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Preface

"...for all of it is contained in a long |
poem which neither I, nor anyone else, has

ever succeeded in wading through."

| The Devil

in Man and Superman,

George Bernard Shaw

This paper arose from a number of years of ambivalence towards

efforts to produce automated translator writing systems. While
much had been accomplished, the research seemed marred by xenophobia

and loose scientific standards. The immediate impetus was an

unsuccessful working conference in April 1967, which indicated | |

BN that the situation was every bit as serious as we had imagined.

Many people have aided in the preparation of this report. The

original draft of Section II.B3% (COGENT) was done by Fred Hansen
and the draft of Section II.B4 (META systems) was done by Jeff

Rulifson. David Gries prepared Sections I.B, II.A and III.B2 and

made important contributions elsewhere. In spite of this help and

more, this is in many ways a personal paper. The selection and

arrangement of material and the tone of the entire paper are entirely

Feldman's responsibility. Any resemblance of this work to a care-

fully prepared paper is due to the efforts of the typist, Miss

| Elaine Callahan.

| This work was supported in part by the U. S. Atomic Energy

Commission.
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| I. Preliminaries

I.A. Introduction |

Compiler writing has long been a glamour field within programming

and has a well developed folklore [Knu 62, Ros 64b]. More recently,

the attention of researchers has been directed toward various schemes

for automating different parts of the compiler writer's task. This

| paper contains neither a history of nor an introduction to these

developments; the references at the end of this section provide what

introductory material there is in the literature. Although we will

make comparisons between individual systems and between various

techniques,this is certainly not a consumer's guide to translator |

= writing systems. Our intended purpose is to carefully consider the

| existing work in an attempt to form a unified scientific basis for

future research.

Compiler writing is a large programming task with many aspects |

and it is not surprising that many different techniques have been

proposed as aids to compller writers. In a very real sense, any |

system feature (e.g. trace, edit) which helps one produce large pro-

grams is a compiler—wribing tool. This remark will become relevant

as we examine various systems for their specificity to compiler

writing. Since there has been no general agreement on terminology,

we will define a term Translator Writing System (TWS) to denote the

| programs and proposed programs considered here. A translator written

in a TWS might be an interpreter, a compiler, an incremental compiler,

or an assembler.

| y |



Relatively few existing translators have been implemented with |

| the aid of a TWS; the most common techniques involve the use of oo |
~ (macro-) assemblersor conventional algebraic or list-processing

languages. There have been claims that this proves that TWS research

| | is therefore a failure, but we find this argument unconvincing. ‘For

| one thing, there is littlein the work of commercial compiler writers | |
which would lead one to believe in their infinite wisdom. Further,

commercial translators often involve the informal use of TWS con-

cepts and the division between conventionaland TWS systems is not

| _ always sharp. | | )

It is even more difficult to classifythe various TWS develop-
| ~ ments in a meaningful way. We have chosen to divide the work into

four categories: those efforts concerned only with syntax, syntax- |

directed symbol manipulating systems, macro processors of various

| “kinds, and compiler-compilers.The emphasis throughout is on recent |

- work; a fairly complete (though abominably edited) survey of earlier

| work may be found in Burkhardt [Burk 65]. | |

Unfortunately, one cannot understand the development of TWS |

| research without some knowledge of its sociology. Thies is doubly

unfortunate because neither the intercommunication nor the public-

ation behavior has been inspiring. One might be able to attribute

| this to the great financial potential of a successful (i.e. accepted) |
| | TWS. In any event, one must use care in reading much of the lit-

erature on TWS proposals. | |



One common way to begin a TWS paper is with a statement like

"Most of the existing TWS systems lack property X, which is

essential.” The author of such a statement rarely describes which

systems have property X, how they compare to his work, or even why

property X is essential. This kind of oversight occurs in other

contexts and may simply be the result of not reading the literature.

.In any event, there is a tremendous amount of rediscovery and very

little cross-referencing within the field.

Another statement often found runs something like "Our system |

| has been used to implement N compilers onM different computers.”

This rarely means that the TWS presented in that paper was used just

= as presented and was completely adequate to the task. For example,

| essentially no existing language can be adequately handled by any

of the syntax mechanisms mentioned in the TWS literature (cf. Section

III.B2, Floyd [Flo 62b]). One could make a much more significant |

contribution by carefully describing both the strengths and weak-

nesses of one's work. To some extent this is due to referees and

reviewers who seem to judge a paper on what it claims to have done.

Another flaw has been the prevalence of a more-mathematical-

than~-thou attitude. The worst form of this attitude seems to come

from confusing mathematical notation with mathematics. However,

even the serious work on mathematical models (Section III.B) seems

more concerned with applying known results than with developing

‘new ones. Many basic concepts in programming (e.g. the storage

location, transfer of control) have not been adequately formalized.



| These criticisms should not be construed as a complete rejection

of the field of TWS research. It has been and continues to be one |

of the most active and fruitful areas of Computer Science. Many of

the outstanding workers in Computer Science have contributed to the

TWS development, and even the bad work seems well-intentioned. The

problem is that a lack of communication and a tendency towards over-

enthusiastic reporting has marred the record. | |

Before describing the particular systems in the next section,

we should say a few things about the general problem of translator

writing. We will concentrate on compilers, because these contain

all the essential problems found in assemblers and interpreters. |

| _ Considering the amount of effort that has gone into compiler writing,

~ there has been relatively little published on the subject. The

history [Knu 62, Ros 64b] and syntax methodology [Flo 6hb] have

been fairly well covered, but very little has been said about code

generation or interactions with the operating system. This lack

of literature has forced TWS designers to try to formalize systems

which were largely intuitive and had never been described carefully.

