.,282206
-2.103650
=1 .919025
-1.728091
=-1,530160
-1.324004
-1.107717
-0.878523
-0,632487
=0,364082
=-0,065517

0.274318

.393565
.612360
.983691
.384705
.806470
.319639
1.884086

1.467489
1,050679
0.622565
0.215792
-0,050353
-0.383363
'0.517087
-0.753406
-0,989956
“1 ,225189
‘I1.457435
-1,684983
-1.906160
-2.119411
-2.323363
-2.516875
«2,699071
=2,869349
-3.027369
-3.173031
-3.306"431
-3.427820
-3.537544
-3,635988
-3.723508
-3.800358
-3.866590
-3.921919
~3,965531
-3.995769
-4.009630
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EXAMPLE TIII

r=1.2

~--- sonic line

streamline

HODOGRAPH PLANE
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EXAMPLE III (con't.)

7. 000

VLOS,L5)  y(1,1.5)

S 000

3 000

-S. 000
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%000 -31000 -11000 m_so 3000 57000 71 000

---- sonic line

streamlines
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-0.580826
-0.460826
-0.340826
=0,221657
-0,128987
-0.063925
-0.020542
0,005389
0.016573
0.,014228
0,000000
-0.015624
-0.033559
-0.056159
«0,083970
-0.117638
-0.157922
-0.205709

- =0,262066

-0.322974
-0.382974
-0.443974
-0,502974
-0.562974

EXAMPLE III
Vv(H,8) = 2.72611
6

0.401327 0.440552
0.471021 0.503963
0.557665 0.579432
0.670000 0.670498
0.790000 0.756867
0,910000 0.828981
1.030000 0,884208
1.150000 0.920698
1.270000 0.937384
1.390000 0,933835
1.500000 0.912871
1.570000 0.890908
1.,630000 0.866930
1.690000 0,838393
1.750000 0.805538
1.810000 0.768661
1.870000 0.,728103
1.930000 0.664239
1,990000 0.637460
2.045510 0.591920
2.093138 0.551330
3.135315 0.514346
2.173075 0,480479
2.207153 0.449339

33

(cod-t.)

1,476017

=0,240465

-1,548473
=2,550364
~3,1961R0
-3.629674
-3.952407
-4,204219
-4.524504
-4 ,586746
=4 .,5980R9
-4,580958
-4.564332
-4,5189R3
-4.449672
-4.349059
-4,205072
=-3,99R271
-3,724098
=3,395088
-2,99R829
-2.525377
-1.963393

6.254477
5,460012
4.726842
4.027697
3.453982
2.962596
2,0492531%
2,010002
1.,503578
0.977393
0.,485194
0.167774
-0.109205
-0.394863
=-0,695669
-1.021129
~1,384601
=-1,804590
=2,306958
=2 ,877056
-3.479841
-4.134372
-4 ,850369
-5,637446




-0. 698208
-0.578208
-0.458208
-0.338208
-0.218208
-0. 111629
-0.036975

0,013330
0.044887
0.061554
0.06' 5497
0.057243
0.050000
0.035696
0.019143
-0.001897
=0,028037
-0.059997
-0.098611

- =0,144843
«0,199821
-0.260336
-0.320316
-0.380316
-0.440316
-0.500316
-0.560316
-0. 620316
«0,680316

EXAMPLE III (con?.)

Vv(H,0) = 2.51901

0.317281
0.369817
0.432963
0.5~0590
0,610000
0.730000
0,850000
0.970000
1.090000
1.210000
1.330000
1.450000
1.500000
1.570000
1.630000
1.690000
1.750000
1.810000
1,870000
1.930000
1990000
. 046083
. 094216
. 136639
. 174500
. 208595
.239507
P2.267677
2.293449

8]
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. 387596
.441828
. 505469
. 581241
. 673434
. 775031
. 862501
. 9324383
0,982602
1.011521
1.018648
1,003859
0.991276
0.967420
0.941307
0.910147
0.874180
0,833717
0.789138
0,740881
0.689420
0,638841
0.593811
0.553047
0,515915
0.481919
0.450666
0.421836
0.395165

[eNe e No NN No RNl
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4.071576
1,844998
0.155303
-1.122548
-2.090477
-2.769276
-3.198451
-3.512720
-3.765403
-3.969367
-4.120222
-4.211469
-4.231372
-4.241685
-4,234524
-4.212408
-4.174091
-4.116524
-4.433845
-3.915922
-3.746061
=3,516536
=3,237906
-2.900613
-2.495850
-2.013670
-1.442758
-0.770200
0,018777

. 636595
. 845047
132771
. 485856
3,884287
3.351524
2,920697
2.517254
2,096468
1,640385
1,153924
0.655248
0,44R243
0.160864
-0.084132
=0,331015
-0.585367
-0,855782
-1.154507
-1,498466
-1,911054
«2,387872
-2,897276
-3.453847
-4,063101
-4.736341
-5.481226
-6,307138
-7.224454

NV IV ie




-0.770631
-0.650631
-0.530631
-0.410631
-0.290631
-0.170631
-0.062023
0,012382
0.061465
0,091925
0.108397
0.113544
0.108219
0.100000
0.087496
0.072863
0.054028
0.030302
0.000864
-0.035234
-0.079076
-0.131897
-0.192800
-0.252800
-0.312800
-0.372800
-0.432800
-0.492800
-0.552800
=0,612800
-0.672800
-0.732800

EXAMPLE III (con't.)

V¥(H,0) =2.30546

e v
0.264214 0.358614
0,307001 0.408105
0.357719 0.465807
0.418670 0.533866
0.493659 0.615509
0.590000 0.716017
0.710000 0.831268
0.830000 0.931059
0.950000 1.011362
1,070000 1.069863
1.190000 1.104804
1 +310000 1.116410
1.430000 1.104410
1.500000 1.086529
1.570000 1.060685
1.630000 1.032278
1.690000 0.998230
1.750000 0.958743
1.810000 0.914117
1.870000 0.864753
1.930000 0.811152
1.990000 0.753891
2.047961 0.695676
2.096704 0.644822
2.139504 0,599203
2.177444 0.557943
2.211498 0.530386
2.242304 0.486020
2.270333 0.454442
2.295949 0.425324
2.319441 0,398396
2.341042 0.373432

35

6.105391
3.491110
1,507501
0.010987
-1.109627
"1,944262
=2.,525989
-2.883756
-3.152513
-3.382926
-3.581824
-3.736953
=3,835264
~3,864520
=3,874064
=3,867752
~3,848894
-3.817395
-3.771525
-3.706958
3,615475
-3.482995
=-3,294385
»3,064468
-2,783622
=2,444118
-2.037334
-1.553520
=0,981566
=0, 308770
0.479410
1.399636

.602550
.839439
.159072
551301
.005809
508361
.070782
725779
.394328
.026937
1,604501
1.137166
0.654916
0.380099
0.115790
-0,101634
-0.312644
-0.522012
-0.737630
-0.970980
-1.237811
-1,559542
al. 950235
=2,368264
-2.827966
-3.336567
-3,901006
-4.528516
-5.226971
-6.005129
-6.872833
-7.841207
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EXAMPLE IV

‘\\‘-~.~___~_____—_.-—””’ ---- sonic line

streamlines

HODOGRAFH PLANE
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EXAMPLE IV AOOS.d. )
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-0.803855
-0.683855
-0.563855
-0.443855
=0,3213855
=0,203855
-0.083855
0,028592
0,095673
. 130230
. 144563
. 144240
. 129135
. 093386
. 024388
. 000000
«0,068157
-0,128157
-0,188157
-0.248157
=~0,308157
«0,36R157
-0.428157
-0.488157
-0.548157
-0,608157
-00668157
-0,728157
-0.788157

[eeoRoNoNoNe

EXAMPLE IV (con't.)

