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1. INTRODUCTION

| The first task in devising a numerical procedure for solving a

given problem 1s that of findinga constructive mathematical solution

to the problem. But even after such a solution 1s found there 1s much

to be done. Mathematical solutions normally involve infinite processes

such as integration and differentiation as well as infinitely precise

arithmetic and functions defined in arbitrarily involved ways.

Numerical procedures suitable for a computer can involve only finite

processes, fixed or at least bounded length arithmetic and rational

functions. Thus one must find efficient methods which yield approximate

solutions.

Of interest here are the initial and boundary value problems for

compressible fluid flow. Constructive solutions to these problems can

be found in [BJ. As presented there, solution of the boundary value

problem 1s limited to the subsonic region, and 1s given symbolically

as a linear combination of orthogonal functions. A numerical continuation

of this (subsonic) solution into the supersonic region can be done by

using the (subsonic) solution and its derivative to set up an initial

value problem. The solution to the initial value problem may then be

valid 1n (some part of) the supersonic region. Whether this continuation

will lead to a closed, meaningful flow 1s an open question. In this

paper, we deal with the numerical solution of the initial value problem.,

We are currently working on the rest of the procedure described above.
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: 2. THE INITIAL VALUE PROBLEM

1 The partial differential equation describing the flow of a compressible

fluid 1s nonlinear when considered in the physical plane (x,y-plane) .

However, when transformed into the so called hodograph plane (H,6-plane) ,

i this equation becomes a linear one, namely

2 2 2

(2.1) 2y + 2(H) oy = 0 LH) = ND Y-
oH 06 0

where

v

(2.2) H = H(v) = | & av
"1

v 23 L/(k-1

(2.3 ) p= (1 - Bx - 1)

2 4 2,5
(2.4) M= v/{al - 3(k-1)v")

and 6 is the angle which the velocity vector forms with the positive

direction of the x-axis, v 1s the speed, V(H,0) 1s the stream

function, M 1s the Mach number, p is the density, vy 1s the

speed when M-= 1 (i1.e., the speed on the sonic line), k is a constant

depending on the fluid and a_ 1s a conveniently chosen constant.

We shall describe a numerical procedure for solving the initial

value problem in which the stream function, V(H_,6) = f(6) , and its
oV(H,0

derivative, WEL) = 1) (0) , are specified on an arbitrary
H=H

line, H= H . The basis for this procedure 1s provided by the

following:
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Theorem 2.1. (See [B, p. 895] ). Let @ and B satisfy

a < B <t(a4/2/(k-1)). Suppose that, for |6] < 9, and a given.

H ela,p] we have

- 5 0 c n-1 (1)
(2.5) ym _,6) = Y co" = £0) , u(H,0) = ) nD 67" = gg" (e)0 n H n

n=0 H=H n=o0
®

where the series C6" and ID 6" converge uniformly and absolutely

for |6]| < 6, . Suppose that le(u)| < c? , 0<c<wo for Helx,B] .

Let us define functions s (H,H_) by s (HH) = 1, s, (H,H_) = H-H_ ,
and for m = 2,3,...

H -I H

Hoh ots
(2.6) s(Hu) = [ [e(my) | J 20) o.a aH ...dn

H H H
oO O° o H

0

- Then, for H and 6 satisfying le] + C \1-H_| < 0, and Hel[Q,B) ,

- J (23) 4 (25+1). = - + 6

(2.7) ¥(1,6) L 1) ls, (H,1) (0) 5p41 (SHE (6) }
: Ce (1) _ af

1s the (analytic) solution of (2.1) satisfying (2.5). Here f = 30 °
2

de

Proof: It is easy to check that (2.7) satisfies (2.1) and (2.5). For

a proof of (absolute and uniform) convergence see [B, p., 896].

(However, there is an incorrect specification of the domain of convergence

in this reference. The domain stated there is 6+c|H-H_| < 0, 5
whereas the domain of convergence actually established by his proof 1s

(1,0) |e] + cla-H_| < 6, and BH| < HY.

The constraint H-H_ | < Hy corresponds to our constraint, Hel[Q,B]. )

;



The domain of convergence guaranteed by this theorem is pictured

in Figure 2.1. If the initial conditions are specified as a Fourier

series instead of a power series, then a theorem similar to this one can

| be proved. In that case, the domain of guaranteed convergence would be

rectangular.
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Figure 2.1

In numerical evaluation of the right hand side of (2.7) we have to

approximate all functions in a convenient way and we must truncate the

series. We shall denote approximation functions by adding a horizontal

bracket (') over the function. In this manner (2.7) becomes

n — Epes
= . . | . .2, _ RRCIUS (23) (2341), an

where n 1s an (arbitrary) positive integer denoting the degree of

truncation. (Notice the approximation, v , to ¥ depends on H ,0

whereas { does not.) Since computers can only perform the basic

operations + , - , X , 3 , we must use rational approximations, The

-4



following remarks about (23) will apply to 4(23*1) as well. In
. — (25)

general, obtaining approximations f y forJ =0,1,...,n , 1s not

difficult. In fact, 1n the usual application of this of this procedure,

(23) will be defined in terms of functions customarily available on
computers, such as sine, cosine, etc., and it will be possible to

calculate £(23) to almost full machine accuracy. In such cases the
(23)

fact that we are really calculating a £ is somewhat obscured by

our ability to express it, in current programming languages, in precisely

the form of its formal definition. For example, the Algol statement

to calculate an approximation to f(x) = sin x is just "f(x):= sin(x)".

However, when only TT and not f , is' known, perhaps as the result of

solving the boundary value problem alluded to 'earlier in this paper,

. 7-3

a severe error 1s 1lncurred. This is why we keep track of ¢(23) - ~(2])
in what follows.

' (25) SY r=
The values of ff (6) may be derived from an approximation, 'f .

For example, if f is given as in (2.5),we can truncate that series
~

to obtain f . We can then use an iterative synthetic division scheme

2(23) */
to evaluate ZT , forJ = 0,1,.s.,n . Of course the error of
rN 2]2 3) incurred by such a procedure increases as J grows. However, if
(some norm of) the 23) , considered as functions of J, does not

increase too rapidly for j <n , then the absolute errors of

(03) | | Wo
5p4T" 3) 411 not increase as J grows and remains < n x This is

Note that f denotes the m-th derivative of f and = denotes

an approximation to pm) N wm) need not be a very good pm) .
**/ |

This 1s discussed more precisely in Section D.



| because S, - 0 rapidly as m — «© since, as indicated in [B],

51

(2.9) |s (8,8 )] < — c"|H-H_|"

where o = c for m odd and 5 = 1 for m even, and c is the

| constant in Theorem 2.1.

The determination of 5 presents more challenging problems. Due
to the nature of R(H) , an exact formula for S has not been found.

The numerical procedure which evaluates vl will be used to trace the
streamlines V(H,0) = const. Such curves, when transformed into the

(x,y)-plane, describe the fluid flow. This means that many evaluations

of Vv will be required (we use approximately1500 per run), and so the
2H) in (2.6) must be chosen to yield an efficient scheme. In the next

section we derive such an approximation to Z(H) and thus to s (HH) for

the special case 1n which the fluid under consideration 1s air. In

this case

(2.10) vy [5/6 k = 1.4

and we choose a, = 1 (see (2.3) and (2.4)). The function £(H)

takes the form shown in Figure 2.2. It has a singularity at

p = «20125... and is asymptotic to unity as H = -® . Its only zero

is at H=0. This information will prove most useful in the next

section.

0
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1 3, THE INTEGRALS s (H,H ) AND THEIR APPROXIMATION

1 The s of eqn. (2.6) satisfy the recurrence relation

(3.1) s(HH) = J [ £(H,)s, (Hy H_)dH dH, for m > 0
fo Hs

] with the starting values

(3.2) ss(HH )=1 s(HH) = H-H_

where H = H 1s the line on which the initial conditions of (2.5)

are specified. We will consider H_ satisfying H < 25125... = p,
since as H -» p the Mach number, M(H) , approaches infinity. A major

problem 1n this implementation was the construction of an approximation,

TH) , to 2(H) over some subinterval of (- «,p) which yould allow

a relatively simple expression for 5? . The approximation of [B—H—K]
was not satisfactory for our purposes. It consisted of two tenth degree

polynomial approximations, one for the region [-1,0] 44 the other

for [0,.2] . In [B-E-k] , #_ was fixed at zero and so their

approximation lead to two expressions for s. (H,H_), qe valid in [-1,0] ,
and the other in [0,.2] . In our work H is arbitrary and will vary

from run to run, so we must have a single representation for s) .
An adequate approximation to £(H) over [-1,.22] was found

by observing that (for k = 1.4 ) the singularity of R(H) at p is

of order 12/7 , and that £(H) has the expansion

(3.3) 1(8) =) b,(p-H)
j=o



—-

Table 3.1

m ob mn Pm
0 “1,77922350435€8=01 0 “1,779223504330=01
1 -i,136431403870=02 1 “4,136431403910=02
) 9,106620273008=02 2 9,106620275608=02
3 1,820571898088=01 3 {1.,820571897480«01
4 2,220908576438=01 4 2,220908577158=01
5 2,185710181748=01 5 2,185710180800«01
6 1.,863818555918=01 6 1.86381855798e=01
7 1,41067084695e=01 14 1,410670841338=01
8 9,494812532608=02 8 9,494812638108=02
Q 5,572400863608=02 9 5,572400743108=02

10 2.674319234338~02 10 2.,674319225800=02
11 8.127266108300=03 11 8.1272710747008=03
12 “1,8918166157768=03 12 “1,891832426049=03
13 «5.815650047508=03 13 “5,815614293108=03
14 “6,076978947600«03 14 =6,077052443600=03
15 “4,60812991016€=03 15 “4,607970482960=03
16 »2,701697787308=03 16 ~2.702040723138~03
17 «1,069143841926~03 17 *1.068523951068=03
18 2,253788948098=05 18 2.161812372450=05
19 5,692188298808~04 19 5.703212872808=04

20 7.113560015508=04 20 7.1116314853008=04
21 6,151420789908=04 21 6,103065319400<04
79 3,93011997122e~04 22 4,102152966828=04
23 2,418540485710=04 23 2,073029866248=04

24 “2,.351980168908=06 24 5¢161739045088=0%
25 5.995362172200=05 25 -4,2357800521768~05
26 -3,245175563228=04 26 ~8,181219922308«05
27 4,072234230600=04 27 »8,.,339706181108=05
28 «8,80318119550@=04 (28 «6,472657819100~05
29 1.488346426798=03 29 “3,976938042310~05
30 «3.5933306876108=03 30 “1.731844905436=05
31 7.716102536200=03 31 “1,407529843640=06

"39 “1,384197265420=02 32 7.361391213308=06
33 2.UB87067413430=02 33 1,03263459349@=05
34 -5,612488427808=02 34 9.5346076353008=06
35 1.,441758381358«01 35 6,933415846408=06
36 “3,512306740146=01 ~ 36 3,968302345620=06
37 7.850808119308~01 37 1487653559600=06
38 -1,683977149188+00 38 “1,701597464310=07
39 3,612907156328+00 39 ~1,013711162708~06
40 »7,505375188700+00 40 =1,233148790398<06
41 1,310446062230+01 41 “1.071199813520=06
42 »1,273673604210+01 42 ~7.432585769108=07

(a) (b)

Single Precision (lo-digits) Double Precision (20-digits)



; Table 3.2

mM

h v LH) FH) RESIDUAL
1,00 0,28167511771 0.,99592948542 0,99592842099 1,068=06
~0.99 0,28462335096 0.99574960836 0,99574867754 9.316=07

“0,98 0,287605012656 0.99556146560 0.,995%6065433 B.119=07
=0,97 0,29062056684 0.99536465588 0.99536395142 7.048=07
“0,96 0.2936704B664 0.,99515875701 0,99515814775 6,000=07
=0,95 0,29675525492 0,99494332463 0,99494280004 5.,258=07
«0,94 0,29987536417 0.99471789097 0,99471744152 4,008=07

=0,93 0.30303131719 0.,99448196347 0.,99448158058 3,838=07
0,92 0.30622362709 0.99423502334 0,99423469920 3,2408=07
0,91 0,30945281770 0.99397652406 0,99397625166 2.728=07
«0,90 0.31271942401 0,99370588967 0,99370566268 2.270=07
-0,89 0,31602399239 0,99342251315 0,99342232592 {,878=07

~0,88 0,31936708099 0.99312575440 0,99312560183 1.530=07
«0,87 0.322749260 14 0.99281493842 0,99281481595 {228007
“0,86 0.32617111272 0.99248935304 0,99248925660 9,648=08

«0,85 0,329633234%8 0,99214824679 0,99214817279 7.408=08
-0,84 0.33313623498 0.,99179082647 0,99179077166 5.,480=08
-0,83 0,33668073699 0.,99141625444 0.99141621597 3,858=08
0,82 0.34026737802 0.,99102364603 0.99102362139 2,468=08
.=0,81 0,34389681023 0,9906 1206653 0.99061205349 1,300=08
“0,80 0.34756970110 0.99013052799 0,99018052460 3.,400=09
“0,79 0,351286733%4 0.98972798590 0,98972799042 4 ,520=00
-0,78 0,35504860845 0,98925333550 0,98925334646 -1,100=08
“0e77 0.35885604110 0.98875540802 0.98875542408 “1.618=08

_ 0,76 0,36270076657 0,98823296630 0,988232986238 «2,010=08
0,75 0,36661053696 0,98768470053 0,98768472364 “2,310=08