W(H:9> =

0.177423
0.211565
0.252018
.299932
.356902
. 425672
.512689
. 630000
0.750000
n ,870000
0.990000
1.110000
1.230000
1.350000
1,470000
1.500000
1.568212
1.616717
1,658598
1.695758
1.,729251
1.759714
1,787568
1.813108
1.,836562
1,858113
1.877919
1.,806116
1.912830

[N e Nelo )

2.20548

0,346149
0.393655
0,448901
0.513827
0.591295
0,685864
0.805669
0,956028
1,077408
1.156421
1.194216
. 193324
. 153673
. 072666
. 949419
. 912871
. 823931
. 757720
. 699862
0,648557
0,602568
0.560997
0.523172
0.488575
0,456794
0,427496
0,400407
0.375298
0.351977

SO OO O = =
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10,133879
6,348335
3.556194
1.511290
0,035407
-0,999284
-1.685890
-2.094014
-2.322963
-2.567860
-2,848825
-3.107798
-3.290854
-3.389280
-3.436601
-3.444460
-~3,454288
-3.446610
-3,419213
-3.367022
=-3,284415
-3.165111
-3,001983
-2,786844
-2.510211
-2,161041
-1.726435
-1.191310
-0.538009

6,638649
5,898426
5.244259
4.669536
4.170702
3,747860
3.404276
3.146683
2,958135
2,699149
2.320764
1.869345
1.439947
1,102906
0,808369
0.715589
0,420090
0.093906
-0,306801
“0,790445
-1,365666
-2,042477
-2,832818
-3,750968
-4,813924
-6,001816
-7.458379
-9.091488

=10,973786




EXAMPLE IV (con?.)

H 8 v X Y
=0,809536 0.163312 0,344066 10.531442 6,222300
-0,689536 0.194611 0.391244 6.700484 5.534332
=0,569536 0.231596 0.446085 3,876399 4,927689
=0,449536 0.275225 0,510498 1 ,809345 4.396350
=0,329536 0.326763 0,587287 0.318922 3.937328
-0.209536 0.388297 0,680902 -0.722624 3.551744
-0.089536 0.464555 0.799234 -1.402841 3.246541

0.029549 0.570000 0.957546 -1.783280 3,034989
0.109142 n,690000 1.106464 =-1,944453 2.,918646
0,149531 0.810000 1.208196 ~2,130495 2.743130
0,168079 0.930000 1.265312 =2,409498 2.409642
0.173311 1.050000 1.,283104 -2.717262 1.939420
0.167547 1.170000 1.263552 =2.966366 1.439379
0,148230 1.290000 1.204486 -3.110682 1.037878
0,106468 1.410000 1.100536 -3.166639 0.795663
0.050000 1.500000 0.991276 -3.182474 0.656730
«0,015592 1,570000 0.890953 -3.188156 0.472750
-0,075592 1.619553 0.815192 -3,181889 0.236330
20.135592 1 ,661398 0,750141 -3.159602 -0.075402
~0,195592 1.698135 0,693178 -3.116196 =0, 467620
-0.255592 1.731099 0.642591 -3.046418 -0.946099
-0,315592 1.761049 0.597192 =2,944595 -1,518306
-0.375592 1.788451 0,556118 =-2,804390 -2.193758
-0.435592 1.813616 0.518720 ~2,618576 =2,984265
-0.495592 1.,836771 0.494492 -2,378814 -3.904186
=0,555592 1.858091 0.453035 -2,075416 -4.970742
-0.615592 1.877723 0,424024 -1.697079 -6,2043%4
-0.675592 1.895795 0.397192 -1,2305R7 =7,629297
-0.735592 1.912422 0.372315 ~0,6604R1 =-9,273836
-0.795592 1.927710 0.349203 0.031330 ~11,171256
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EXAMPLE IV (con't.)

Y(H,0) = 1.88713
H 8 Vv X Y
-0.812365 0.149453 0.343035 10,808842 5.756544
1L0.692365 0.177982 0,390050 6,959186 5.125183
-0.572365 0.211610 0.444691 4.122977 4.569640
-0.452365 0.251132 0.508851 2,048498 4,084485
«0,3321365 0.297554 0,585306 0.554402 3.667215
=0,212365 0,352478 0.678453 -0.486357 3,319583
=0,092365 0,419485 0,796063 -1.156381 3.050582
0,027635 0.510000 0.954515 -1.497772 2.,883754
0.121332 0.630000 1,134605 -1.563094 2,844354
0.166569 0.750000 1.260331 -1.643847 2.775171
0,187537 0,870000 1.336341 -1,887637 2.515059
0.195853 0.990000 1.371601 -2.237949 2.042332
0.195668 1,110000 1.370776 -2.574536 1.,455648
0.186894 1.230000 1.333755 -2.802583 0.922246
0.165129 1.350000 1.255641 -2.900548 0.592628
0,118273 1.470000 1.127363 -2.917997 0.496613
0.100000 1,500000 1,086529 -2.918447 0.490643
0,042469 1.570000 0.978558 =2,91946% 0.444509
=0,018443 1.623516 0,887055 =2,915455 0.315545
-0.078443 1.666003 0.811883 -2,899199 0.103279
-0.138443 1.702482 0.747267 -2.8615059 -0.192276
=-0,198443 1.734869 0.690641 -2.808039 -0.572112
-0.258443 1.764167 0.640324 -2.723068 -1,040102
=0,318443 1.790947 0.595148 -2.604607 -1.602782
-0.378443 1.815564 0.554262 -2.446387 -2.269213
-0.438443 1.838254 0.517025 -2.241193 -3.050998
-0.498443 1.859193 0.482937 -1,980646 -3,962441
=0,558443 1.878519 0.451603 -1.654973 -5,020794
-0.618443 1,896349 0.422702 -1,252745 -6.246616
«0,678443 1.912787 0.395967 =0,760591 -7,664203
-0.738443 1.927931 0.371178 -0.162859 -9.303118
-0,798443 1,941870 0.348145 0,558768 =11.193819
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5. ERROR ANALYSIS

Before proceding with a formal analysis, we present some empirical
results. This will allow a more realistic evaluation of the error
bounds to be proved. To do this we have used the well known Ringleb

solution,

(5.1) \I‘R(H,e) = %’%%8 sin 6

of equation (2.5) to set up initial value problems for Ho,He[-l,.22] .
We have then used the program included in the Appendix to compute

R

\|f7(H,HO,9) for H’Ho = -1,-.95,404,.24.22 . Figure 5.1 is a graph

of the average error, ¢ , versus Ho' where

1 & g Y
(5.2) e() = z¢ 2, WV (H,,1) - ¥ (0 ;1)
J=1
and Hl = -1 ’ H2 = "095’000,H25 = .20 and H26 = ,22

Figure 5.2 contains graphs of lllfR - W?‘ versus H , for several values
of Ho . The maximum absolute error tabulated was 3.91 x 10_5 ,
] R "R
occuring at H = .2, HO=-.95. The error bound on l"lf - ¢7| s
given by the sum of formulae (5.35) and (5.46), was tabulated for
Ho =-1,-295 50.05. 05 and H = -1,-.95,...,.2,.22 (the omission of
H0 = .1,.15,.2 and .22 will be explained shortly). The maximum
value tabulated for this bound was 1.2 X lO-3 , occuring at H = .22 ,
HO = -1.0 . It is difficult to maximize this bound, as a function
of H and H, . However, a somewhat weaker bound, given by (5.54)+(5.55),

can be maximized easily, yielding an upper bound (for all Hoe[—l,.06593...]

and He[-1,.22] ) on the error in our approximate Ringleb solution of

-3
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E The program which carried out the calculation of the error bound
is included in the Appendix. These calculations were done only for

6 = 1 radian since the simple form of WR and the fact that the

7 =\  paraam—
(23) )

j+
and g(23 1 is very small in this case, make the

error in
relative error given by the formulae of this section, essentially
independent of 8 .

J Let us proceed with a formal error analysis. The error involved

in our computation draws from three sources:

T (1) truncation -- we have truncated the infinite series of (2.7),
T for ¥(H,0) , to yield 'V _(H,H_,6) ;
T (2) function approximation -- we have permitted the use of

| <\l T . 1

2 23+ . .

f( 3) P) g(’a 1) s for j=0,1,...,n , and T , to yield
3 M
T Wn(H,HO,G) 5 and

(3) roundoff -- computations are done in fixed length, finite

precision arithmetic.

Errors of types (2) and (3) can be confused easily: type (2) errors
are due to the fact that the formulae used to calculate certain functions
would not give exact values, even if exact arithmetic were used;
f type (3) errors are due to the inexactness of computer arithmetic.
Confusion may arise when inexact formulae are computed with inexact
arithmetic.

Roundoff error has been no problem in our work, partly because we
are using 10 digits for our essentially 5 digit calculations. e shall
not consider roundoff error here. The following analysis provides

1 bounds, as functions of H, Ho and 6 , for the truncation and
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approximation errors. A series of five lemmas are required. The first
three lemmas present rough bounds based on (2.9% itself a rather rough
bound on s - The derivation of these bounds utilizes only one
property of £(H) , that for He[a,B] , |2(H)| < ¢® . In this paper,

we deal with [o,B] € [-1,.22] , for which 2 <62.47. wWhen evaluating
our bounds for particular H and Ho , we of course choose

(a,B] = [HO,H] .

Let a= .0659262218 ... . Then we have
(5.3) £(a) = -1

When HO <a<Hor H<a< Ho , the first bounds are poor. Lemmas 5.4
and 5.5 give considerably improved bounds, valid for Ho <a<H.In
the Ringleb computation considered, these new bounds were as must as
_1010 better than the old bounds. The case H < a < Ho could be
treated similarly, but this will not be done here. (This is why the
cases E% = .1,.15,.2,.22 were omitted from the bound calculations
summarized in Graphs 5.1 and 5.2.) The improved bounds depend on one
further property of £(H) , that |£(H)| < 1 for He[@,a] . Thus,
all the bounds given are valid for any function, 1(H) , whose graph
lies within the darkened area of Figure 5.3; the first bounds are valid
for any £(H) whose graph lies within the dashed rectangle.

In order to present simple a priori bounds, we assume that, for
fixed 6 , f(zj)(e) and g(ej+l)(9) grow (with j ) no faster than
geometrically. However, the derivatives of even analytic functions

can grow much faster than this. (If h(G) is analytic then, by Cauchy's

formula, |h(j)(9)| < maxlh(@)ljlr-J—l , where r is the minimum distance
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of 6 from the boundary of some domain within which h is analytic;
the maximum of lh(9)| is to be taken over the same domain from which
r 1s computed.) The bound on the approximation error also involves

T_—__'-"—_T_‘
terms which must bound the error caused by f(EJ) and g(2J 1) for
J <n . If these errors can be assumed negligible (of if a bound can
be found), then an a posteriori bound on the error due to function

approximation can be computed, while the stream function, ¥ , is being

computed, without any assumptions about the growth of f(eJ) and
(2j+1) o , .
g . This is not possible for the truncation error; we must have
. .
definite knowledge of the growth of f(QJ) and g(EJ 1) s @S J = o,

in order to bound it. And a bound on the approximation error is of no
value without a bound on the truncation error. The usual heuristic
solution to this problem is to let the program determine when to truncate
the series for V¥  dynamically,on the basis of the size of the last
term computed; when the last term is small relative to the current value
of the series, the truncation error would be assumed negligible. (Our
program allows the user to decide whether a fixed number of terms or
the heuristic stopping criterion is to be used.)

In the following, we assume that ¢ > 0 , and we let Tn and An
denote the truncation and function approximation errors involved in

(2.8), respectively, so that

(5.4) Tn(H’HO’e) = \II(H,G) - Wn(H;Ho,e)
(5.5)  A_(HE_,8) = ¥ (8,1 ,6) - V(i1 _,6)

H
where Wn denotes the series for Wn with the approximation symbols,

™, removed.
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Lemma 5.1. Let 6 be fixed. Suppose there exist constants r r

S
Bf and B for which
g
(23) 2j (2j+1) < 23+l

(5.6) [£2700)| <=8, , e (8) | < rgJ B,

for j 2 ntl .
Let an upper bound function, Un , be defined by

(r, x)"
(5.7) Un(h,x) = B, —— cosh r, x
where h can be f or g . Then we have
‘ » L
(5.8) |7, (8,8 _,0)| < U, (f,clH-H_|) + CU2n+5(g,c|H-HO|)
for all H,Hoe[a,B] .
Proof: By definition,
(5.9)  |r_(u,H_,6) ) J (23) (25+1)
) n' "o’ = \jznﬂ(_l) {SQJ(H’Ho)f (e)+82j+1(H’Ho>g (e)3]

[o o] . .
(5.10) < B r2|s_ (1 ) |+B r2ItL
- j=§+1{ e 23( ) | g'g |32j+l(H’Hn)|}
If we apply the bound,
o[2
¢ ° |E-H_|"
(5.11) s, (H,H )| < — o S (H,H))

to (5.10), we obtain
XEJ - x.2;j+1

o B

£
(5.12) |z (5 ,0) < B —— + £ -(—E’ﬁ—
n'\ o2 |.. f j=§+l EDE c j=§+l 2j+1)!
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where Xh _ rhclH-Hol for h = f,g . The two series in (5.12) are just
the remainders of Maclaurin expansions of coﬁle and sinh X
truncated after 2nt2 and after 2n+3 terms, respectively; (5.8) is

derived by substituting (an upper bound on) the Taylor form of the

remainder. Q.E.D.

Let us define

(5.13) Em(H,HO ) sm(H,Ho)-’E‘m(H,HO)

1]

(5.14)  D(H) = £(H)-L(H)

(5.15) & = max |D(H) | .
He[a,B]

To facilitate the following proofs, let us define regions I , II ,

and IIT in the H ,H,- plane, as pictured in Figure 5.4,

Figure 5.4
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Region I is the union of II and III. We thus have

Hy

H
[T F(H) ,H,)dH gH = afa ) F(H, B, )dH H
IT

H

a 1 H a

(5.16) HF(Hl,HQ)dHQdHl =HJ" }[{ F(Hl,H2)dH2dHl+£ ![; F(H, ,H,)aH
ITI o) o) o]

ij(Hl,HE)dnan{l =[] F(H, ,H,)dH @H, + T F(H, ,Hy)dH dH,
I IT IIT

Lemma 5.2. We have

m

(a1) Iy )| <5 (818 GH )17 £ormzo

Proof: The proof is by induction. E0 = El = 0 and so (5.17) is true

for m = 0,1. We assume it is true for m-2 and prove it for m .

(5.18) & () = [f (a(8)s (H H)-T(H))S (81 )l a1 .
I

Adding and subtracting ?sm from the quantity in braces yields

-2

(5.19) |E (1,H) | < |[f D )s, o(H 5 Jan an | + |[f B, _o(H H )T(H )an an_ |
I

I
-2
2[[_n. 2[.@_
se Sl ", se Z|ma |" ol -l
(5.20) [B (#,H)) | £ —5— + (c+8)([51-1) T (1+6¢7%)
¢ m! ¢ m!
and (5.17) follows directly from this. 0.E.D.
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Lemma 5.3. Let 6 be fixed, and let constants C, , D, , C_ , D, c

f f g g £’

cg s df and dg satisfy
(5.21)  c.e2d > |5 g 2L 5 (254

’ £ = » g%y =18

2J (23)_.(23) 2j+1 (23+1)__(2j+1

(5.22) DAt > [0 -0, Dy’ T > le -g )\
for 3 = 0,1,.e.,n .
Let us define bounding functions, F and G , by
(5.23) F(k,x,y) = LN (c sinh x + D_y sinh y) + D, cosh y

: XY = 2 VX £y Y £

6
(5.24) G(k,x,y) = > (ng(cosh x-1)+Dgy-(cosh y-l))+Dg sinh y
Then we have, with z = (l+60_2)1/2|H_HO|C s
(5.25) |A_(u,H ,0)| < F(c2czdz) + L G(ceczdz)
n ) O’ — bl f ) f c ) g ) g .

This bound is independent of n

Proof: By definition, we have

n . . 7~ . | PR\
(5.26 A (HE .0)| = 133 (23) o '.(23) (25+1) | (2j+1)
) | n( J O, )\ ljz=o( l) {Sle Sle +S2j+lg S2j+lg }‘
Adding and subtracting g £(23) T g(25+1) '
g and subtracting 32;] and 323'+1g , applying the

triangle inequality and using the fact that \g:nl < |Em|+|sm| yields
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@
2j.n 2] 2j
(5.27) |A (#,H_,0)| < 3;0{(Cfch+Dfde)lE2j|+Df%f3‘§2jl

" :
2t hip 420ty g

2j+1
C +
g8 ge |+D, 4

+ 2511 % 15ggn 1)

Applying (5.11) and (5.17) to this yields

L2371 2j-1
(5.28) |A (BE ,0)] < & (Cx. Ve + Dy, 3 ooF
28 I mro0 < =5 Cone Loy * 2% L oy
1
2 (yp(1+ee™®) 5
+D, Y fl"
j=o (23)!
2] J
+—5(c, £ ) -+Dp £ Y -)
202 g ¢ 5=1 2J g ch=l 23).
- % 2jt1
- +
D o (y (148c78) )
+E ¥
e & (25+1)!

where Xe s Yp » X, > yg are suitably defined; (5.25) follows directly

g
from this. 0.E.D.