. =0,74 0,37055912358 0,98710922337 0,98710924870 -2,530=08
“0,73 0,374556317 34 0.98650506473 0,986505091%7 =2,688=08
«0,72 0,37860292942 0.98587066627 0,98587069401 -2,778=08
“0,71 0,38269979202 0,98520437540 0,98520440357 -2.820=08
«0,70 0,38684775927 0,98450443888 0,98450446705 «2,820=08
“069 0.39104770801 0.98376899584 0,98376902365 ~2,788=08
«0,68 0,39530053840 0,98299607032 0,98299609751 =2,720=08
«0,67 0,39960717605 0.98218356320 0,98218358956 ~2,640-08

| =0.66 0.%0396857077 0.98132024343 0.,98132926883 -2,538=D8
“0,65 0,40838569977 0,98043073886 0,98043076308 -2,420=08
=0,64 0,412859567066 0,97948552555% 0,97948554856 «2,300-08
“0.63 0.,41739120787 0.97849091728 0,97849093901 “2,170=08
“0,62 0,42198168374 0,97744405330 0,97744407372 -2.,048=08
0,61 0,426063208987 0,97634188549 0,97634190460 -1,910«08
=0,60 0,43134355341 0,97518116428 0,97518118208 -{,780=08
«0,59 0,43611723553 0,97395842344 0,97395843994 1 650-08
«0,58 0,440905433288 0,97266996343 0,97266997868 -1,520=08
=0,57 0,44585607911 0.97131183347 0,97131184748 -1,408=08
«0,56 0,45082374659 0.96987981187 0,96987982466 ~~) ,280=08
«0.55 0.45585864892 0.,96836938440 0,96836939618 ~1,180~08
“0,54 0,46096214040 0,96677572165 0,96677573239 -1,078=08
0,53 0,46613562107 0,96509365270 0,96509366245 «0 ,750=09
“0,52 0.47138053691 . 0.96331763782 0,96331764663 “8 ,828«09
“0,51 0,47669838267 0,96144173773 0,961443874570 “7 .,978=00

r Co
L(H) , using the first 43 coefficients of the

expansion of £[HI .
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Table 3.2 (con't

"

H Vv £(H) £(H) RESIDUAL

«0,50 0.48209070409 0.,95945958045 0.95945958762 -7,1808=09
~-0.49 0.48755910044 0.95736432450 0.95736433093 “6,438=09
0,48 0,49310522728 0.95514861883 0.95514862459 ~5,756=09
-0.47 0,49R073079916 0.,95280455865 0.95280456377 “5,128=09
“0.46 0.50443759283 0.950323636814 0.95032364137 4 ,560=09
-0.45 0.51022745033 0.94769669038 0,94769669444 “4,068=00
-0.44 0.51610228252 0.94491384151 0,94491384507 -3,5668=09
“0,43 0.52206407277 0.94196443222 0,94196443536 -3,158=09
~-0.42 0,52B811488091 0.93883695240 0.93883695516 “2.768~09
-0.41 0.53425684745 0.93551895985 0.93551896230 ~2.,458=09

-0.40 0,540u49219802 0.93199699184 0.93199699395 “2,118-09
-0.39 0.54682324844 0.92825646652 0.92825646835 ~1,8406~09
-0,38 0.55325240973 0.92428157376 0.92428157535 =1,59@0=09
~0.37 0.55978219385 0.92005515317 0,92005515455 -{,388~09
-0.36 0.56641521962 0.91555855810 0.91555855927 -1,178=09
-0.35 0.57315421933 0.91077150368 0,91077150471 -1,030~09

~-0.34 0.58000204573 0.90567189672 0.90567189758 ~8,5108~10
-0.33 0.58696167951 0.90023564480 0.90023564554 -7,408=40
-0.32 0.59403623759 0.89443644203 0,89443644264 6 ,000=10
-0.31 0,60122698198 0.88824552763 0.88824552811 -4,860=40
-0.30 0,60854332935 0.88163141380 0.88163141416 =3,620~=10
0,29 0.61598286152 0.87455957821 0,87455957846 -2,530=10
-0.28 0.62355133673 0.86699211577 0.86699211588 =“{.158=10

-=0,27 0.63125270214 0.85888734321 0.85868734317 4,180=11
0,26 0,63909110717 0.05019934976 0.85019934948 2.808=10
0.25 0,64707091832 0.84087748432 0,84087748369 6,240=40
~-0.24 0.65519673633 0.83086576865 0.83086576879 -1{,460~10
«0,23 0,66347341028 0,820102230%3 0.82010223066 -1,338=40
0.22 0.67190606164 0.80851812710 0,808%1812721 -1,110=10
-0.21 0,680%0010318 0.79603706029 0,79603706036 wb ,550=11
~-0.20 0.68926126276 0.78257395031 0.78257395040 -9,280=11
~0.19 0,69819560954 0,76803384757 0.76803384761 -4,1808=11
«0,18 0.70730958293 0,752310551135 0.75231055137 w2,550=11
0.17 0.71661002450 0.73528500001 0,73%28500003 ~2.,360-11

0.16 0,72610421358 0,71682338754 0,7168233875% »{,828=42
-0.15 0.73579990712 0.69677495230 0.69677495234 -3,820=11
-0.14 0,74570538399 0,67496937213 0.67496937217 -3,640=11
0.13 0.75582949491 0,65121368205 0.65121368208 -3,460~1}
“0,12 0.76618171840 0.62528861428 0.62528861430 -2,0080"11

0.11 0.77677222404 0.59694423179 0.59694423183 “4, 7301}
«0,10 0,78761194391 0,56589469700 0,56589469704 “fy 000-11
-0.09 0.,79871265383 0.,53181197270 0.53181197275 “-5,280=11
0,08 0.81008706579 0.49431820057 0.49431820061 “3, 460~11
~-0.07 0,82174893378 0.45297642975 0.45297642976 “1,820=11
»0,06 0.,83371317518 0,40727927411 0,407279274113 -2,550=11
-0.05 0,84599601072 0.,356634951387 0.35663495386 1,000=1}
-0.04 0.85861512670 0.30035000622 0.30035000626 -4,738=11

«0,03 0,87158986355 0.23760772770 0.23760772766 q,180~11
—0.02 0,88494143649 0.16744109659 0,16744109661 «2,360«¢1
0.01 0,89869319491 0,08869850144 0,088698%50143 1.,270~11
0.00 0,91287092921 -0,00000000026 «0,00000000004 =2,2208=10
0,01 0.92750323574 -0,30031900480 -0,10031900490 1,060«40
0.02 0.94262195453 ~0.21428099099 =0,21428099107 8.,000=q1
0.03 0.95826269685 ~0.34436251289 ~0.34436251279 «9 ,640a=11]
0.04 0.97446548596 ~0.49362198301 ~0.49362199647 1,350=08

11



Table 3.2 (cod-t)

H Vv £(H) (HH) RESIDUAL

0,05 0.99127555152 ~-0.66587160763 ~0.66587161183 4,200e09
0,06 1.00874429275 -0,86591152770 “0,86591152920 1,508=09
0,07 1.02693050930 “1.09985392433 ~-1.09985392442 8,730=-11
0,08 1,04590194007 “1.,37557841672 ~1.37557841692 2,048«10
0.09 1.06573724600 -1.70338381342 -1.70338381332 ~1 +020=10

0.10 1.08652857057 *2,09693954376 ~-2.09693954328 “4,808=10
0,11 1 ,I0838493834 ~2.57470596257 ~2.57470596209 -4,800=~40
0.12 1.13143680239 =3,16210870461 -3,16210870343 “{,180=09
0.13 1.15584227913 ~3.89496426965 -3,80496427141 1,760=09
0.14 1.18179588542 ~-4.82505765359 ~a, 82505765285 «7.42040
0.15 1.20954110887 -6.02957797020  - ~6.02957797010 “1 +318=10

0.16 1,23938906804 -7,62781509130 ~7.62781509290 1,590=00
0.17 1.27174725139 ~9.81233482410 ~9.81233482030 «3,840~09

0s 18 1.30716580707 ~12.91111808070 -12.91111808130 5.826=10
0.19 1,34641635550 -17.52191991450 -17.52191991630 1,756=09
0.20 1.39063599246 ~24.83478987800 -24,83478990340 2.540«08
0,21 1,04161618569 ~37.52253776940 «37,52253910010 1,330=06
0.22 1,50246314780 ~62.74095549100 ~62.74095589500 3,738=09
0.23 1.57943776486 ~125.95313124800 Y125.95313135300 1 +040=07

0.24 1,68924770653 —-387.33409698600 «387,33400694500 -4,100=08
0.25 1.,94538648089 ~17160.52854390000 ~17160.53556070000 7.02003
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The first 43 coefficients, D seeesd), , were calculated in both single

and double precision (10 and 20 decimal digit accuracy) on a B5500 computer;

they are listed in Table 3.1. The residuals listed in Table 3.2 indicate

that these coefficients yield a very good approximation to £(H) . The

program which calculated these coefficients is included in the appendix.

Equation (3.3) follows from (2.1) and (2.2) by substituting 5(1-7)

for v° so that

v oT 5.5 T
_r 2y2.5 dv Lp z07ar 1p (5/2..7/2

(3.4) H =) 1-.2v ) ~ = 75 | i; = = 5 | (77) “+7 +... )d47T
\V2 3 5 |6 6 6

1/2 9/2
(3.5) p-H=—=—+ J+...

1 9

_ _
(3.6) R(H) = == .

T -

Our approximation,

7 2-12
m 'f

(3.7) 1g) = ) a.(p-H)
=
Jj=o

was found by using the Remez algorithm, as adapted for the B5500

computer by Golub and Smith [G-S], to calculate the best values, in

the Chebyshev sense, for 8,780 00,8,

We now give a representation theorem for s , Our approximation
1

to s, based on 2(H):

Theorem 3.1. Let the Ss be connected by the recurrence relation

15



| 5H
i — _ S rr rm

(3.8) s(mH) = | [ a(H)s, (HH dE dH for n>2
H H
o 0

where

j ™ a
(3.9) s(HH) = 1 s,(HH) = H-H_

(3.10) 2H) = Ya.(p-H) and 7 <N<o .
j=o *

_—

Then scan be expressed as

= S 3/7
(3.11) Ts(HH) = ) Cp, 3 (PH) m=0,1,2,...

J=0

where n,1 = ®n,% = °n,5 = 0 for all m. The m, j and n-2, 3
are connected by the following recurrence relations:

(3.12) c --Lp for § = 2,3,.0.,mN with J #7
mJ © TJ Tm, 3-2 SO

mN-2 2ol - . -—(3.13) cup= LB, s(o-K)
Jj=0

Es q(3.14) Cn,0 = 2, Cp, 3(P-Hy)
J=2

where

(3.15) By 1 =PBy5=Bs

and for Jj = 0,2,4,6,7,8,...,mN-2,with [+] denoting the greatest integer

function,
14



i [£2 min{j,oN-2}]

: (3 ) Pa, ; 5-3 ) “k°m-2, j-2k
| k=(% + % max{0,j-(m-2)N}]

Proof: Equation (3.11) holds for m = 0,1 . We proceed by induction,

assuming that (3.11)-(3.16) hold for, m-2 and proving them for m .

We have

_ _ | 1 He (m-2)N k4 = a. -H -

(3.17) so (HH )2(H) ), 2ylp Cp, PH)
J=0

k=0

mop 12

where, for J = 0,1,...,,mN-2

[# min{ j,oN-2}]

(3.18) a ) ®kCm-2, j-2k
k=[% + # max{0,j-(m-2)N}]

Since (3.17) is to be integrated, we.must show that « 5 = 0 , so
that the term a S(p-H) drops out of (3.17) and no log (p—H)J

terms enter. Part of our induction hypothesis is Ci-2,5-2k = 0
for k = 0,1,2, and so

[% min{5,2N-21]

. a —- —(3.19) m,5 ) *k°m-2,5-2k = °°
k=[% + # max{0,5-(m-2)N}]

The rest follows as a formal calculation. 0.E.D.

15



This procedure of approximating a singular function which 1s to be

; integrated many times, 1s more general than it may at first appear.

If a logarithmic term had appeared 1n the above, we would simply have
~ “=t ¢€

started our series for {£(H) at a_(p-H) I , for some suitably
chosen small constant € . (As a matter of fact, we have had to do

just this in the implementation of the solution to the boundary value

problem.)

The values of ap for J = 0,1,...,7 are listed in Table 3.3.

It follows from the Remez algorithm that

(3.20) max |2(H) - Tm) | = 4.10533 x 107°
-1<H< 22

rv 1 1 1
and the values of L(H)-2(H) in Table 3.4 confirm this result.

. a
J J

| 0 -0.1505866818
1 -0. 4018655347

| 2 2.09451915435 -5.88217873L41

L 10.958%158033

D ~-10. 7524447788

6 5.9416272229

1 ~ -0.8198101027

Table 3.5

For computational purposes, 1t 1s useful to decompose sof

(3.11) into seven subsums, X (H,H ) :
m, k o

mN-k

[==]
= _ HY) _

(3.21) X= X(HH) = ) Cn, 7545 PH) fork = 0,...,6
J=0

16



Table 3.h

H £(H) (1) RESIDUAL
1.00 0,99%9294854 0.9959705387 -0,0000410532

-0.95 0,9949433246 0.9949469612 «0,0000034365

-0.90 0.9937058897 0.9936842046 0,0000216851

-0.85 0,9921482468 0.9921121400 0.0000361068

-0,80 0.9901805280 0,9901395036 0,0000410244

-0.75 0,9876847005 0.9876466686 0,000038031¢

-0.70 0.9845044389 0.9844755284 0,0000280105

“0,65 0,9804307389 0.9804151337 0,0000156052

-0,60 0.9751811643 0,9751809776 0,0000001867

'0.55 0.9683693844 0.9683845936 -0,0000157092

-0.50 0.9594595805 0,9594880509 -0,0000284704

-0.45 0.9476966904 0.9477343230 =-0,0000376326

-0.40 0.9319969918 0.9320380440 -0,0000410522

“0.35 0,9107715037 0.9108091401 =0,0000376363

«0,30 0,8816314138 0.6816585552 =0,0000271434

~0.25 0.8408774844 0,8408880189 -0.0000105345

«0,20 0.7825739504 0,7825643555 0,0000095949

“0,15 0,6067749524 0.6967462574 0,0000286950

«0,10 0.5658946971 0,5658544750 0,0000402221

-0.05 0.3566349540 0.3565983358 0.0000366182

00 0,0000000004 «0,0000128543 0,0000128546

0.05 -0.6658716068 -0,6658472800 =0,0000243268

0,10 -2.0969395414 -2.0969003767 «0,0000391647

0.15 -6.0295779653 -6.0296000934 0,0000221281

0.20 =24,8347898435 -24.8347511783 «0,0000386653

0,22 ~62,7409553870 -62.7409143510 -0,0000410362

17
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i . = + -—(3.22) sp(HLE) = Xo +) Xx (PH)

In this way the evaluation of 5 involves the calculation of up to

the sixth power of ——— and up to the [5] tn power of (p-H) ,
1/7 an

instead of the mN-th power of (p-H) . This calculation of S
I

1s roughly equivalent to the evaluation of seven [21-4 degree
polynomials in (p-H) . For m = 10 andN = 8 , 1l-th degree

polynomials are evaluated instead of 80-th degree polynomials. Thus,

approximation with negative, fractional powers of the variable (p-H)

has several beneficial side effects:

(1) More coefficients are used per unit degree of the approximation;

e.g. a 2nd degree polynomial approximation has 3 arbitrary

coefficients, whereas a 2nd degree approximation 1n powers

of 2/7 has 8 arbitrary coefficients. Freedom to choose

more coefficients aids in minimizing error.

(2) Beginning the fractional power expansion at a negative power

agaln allows more coefficients.

These advantages more than compensate for the problems caused by the

presence of a singularity of £(H) near the domain of integration.

18
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L. EXAMPLES

In this section, the (approximated) solutions to four initial value

problems are presented in the form of tables and graphs in the hodograph

and physical planes. This was done in the following way:

(1) the line H = H was specified (H = -.2 was used in all

four examples), and the procedure FANDG was supplied for

~ (1) |
evaluating f£(0) , g7/(8) and their derivatives (these two

functions are the initial values for the differential equation);

(2) the coefficients for 5) (HH) , for m = 0,1,... ,41 ere

| computed, using the recurrence relations 1n Theorem 3.1;

(3) the coefficients for 5 (1,1) were computed from
pm

those of s, (H,H_) ;

(4) three streamlines were traced in the hodograph: ¥(H,6) = v(0,1.5) ,
» ml

¥(H,8) = ¥{.05,1.5) and ¥(H,0) = ¥(.1,1.5) ;

(5) these streamlines were numerically transformed into the physical

plane, using the relations

2

(4.1)

sir A M1Y = J ’ 3Vg av + ¥_ a6]
\'s

(See [B-H-K,p:; 21] for further details and references.)

The values of H and€ making up a streamline V(H,0) = constant,
m -

were chosen so that |¥(H,8)-constant| < 10 > During each calculation
J|

of V(H,0) , terms in (2.8) were added in until the last term added was

19



< 1076 X | (the current value of the sum) | . An average of six terms

(involving 802872029571) of (2.8) was used in computing v(H,6)

| for these examples. Each example took about 13 minutes on the B5500,
and used STRENC about 1300 times.

In the first example, FANDG computed the initial values for the

Ringleb solution:

2.538 sin ré i

(4,2) f(e) = 220 SR ED , (1) (g) _ 2.538 sin r6VAIL 2 2.5
“ol v(H )(1-.2v(H ))

0 O

with r = 1 . Examples 2, 3 and 4 used (4.2) with r=.8, 1.2 and 1.5,

respectively. A closed form solution for V(H,6) in these last three

examples 1s not known.

20



EXAMPLE1

RINGLEB SOLUTION

(r = 1)

/ > |

| +

« / |
| N | a

-—-— sonic line

streamline

HODOGRAPH PLANE
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EXAMPLE I (con't. )

V(H,8) = 2.77327

MH B Vv X Y

-0,357181 0.670000 0.569304 -2,242512 4.519349
-0,246264 0,790000 0,550090 -3,116008 3.743652
-0,163745 0.910000 0.722525 ~-3.682120 3.102722
-0,102783 1.030000 0,784569 -4,0783R6 2.526454
-0,058670 1.150000 0.835328 -4,367205 1.973886
-0,028118 1.270000 0.874074 “4.575625 1.422097

«0,008889 1.390000 0,900247 ~4.713453 0,861072
0.000000 1.500000 0.912871 -4,779586 0,338178
0,001588 1.570000 0,915163 ~4.,791589 0,003021
0,000478 1.630000 0.913560 “4,783195 -0,284338

-0,002031 1.690000 0,908669 ~4.,757582 -0.570692
-0,008703 1.750000 0,900508 ~4.714820 ~0,855155
-0.016940 1,810000 0.889106 -4,654953 ~-1.137109

-0,027792 1.870000 0.874504 ~-4.577906 ~1.416323
«0,041457 1.930000 0.856755 -4,083338 -1.693063
-0,058181% 1.990000 0.835923 4.370461 ~-1.968194
«0,078271 2.050000 0,812082 4.237791 2.243268
-0,102096 2.110000 0,785318 ~-4.082835 -2,520634
-0,130099 2.170000 0.755729 -3.901659 =2,803553
~-0.162807 2.230000 0.723419 -3,688205 -3.096367
=0,200855 2.290000 0.688506 ~3.433854 ~3.404747

-0,245001 2.350000 0.651115 -3.125191 -3,736064
»0,296167 2.410000 0.611380 —-2.742776 -4,000068
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EXAMPLE I (con?,)

V(H,8) = 2.55392

H 8 Vv X Y

-0.608494 0.444513 0.427338 1.069939 . 5,921173
- 0.488494 0.513757 0.488389 -0.432149 5.145598

-0.368494 0.599576 0,560775 -1,602965 4 422127

-0.249132 0.710000 0.647770 "2.523155 3.721549

=0,152526 0.830000 0.733331 -3,144892 3.122730
-0.081516 0.950000 0.808345 -3.564248 2.607194

0.029892 1.070000 0.871732 3.869102 2.122954
0.006672 1.190000 0.922581 -4.097494 1.639303

0,031190 1.310000 0.960161 - -4.263252 1.140478

0.045677 1.430000 0.983931 -4,368588 0.622701

0.050000 1.500000 0.991276 -4.401377 0.313843

0,051449 1.570000 0.993765 “4.812524 0.002462
0.050436 1.630000 0.992024 -4.404726 -0.264560

0.047323 1.690000 0.986713 4.380088 -0.530016

0.042044 1.750000 0,977851 -4.341542 «0,792479
0.034492 1.810000 0.965470 =f ,286697 -{,050833
0.024513 1.870000 0.949614 -4.216739 -1,304410
0.011902 1.930000 0.930340 -4.131775 -1,553100

-=0,003598 1.990000 0.907719 -4.031549 - 1.797441
~0.022304 2.050000 0.881830 -3.915211 -2.038697

-0.044599 2.110000 0.852768 -3.781024 «2,27R924
-0.070943 2.170000 0.820637 -3,625901 -2.521052

-0,101882 2.230000 0.785552 -3,445338 -2,769003
-0.138072 2.290000 0.747640 "3.231767 ~3,027870

-0.180295 2,350000 0.707038 -2.974333 -3.304213
-0.229501 2.410000 0.663891 «2.656649 -3.606528

-0,286848 2.470000 0,618354 -2,253924 -3.946017
-0.346848 2.524202 0,575301 - 1.785603 “y,297146
-0.406848 2.571660 0.536212 ml. 259398 -4.651499

~0,466848 2.613762 0.500521 0,665216 -5,014157
-0,526848 2.651492 0.467781 0.007538 -5.388860

«0,586848 2.685571 0,437635 0.770293 -5,778577
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EXAMPLE I (con?.)

Vv(H,6) = 2.33002

H A Vv X Y

-0.695135 0.365072 0,388885 2 877149 6,082925
-0.575135 0.419169 0.443331 1.086153 5.306357

-0. 455135 0.484400 0.507244 -0,299229 4.638221

-0.335135 0.565182 0,583374 - 1.371249 4,022005
-0.214730 0.670000 0,676414 -2.210618 3.430994
-0.112822 0.790000 0.773758 -2.792562 2.914211

-0.03' 8940 0.910000 0.859974 -3.175934 2.479842

0.014219 1,030000 0.933820 -3,455529 2,072781
0.051722 1.150000 0.994235 "3,671452 1.659033

0.077" 119 1.270000 1.040351 -3.837091 1,219706
0.092822 1.390000 1.071503 -3,952436 0.749280

0,100000 1.500000 1.086529 ~-4.009656 0,296088
0,101277 1.570000 1.089257 -4.020179 0.002022

0,100385 1.630000 1.087349 “-4,012814 -0,250218
0,097639 1.690000 1.081527 -3.990475 «0,500118
0.092973 1.750000 1.071814 -3,953605 -0.745516

0.086275 1.810000 1.058243 -3,902856 “0,984653
~ 0.077386 1.870000 1.040863 -3,838058 - 1.216335

0.066094 1.930000 1,019738 «3,762548 - 1.440055

~0,052132 1.990000 0.994943 =~3,673967 - 1.656067
0.035170 2.050000 0,966566 -3.573032 «1,865437
0.014809 2.110000 0.934712 -3,458758 -2.070062

-0.009428 2.170000 0.899493 -3,329036 "2.272702

-0.038112 2,230000 0.861037 ~3.180191 -2 477026
-0.071924 2.290000 0.819483 w3,006377 -2,687728
0,111678 2.350000 0.774978 -5,798648 -2,910730
~0.158355 2.410000 0,727685 -2.543488 »3,153551
~0,213152 2.470000 0.677773 -2.220378 -3.425923

_0.273469 7 576471 0.628566 -1,826024 -3.720823
-0.333469 2.575149 0.584534 -1,384301 -4,016389
»0,393469 2.618009 0.544616 -0.884102 -4,318997
~0,453469 2.656191 0.508209 -0.316058 4 ,632029
-0.513469 2.690517 0,474845 0.329813 -4.958083
-0.573469 2.721602 0.444148 1,064386 -5.299320

=0,633469 2.749916 0.415812 1.899670 »5,657649
«0,693469 2.775832 0.389585 2.849030 -6,034841
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EXAMPLE II

r = .8
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EXAMPLE II (con't.)

Y(H,8) = 2.57676

H a8 V X Y

0.459174 0.679269 0.504913 «1,812304 4,573623
~0.339493 0.790000 0.580352 2.727762 3.752560

~0.239967 0,910000 0.655224 ~3.364548 3.031989

~0.163568 1.030000 0.722694 ~3.795537 2.405731

~0.104582 1.150000 0,782613 -4,09R271 1.827095
~0.059066 1.270000 0.834846 4.309051 1.269647

~0.024239 1.390000 0.879234 ~4.444491 0.718928

0,000000 1.500000 0.912871 ~4 ,508365 0.214336
0.012136 1.570000 0.930691 ~4,519884 -0.107177
0.020706 1.630000 0.943709 ~4.511837 ~-0.382636

0.027702 1.690000 0.954620 4.487262 -0,657376
0.033211 1.750000 0.963402 ~4.444184 ~0.930622
0.037303 1.810000 0.970038 -4,388683 ~1.201443
0.040028 1.870000 0.974512 -4.314920 -1,468790
0.041421 1.930000 0.976815 4.225152 ~1.731545

0.041497 1.990000 0.976942 —4.119744 ~-1.988560

0.040259 2.050000 0.974892 ~3.999158 -2,23R703
0.037690 2.110000 0.970670 ~3.863940 ~-2.480898

~ 0.033760 2.170000 0.964286 “«3,714694 2.714156
0.028419 2.230000 0.955753 ~3.552046 ~-2.937610

0,021600 2.290000 0.945089 ~3.376607 ~3.150526

0.013219 2.350000 0.932315 ~3.188915 ~3.353322

0.003167 2.410000 0.917455 -2,98039>2 _3.542562
-0.008685 2.470000 0.900533 -2,778270 ~-3.720954

~0.022495 2,530000 0.881574 ~2.555531 ~3.887329

~0.038448 2.590000 0.860605 ~-2.320820 ~4.041614
-0.056767 2.650000 0.837649 ~-2.073343 ~4.183795
-0.077711 2.710000 0.812730 ~1.811749 ~4.313869

~0.101592 2.770000 0.785869 -1.533953 ~4.431768

-0.128776 2.830000 0.757084 ~1.236917 ~4.537276

~0.159699 2.890000 0.726393 ~0.916324 -4,629886
~0.194881 2,950000 0.693813 ~0.566118 ~4.708608

~-0.234948 3.010000 0.659359 ~0.177819 ~4.771668
-0.280655 3.070000 0.623051 0.260519 ~-4.016028

~-0.332926 3.130000 0,584913 0.765920 4.836609

28



ie

EXAMPLE II (con?.)

i V(H,8) = 2.3662")

r H 8 V X Y

-0 ,9R5520 Ne936424 0.438276 -0.075907 Re162146

- -0.465520 ND.6H13RB81 0.501277 1.217096 4.426013

 - —0.345520 0.711196 0.576209 -2,129787 3.719365
-0,233100 9.830000 0.660891 2.831001 3.043472

-0.147131 0.950000 0,738620 -3,295318 2.473098

-0.0814060 1,070000 0,808401 -3.619632 1.958474
: ~-0.9310098 1.190000 0.870148 -3,851861 1.467296