The above bounds OH.Tn and An are reasonable as long as [a,B]
is such that c remains small. Byt as B - .25125.. we have c— ®
The reason our bounds can be bad is that the constant ¢ multiplies the
whole of \H-HO| in our bound of (2.9):

(c\H-Ho|)m o1
m) m

(5.29)  |s, (B,H))| <
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When Ho << a < H ("<<" means "much less than"), then c is large,
and so is ‘H-Ho\ . It does not seem fair that, in this case, c
should multiply all of hLHO\ since ¢ is only needed to bound {
in [a,H] ; a bound of unity suffices in [Ho,a] . Thus we may expect
to be able to replace CIH-HOI by c(H-a)+a-Ho in this case. Indeed,
this can be done if the factor of 6," 1is removed, as can be proved

from the following, stronger result.
Lemma 5.4. Let h, = H,-a and h = H-a . We have, for HO <a<H,

(ch-h )™ 1

(5.30) |s (B, )] <.5(1 + =) ——2— 4 .5(1 - )

(-ch—ho)m

*
m! Sm(H’Ho)

with equality holding for m = 0,1 . Further, this bound holds if a
is replaced by any number between Hj and a ; if a 1is replaced

by Ho or ¢ =1 , then (5.30) reduces to (5.29). Also, we have

*
(5.31) s _(8,H)>S (HH) for H < a < H and m > 2

Proof: The proof is by induction. Equality is achieved when m = 0

and 1 . Assuming (5.30) for m-2 , we prove it for m as follows:

(5.32) s = |[f2(8,)s (0 8 )aH aH |
I

IA

. o_* _
J] s, (8,0 aH,an + IJ e (uy,H ) ar = X (H,H )
II III

The first double integral requires lsm o to be evaluated only for
H<a, and so (5.29) may be used with ¢ =1 ; 02 times (5.30) was
used for lsm_2 in the second integral. It follows that
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(5.33) X, (H,H ) = 2; -hh + Lg%)f = S;(H,Ho)
(5.34) X (HH) = (_Ef)m + h;;?;;T-l
st Hlee (:f’)m : Ch((:_l‘l’;jl-l}

*
The inequality Sm > Sm can be proved by expanding (ch-choyn and

+,.
(ch.ho) 0.E.D.

The case H < a SH, can be dealt with in a similar manner, but
this will not be pursued here. The bound on Tn corresponding to this

new bound is

1
(5.35) [T (H,H,,6)] < .5(1 + DU, p(£5ch-b )4, 1, (g,ch-h )]

+25(1 - 2){U, , (£,-ch-h_)+U g,-ch-h_)]

Uonio on +3(

for H~a=h <0< h = H-a .
(o] o - -

To get a new bound on Em and An we prove the following generalization

of (5.17).

Lemma 5.5. If EmULHO) is defined as in (5.13) then

o) S ma ¥ ho(Cg-l)
(5.36) |E (HH )| < 2 (1+5)2{[§]Sm(H,HO)= o (s J(HH )- (ch Y o(m))}

form >0 and H <a<H
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*
where S_1 = 0 and o(m) = 0 if m is even, and = 1 if m is odd.
Further, this holds if a is replaced by any number in [Ho,a] ; 1if
a is replaced by H_ and (1+8)m/2 -g)m/g

by (1+dc s orif c¢c=1,

then this reduces to (5.17).

Proof: Again, the proof is by induction; (5.36) holds for m = 0,1 .
We assume it for m-2 , and work on the two terms on the right side

£ (5.19):

(5.57) |JJ D(B)s, ,(H,,H, )an an |

I

*
< ol [] sy ol anaity + [[s (0,0 an . )
11

(5.38) |[[ ?(He)Em-e(He’Ho)dﬂedHl
I

< (l+6){ '”‘ lEm-Q(HQ’HO) IdHEdHl + f‘r cz‘Em-Q(HE,HO) |dH2dHl}

ITT
(5.39) < 5(1+5)2 {(131-1)§ J”j‘ Sy _o(Hp,H JaH,aH + [f S:_E(Hg,H )t aH, }
ITI
h (c 1) : (ch, )2

W H (sm 5 (g, H) - —zfgr— o(m) )aHaH, }

where h2 = H2-a .

Multiplying the right side of (5.37) by (140)2 adding the result

o (5.39) and simplifying yields
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5" n(-n )" (-n )"

(5.%0) |5 (1) | < 5 (1:+0) (5] 8 (8, J+(e-2) (omgyr— + =53]

h (c®-1) n(-n )™ (-n )t
° : oL _ o(m) {2 s

SO Sy (BH) - oy - o)

(5.41) |Em(H,HO)|

z h (ce—l) . AL
o(m))

f—é (1+0)%{(Z)s_ (H,H_) - %}Tﬁ)—— (s _J(HH) - 922 1 ;

22 (8] n(n )"t 2L ()"

(c2-1) h(-ho)'“‘l (-n)"
(m- l)!

B YR =) Eal e = i v El

Since [g]‘< m-1 <m for m > 2 , we see that the last quantity in

braces is > 0 , and so we may replace it by zero without disturbing
Q.E.D.

our inequality. The result is just (5.36).

Various weaker, but simpler, bounds can be proved, two of the

o

*
simplest (and weakest) being 8(1+6)2[g]sm(H, Ho) and

o ((ch-h )“J1+ 5)"
S5[=

2 m/

The new bound on Em provides the following

bound on An let bounding functions Fi and Gi be defined by

(5.42) F (k,x,y) = (1 + %)(x+b(X+y))k sinh kx+(1 - %)(y+b(x+y))k sinh ky
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(5.45) Fy(x,y) = ﬁ (CF, (cp,y)#D F, (a,%,7))

De

1 1
-y {(1+ E) cosh dgx + (1- E)cosh dey}

(5.44) G (1e,x,5) = (1 ) (e B(xry) Ji(cosh kx-1)

+(1- %)(y+ %(x+y))k(cosh ky-1) -b (x+y) (cosh (k (x~y) /2)-1)

o
(5.45) G,(x,y) = " {0, (e, ,x,y)4D G, (4 ,%,5) ]

D
Lol 1
+ £ L+ =)aj = P
> {(1 c)51nh dgx +(1 C)51nh dgy}

-where b = cz—l . Then it follows from (5.27) that

(5.&6) |An(H:HO)9)|S FE(X,Y)+G2(X)Y)

where
(5.47) x = (ch-h )V1+8 and y = <—ch—ho)\/1+5 )

Our new bounds, (5.35) and (5.46), reduce to the old bounds when either

n/2 by (l+852)m/2 and,

¢ =1 or a is replaced by H_, (1+5)
if HO > H , then H and Ho are interchanged. For this reason, our
program for calculating these bounds is written only for (5.35) and

(5.46); for the case H < .05, the old bounds are derived by the

replacement just described. For the Ringleb computation, all growth

constants are 1 , and
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Q
Il

(5.48) ¢, = B, = |2.538 sin(1)/v(H) |

.538 sin (1)
(5.49) ¢ =3B = |—22 |
& & v(H_ ) (1-.2v2(H )2
(o] (o]
(5.50) D = 1o'9Bh for h = f,g

(5.51) 5 = l+.J.0535x10'5 .

The bounds
(ch-ho)m
(5.52) |s (HH )| <——— for B < a <H
((ch-n_)\/1+8)™
(5.53)  |E (8,1 )| < 3[3] > for B < a<H

can be used to derive simpler bounds on Al and.'In:

(5.54) ‘An(H’Ho)‘ < F(l,cfz,dfz)+G(l,cgz,dgz)

(5.55) |7 (#,H.,0) | < Up,p(fych-h )40, . (g,cheh )

where z = (Ch-ho)VIﬁS and F and G are given by (5.23) and (5.24).
As ch-h, increases and H, decreases, these bounds increase. Thus
they attain their maxima when H = B and HO = & . For the Ringleb

computation described above, this implies

[ E-Hiﬁnﬁz for iimmimmiel and N -
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the bound being calculated at H = .22 and Ho = -1 . The disadvantage

of these simpler bounds is that, when a 1is replaced by Ho , they do not
reduce to our old bounds; a factor of c2 is lost. Thus, as HO - a
from below, while H > a , these bounds will become several orders of
magnitude worse than our more complex bounds. (If B were closer to

.25125.,, , then 02 would be even larger, and this loss would be more

drastic.)
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APPENDIX

Three programs, written in B5500 Extended Algol, are discussed
and listed in this section. The first program calculates the coefficients
of the expansion of L(H) about its singularity. Double-precision
(about 20 digits accuracy) was required to calculate the first U3
coefficients. (This is the only place in these programs in which
double-precision was used.) The coefficients generated in this way
could be used to obtain a more accurate approximation to W(H,B) ’
valid over a wider interval of H values, than that given by the 8
term Chebyshev approximation to £(H) wused in the third program
discussed here. The second program includes procedures capable of
computing the error bounds derived in Section 5. A driver program uses
these procedures to calculate the error bounds for our approximation in
the case of the Ringleb solution. The output of this program was used
to prepare the graphs in Section 5. The third program calculates our
approximation to Vv(H,0) . Given HO , 1t uses a truncated expansion
of 1(H) to generate coefficients for polynomial-like approximations
to the Sm(H’Ho) . These are used by the procedure STRFNC to
evaluate r\l?(H,O) , r\IT;I(H,G) and '\-V-G'(H,G) , for given H and 6
STRENC calls upon the user-supplied procedure FANDG to obtain values
of the initial value functions £(6) and g(l)(e) , and their
derivatives. The driver program given here is set up to form our
approximation to the Ringleb solution, and to tabulate tables of the
actual error in this approximation. These data were also used in the

preparation of the graphs in Section 5.
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We have an explicit representation for H as a function of v :

(A.1)  H(v) = .251251... + /R(%/5 + ©/3 + 1) - 1og(%-1:-7/{-)

where T = l-.2v2 .

In these programs, vVv(H) was found by Newton-Raphson iteration, using
(A.l). The procedure SPEED does just this. However, if the values of
of the sm(H,Ho) and of v(Ho) are available, then v (H) can be

computed more efficiently by using the relation

V(Ho)

(A.2) v(H) =

™18

{SEJ (H’HO)-VS2j+l(H,HO) 3

J=0

where V = (l-.2v2(Ho))-2'5

Equation (A.2) can be derived most easily by equating the Ringleb

solution, \[,R(H,e) = %J('%yg , to the solution, as given by (2.7), of
the initial value problem, f(6) = sin 0 and g(l)(e) - _8dn v
b ! foos v Ho ‘

When given an interval, I , of H values in which (A.2) is to be
used, we can use the bounds on \sj(H,Ho)l given in Section 5, along
with the fact that the denominator in (A.2) has values ranging between

min V(HO) and  max V(HO) to decide how many terms are
H,HOeI v{H) H }le v

needed for the denominator sum in order to make the truncation error

less than the approximation error caused by using ?J.(H,HO) .

64




COMMVENT THE FOLLOWING THREE PROCEDURES SHOULD BE CONSI DERED
GLUBAL TQ THE FOLLGWING THREE PROGRAMS (THEY MAY BE INSERT-
EVAFTER THE FIRST BESIN OF EACH PROGRAM ;

REAL PROCELURE SPEED(X)’ VALUF X3 HEAL X3
BREGIN REAL C» Vi
REAL PRUCEUURE HC v)3 VALUE vi REAL V3
BEGI N REAL TAU»3QTAUS DEFINE CONST=0,2512511361%;
COMMENT CUNST CAN BE EVALUATED RY THE FOLLOWING TWO STATEMENTS,
APPEARING IN THE MAIN PROGRAMS: CONSTe0;
CUMMENT CONSTe=H(SQRT(5/6))3
TAUYel=,2xy*2; SQTAUe SQRT(TAU)}
He SWUTAUX(TAU*2/5+TAU/341) = SxLNC (1+SQTAU)/C 1=SQTAU)) + CONST
END Hi
Ve [F X<O THEN 4 ELSE 1.21
WHILE AUSCCeH(VI=X)>8=9 D O vt V' = CXV/(1=e2XY%2)%2:53
SPEED ¢ ABS(V)
END SPEEDS

REAL PRUCEDURE MAX(X,Y)} REAL X»Y3
MAXe¢IF X<Y THEN Y ELSE Xi

REAL PROCEVUURE MINCX,Y)} REAL X»sVY3}
MINeIF X<Y THEN X ELSE Y}

COMVENT THE FOLLOWING PROGRAM CALCULATES THE COEFFICIENTS FOR AN
EXPANSION OF L(H ABQOUT ITS SINGULARITY AT +25125113611%

BEGIN

DEFINE N=60 #» CONST=42512511361 #3

ARRAY AsAl»A7L(OIN), B»BLIOSNS>OSNI» CKoCKLL[O¥1313
INTEGER MGrJrKsMsW»r6,Q7)

REAL SUM, SUML» HH» Vv» TAUs L» LL3J

FILE OUT CARDS 0 (2,10)3

COMMVENT N+l CUEFFICIENTS ARE TO BE COMPUTE0O (N MST BE > 13),
A{11S WHERE THESE COEFFICIENTS WLL RE STORED.
A7(M] = ALMIXT=(2x(H=6)/T7),
MG+1 TERMS WILL BE TUSED TN EVALUATE THE APPRUXIMATION}

REAL PROCEVURE LHCH )3 VALUE Hi REAL H3
BEGIN REAL SUM} INTEGER M3
COMVENT THIS EVALUATES THE TRUNCATED EXPANSION FOR L(H)}
SUMeU
FOR M€Q STEP 1 UNTIL MG 00 SUMeSUM ¢ ALMIXCCONST=H)*(2x(M=6)/7)}
lLLHeSUM;
END3
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COMMENT Wb CALCULATE A713 FIRST. THIS IS DONE BYSERIES REVERSION
USING THE RELATI ONS
L(H) = (6XTAU = 5 )/TAU%6
2 ATLO0OIxXX*(=12/7) + AT(11xX%(=10/7) + o , .
X = TX(CUNST=H) = TAUX(7/2) + 7/9xTAU*(9/2) +
T/711%xTAUR(11/72) *e0o .
HIGHPRECISION IS NEEDED FOR THE COMPUTATION OF THESE
COEFFICIENTS, BECAUSE THE A7[M} BECOME SMALL QUICKLY, AND MICH
CANCELLATION UCCURS}S

FUR M¢0 STEP 1 UNTIL N DO BI[Ms0lets

FUR K¢l STEP [ UNTIL N 00
BEGIN
SUMedUML €0}
COMMEN | THEFULLOWING DOUBLE LOOP IS EQUI VALENT TO
FOR v¢0 STEP 1 UYTIL K DO SUMeSUM +49/C(2xJ+7)x(2%x(K=J)+7))}

FOR J¢0 STEP 1 UNTIL £ 00
DUUBLEC4950s J20s Js0s 45 Ts0s 42 KsOp Jp0s» =2 2205 X» 750>
+2X,/5 SUM,SUML, +s¢, SUM,SUML)}
DQUBLEC SUM SUML, €» B{13»K1,BLI132K1)3
ENDJ

FOR Kel STEP 1 UNTIL N 0O
BEGIN
COMMENT CALCULATE THE C[Q»K 1/S)
FUR We¢8,9,10,13 DU
BEGIN
SUMeSUML €03 Q6e(Q+6) QIV 2; @7¢(Q+7) DIV 23
FORJel STEP 1 UNTIL K-1p0
DOUBLE(BLQG6»J)»BLLQ6sJ)s BLQ7,K=J]1s»BLLAT2K=V]s X»
SUMsSUMLS > «, SUMsSUML)}S
DUUBLECSUM, SUML, €,CKIQ)I,CKL[Q))S
ENUS
COMMENT THE FOLLUWING DOUBLE INSTRUCTION IS EQUI VALENT TO
B{7,%1¢ (BL13,K] =CK[13]= CK[10) = CKL9) = 3IxCK(8BI)/T7}