0.007443 1.310000 0.923717 -4.013627 0,981091
0.036604 1.430000 0.968897 -4.113610 0.490122

0.050000 1 500000 0.991276 —4.,144420 0.199956
0.001069 1.570000 1.010653 —-4.,154897 -0.092914

I 0.068867 1.630000 1.024832 —-4.147507 -0.345590
0.075219 1.690000 1.036730 -4.124829 -0.599039

0.080214 1.750000 1.046317 -4,086746 —-0.852327

| 0.083919 1.810000 1.053568 -4.033233 -1.1043420,086384 1 ,870000 1.058460 -3.964392 -1.353834
0.087643 1.930000 1.060979 «3.880469 -1.599474
0.087712 1.990000 1.06111~ -3.781864 -1.839901

0.086592 2.050000 1 058876 -3.669119 —-2.073783
! 0.084269 2.110000 1.054259 -3.542901 -2.2998064

0.080711 2.170000 1.047283 -3.403968 =2.517012
0.075870 2.230000 1.037966 -3.253130 —-2.724253

0.009679 2.290000 1.026336 —-3.091193 -2.920793
I 0.002055 2.350000 1 012421 -2.91~910 «3,106034

0.052892 2.410000 0.996257 -2.736922 -3.2795067

0,042060 2.470000 0.977878 -2.545694 -3.441163

| 0.029407 2.530000 0.957320 -2.345451 -3.5907400.014748 2.590000 0,9346165 -2.136110 -3.738369
-0.002135 2.650000 0.909607 -1.917195 —-3.854155

-0.021498 2.710000 0.882916 -1.687735 -3.9608263

-0.043648 2.770000 0.853971 -1.4461306 -4,070814
I -0.008947 2.830000 0.822994 -1,189003 —-4.161810

-0.097820 2.890000 0,790003 -0,915842 —-4,241017
-0.130801 2.950000 0.755011 =0,61B780 —-4.307807

-0.108494 3.010000 0,718028 -0.291913 -4.300904

-0.211659 3,070000 0.679063 0.074488 ~4.397997
-0.26061219 3.130000 0,638128 0.494314 —-4.,415107
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EXAMPLE II (con?.)

V(H,0)= 2.15312

H 8 Vv X Y

-0.666839 0.445646 0,400980 1.350616 5.393565

-0.546839 0.506108 0.457464 0,024044 4.612360
-0.426839 0.579952 0.523967 -1 ,023706 3.983691

-0.306839 0.673057 0,603528 “1 ,857063 3.384705

-0,192046 0,790000 0,696353 -2.506193 2.806470

-0.103968 0.910000 0,783281 -2.936194 2.319639

-0.037519 1.030000 0.861800 -3.235730 1.884086
0.0129" 44 1.150000 0.931902 ~3.453490 1.467489

0.051272 1.270000 0.993459 -3.610903 1 ,050679
0.080161 1.390000 1.046215 -3.716011 0.622565

0.100000 1,500000 1,086529 ~-3.767370 0.215792
0.109838 1,570000 1,108021 -3.776871 -0,050353
0.116742 1 +630000 1.123786 -3.770074 -0.383363

0.122350 1.590000 1.137044 -3,749061 -0,517087
0.126748 1,750000 1.147746 -3.713520 ~0.753406

0.130004 1,810000 1 ,159851 ~-3.663283 “-0,989956
0.132166 1,870000 1.161326 -3,598372 “1 ,225189
0.133270 1.930000 1.164147 -3.519023 ‘1.457435

-0.133330 1.990000 1.164302 «3,425700 -1,684983
0.132349 2.050000 1.161792 -3.3190~1 ~-1.906160

0.130311 2.110000 1.156625 -3.200031 -2.119411

0.127185 2.170000 1.148825 ~-3.069550 -2.323363
0.122923 2.230000 1.138424 -2,928714 -2.516875
0.117460 2.290000 1.125461 -2.778609 -2,6990071
0,110712 2.350000 1.109985 -2.620259 -2,8690349
0.102574 2.410000 1.092048 -2.454558 -3.027369

0.092920 3.470000 1,071704 -2,282206 ~3.173031
0.081597 2.530000 1.049009 -2.103650 -3.306431

0,068426 2.590000 1.024017 “1.919025 ~3.427820

0.053192 2.650000 0.936777 -1.7280091 ~3.537544
0.035643 2.710000 0,967334 -1,530160 -3,635088
0.015479 2,770000 0.935724 -1.324004 -3.723508

-0.007656 2.830000 0,901978 -1.107717 -3.800358

-0.034185 2,890000 0.866116 -0.878523 ~-3.866590

-0.064618 2.950090 0.829150 -0,632487 -3.921919

-0.099569 3.010000 0.788085 “0,364082 -3,965531
-0.139786 3.070000 0.745920 =-0,065517 ~3.995769
-0.186188 3.130000 0.701649 0.274318 -4.009630
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EXAMPLE III (cod-t.)

| V(H,8) = 2.72611

H 6 X Y

-0.580820 0.401327 0.440552 1.476017 6.254477
-0.4060820 0.471021 0.503963 «0,24046% 5S. 460012
-0.340820 0.557665 0.579432 -],D0U8473 4.726842
«0,221657 0.670000 0.670498 -2,550364 4.027697
-0.12R987 0.790000 0.756867 -3,1961R0 3.453982

-0.063925 0,910000 0.828981 -3.629674 2.962596

-0.020542 1.030000 0,RB42086 -3.952407 2,002531
0,005389 1.150000 0.920698 -4,2042109 2.010002
0.016573 1.270000 0.937384 -4,3952R9 1.503578
0.014228 1.390000 0.933835 - 4.524504 0.977393

0,000000 1.500000 0.912871 -4,586746 0,485194
-0.0150624 1.570000 0.890908 “4 .,59R0R0 0.167774
—-0.033559 1.630000 0.866930 -4,580958 0.109205
-0.056159 1.690000 0,838393 - 4.564332 -0.394863

«-0,083970 1.750000 0.805538 -4,5189R3 “0,695669
-0.117638 1.810000 0.768661 - 4.449672 ~1.021129

-0.157922 1.870000 0.728103 - 4.349059 -1,384601

-0.205709 1.930000 0.664239 -4,205072 -1,804590
_=0,262066 1,990000 0.637460 -3,99A271 -2,.,306958
-0.322974 2.045510 0.591920 «3,724008 -2,877056
-0.382974 2.093138 0.551330 -3,395088 -3.479841

—0.443974 3.135315 0.514346 «2 ,99R829 —4.134372

-0,502974 2.173075 0,480479 ~-2.525377 4 ,850369
«0,562974 2.207153 0.449339 -1.963393 -5,637446
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EXAMPLE IIT (con?.)

V(H,8) = 2.51901

H 3] Vv X Y

-0.698208 0.317281 0.387596 4.071576 6.636595

-0.578208 0.369817 0.441828 1,844908 5.845047
-0.458208 0.432963 0.505469 0.155303 5.132771

-0.338208 0.5~0590 0.581241 - 1.122548 4.485856

-0.218208 0,610000 0.673434 -2.090477 3,88u4287
0.111629 0.730000 0.775031 -2.769276 3.351524

-0.036975 0,850000 0.862501 -3.198451 2,920697
0,013330 0.970000 0.932483 -3.512720 2.517254
0.044887 1.090000 0,982602 -3.765403 2,006468
0.061554 1.210000 1.011521 -3.969367 {1,640385
0.06' 5497 1.330000 1.018648 -4.120222 1.153924
0.057243 1.450000 1,003859 -4.211469 0.655248

0.050000 1.500000 0.991276 -4.231372 0,44R243
0.035696 1.570000 0.967420 -4.241685 0.160864

0.019143 1.630000 0.941307 wf ,234524 -0.084132

-0.001897 1.690000 0.910147 -4.212408 =0,331015
-0,028037 1.750000 0.874180 -4. 174091 -0.585367

-0.059997 1.810000 0,833717 -4.116524 -0,855782
-0.098611 1,870000 0.789138 - 4.433845 - 1.154507

—=»0,144843 1.930000 0,740881 -3.915922 -{,49B466
-0,199821 1.990000 0.689420 -3.746061 -1,911054
-0.260336 2.046083 0,638841% «3,516536 -2,387872
-0.320316 2.094216 0.593811 «3,237906 -2, 807276
-0.380316 2.136639 0.553047 -2.900613 -3.453847

0.440316 2.174500 0,515915 -2.495850 -4,063101
-0.500316 2.208595 0.481919 -2.013670 -4.736341

-0.560316 2.239507 0.450666 - 1.442758 -5.481226

-0.620316 2,267677 0.421836 -0.770200 -6,307138
«0,680316 2.293449 0.395165 0,018777 -7.224454
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EXAMPLE III (con't.)

V(H,8) =2.30546

H 3) \ X Y

0.770631 0.264214 0.358614 6.105391 6.602550
0.650631 0.307001 0.408105 3.491110 5.839439

0.530631 0.357719 0.465807 1,507501 5.159072
0.410631 0.418670 0.533866 0.010987 4.551301

0.290631 0.493659 0.615509 1.109627 4.005809

0.170631 0.590000 0.716017 “1.,944262 3.508361
0.062023 0.710000 0.831268 -2,525989 3.070782

0,012382 0.830000 0.931059 2.883756 2.725779

0.061465 0.950000 1.011362 3.152513 2.394328
0,091925 {,070000 1.069863 3.382926 2.026937
0.108397 1.190000 1.104804 3.581824 1,604501
0.113544 1 «310000 . 1.116410 3.736953 1.137166

0.108219 1.430000 1.104410 -3,835264 0.654916
0.100000 1.500000 1.086529 -3,864520 0.380099
0.087496 1.570000 1.060685 -3,874064 0.115790
0.072863 1.630000 1.032278 “3,867752 “0,101634
0.054028 1.690000 0.998230 -~3,848894 0.312644
0.030302 1.750000 0.958743 3.817395 0.522012
0.000864 1.810000 0.914117 3.771525 -0,737634
0.035234 1.870000 0.864753 3.706958 -0.970980
-0.079076 1.930000 0.811152 “3,615475 1.237811
0.131897 1.990000 0.753891 3.482995 -1,559542

0.192800 2.047961 0.695676 -3,294385 al.950235
0.252800 2.096704 0.644822 “3,064468 -2,368264
0.312800 2.139504 0,5$9203 -2,783622 2.827966
0.372800 2.177444 0.557943 “2,444118 3.336567
0.432800 2.211498 0.530386 2.037334 «3,901006
0.492800 2.242304 0.486020 1.553520 4.528516

0.552800 2.270333 0.454442 “0,981546 5.226971

=0,612800 2.295949 0.425324 ~0, 308770 6.005129
0.672800 2.319441 0.398396 0.479410 6.872833
0.732800 2.341042 0.373432 1.399636 7.841207
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EXAMPLE IV (con't.)

V(H,0) = 2.20548

I 2) \ X Y

-0.803855 0.177423 0,346149 10,133879 6,638649
-0. 683855 0.211565 0.393655 6,348335 5.898426
-0.563855 0.252018 0,448901 3.556194 5.244259
-0.443855 0.299932 0.513827 1.511290 4.669536

-0,323855 0.356902 0.591295 0,035407 4.170702

=-0,203855% 0.425672 0,685864 -0,999284 3,747860
-0.083855 0.512689 0.805669 - 1.685890 3.404276

0,028592 0.630000 0,956028 -2.094014 3.146683

0,00%673 0.750000 1,077408 -2.322963 2,958135
0.130230 n 870000 1.156421 -2.567860 2.699149

0.144563 0.990000 1.194216 -2,B48825 2.320764
0.144240 1.110000 1.193324 -3.107798 1.869345
0.129135 1.230000 1.153673 -3.290854 1.439947

0.093386 1.350000 1.072666 -3.389280 1,102906

0.024388 1,470000 0.949419 -3.436601 0.808369
0.000000 1.500000 0.912871 -3. 444460 0.715589

«0,068157 1.568212 0.823931 -3,454288 0,420090
-0,128157 1.616717 0.757720 -3.446610 0.093906

_=0,188157 1,658598 0.699862 -3,419213 -0,304801
-0.248157 1.695758 0,648557 -3.367022 “0,790445
-0,308157 1.729251 0,602568 -3,284415 -1,365666
«0,368157 1.759714 0.560997 -3.165111 w2,042477
-0.428157 1,787568 0.523172 -3,001983 =2,832818
-0.488157 1.813108 0.488575 -2,786844 «“3,750968
-0.548157 1,836562 0,456794 -2.510211 -4,813924
«Q,608157 1.858113 0,427496 -2,161041 -6,041816
-0,668157 1.877919 0,400407 - 1.726435 -7.458379
-0,728157 1,806116 0.375298 -1.191310 -9.091488

-0.788157 1.912830 0.351977 -0.538009 “10,973786
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EXAMPLE IV (con?.)