DOUBLE(BL13,K],BLI13sK])» CKI13)1,CKLIL13)» =, CK[10),CKL[10])), =»
CRL9JIsCKLLGY» =» 3505 CKLBI,CKLLBYy %X» =»-T,0s />
€ BL7,K1s81.L72K1);

Fur We8,9,10513 DO
BLGIN
Q6¢(Q+6) DIV 21 C7¢(Q+7) NIV 23
COMVENT THE FOLLOWING DOUBLE INSTRUCTION IS
BlA,K]eCKIQ] + BLQ6»KI1+B(Q7,K]}

DUUBLECCKLQ)sCKL{Q)s BIQ6sKI,BLLQ6,K]s +,» BIQT»KI»BLIQT,K]
+r &, B[\)PK]’BL[(J;K] )3
END
END3

COMVENT CALCULATE BU11512514,1554402N31522394442N1}
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FUR Me¢11,12514 STEP 1 UNTIL N 0O
FOR Kel STEP 1 UNTIL N DO

BEGIN
SUMeSUML €0}
FUR Je9 STEP 1 UNTIL K nO

NDUUBLECHB{7sJ)sBLL7»JTs BIM=1,K=J)sBLIM=1,K=J]ls X, SUM,SUML>»
+» €5 SUMsSUML)}

DUUBLE(SUM»SUMLs €, BIM,K1»BLIM,K]1)}

ENDJ

CUMMENT CALCULATE BLOs152,358558 1925324042N13

FOR Jetl STEP | UNTIL 6 D0 FGR K¢t STEP 1 UNTIL N DO
BEGIN
SUMeU 3 Qbe6~J; W7eb6+ U5 -SUML ¢03
F O RMeOSTEP 1 UNTILK=100
DUUBLE(BLQ6,M)»BLLA6sN7], RIR7»K=M]I,BLLQAT7sK=M]s» X» SUM,SUML, +,
€» SUM» SUML)S
DOUBLE(=SUM»=SUMLs ¢» BLG6,K)»BLIQ6,K1)}
END3

COMVENT BIM,K]  CALCULATICNS ARE NOW DONE;

A7(0)e¢=53 ALOJ&=Sx7*(=12/7)3
DOUBLEC6,02» A7L0)»A7LLO), BL[O0»11,8L00,1), %» =» s ATL11,ATLL1))S
AL1)eA7(11%7%(=10/7)3

FUR Me¢2 STEP 1 UNTIL N DO
BEGIN
SUMeSUML €03
FOR J¢0 STEP 1 UNTIL M-1D0
DUUBLECATTJILATLIJY, BLJsM=JIsBLIJsM=J], X» SUMsSUMLs +»
_ €» SUMsSUML)}
DUUBLEC=SUM»=SUMLs» €» ATIMI»ATLLMI)}
ATMI€=SUMXT*(2x(M=6)/7)}
ENOJ

WRITECCARUS,»<3E20¢11>,FORMe0 STEP I UNTIL N DO ACM1)}
WRITEC<"M™» X19, "A[LHMI™) X8, "AIMI/Ta(2%X(M=6)/T7)">)}
FOR Me¢0 STEP 1 UNTIL N DO WRITE(<I2» 2E25,11>» My A[MI» ATIMY)}
WRITECCPAGE))S MG¢423
WRITECS"MG= ", [2///>s MG)}
WRITE(SX3s "H"» X135, "V', X250 "LCHI"™, X20, "*L(H)*", X9, "RESIDUAL">)J
FOR HHe¢=1 STEP ,01 UNTIL 250100
WRITEC<FS5,2» F20411» 2R25,4,112FE1542>» HH, (VeSPEEDC(HH) ),
(LeCOX(TAUC(1=,2%xVXV))I=5)/TAU*6)» (LLeLH(HH)), L=LL)}
END.
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COVMMENT THE FOLILOWING PROGRAM IS SET UP TO0 EVALUATE BUUNDS ON THE
TRUNCATION AND APPROXIMATION ERROR FOR THE RINGLEB SOLUTION.

HUWEVER, THE PROCEDURES NEEDED ARE PROGRAMMED 1IN GENERAL3S

BEGIN KREAL C, B» C25 DELTA» NELTAYL, A AAS
ARRAY RHs» UHs CH» Dh, LCH» LDHIO21)3

CUMMENT €2 = MAXCABSCL(X)) FOR X RETWEEN H AND HO,,
C = SQRTI(C2),
A = INVERSEIL(=1)] = ,06592562218,

KH» LCHs» LDH AREGRCWTH FACTORS

A PRUCEDURE TO EVALUATE L(H) MIST BE PROVIDED.

THE FOLLOWNG PRUCEEDURES ARE ALL THAT 1S NEEDED TO EVALUATE
THEROUGH OR THE IMPRCVED ROUNDS, THE BOUND IS GI VEN BY

T(Ns HH, HHO) + AN(HH» HHO) .
[F THE ROUGH BOUND IS DESIRED WE MUST HAVE
HH = MAX(H,HO) HHO= MIN(H»HO) AA= HHO

VEL TA1= 1+DELTA/C2,.

It THE IMPRQVED HOUND IS DESI REp, THEN WE MIST HAVE
HHO=HOSASH=HH DELTA1=SQRT(1+DELTA) B=(C2=1 )YxDELTA1L
AAzA3

REAL PROCEVDURE SINH(X)3 REAL X3 SINHe SX(EXP(X)*EXP(=X))}
REAL. PROCEDURE COSH(X)3 REAL X3 COSHe s SXCEXPI(XI+EXP(=X))}

REAL PROCEDURE U(NsH,X)4s INTEGER NyH} REAL X3

F Xx=0 THEN U¢0 ELSE

BEGIN REAL SUM} I NTEGER i
SUM€03 FUR €2 STEP 1 UNTIL N DOSUMeSUM+LN(CI)S
SUMENXLNC(RHIHIXABS(X)) = SUM3
UeBHIHIXEXPCSUMIXCOSHCRHIH IXXIXSIGNCX)*(N=2x(N DIy 2))}

END UJ

REAL PROCEUURE T(NsH,HO)3 INTEGER N3} REAL. H»HO}
BEGI N REAL X,Y3
Xe( Cx(A=AA) = (HO=AA))IXDELTAY}
Ye(=Cx(H="AA) = (HO=AA))IXDELTAL}
TeoSxC(L+1/CIXCUC2XN+220,X)+ UYC2XN+3219X)) +(1=1/CIXCUC2XN+2,50,Y)
+UC2xN+3515Y)))5
END T3

REAL PROCEVURE F 1 (K X» Y)3} REAL- Kj» X» Y3
BEGIN REAL HB)
BBe Bx(X+Y)};
FleC1+1/7C)x(X+BB)XKXSINHC(KXX) + (1=1/C)x(Y+BBIXKXSINH(KXY)}
END F13

REAL PROCEVDURE F2(X»Y)} HEAL X, Y3
F2eDELTA/(4xC2)x (CHIOIXF1(LCHLO1»XsY) ¢ DHLOIXFI(LDHIOD2X,5Y))
+ DH{O0J/2 x (C1+41/C)XCOSHCLDHIOIXX) + (1=1/C)IXCOSHC(LDHIOIxY))}

“REAL PROCEVURE G1(K, X» Y3 REAL K» X» Y3
BEGI N ReLAL BB}
BRe. Bx(X+Y)/23
Gl1e(1+1/7C)X(X+BBIXKX(COSH(KXX)=1) + (1-1/C)x(ytBB) xKx(COSH(KxY)-1)
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=X (COSH(KX(X=Y )/2)=1)}
END G13J

REAL PROCEDUREG2(X»Y)} HEAL X, Y3
GZeDELTA/C4xC2)x (CHI1IXGI(LOHI1D,XsY) + DHL1IXG1CLOHIL1]2X5Y))
+ DHL1J/72 x (C1+1/7CIXSINHCLDHL1IXX) + (1=1/C)xSINH(LDHI1IxY))3 |
REAL PRUCEUDURE AN(CH, HO); REAL H,»HO}
BEGIN  REAL X,Y3
Xe( Cx(H=AA) = (HO=AA))IXDELTAL}
Ye(=Cx(h=AA) = (HO=AA))IXDELTAY}
ANE F2(X0Y) t G2(X»Y)3
END AN,

CUMMENT  IN WHAT FOLLOWS» THESE PROCEDURES ARE APPLIED TU OUR [cp) AND
THE RINGLEB SOLUTION,

REAL THT» H, HOo» HH HHO» ERRCR, AVGEPS, VO, TN, ANN» ERNEW, EROLD)
INTEGER Ti

REAL PROCEVURE L(X)3 VALUE X3} REAL X
BEGIN REAL Vs TAUJ

VeSPEED(X)} TAUel=,2xVn2} Le (6XTAU=5)/TAU*6
END L 3

A¢0,065926221083 RH[OJ¢RHI1)E€LCHIOI¢LCHL1)¢LDHIO)e¢LDH{1]¢1}
THTe13 DELTA€4,105338=5)
FORHOe=10 STEP «0% UNIIL 405 00
BEGIN
VOo¢ SPEEO(HO))
BH{O0JeCHIOl€aABS(2,538/V0 x SINCTHT))}
BH{1)eCHL1)€ABS(2,538x(1=,2XxV0*2)4(=2,5) /V¥0 x SINCTHT))}
FORIe0»1 00 DHII)¢BH[I)x@=8}
H

WRITE(<"™ HO BOUND N "
" AN",/>)}3

AVGEPS«0}

FOR Heé®l STEP +05 UNTIL +2» «22 DO

BEGIN
C2¢MAX(E=8, MAXCABSCL(H))» ABS(L(HO0))))}
HHeMAX(Hs HO)J HHO€MINCH,HO)3
DELTALe SQRT(1+DELTA/(CIF H>»>,05 THEN 1 ELSE C2))}

Be (C2=1); Ce SQRT(C2))

AA¢IF H>e05 THEN A ELSE KHOS

TNeTC7, HH» HHO)S ANN€ANCHH» HHO): ERNEWCERRORETN + ANNS
If H»+05 THEN

BEGIN

AA+ HHOJ DELTAle SQRT(1+DELTA/C2)3
ERULD€T(7s HHs HHO) + ANCHH,HHO)}
ERRQReMINCERNEN, EROLD)}; TN¢ERNEW} ANN¢EROLD)
END’
AVGEPS€AVGEPS + ERROR3
WRITE(<2(F6425,X4)» X5» 3(E1245» X8)>» HO» H» ERROR, TN» ANN)J
ENDS
WRITE(K™AVG ERR = ", E12.5>» AVGEPS/26)} WRITECLPAGE))S
END END,
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COMMENT THE FOLLOWNG PROGRAM IS SET UP TO FORM AND EVALUATE OUR
APPROXIMATIUN TO PSI FOR THE RINGLEB SOLUTIUN2» ANO TO MAKE A
TABLE 0OF THE OBSERVED ERRORS IN THIS APPROXI MATI ONI

BEGI N REAL HO, C» SUM» KM{, CMIHOS57, OLOH» OLDTHT». CF» CGj
INTEGER M, M2, M2N7, MN7MI2, MVAX, N» N7, NN12s J, Ks» UP, MN7, IP,-
NPSITRUNCMAX) LABEL EXIT3

COMVENT NPSTTRUNCMAX+{ IS THE MAXIMUM NUMBER OF TERMsS WHICH KILL
BE USED IN OUR TRUNCATED SERIES FOR PSI
(SEE COMMENTS IN THE PROCEDUHE STRFNC).
N7 = N ¢+ 7 IS THE NUMBER OrF TERMS To BE USED TO APPROX-
IMATE LCH),

AC] CONTAINS THE N7 COEFFICIENTS FOR THIS APPROXS
NPSITRUNCMAX¢203 MMAX€2XNPSTTRUNCMAX+13
Ne 13 N7TeN+73 NN12eN#N+123

BEGI N
ARRAY SCOEF,SPRIME[OSMMAX, O3MMAXxXN7], ALOIN+61)

REAL VO» AIVQ;

PROCEDURE FANDGCFVAL, GVALs THT, OLDM, M)} VALUE M» OLODM, THT}
INTEGER M»s» QLOM3 REAL THT} ARRAY FVALs GVALLO))

BEGI N HEAL  SNs CSs X» Y, 2} INTEGER IP3

COMMENT THIS PROCEQURE ISTQ BE SUPPLIED BY THE USERe ITISTO

CALCULATE THE INITIAL VALUES», FCT)I=PSICHO,T)? AND
G1(T)S0(PSIC(HOsT))/DH, AND THEIR DERI VATIVES AT T=THT,

FRUM THE OLDM/TH AND UP TO THE M/TH DERIVATIVE OF F AND G ARE
TO BE CALCULATE0) AND STORED IN FVAL»GVALLOLDMseeesM)s» WHERE
Gi= DC(GI/DT o IF OLDM>0 THEN THE O0/THs1/THsreeesOLOVM=1/TH
DERIVATIVES WLL BE IN FVALsGVALLO?2124ee20L0DM=1],

AHEN OLDM=0, M WLL BE 2 2 ( THIS FACT IS EXPLOITED IN THE
SAMPLE PROCEDQURE GIVEN HERE)}

If OLOM=U THEN

BEGI N
SNe SINCTHT)S CS¢ COSCTHT)S Xe 2.538/V03
FVALLO)® Ye XxSN3 FVALL1)¢ Ze XXCSJ
GVALLO)¢ 2xATvO3 GVALL[1)e =YXATVO}
END3 .
FOR IPeMAXCULDM»2) STEP 1 UNTIL-M DO
BEGI N

FVALLIPleaFVALLIP=2]3
GVALLIPle=GVALLIP=2])

ENDS

END FANDGJ

REAL PRUCEDURE SMVALCHs SM M» FUJ)S VALUE HsMs FUJI
HEAL Hi INTEGER M» FUI ARRAY SM[01}

BEGIN HEAL HORNER, CMIH} INTEGER Rs Ts Jr K3

COMMVENT LET T=MxN7=FUJ, THEN THIS PROCEDURE EvALUATES
SMVAL = SHLOJ ¢ SMLL1IXCC=HIN(2/7) a0y SMITIX(CmHI*(2XT/7)}

TeMXN7=FU JJ Re T MOD 71
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SUM€O} CHIHeC=H3 KeT=63 IF K<O THEN KeQj
FOR TeT STEP =1 UNTIL K DO
REGIN
HURNEReSMI T3
FUR JéT=7 STEP =7 UNTIL R 00 HORNER¢HORNERXCMIH + SMLJ1}
SUMESUM+HORNERXCMIH*(R/T7)3

RéR=13 I F RS0 THEN Re¢6
END EVALUEATIUN OF SM3
SMVALeSUM

END OF SMVAL}

PRCCEDURFE ULIFFSM(SM, DEGSM, SMPRIME)} VALUE DEGSM3
INTEGER UEGSM3 ARRAY SM» SMPRIMELO]}
FOR IP¢ULGSM STEP =1 UNTIL 2 DOSMPRIME[IP=2]e=CIP/7IXSMLIPI]}

PROCEDURE OSTRFNC(PSI, H» THT, DPNDT» DPDH, MUPs EPS» TOOBIG);
VALUE H, IHT» MUP, EPSJ HEAL PSI» Hs» THT, DPDI, ODPDH» EPS3
INTEGER MuP} LABEL TUUBIGS
REGIN UWN HEAL TEMP) OWN INTEGER OLDM, OLDMH, OLDMT» MPti, MP2J
OWN REAL ARRAY S, 0S» FVAL» GVAL[OSMMAX+11}
INTEGER MUPl, MUP2, M} REAL LASTERM}

COMVENT VALUES ARE RETURNED IN PSI, DPDTs AND DPDH.