Vv(H,0) = 2.05042

H 8 V X y

=0,800536 0.163312 0,344066 10.531442 6,222300
-0,689536 0.194611 0.391244 6.700484 5.534332

«0,569536 0.231596 0.446085 3,876399 4,927689
=0,449536 0.275225 0,5104948 1 809345 4.396350
=0,329536 0.326763 0,587287 0.318922 3.937328

-0.209536 0.388297 0,680902 -0.722624 3.551744
-0.089536 0.464555 0.799234 ~1.402841 3.246541

0,029549 0.570000 0.957546 - 1.783280 3,034989

0.109142 Nn,690000 1.106464 wi .,944453 2.918646
0.149531 0.810000 1.208196 ~2,13040% 2.743130

0,168079 0.930000 1.265312 2, 400498 2.409642
0.173311 1.050000 1.283104 22.717262 1.939420

0.167547 1.170000 1.263552 =2:966366 1.439379

0,148230 1.290000 1.204486 -3.110682 1.037878
0,106468 1.410000 1.100536 -3.166639 0.795663
0.050000 1.500000 0.991276 23.182474 0.656730

«0,015592 1,570000 0.890953 -3.188156 0.472750
-0,075592 1.619553 0.815192 -3,181889 0.236330
_0.135592 1 ,661398 0,750141 -3.159602 -0.075402

«0,105592 1.698139 0,693178 -3.1161906 “0, 467620
© -0.255592 1.731069 0.642591 -3.046418 -0.946099

-0,315592 1.761049 0.597192 -2,944595 -1.518306
-0.375592 1,788451 0.556118 -2,804390 -2.193758
-0.435592 1.813616 0.518720 -2,618576 -2,984265
-0.495592 1.836771 0.494492 -2,378814 -3.904186
~0,555592 1.858091 0.453035 «2,075416 - 4.970742
0.615592 1.877723 0,424024 1.697079 w6,2043%94

-0.675592 1.895795 0.397192 -1,2305R7 -7,629297
-0.735592 1.912422 0.372315 ~0,6604R1 =0,273836
-0.795592 1.927710 0.349203 0.031330 ~11,171256
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EXAMPLE IV (con't.)

V(H,0) = 1.88713

H : V X y

~0.812365 0.149453 0.343035 10,808842 5.756544
L0.692365 0.177982 0,390050 6,959186 5.125183
~0.572365 0.211610 0.444691 4.122977 4.569640

0.452365 0.251132 0.508851 2,048498 4,08u8485
«0,33236% 0.297554 0,585306 0.554402 3.667215
«0,212365 0,352478 0.678453 ~0.486357 3,319583

=0,092365 0.,41948% 0,796063 ~-1.156381 3.050582
0,027635 0.510000 0.954515 ~1.497772 2.883754
0.121332 0.630000 1,134605 ~1.563094 2.844354
0.166569 0.750000 1.260331 ~1.643847 2.775171

0,187537 0,870000 1.336341 -1,887637 2.515059
0.195853 0.990000 1.371601 ~2.237949 2.042332

0.195668 1.110000 1.370776 ~-2.574536 1,455648
0.186894 1.230000 1.333755 ~-2.802583 0.922246
0.165129 1.350000 1.255641 ~-2.900548 0.592628
0,118273 1.470000 1.127363 -2.917997 0.496613

0.100000 1.500000 1,086529 ~2.918447 0.490643

0,042469 1.570000 0.978558 -2,919469 0.444509
- «0,018443 1.623516 0,887055 -2,915455 0.315545

~0.078443 1.666003 0.811883 -2,8990199 0.103279
~0.138443 1.702482 0.747267 ~2.8615059 -0.192276

-0,198443 1.734869 0.690641 ~-2.808039 -0.572112
~0.258443 1.764167 0.640324 ~-2.723068 -1,040102
-0,318443 1.790947 0.595148 2.604607 ~1.602782
~0.378443 1.815564 0.554262 ~2.446387 -2.269213
~0.438443 1.838254 0.517025 ~2.241193 ~-3.050998

~0.498443 1.859193 0.482937 -1,980646 -3,962441
-0,558443 1.878519 0.451603 ~1.654973 «5,020794
~0.618443 {,896349 0.422702 -1,252745 6.246616
-0,678443 1.912787 0.395967 -~0,760591 -7,664203
~0.738443 1.927931 0.371178 ~0.162859 ~9.303118

-0,798443 1,941870 0.348145 0,558768 »11.193819
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5. ERROR ANALYSIS

Before proceding with a formal analysis, we present some empirical

results. This will allow a more realistic evaluation of the error

bounds to be proved. To do this we have used the well known Ringleb

solution,

(5.1) v(x 0) = EE sin 6¢ viH

of equation (2.5) to set up initial value problems for H_,He[-1,.22] .

We have then used the program included in the Appendix to compute

TR

vo (HLH ,0) for H,H_ = =1,-495,4405.29.22 . Figure 5.1 is a graph

of the average error, ¢€ , versus Ho, where

26 3
_ 1 R R

| R 'R
Figure 5.2 contains graphs of | - vol versus H , for several values

of Hy . The maximum absolute error tabulated was 3.91 x 1077
R TR)

occuring at H = .2 , H_==95. The error bound on Wo - v | ,
given by the sum of formulae (5.35) and (5.46), was tabulated for

H = .1,.15,.2 and .22 will be explained shortly). The maximum

value tabulated for this bound was 1.2 X 107 , occuring at H = .22 ,

i = -1.0 . It 1s difficult to maximize this bound, as a function

of H and H . However, a somewhat weaker bound, given by (5.54)+(5.55),

can be maximized easily, yielding an upper bound (for all H e[-1,.065%...]

and Hel[-1,.22] ) on the error in our approximate Ringleb solution of

=
3.5 x 10 7 bl
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1 The program which carried out the calculation of the error bound
’ 1s included in the Appendix. These calculations were done only for
: © = 1 radian since the simple form of Wi and the fact that the

i error in (23) and £ (23+) is very small in this case, make the
relative error given by the formulae of this section, essentially

independent of 6 .

! Let us proceed with a formal error analysis. The error involved

in our computation draws from three sources:

(1) truncation -- we have truncated the infinite series of(2.7),

for ¥(H,0) , to yield (1,5 _,0) ;

: (2) function approximation -- we have permitted the use of
i (23) ’ g(23+1) gy for j=20,1,...,n , and Tr , to yield
x y (H,H_,6) ; and

(3) roundoff -- computations are done in fixed length, finite

| precision arithmetic.

Errors of types (2) and (3) can be confused easily: type (2) errors

are due to the fact that the formulae used to calculate certain functions

would not give exact values, even if exact arithmetic were used;

: type (3) errors are due to the inexactness of computer arithmetic.

3 Confusion may arise when inexact formulae are computed with inexact

arithmetic.

Roundoff error has been no problem in our work, partly because we

| are using 10 digits for our essentially 5 digit calculations. ye shall

: not consider roundoff error here. The following analysis provides

bounds, as functions of H, H and 6 , for the truncation and

2 4
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approximation errors. A series of five lemmas are required. The first

three lemmas present rough bounds based on (2.9), itself a rather rough

bound on s - The derivation of these bounds utilizes only one

property of £(H) , that for Hel[a,B] , | 2(H)] < c® . In this paper,

we deal with [@,B] € [-1,.22] , for which © <62.47. When evaluating

our bounds for particular H and HJ , we of course choose

[@,8] = [H_,H] .

Let a= .0659262218 ... . Then we have

(5.3) (a) = -1 .

When H <a<Hor H< agc< H , the first bounds are poor. Lemmas 5.k

and 5.5 give considerably improved bounds, valid for H <a<H. In

the Ringleb computation considered, these new bounds were as must as

10%! better than the old bounds. The case H < a < H could be
treated similarly, but this will not be done here. (This 1s why the

cases Hy = .1,.15,.2,.22 were omitted from the bound calculations

summarized in Graphs 5.1 and 5.2.) The improved bounds depend on one

further property of £(H) , that |2(H)| < 1 for Hel[®,a] . Thus,

all the bounds given are valid for any function, 1(H) , whose graph

lies within the darkened area of Figure 5.3; the first bounds are valid

for any L£(H) whose graph lies within the dashed rectangle.

In order to present simple a priori bounds, we assume that, for

fixed 6 , (23) (9) and {23%1) grow (with j ) no faster than

geometrically. However, the derivatives of even analytic functions

can grow much faster than this. (If h(6) is analytic then, by Cauchy's

formula, In'5) (6) < max |h(6)|3ir~97% , where r is the minimum distance
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of 6 from the boundary of some domain within which h is analytic;

the maximum of |h(6) | 1s to be taken over the same domain from which

r 1s computed.) The bound on the approximation error also involves

(23) eg)terms which must bound the error caused by f and g for

j <n. If these errors can be assumed negligible (of 1f a bound can

be found), then an a posteriori bound on the error due to function

approximation can be computed, while the stream function, Vv , is being

computed, without any assumptions about the growth of £(23) and

o (23+) . This 1s not possible for the truncation error; we must have

definite knowledge of the growth of (23) and g (20+) ;, @sS J] = © ,

in order to bound it. And a bound on the approximation error 1s of no

value without a bound on the truncation error. The usual heuristic

solution to this problem 1s to let the program determine when to truncate

the series for Vv  dynamically,on the basis of the size of the last

term computed; when the last term 1s small relative to the current value

of the series, the truncation error would be assumed negligible. (Our

program allows the user to decide whether a fixed number of terms or

the heuristic stopping criterion 1s to be used.)

In the following, we assume that c¢ > 0 , and we let T and A

denote the truncation and function approximation errors involved 1n

(2.8), respectively, so that

(5.4) r(H,H_,0) = ¥(H,6) - ¥ (HH ,6)

ry

(5.5) A(H,H_,6) =v (HH ,6)- Vv(HH_,6)

where Vv denotes the series for Vv with the approximation symbols,
M1, removed.
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Lemma >.1. Let 6 be fixed. Suppose there exist constants Tor T- g

Bo and B for whichg

(23) 23 (23+1) < 2J+1
| (5.6) £500) < eB. , le (6) ] = rt TB,

for j 2 ntl .

| Let an upper bound function, u , be defined by

(r, x)"
(5.7) U (h,x) = By — cosh r, Xx

where h can be f or g . Then we have

L

(5.8) |T(H,8_,0)| <U,  (£,clH-H_|) + = Unpas(Esc]H-H |)

for all H,H elQ,B] :

Proof: By definition,

(5.9) IT (HE _,0)| = |T (<1), (1,8) (0)rs_ (n,m 36231)(0)no’ — 1.L (= 23 70 So3+1 sy 7/8 3Jj=n+1

a 2 2j+1J Jt

(5.10) < py {Bor [55 (HH) [+B,r [55547 (HH D1] :J=n+l

If we apply the bound,

2[3]

c © t-1_|"
(5.11) fs (BB) |< ———— , 8(HH)

to (5.10), we obtain

nos cn, 5 fhe foe(5.12) T (H,H ,0) < B + (GREn 0) f Som 2) C ol 2j+1)!
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where X= r c|H-H_| for h = f,g . The two series in (5.12) are just

the remainders of Maclaurin expansions of cosh x, and sinh X50

truncated after 2n+2 and after 2n+3 terms, respectively; (5.8) is

derived by substituting (an upper bound on) the Taylor form of the

remainder. Q.E.D.

Let us define

= TJ
(5.13) E (HH, ) = s (HH) s (HH _)

rr

(5.14) D(H) = £(H)-2(H)

(5.15) 6 = max |D(H) .
He[Q,B]

To facilitate the following proofs, let us define regions I , II ,

and III in the H ,H,- plane, as pictured in Figure 5k,

H

H 1
H
0

I |

. |
0

Figure 5.4
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Region I 1s the union of II and III. We thus have

H Tl

[[ F(H,,H,)dHgH, = [ J Fu Hy )aH gi
a a

II

a Hy H a

(5.16)  [[F(uBH aan, = | [FH H Ja GH, + ] F(H, ,H,)daH, dH,H H a
III 0 oO O

Jira Hy) aH an, = [J FH, ,H,)dH GH + [T P(E, ,H,)dH dH,
I II III

Lemma 5.2. We have

mn

(5.17) IE (1,5 )| < L [Zs (H,H )(1+6c 2)? form>0
) mo’! = 2 2° mo = 7°

Proof: The proof is by induction. El = E, = 0 and so (5.17) is true

for m = 0,1. We assume it is true for m-2 and prove it for m .

™ ™

(5.18) E(u,u) = [[ {e(u)s (HH)-2(H)s(HH )}aH di,
I

Adding and subtracting Is, from the quantity 1n braces yields

mm

(5.19) |E_(#,1_) | < |[J D(H,_)s, (HH )dH aH | + \/f B,_o(H ,H,)£(H aH aH |
I I

m m-2
2[3] 2[~—=]

bc © mH |", sc © |mem|” LB
(5.20) IE (H,H ) | <— (c™+8)([5]-1) — a (1+8c 7)

cm, cm.

and (5.17) follows directly from this. Q.E.D.
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Lemma 5.3. Let 6 be fixed, and let constants C_, , D_. , C D C

Cg ’ de and d, satisfy

(5.21) C 02d > £023) C o2dtl S | (23+1) |£f°f = » Tg = 18

2] (23) (23) 2j+1 2j+1) | (2j+1

for J = 0,1,...,n .

Let us define bounding functions, F and G , by

(5 23 ) F(k,x,y) = La (C sinh x + D sinh vy) + D_ cosh¢ 1 XyY/) = Ok £% ad Y f Y

6

(5.24) G(k,x,y) = or (Cc x(cosh x-1)+D y(cosh y-1))+D, sinh vy

Then we have, with z = (162) Y2 sr |e ,

(5.25) |A_(H,H ,0)| < F(c®,c z,d 2) +E (cc z,d z)n' ’7o’ - IE peI Ty = 1Co 2s 4,2)

This bound 1s independent of n .

Proof: By definition, we have

(5.26 A (HH ,0)| = 23d (23) m (23) (2j+1) nm (23+1)

1 2J +

Adding and subtracting SE J) and EA 1) , applying the
triangle inequality and using the fact that Is’ | < IE [+]s | yields
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3 2 asp os
(5.27) |A_(H,H_,0)| < L (ge +D A Ey; |4D ls, |J=

1 2jtl 2J+1 2J+1
: +(c_c +D d E.. +D d :g & g g )| 2541 gg EAE !