If MupP20 THEN MUP+1 TERMS ARE USED TO EVALUATE OUR APPROXI MATE
PSI.1F THE LAST TERM IS >EPSxABS(PSI) THEN AN ERROR RETURN TO
TUUBLG IS EXECUTLO. ALL INTERMEDI ATE RESULTS ARE SAVED» AND
ANUTHER CALL» WITH YUP INCREASED, WLL CONTINUE THE
CUMPUTATIUN,

I F MUP=~1{ THEN TERMS ARE ADDED IN T0 PSI UNTIL THE LAST TERM
IS S EPSXAHS(PSI), IF THIS HAS NOT HAPPENED AFTER
NPSITRUNCMAX+1 TERMS HAVE BEEN ADDED IN, THEN AN ERROR RETURN
TU TOOBIG [$ EXECUTED. NQ RECOVERY IS POSSIBLE, SINCE THE
REQUIREY COEFFICIENTS FOR SM ARE NOT AVAILABLE. THE ENTIRE
RUN MIST HE REDUNE, WTH A LARGER NPSITRUNCMAXS

LASTERM¢€20J
IF H#0LUH THEN

BEGI N
TEMP€(C=H)*(=~,7142857142857)} COMMENT leEe2 #(=5/7))

OLDMH€OLOM¢O
END; /
IF THT#ULDTHT THEN OLDMT«0OLOMe¢O}
IF OLDM=0 THEN PSI¢ DPDTe¢ DPDHe¢ 03
I F MUP2U THEN
BEGIN
MUP1€2xXMUP+1} MUP2eMUPL 413
IF MP12ULDMH THEN
BEGI N
FUR MeQLDMH STEP 1 UNTIL MUP{ DO
BEGIN .
S{Mle SMVAL(H» SCOEFIMs*1, Ms 0)}
US:M]"SMVAL(H:SPRIME[H»\']: Ms» 2) x TEM
LND
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ULDMHeMP2
ENDJ :
IF MPZ22UL)OMT THEN
BEGLN
FANDGCFVALs GVALs THT» OLDMT, MP2)3 OLDMTeMP2+1
ENDS
WHILE MUP{20LDM DU
BEGLN
wit OLUM+13 MP2¢0LDM4+23
LASTERMe SCOLDMIXFVALLOLDM] + SCMP1IXGVALIMPL1])
PSle¢ LASTEHM = PSI;
VPUHe DSCOLDMIXFVALLOLOM) + DSEMP1IXGVALIMP1] = DPODHJ
DPUTEe  SCOLDM)IXFVALCMPL ) + SIMP1IxGVALIMP2] = DPDTJ
ULDMe MP2
ENOJ
I FABSCLASTERM)>EPSXABS(FST) THEN co T0 ToOBIGS
END ELSt WHILE ABS(LASTERM)ISEPSXxPSI DO
BEGIN
MPleULDM+1; MP2¢0LDM+23
It MP1>MMAX THEN GU TO TOOBIG)
It MP1 20L.UMH THEN
BEGIN
FUR MeQLDM, MP1 DO
BEGIN
S[{Mle SMVAL(H, SCOEF[M,%)s M, 0))
OSIMIeSMVALCH, SPRIMECM,» %1 M» 2) x TEM
ENy S
OLDMHe MpP2
END S
It MP220LOUMT THEN
BLGIN
FANDGCFVAL, GVAL>» THT» OLDM, MP2)3 ULDMN- MP2+1
EnD s
LASTERMe SLOLOMIXFVALLOLOM) + S{MPLIXGVALIMP113
PYle¢ LASTERM = PSI:
DPUHe OSCULDMIXFVALLOLOM] + DSCMP1IxGVAL{MP1] = DPDHJ
DPUT¢ SLOLDMIXFVALIMPL T + SIMP{IxGVALIMP2] =~ OPDTJ
ULUMe Mp2
ENDJ
IF OLDM=4x(OLOM DTV 4) THEN
BEGIN PSle=PSI} DPDTe=DPNT} DPPHe=DPDH END;
END STRFNCJ

COMMENT THE FOLLOW NG 5LINES ARE PART OF THE (USER) SAMPLE PROGRAM}
REAL MAXEPSs MAXH, MAXHO, PSI, DPDT» DPDH» H» THT}
MAXEPS ¢ MAXHe¢MAXHO0¢0} THT¢1)
FGR HO€=1 STEP «05 UNTIL 425422 DO
BEGIN
voe SPELUCHU) S ATVOe (1=42xV0a2)%(=2,5)}
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ULOHeQLDTHT €8 305 CUMMENT INITI ALIZATION FQR STRFNCS
CUMMENT
LR R N R R R R R A R e R T R SR L

COErFI CIENT CALCULATI ON F O0R SM(HI"SS

Ce0es25125113613

FILL A[*IWITh=,1505866818, =,4018655347»2,0045191543,
=2.8821787341, 10.95831580, =10,7524447788s 5.9416272229»
*ed1981010273

CMIHUDTE€(C=HU)*x(=9/7)}

SCUEtLO»0)e1s SCUEFC{1s0)€C™HO} SCUEF(1s7)e=13

M2N/€=N/J MN7eNT 3

Fur M€2 STEP {UNTIL MMAX DO

BEGIN

COMMVENT STEP [$ CALCULATE BETAIM,J) AND STORE IN SCOEFIM»yl;

MN7e«MN7 + N7J MN7MI2¢MNT=2) M2eM=2} M2N7 €MZNT +NT 3
FUR J¢0s2,4,6 STLP 1 UNTIL MN7MI2 DO
BEGIN SUM€0 s
Kt €1+ MAX(Qs» J=M2N7)) DIV 23
UP¢MINCJU,NN12) DIV 2;
FUR KeK STEP 1 UNTIL UP DO SUMeSUM + ALKIXSCUEF[M2,J=K=K]1}
SCOEFIMsJJe(7/7(5=d))xSIIM}
ENU UF BETAMJ CALCULATIONSS
SCUEFIMs1]€SCNEFIMy3)eSCOEFTIM»ST1¢0}

CUMMENI STEP 11: CALCULATE K(M=1)}
KMle SMVALC(HO, SCOEF(Ms*]1s M, 2) x CMIHOS57)
COMMENT STEP 1113 CALCULATC SCOEFLMyJ)sJdiB1seeesMIN+T)}

FUKR Tt M7 STEP =1 UNTIL 2 noO
SCOEF(MyJ)e(=7/J)IXSCNEFIM,J=2]}
SCUEFIM»7]ekML) SCOEFIM»s0)¢SCOEF{Ms11e€0

COMMENT STEP IVi CALCULATE SCOEF[M»s0lz=KM}

SCUEFIMs20)e =SMVAL(HO» SCOEF(Msx)s Ms» 0)
ENpo #
FUR MeQ STEP 1 UNTIL MVAX DO
DIFFSMCSCOEFIM,*JsMXNT7y SPRIME(Ms*]))
COMVENT
END OF COEFFICIENT CALCULATION

I EEEER RS R RS R R R R R R Y S SR 2 2R R R RS AR 222
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COVMENT THE REMATNDER IS SAMPLE PROGRAM

BEGIN RLAL AVGEPSs Xs Y3 INTEGER MUP3
MUPe7;
WRI TEC(S"™ HO H SPEFD MACH NQ. "»
n PSI1(H»1) *PSI*(HsHO,1) ™
" PSI = *PSI*",/>)3 AVGEPS¢(Q}
FOR He=1 STEP 405 UNT IL e20s 422 0n
BEG(N

REAL PRUCEDURE H(V)} VALUE Vi REAL V3
Me V/SURT(1=.2XVY%*2);
LABEL TUUBIG» ARQUND}
Gil TU ARUUND}
1008163
WRITEC<™INCREASING MUP"sI4>, (MUP€MUP+1))3
IF MUP>NPSTITRUNCMAX THEN GO TQ EXIT;
AROUND 3
STRFNC(PSI» Hs THT, DPDT», DPDH, MUP, @«4, TOOBIG)}
WRITE(<2(F60e2sX4)s 4C(R15,8,X5), X5, E1245>,
HUs H, (Y€SPEEN(H))» M(Y), (X¢2,538/YxSINCTHT))» PSI»X="PSI)}
AVGEPS€AVGEPS + ABS(PSI=X)}
IF ABS(PST=X)>MAXEPS THEN
REGIN MAXEPS«ABS(PSI=X)} MAXHeH S MAXHO¢HO END3
END;
WRITE(<™AVG ERR = ", E12,5>» AVGEPS/26))
WRITECCPAGE])S
END ENDJ
WRITEC(<"MAX ERR = ", £12,5, " AT H= ", F6,2» ™ _AND HO ®* ", F6.2>,
MAXEPS», MAXH» MAXHO0)S
END;
EXIT:
END.

Th
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