Applying (5.11) and (5.17) to this yields

(5.28 SL. 2 A (H,H ,6 < — +

2 ) | nl 0’? )| = 96 2 (Coxe L125: Deve & (25-177)
BR

@  (yg(18c7®) 5)
f . : Ng
j=0 (23)!

r—5 (C yr +o COR2 ! *\!

oc? 8 ¢ yop (20)0 Tg cemy (2):

| -2, 2,2j+1
D o (y (1+dc 2) ) J

| t+ ~& )) = : 1
C j=0 (25+1)

where Xo , Yo X; » Vg are suitably defined; (5.25) follows directly

from this. 0.E.D.

The above bounds on T and A are reasonable as long as [«,B]

1s such that c¢ remains small. Byt as B - .25125.. we have c— © .

The reason our bounds can be bad 1s that the constant c¢ multiplies the

whole of |H-H_| in our bound of (2.9):

(c|H-H 1"0 -1

(5.29) |s (H,H)| < = 5"

pp)



When H << a << H ("<<" means "much less than"), then c is large,

and so 1s |H-H_| . It does not seem fair that, in this case, c

should multiply all of |H-H_| since c¢ 1s only needed to bound {

in [a,H] ; a bound of unity suffices in [H_,al . Thus we may expect

to be able to replace c|H-H_| by c(H-a)+a-H_ in this case. Indeed,

this can be done if the factor of 6," 1s removed, as can be proved

from the following, stronger result.

Lemma 5.4. Let h, =H -a and h = H-a . We have, for H <a <H————— O @) 0 — — p

1 (ch-n_)" 1 (-eh-b_)" Xx
(5.30) |s (HH )] <5 + ZT)+ 5(1 = 2%) ———— =8 (HH)

with equality holding for m = 0,1 . Further, this bound holds if a

is replaced by any number between Hj and a ; 1f a 1s replaced

‘by H, or ¢c = 1 , then (5.30) reduces to (5.29). Also, we have

> S” (H H )(5.231) s (HH) MoH for H <a<Handm?>2.

Proof: The proof is by induction. Equality is achieved when m = 0

and 1 . Assuming (5.30) for m—2 , we prove it for m as follows:

(5.32)  [s, [= I[[2(H,)s(i ,H )dH aH |
I

oO *
+ 15) = X (H,H< Js _(8y,H Jaman + [[es (Hy,H dan) = X (HH)

II III

The first double integral requires Is 5 to be evaluated only for

H<a, and so (5.29) may be used with ¢c = 1 ; oF times (5.30) was

used for Is» in the second integral. It follows that
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2
h 2

_ 0 (ch) *
(5.33)  X,(H,H) = 5 - hh + =5= = 5(HH)

(-n)" n(n)"
(5.34) X (HH)= —— + 2m0 m! (m-1)! |

(ch-h )™®  (-n )™ ch(-n )®%
C m. — m! (m-1)!

m -

1 Loenn)) (<n )"  cn(-n)" : «= ° )

+.5(1 2) m, me a CER : 5 (HH) :

] ] * m
The inequality 8 > 8 can be proved by expanding (ch-ch ) and

+, AI

(chZn ) : 0.E.D.

The case H < a SH, can be dealt with in a similar manner, but

this will not be pursued here. The bound on I corresponding to this

new bound 1s

1

(5.35) |T(H,H,,6)] <.5(1 + Uy,,(£5en-h )4U, .. (g,ch-h )]}

1 ww

+ .5(1 = 2 Uppip(fy-ch-h )+U,  (g,-ch-h_))

for H~a=h <0<h= H-a .
Oo oOo - —

To get a new bound on E and A we prove the following generalization

of (5.17).

Lemma 5.5. If E (HH) is defined as in (5.13) then

m 2

5.36) |B (HH )| < = (1+8)°{(3]s (H,H )= 2 _ (eh

form> 0 and I <a <H
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*

where S_; = 0 and o(m) = 0 if m is even, and = 1 if m is odd.

Further, this holds 1f a 1s replaced by any number in [H_,a] ; 1f

a is replaced by H_ and (148)1/2 by (1+48c™2)0/2 , or if c=1,
then this reduces to (5.17).

Proof: Again, the proof 1s by induction; (5.36) holds for m = 0,1 .

We assume 1t for m-2 , and work on the two terms on the right side

of (5.19):

(5.37) |[J D(ay)s,(BH au ai. |
I

*

Osol JJ sy ppt Jaa, + [fs (n8Yan an]
II IIT |

r

J 3(5.38) |[[ (HE(HHJai aH |
I

< (148 E | 2 |
<@){ Jf |e (8,8) an an + [[ |B, (EH) | at a. ]

II III

mn
2¢/ rm | *

: 5(1+5 oi. |(5.39) < o(1o)(([F1-1){ [[ 8,(uy,a a + [['8(HHaH ai. ]
II III

0 -

h_(c-1) . (en )™?
3 con- IT (8 5 (HoH) i Cy o(m) )aH aH, }

IIT

where h, = H,-a .

Multiplying the right side of (5.37) by (1452 r adding the result
to (5.39) and simplifying yields
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m m=-1 m3 h(-h ) (-h )0 2¢ rm * 2 0 0

(5.40) |E(8,5)| < 7 (12) UL) {8 (HH +(e")(pyr + =))

oO - -

h (ec -1) h(-h_)" 2 (-n.)" L (ch m-1
} ~o(m) (8 on (HLH) ~ (m-2)! (m1)! CT o(m) (m-1) H

(5.41) |B(H,H)| <

m 2 -
ut h (e“-1) m-1

d Drm ¥ 0 * (ch

(10) {18s n,m.) = ry (sp (5,0,) - py ow)

(2.1) b(n)" (en) 200m) (2) n(-h_)"t 22m) (-n)"
- + —— — ——

| 0(m) (m-2)! (m-1)! m-1 (m-2)! m (m-1)" Ho

Since [5] <m-1<m for m> 2 , we see that the last quantity in

braces 1s >» 0 , and so we may replace it by zero without disturbing

our inequality. The result is just (5.36). Q.E.D.

Various weaker, but simpler, bounds can be proved, two of the

nm
2M

simplest (and weakest) being &(1+5) [51s (H, H_) and

((ch-h_) Vi+s)™
5[ 5]a The new bound on BE provides the following

bound on A: let bounding functions F. and G. be defined by

1

(5.42) F, (k,2,5) = (1 + 2)(x#d(x+y))k sinh ket(1 = 2) (y+d(x+y))k sinh ky
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| _d

(5.43) F(x,y) = n2 {CF (cpp x,y DF.(do,x,y))
D
f 1

+ = f(1+ =) cosh dX + (1- Z)cosh dey}

1 b

(5.44) 6, (k,x,y) = (1+ 2) (x+ Z0xty) (cosh kx-1)

1 b

+(1- 2) (y+ F(xty))k(cosh  ky-1)-b (x+y) (cosh(k (x-y) /2)-1)

O
(5.45) G.(x = — {CG +

) of ,¥) ho? { g 1 (egs%s¥) DG (a, ,%,y)]

Dg co 1. )+ + =)si +(1- =)si3 {(1 ~)sinh dgx +(1 ~)sinh dy

-where b = c 41 . Then it follows from (5.27) that

where

(5.47) xX = (ch-h_)V1+3 and y = (—ch=h )V1+8 :

Our new bounds, (5.35) and (5.46), reduce to the old bounds when either

¢c = 1 or a is replaced by HJ / (148)/2 by (1+4852)1/2 and,
if H > H , then H and H are interchanged. For this reason, our

program for calculating these bounds is written only for (5.35) and

(5.46); for the case H < .05 , the old bounds are derived by the

replacement just described. For the Ringleb computation, all growth

constants are 1 , and
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| (5.48)  ¢c, = B, = [2.538 sin(1)/v(n) |

(5.49) c, - B_ - | 2.5 8 sin (l) 52 |v(H )(1-.2v°(H ))=
0 0

(5.50) D, = 1077B for h = f,g
h h

(5.51) & = 4.10533x107° .

The bounds

(ch-h_)™
(5.52) |s (H,H_)| SF — for H < a <H

_ ((en-n_ 3/148)"
(5.53) |E_(H,H_)| < 5[3] — for H <a<H

can be used to derive simpler bounds on A and T :

(5.5%) {a(HH) < F(1,c,2,d.2)4G(1,c2,d 2)

(5.55) IT, (H,H,6) = Uppepl£rch-h +0, 4 (g,ch-h )

where z = (ch-h_)4 1+3 and F and G are given by (5.23) and (5.24).

As ch-h_ increases and H decreases, these bounds increase. Thus

they attain their maxima when H = B and H = & . For the Ringleb

computation described above, this implies

mien RE RL LE for immimmitland jm
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the bound being calculated at H = .22 and H = —-1 . The disadvantage

of these simpler bounds is that, when a is replaced by H_ , they do not

reduce to our old bounds; a factor of e 1s lost. Thus, as H - a
from below, while H >» a , these bounds will become several orders of

magnitude worse than our more complex bounds. (If PB were closer to

.25125.. , then 2 would be even larger, and this loss would be more

drastic.)
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APPENDIX

Three programs, written in B5500 Extended Algol, are discussed

and listed in this section. The first program calculates the coefficients

of the expansion of £(H) about its singularity. Double-precision

(about 20 digits accuracy) was required to calculate the first 43

coefficients. (This 1s the only place 1n these programs in which

double-precision was used.) The coefficients generated in this way

could be used to obtain a more accurate approximation to V(H,0) ,

valid over a wider interval of H values, than that given by the 8

term Chebyshev approximation to £(H) used in the third program

discussed here. The second program includes procedures capable of

computing the error bounds derived in Section 5. A driver program uses

these procedures to calculate the error bounds for our approximation 1n

the case of the Ringleb solution. The output of this program was used

to prepare the graphs in Section 5. The third program calculates our

approximation to Vv(H,6) . Given HJ , 1t uses a truncated expansion

of 1(H) to generate coefficients for polynomial-like approximations

to the s (H,H_) . These are used by the procedure STREFNC to

evaluate V(H,0) , "v (1,6) and "Vo (H,0) , for given H and © .
STRFNC calls upon the user-supplied procedure FANDGto obtain values

of the initial value functions £(6) and (1) (e) , and their

derivatives. The driver program given here 1s set up to form our

approximation to the Ringleb solution, and to tabulate tables of the

actual error in this approximation. These data were also used in the

preparation of the graphs in Section 5.
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We have an explicit representation for H as a function of v :

(A,1) H(v) = .251251... + E(t /5 + 7/3 + 1) - log (& hl Ty1 - JT

_ 2
where T = 1-.2v v

In these programs, Vv (H) was found by Newton-Raphson iteration, using

(A,1). The procedure SPEED does just this. However, if the values of

of the s (HH) and of v(H,) are available, then v(H) can be
computed more efficiently by using the relation

v(H_)
O

(A.2) v() =—— ——
QO

). {sp (HH )-Vs os, (HH) 3
J=0

where V = (1-.2v(8_)) 2"? :

Equation (A.2) can be derived most easily by equating the Ringleb

solution, WR (1,0) = 2aF , to the solution, as given by (2.7), of
a _ sin 6 (1) sin 6

the initial value problem, f£(6) = v(H_) and g'~ (8) = - vi) Vv.
When given an interval, I , of H values in which (A.2) 1s to be

used, we can use the bounds on |s (HH) given 1n Section 5, along
with the fact that the denominator in (A.2) has values ranging between

v(H_) v(H,)
min TE) and max TE) to decide how many terms areHH eI "0 H H.cT "0
® lo)

needed for the denominator sum in order to make the truncation error

less than the approximation error caused by using 53 (HH) .
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COMMENT THE FOLLOWING THREE PROCENURES SHOULD BE CONSIDERED
GLOBAL TY THE FOLLOWING THREE PROGRAMS (THEY MAY BE INSERT-
EDAFTER THE FIRST BFESIN OF EACH PROGRAM;

REALL PROCEDURE SPEED (X)’ VALUF X3 HEAL X3

BEGIN KEAL C» Vi

REALL. PRUCEUURE H( v)3 VALUE vi REAL V3
BEGI N REAL TAU» SQTAUS DEFINE CUONST=0,2512511361#%;

COMMENT CUNST CAN BE EVALUATED RY THE FOLLOWING TWd STATEMENTS,
APPEARING IN THE MAIN PROGRAMS: CONSTe0)

CUMMENT CONSTe=H(SQRT(5/6))3

TAYel= ,2XYy*2} SQTAUe SQRT(TAU)}
He SUTAUX(TAU®2/5+TAU/3+1) = SxXLNC (1+SQTAUY/C 1=SUTAU)) + CONST

ENDHi

Ve IF X<O0 THEN «4 ELSE 1.21

WHILE AUSCCeH(V)I=X)>»8=9 D OO vt V = CXVY/(1=e2XVYR2)%2¢D}
SPEED ¢ ABS(V)

END SPEEDS

REALL. PRUCEDURE MAX(X,Y)} REAL X»Y3

MAXeIF X<Y THEN Y ELSE Xi

REAL PROCEVURE MIN(X,Y)} REAL X»VY3}
MINeIF X<Y THEN X ELSE VY}

COMMENT THE FOLLUWING PROGRAM CALCULATES THE COEFFICI ENTS FOR AN
EXPANSION OF L(H ABOUT ITS SINGULARITY AT 2512511361}

BEGIN

DEFINE N=60 2» CONST=42912511361 #3

ARRAY A»Al»ATLLOIN), BsBLIUOSINSOSIN]» CKsoCKLIOY13)3

INTEGER MG2JsKsMsUWr6,Q7)
REAL. SUM, SUML» HHs Vs TAU» Ls» LL3J

FILE OUT CARUS Q (2,10);

COMVENT N+1 CUEFFICIENTS ARE TO BE COMPUTEO (N MIST BE > 13),
Af 11S WHERE THESE COEFFICIENTS WULL BE STORED.

A7IM] = AIMIXT*(2x(K=6)/T7),
MG+1 TERMS WILL BE USED TN EVALUATE THE APPRUXIMATIONS

REAL PROCEDURE LHC(H )3 VALUE Hi REAL HJ}
BEGIN REAL SUM3J INTEGER M3}

COMMENT THIS EVALUATES THE TRUNCATED EXPANSION FOR L(H)}
SUMe Us

FOR Me¢Q STEP 1 UNTIL MG 00 SUMeSUMt ALCMIXC(CONST=H)I*(2x(M=6)/7)}
LHe SUM}

ENDS
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COMMENT WE CALCULATE A713 FIRST, THISIS DONE BYSERIES REVERSION |,
USING THE RELATI ONS

L(H= (6XTAU = 5 )/TAU*6

= ATO) xX*(=12/7) + AT(1)xX*(=10/7) + o , .
X = ITXCCONST=H) = TAU*(7/2) + 7/9xTAU*(9/2) +

7/11xTAU*(11/2) +... .

HIGHPRECISION IS NEEDED FOR THE COMPUTATION OF THESE
COEFFICIENTS, BECAUSE THE A7[M} BECOME SMALL QUICKLY, AND MICH
CANCELLATION UCCURS?

FUR Me¢Q STEP1 UNTIL N DUO BCMsOletls

FUR Kel STEP1 UNTIL N 00

BEGIN

SUMedUML€(Q}

COMMEN | THEFULLOWING DOUBLE LOOP IS EQUI VALENT TO
FOR M¢€0 STEP 1 UYTIL K DO SUMeSUM 449/C(2xJ+7)IX(2X(K=J)+7))}

FOR J¢0 STEP 1 UNTIL KX 00

DUUBLEC4920, J20s» Js0» 4» Ts0s +9 KsOp Js0s» =» 220, XX» 720»
+2X,/9 SUMSUML, +s5¢, SUM, SUML)

DQUBLECSUM SUML, €» B{13sK]sBLI132K1)}
ENDS

FOR Keil STEP 1 UNTIL N DO

BEGIN

COMMENT CALCULATETHE CLQ»K J/S}
FUR We8,9,10,13 DU

BEGIN

SUMeSUML 0} Q6€(Q+6)QIV 2; Q7¢(Q+7) DIV 23
FORJel STEP 1 UNTIL K-100

DOUBLEC(BLQG6,J)»BLLA6»J)s BLQA7sK=J]1,BLLQ72K=J]s X»
SUM» SUML 7 +2 «, SUMsSUML

DUUBLECSUM,SUML, €,CKIQI,CKL[Q))}
END3

COMVENT THE FOLLUWING DOUBLE INSTRUCTION IS EQUI VALENT TO
B{7,8)¢ (BL13,K] =CK[13)= CK[10) = CK[9) = 3IxCK[8I1)/T7}

DOUBLE(BL13,K1,BLI13,K]» CKI[13),CKLI[13)» =» CKC101,»CKL[101], =»
CRLOJIsCKLILOY» =» 3,05 CKIBI,CKL[B)s Xs» ws T,0s /»
€s BU7,K1s81L{72K1);

Fur W¢8,9,10513 DO

gta lIN

Qe (Q+6) DIV 21 C7¢(Q+7) DIV 23
COMMENT THE FOLLOWING DOUBLE INSTRUCTION IS
BlA,K]leCK[Q] + BLQ6»KI1+BLQA7sK]}

DUUBLECCKIQ)sCKLLQ)» BIQ6sKI,BLLQS6sK])» +, BLQ7»K])»BLIQ7,K],
+2 5 BLI,KI,BLIA,K] )3

ENDS

ENDS

COMVENT CALCULATE BU11512514,15546002N31522324402N))
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FUR Me¢li,14514 STEP1 UNTIL N 00
FORK Kel STEP 1 UNTIL N DO

BEGIN

SUMeSUML€0 3

FUR Je STEP 1 UNTIL K nO

NDUUBLECH[7sJ)2BLL7»J]s BIM=1,K=J]sBLIM=1,K=J]ls X, SUM» SUML>
+» €p SUM, SUML)}

DUUBLE(SUM,SUMLs €, BIM,K1»BLIM,K1)}

END

CUMMENT CALCULATE BLO»1525354,58 192537240e2N13

FOR Jet STEP 1 UNTIL 6 O00 FCR Ket STEP 1 UNTIL N DO
BEGIN

SUMeU XI LNE W7¢6+J5 -SUMLeDS
F O RMeOSTEP 1 UNTIL K=1D0

DUUBLECBIQ6,M1»BLING6sN], RIB7sK=M1,BLIQA7sK"M]s X2» SUM,SUML, +,
€» SUM» SUML DJ

DOUBLE(=SUMs=SUML» ¢» BIG6,K1»BLIQE,K]I)J
ENDS

COMMENT BIM,K] CALCULATICNS ARE NOW DONE:

ATO )e=b53 ALO)e=Sx7%(=12/7)3
DOUBLE(6,0s ATLO0),A7LEO)s B{Os»11,8L00511, %» ™5 €» AT[115ATLL11)}
ALL1IleA7({1)%X7%(=10/7)3}

FUR Me¢2 STEP1 UNTIL N DO

BEGIN

SUMeSUML€03

FOR J¢0 STEP 1 UNTIL M-1D0

DUUBLECATIJILAZLIJY., BLJsM=J)sBLIJIM=J]y XxX» SUMISUML, +»
~ €» SUMsSUML)}

DUUBLE (=SUM»s=SUML» €» ATIMI»ATLIM])Y}
A[MIE=SUMXT *(2%x(M=6)/7)}

ENOJ

WRITECCARUS»<3E20+s11>sFORMe¢0STEP 1 UNTIL N DO ALM1)}

WRITECS<"M"™» X19, “A[HMIT» XQ, "ALM)/TH(2X(M=6)/T7)">)}
FOR MeO STEP1 UNTIL N DO WRITE(<IZ2» 2E25,11>2 My, A[M]» A7TI(MY)}

WNRITECCPAGE J) MG¢42}
NRITE(ST™™GS ", [2///>s MG)

WRITEC(SX3, "HMs» X13, "V', X250 "LCHI"™, X20, "+L(H)*", XO, "RESIDUAL">)}
FOR HHeé=1 STEP ,01 UNTIL #250100

WRITEC<FS,2s F20.115 2R25,11,E15.2>» HH, (VeSPEED(HH)),
(LeCOXCTAUC(1=,2xVXV))=5)/TAU*6)» (LLeLH(HH)), L=LL)}

END.
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CUVMMENT THE FOLLOWING PROGRAM IS SET UP T0 EVALUATE BUUNDS ON THE
TRUNCATION AND APPROXIMATION ERROR FOR THE RINGLEB SOLUTION.

HUWEVERs THE PROCEDURES NEEDED ARE PROGRAMMED IN GENERALS

BEGIN REAL C, Bs C2» DELTA, NELTAL, A AAJ
ARRAY RH» UHs CH» Dh, LCH» LOH[Os1)3

COMMENT C2 = MAXCABSCL(X)) FOR X RETWEEN H AND HO,,
C = SQRT(C2),

A = INVERSELL(=1)]) = ,0659252218,

KH» LCHs» LDH AREGRCWTH FACTORS,

A PROCEDURE TO EVALUATE L(H MST BE PROVIDED.
THE FOLLOWNG PRUCEEODURES ARE ALL THAT IS NEEDED TO EVALUATE

THE ROUGH OR THE IMPRCVED ROUNDS, THE BOUNDIS GI VEN BY

TON» HH, HHO) + AN(CHH» HHO) ’
[fF THE ROUGH BOUNDIS DESIRED» WE MUST HAVE

HH= MAX(H,HOQ) HHO= MIN(H»HO) AA= HHO

VEL TAl= 1+DELTA/C2.

It THE IMPRQVED HOUND IS DESIRED, THEN WE MIST HAVE
HHO=HO<A<H=HH DELTA1=SQRT(1+DELTA) B=(C2=1 YxDELTA1
AA=A3}

REAL PRUOCEWVURE SINH(X)}) REAL X3 SINHe o SX(EXP(X)EXP(=X))}

REAL PROCEDURE COSH(X)} REAL X3 COSHe oSXCEXP(XI+EXP(=X))}

REAL PROCEVURE U(NsH,X)J INTEGER NH} REAL X3

I FX=0 THEN Ue¢Q ELSE

BEGIN REAL SUM} I NTEGER Ii

SUM¢0 3 FUR l€2 STEP1 UNTIL N DOSUMeSUM*LN(I)}

SUMENXLNC(RHIHIXABS(X)) = SUM;

UeBHIHIXEXP(SUMIXCOSHCRHEIHIXX)IXSIGNCX)Y*(N=2x(N DIy 2))}
END US

REAL PROCEUVUURE T(NsH,HO0)} INTEGER N3 REAL. H»HO3
BEGI N REAL X,Y}

Xe( Cx(n=AA) =~ (HO=AA)IXDELTAYS
Ye(=Cx(H=AA) = (HO=AA)IXDELTAL}

TeoOx((1+1/C)XCUC2XN+220,X)+ UYC2XN+3I21oX)) +C1=1/CIXCUC2XN+2,0,Y)
+UC2xXN+3215Y))))

END T3

REAL PROCEUURE F 1 (K X» YJ} REAL- Kj» X» Y$

BEGIN REA HB)
BBe Bx(X+Y)}

F1e(1+1/7CIX(X+BB)XKXSINH(KXX) + (1=1/C)x(Y+BBIXKXSINH(KXY)}
END F113

REALL. PROCEVDURE F2(X»Y)} HEAL Xs Y}

F2¢eDELTA/(A4xC2)x (CHIOIxF1CLCHIO)sXs»Y) + DHIOIXFICLDHIO)»X»5Y))
+ DHIO}/2 x (C141 /CIXCOSHCLDHEIOIXX) + (1=1/C)IxCOSHCLOHIOIxY))}

‘REAL PROCEDURE G1(K, X» Y)3 REAL Ks Xs» Y3
BEGI N REAL BR3

BRBe. Bx(X+Y)/23

G1e(1+1/7C)x(X+*BBIXKX(COSH(KXX)=1) + (1-1/C)x(ytBB) xKx(COSH(KxY)-1)
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=HHX(CUSH(KX(X=Y )/2)=1)}
END G13

REAL PROCEVURLG2(X»Y)3 HEAL X,Y}

GZ¢DELTA/(4x(2)x (CHI1IxGI(LOHI1)sXsY) + DH{1IXGICLOHIL]sXsY))
+ DHU1172 % (C1+#1/CIXSINHCLDHL1IXX) + (1=1/CIXSINHC(LDOHL1IxY))}s

REAL PRUOCEUDURE ANCH, HQ)’ REAL H»oHQ3
BEGIN REAL X,Y}

Xe( Cx(H=AA) = (HO~AA))IXDELTA1}

Ye(=*Cx(H="AA) = (HO=AA)IXDELTAY3
ANE F2(X2Y) t G2(XrY))

END AN

CUMMENT IN WHAT FOLLOWS» THESE PROCEDURES ARE APPLIED TU QUR pcp AND
[HE RINGLEH SOLUTION;

REAL THT» Hy» HY)» HH HHO» ERRCR, AVGFPS, VO» TN, ANN» ERNEW, EROLDS
INTEGER Ti

REAL PROCEUVURE L(X)3 VALUE X3 REAL XI

BEGIN REAL Vs» TAU}

VeSPEED(X)} TAUel=2xVn2} Le (6xTAU=S5)/TAU*S
END L J

Ae(0,065926¢21083 RHIO)e RHO 1 )eLCHIO)eLCHL1)eLDHIO)eLDHI11¢1)
THTe¢1$ DELTA€4,105338=5}
FORHO¢=1¢0 STEP «0% UNTIL 405 00
BEGIN

VOo¢ SPEELO(CHO)S

BHI{O)eCHIOJeABS(2,538/V0 x SINCTHT))}

BH{1)eCHI1)eABS(2,538x(1m ,2xV0%2)2(=2,5) /¥0 x SINCTHT)))
FOR IeO»1 00 DHII]e¢BHI[I)x@=8}

WRITEC<™ HO H BOUND TN ",
" AN" ,/>)}

AVGEPS«V}

FOR Heé*=1 STEP «05 UNTIL +2» ¢22 DO

BEGIN

C2eMAX(E=8, MAXCABSCLCH))» ABSCL(HO)))))
HHeMAX (Hs, HO) HHOE€MINC(H,HO)}

DELTALe SQRTCLI+DELTA/ZCIF H>»405 THEN 1 ELSE C2))}

Be (C2=1); Ce SQRT(C2)}
AAell H>e05 THENA ELSE HHOS

TNeTC75 HH» HHO) ANN€ANC(HH,» HHO); ERNEW¢ERROReTN + ANNI
If H+ 05 THEN

BEGIN

AA+ HHQJ DELTALle SQRT(1+DELTA/C2)}
ERULD€T(7s HHs HHO) + ANCHH,HHO)Y}

ERRQReMINCERNEWN, EROLD)} TNC¢ERNEWS ANNCERDOLD
ENDJ

AVGEPS€AVGEPS + ERRORS

WRITEL(<2(F642,X4)» X5, 3(E12.5» X8)>» HO» H» ERROR, TN» ANN)J
END)

WRITE(SK™AVG ERR = ", E12.5>» AVGEPS/26)} WRITECIPAGE]))S
END END,
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COMMENT THE FOLLOWNG PROGRAM IS SET UP TO FORM AND EVALUATE OUR
APPROXIMATIUN TO PSI FOR THE RINGLEB SOLUTIUN2 ANO TO MAKE A
TABLE UF THE OBSERVED ERRORS IN THIS APPROXIMATI ONI

BEGI N REAL HO, C» SUM» KM1, CMIHOS7, OLODHs» OLDTHT».CF» CG
INTEGER MM, M2, M2NT7, MN7MI2» MAX» Ns» N75 NN12s» J, Ko UP, MNT, IP, .

NPSITRUNCMAXS LABEL, EXIT}

COMVENT NPSTTRUNCMAX+1 IS THE MAXIMUM NUMBER OF TERMS WHICH KILL
BE USED IN OUR TRUNCATED SERIES FOR PSI

(SEE COMMENTS IN THE PROCEDURE STRFNC),
NZ = N + 7 IS THE NUMBER Of TERMS To BE USED TO APPROX-

IMATE L CH),
AC] CONTAINS THE N7 COEFFICIENTS FOR THIS APPROX3

NPSITRUNCMAXe203 MMAX€2XNPSTTRUNCMAX+1}

Ne 13 NTeN+73 NN12eN+N+12)
BEGIN

ARRAY SCOEF,»SPRIME[OSMMAX, OIMMAXxN71, A[QSN+6])

REAL VO» AIVQj

PROCEDURE FANODGCFVAL, GVAL, THT, OLDM, MH} VALUE Ms» OLOM, THT}
INTEGER M2 OLOMJ REAL. THT} ARRAY FVALs GVALLO])
BEGI N HEAL. SN» CS» Xs» Ys 23 INTEGER IP}

COMMENT THIS PROCEQURE ISTO BE SUPPLIED BY THE USERe ITISTO
CALCULATE THE INITIAL VALUES» FCTI=PSIC(HO,T? AND
GI1C(T)=SD(PSICHO»T))/DHy, AND TuEIR DERIVATIVES AT T=THT,

FRUM THE OLDM/TH AND UP TO THE M/TH DERIVATIVE OF F AND G ARE

TO BE CALCULATEO AND STORED IN FVAL»GVALI[OLDMseeesM]s WHERE
G1= DC(G)/DT IF CLDM>0 THEN THE 0/TH»1/THsreees»0LOVM=1/TH
DERIVATIVES WILL BE IN FVALs»GVALI[O»212,020LDM=11],
fHEN OLDM=0, M WILL BE 2 2 ( THIS FACT IS EXPLOITED IN THE

SAMPLE PROCEDURE GIVEN HERE)}

If GLOM=U THEN

BEGIN

SNe SINCTHT)S CSe¢ COSCTHT) Xe 2.538/V0}
FVALLO)é Ye XxS5N3 FVAL[1)eZ¢ XXCS}

GVALLQ)® 2xATVO} GVAL[1)e =YXATVO}

ENDS
FOR JPeMAXCULDM»2) STEP 1 UNTIL-M DO
BEGIN

FVALLIPle=FVALLIP=2])}
GVALLIPle=GVALLIP=2])

END3

END FANDGI

REALL. PRUCEVDURE SMVALCH, SM Ms FuJd)dJ VALUE HsMs FUJI
HEAL Hi INTEGER M» FUII ARRAY SM[O01}

BEGIN HEAL. HORNER, CMIH} INTEGER Rs T2 Jr K3

" COMMENT LET T=MxN7=FUJ, THEN THIS PROCEDURE EVALUATES
SMVAL 3 SHMIO] ( SMELIXCC=HI*(2/7) #age® SMITIX(C=HI*(2%XT/7)}

TeMXNT=FU J} Re T MOD 71
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SUMeQ ; CHMIHeC=H3 KeT=53 IF K<O0 THEN KeQ}
FOR TeT STEP =1 UNTIL K DDO

REGIN

HURNEReSMIT]3

FUR JéT=7 STEP =7 UNTIL R 00 HMORNERE€HORNERXCMIH + SMI J)
SUMeSUM+HURNERXCMINK*(R/T7)3

RéeRw=15 IF R<€O THEN Reb
END EVALUEATIUN OF SM;

SMVALeSUM

END OF SMVAL3}

PROCEDURE ULFFSM(SM, DEGSM, SMPRIME)} VALUE DEGSM3

, INTEGER UEGSM} ARKAY SM» SMPRIMECLO]S
FOR JP¢VUEGSM STEP ={ UNTIL 2 DOSMPRIME[IP=2]e=CIP/TIXSMIIPI}

PROCEDURE OSITRFENCC(PSI, H» THT, DPDT» DPDH, MUP» EPSs T00BIG)}

VALUE H, IIHT» MUP», EPS’ HEAL. PSI» Hs» THT» DPDI, OPDH» EPS}
INTEGER MUP} LABEL TUUBIGS

REGIN UWN HEAL TEMPS OWN INTEGER ODM, OLDMH, QLOMT, MP1, MP2)
OWN REAL ARRAY S, DS» FVALs» GVALIO!MMAX+1])
INTEGER MUP1, MUP2, M3 REAL LASTERM}

_ COMVENT VALUES ARE RETURNEDIN PSI, DPDT» AND DPDHo
| If MUpP20 THEN MUP+1 TERMS ARE USED TO EVALUATE OUR APPROXI MATE
| PSI.1F THE LAST TERM IS >EPSxABS(PSI) THEN AN ERROR RETURN TO

TUUBLG 1S EXECUTLO. ALL. INTERMEDIATE RESULTS ARE SAVED, AND

ANUTHER CALL» WITH YUP INCREASED, WILL CONTINUE THE
CUMPUTATION,

I F MuUp==1 THEN TERMS ARE ADDED IN TQ PSI UNTIL THE LAST TERM
IS <€ EPSxXAHS(PSI), IF THIS HAS NOT HAPPENED AFTER

NPSITRUNCMAX+1 TERMS HAVE BEEN ADDED IN, THEN AN ERROR RETURN

TU TUOBIG [Ss EXECUTED. NO RECOVERY IS POSSIBLE, SINCE THE
REQUIRED COEFFICIENTS FOR SM ARE NOT AVAILABLE. THE ENTIRE
RUN MUST HE REDONE, WTHA LARGER NPSITRUNCMAXS

LASTERM€E&20)
IF H#0LUH THEN

BEGIN

TEMP€(C=H)*(=~,7142857142857)3 COMMENT lebe2 *(=5/7))}
OLDMH€OLOMeO

END; ,
IF THT#ULDTHT THEN OLDMT¢0OLOMeO3

IF OLDM=0 THEN PSI¢ DPDTe DPDHe 03
I FMUP2U THEN

BEGIN

MUPL¢2XMUP +13 MUP2e¢MUPL1+1}
IF MP12UL.DMH THEN

BEGIN

FUR MeOQLDMH STEP 1 UNTIL MUP{ DO

BEGIN
SCMle SMVAL(CH» SCOEFIMs*), Ms» 0)
USIM)eSMVALC(H» SPRIME(M»*]s Mr» 2) x TEM
END
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ULDMHeMP2

ENDS ‘

IF MFP22U0L)OMT THEN

BFEGLN

FANDGUCFVALs GVALs» THT» OLDMT, MP2) OLOMT eMP2+
END

WHILE MUP120LDM DU

BEGIN

wit QLUM+1} MP2¢0OLDM4+23

LASTERMe SCOLDMIXFVALLIOLDOM] + SIMPY1IXGVALIMP11])
PSle¢ LASTEHM = PSI:
DPUHe DSTCOLDMIXFVALLOLOMY + DSIMP1IXGVALEMPL] = DPOH}
DPFUT¢  STOLNDM)XFVALCMPL J) + S[MP1IxGVALI[MP2] = DPDTS
JLOMe MP2

ENOJ

I F ABSCLASTERM)>EPSXABS(PSTI) THEN co 70 ToOBIGS
END ELSt WHILE ABSC(LASTERM)ISEPSXPSI DO

BEGIN

MFPFleULDM+1; MP2¢0LDM+23
It MP1>MMAX THEN GU TO TOOBIG)
It MP1 201.UMH THEN

BEGIN

FUR MeOLDM, MP1 DO

BEGIN

S[M]le SMVAL(H, SCUEFCM,x)» My, 0)3

OS{MIeSMVAL(H,SPRIMECM,%)» Ms» 2) x TEM
ENDS

OLDMHe MP2

LNDJ

It MP220L0OMT THEN
BEGIN

FANDGCFVAL, GVAL» THT» OLDMI, MP2)} OLDMTe MP2+1
ENDS

LASTERMe SLOLOMIXFVALLOLOM) + S{MPLIXGVALIMP11]}
POle LASTERM = PSI;

DPUHe DSLULDMIXFVALLOLDOM) + NSCMP1IxGVAL{MP1) = DPDHJ
DPUT¢ SLOLDMIXFVALCMPYL TI + S[{MP1IxGVALIMP2) = OPOT}
ULuMe Mp2

END? }
IF OLDM=4x(0LOM DIV 4) THEN

BEGIN PSle=PS}; DPD Te=DPDT} DPDHe=DPDH END;
END STRFNC)

COMMENT THE FOLLOWNG SLINES ARE PART OF THE (USER) SAMPLE PROGRAM}
REAL MAXEPS, MAXH, MAXHO, PSI, DPDTs DPDH» Hs THT}
MAXEPS ¢ MAXHe¢MAXHO0¢0} THT¢1}

FOR HO€=1 STEP «05 UNTIL +20,22 DO
BEGIN

VOoe SPEELU(HU)S ATVOe (1=42xV022)4(=2,5)}
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ULDHeQLUTHT€a30;3 CUMMENT I NI TI ALI ZATION FOR STRFNC}
COMMENT

'FEREEREAEREESAE SEER SE EREE ER EEE BESERIEEE PEFRPRPPRPEERTEEETEETEEEEEETTEEEREEREE EER

COEFr FICIENT CALCULATI ON F OR SM(HI"S}

Ce0425125113613

FILL A[*IWITH=,15U5866818,=.,4018655347»2,0045191543,
=2.88217873415 1V.95831580, =10,7524447788s 5.9416272229,
“e3198101027

CMINUSTe(CHUI» (=%/7)}

SCUErLO»0)els SCUEF[120)eC=HO} SCOEF(1s7)e=13
M2N/7€=N/; MN7€eNT 3
Fur Me€2 STEP {UNTIL MMAX nO

BEGIN

COMVENT STEP [$¢ CALCULATE BETAIM,J] AND STORE IN SCOEFIM»Jl3

MN7eMN7 + N73 MN7MI2€¢MNT=2} M2eM=2} MONT E€MENT 4NT 3
FUR Je(0»254,6 STLP 1 UNTIL MN7MI2 DO
BEGIN SUMeQ

Kt (1+ MAX(Os J=M2N7)) DIV 2}
- UPe¢MINCJ,NNI2) DIV 2;

FUR KeK STEP 1 UNTIL UP DO SUMeSUM + ALKIXSCUEFIM2sJ=K=K]}
SCUOEFIMyJ]Je(7/7(5=J))xSIIM}

ENU UF BETAMJ CALCULATIONS?

SCUEFIMs1]eSCNEFIM,3)eSCOEFIM»ST1¢0}

CUMMENT STEP 11: CALCULATE K(M=1)3

KMle SMVALC(HO, SCOEF[Ms%]s Mp 2) x CMIHOS7)

COMMENT STEP IIls CALCULATC SCOEFIMyJlsJi31se,sesM(N+7)}

FUR Jt M7 STEP =1 UNTIL2 nO

SCUEF(MyJ)e(=7/J)XSCNEFIM,J=2]}
SCUEFTIM»7)eKM1 3 SCOEFIMs01€SCOEF{Ms110}

COMMENT STEP IV! CALCULATE SCOEFIM»sQ])=z=KM}

SCUEFIMs0)e =SMVAL(HO» SCOEF(Msnls Ms» 0)
E Np #

FUR MeQ STEP1 UNTIL MVAX DO

DIFFOSM(SCOEFIM,*)sMXNT7, SPRIME[(M»s*))}
COMMENT

END OF COEFFICIENT CALCULATION
TE EEE RENEE EE EE RE EE EE EE EE EE EE EE EE SRE RE RRR EE IE IE EE I TZ IETS
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COMMENT THE REMAINDER IS SAMPLE PROGRAM
BEGIN REAL AVGEPSs Xs» Y3 INTEGER MiP}

MUP e733

WRI TE(<S™ HQ H SPEED MACH NO. "»
" PSTICH»1) *PSI*(HsHO,1) ">

" PSI = «PSI*",/>)3 AVGEPS¢()
FOR He=1 STEP «05 UNT TIL 420s 422 0n

BEGIN

REAL PRUCEDURE M(V)} VALUE Wi REAL, V3
Me V/SURT(1=.2XVY%*2);

LABEL TUUBLIG» ARQUND;

Gil TU ARUUND

TOOBTG

WRITEC(<" INCREASING MUP» 14>, (MUPeMUP+1))} |
IF MUP>NPSTITRUNCMAX THEN Go TO EXITS

AROUND

STRENCC(PSI» Hy, THT, DPOT,» DPDH, MUP, a=4, TOOBIG)}

WRITEC(<2(F06e2sX4)2» ACR15,8,X5)s X5, E12¢5>,
HU» Hs (Y€SPEEDCH)Y)» MCY)y (X¢2,538/YXSINCTHT))» PSI»X*PS1)}

AVGEPSE€AVGEPS + ABS(PSI=X)3

IF ABS(PSI=X)>MAXEPS THEN

REGQIN MAXEPS€ABS(PSI=X)} MAXHeH MAXHOe¢HO END
END;

_ WRITE(<K™AVL ERR = ", E12.5>» AVGEPS/26))
WRITECCPAGE])

END END/

WRITE(<S"MAX ERR = %", 12,5, " AT Hz "yp F6,29 " AND HO = ", F6.,22,
MAXEPS» MAXH, MAXHO)J

END;
EXIT:

END.
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