A further difficulty is that there are no accepted standards of

performance for translators, except such shibboleths as efficiency.

| The efficiency of a compiler depends on its ability to conserve both
time and space, while translating and during execution of the object
program. The error detection and recovery facilities, the editing

facilities and the speed of recompilation have important effects on .

efficiency. Since all these goals are not mutually compatible, one

J



can expect no absolute measure of efficiency for compilers. The

designers of the TWS considered here have varied considerably in oo

their preferred choice of compromises. |

We have divided the review of TWS (Chapter II) into four major

parts. The first describes the efforts which are primarily aimed

at automatic syntax techniques. The second section deals with |

systems where the syntax processing is augmented by a symbol manip-

ulation language for producing output. The third section treats
the related topics of extendible compilers and meta-assemblers. The

final section describes systems which attempt to provide specific

techniques for many of the post-syntactic problems of translator | |

_ writing.

The related topics discussed in Chapter III have been chosen |

to complement the review sections and are treated in much less

| detail. The treatments of the other uses of syntax-directed |

techniques and related mathematical studies are aimed at elucid-

ating their relationships with TWS efforts. Finally, we sketch a

number of potentially fruitful research topics related to the future

| developmentof translator writing systems. The bibliography is

arranged alphabetically with references pertinent to a particular |

section listed at the end of that section. | |

5



References for I.A

| The Communicationsof the ACM, and to a lesser extent =

The Computer Journal of the British Computer Society are the major

journals for publications on translator writing.

See especially

Comm. ACM 4 (Jan. 61)

Comm. ACM7 (Feb. 64)

| Comm. ACM 9 (Mar. 66) |

Other general references:

Che 64a, Flo 64b, Hals 62, Knu 62, Ran 64, Ros 6h4b, Weg 62, |
Wil 64b. | | |

- Formal descriptions of various programming languages: |

| Bac 59, Ber 62, Brook 61, Bro 63, |
EVA 64, Gor 61, ~ IBM 66, Naur 60, 63b,

Rab 62, Samm 61, Shaw 63%, Tay 61, |

Wir 66b, 66c. | |

5



| I.B. Terminology

One of the minor irritants in the TWS literature is the lack of

uniform notation. In order to make this paper more readable, we have |

taken the liberty to change the symbols and sometimes the syntax used

by various authors. For the discussions on syntax we have decided on

the notation used by Ginsburg ([Gin 66a], pages 8,9). However, as an

(non-conflicting) alternative, the notation of the ALGOL report [Naur

63b] and of the syntactic meta-language Backus-NaurForm (BNF) is used

where 1t is more readable. | |

Many terms will be used in both a formal and an informal sense;

the default sense is the informal except in Sections II.A and III.B. |

The formal definitions of such terms as "syntax" and "semantics" are

B not generally agreed upon and we will discuss them further in Section

| 1II.B. Informally, we consider syntax to be the specification of well-

formed statements in a language and semantics to be essentially any- |

i thing else. |
In general, a language, L , will be some subset of the set of all

strings of symbols from an alphabet (Z. The specification of which

strings are in the language L (syntax of L) will be described in a

syntactic meta-language. The syntactic meta-language will be pro-

cedural and will describe either an algorithm for generating strings

of L (synthetic syntax) or for recognizing if a string over &is in

L (analytic syntax). Any process utilizing a non-trivial analytic |

syntax will be called syntax-directed.

An individual statement in a syntactic meta-language will be

called a production. We have found no way to overcome the unfortunate

; |



use of the word "production" in the TWS literature. The term was

originally used in mathematical logic to describe string transformations |

which are more general than any considered here and which can be con-

sidered both analyticand synthetic. In going through a series of

applications in Computer Science the term "productions" began to be

applied to a set of rules for recognizing (reducing) a program (cf.

Section II.A5). This analytic meta-language 1s widely known as

"production language" even though its statements are reductions and

will be so described here.

A syntactic meta-language may include symbols not in Q@. (non- |

terminal symbols) which are used in defining a grammar. These will

oo normally be enclosed in angular brackets '<' and '">' as in the Algol

report, and will appear informally in the text as well as in formal

syntax rules. In the sections dealing more formally with syntax (II.A

and III.Bl) we will bow to clarity and convention and omit the

brackets. These sections will also require a fairly extensive

technical vocabulary used less formally in the other sections. :

For the formal discussions, characters or symbols are represented

by Latin capitals S,T,U,..., strings of symbols by lower case Latin

letters 4, v, w, x, y, 25... . The set of all strings of finite

length (including the empty string €) over a set of symbols V is

denoted by “Vy*. If z = xy is a string, x is a head and y a tail of

Z. A production U — u is an ordered pair consisting of a symbol U

and a nonempty string u. U 1s the left and u the right part of the

production. A set of productions is called a (synthetic) grammay.

y



Given a grammar, we say that w=>v if there is a production U — u

and stringsx and y (possibly empty - the empty string is represented

by €) such that w = xUy and v = Xuy . "A is the transitive closure

of "="; wd if w = Wor Wo 2 Wyse,We oo LA (i > 1) and Ww. = Vv. If
w=>v, Vv is called a derivative of w. A set of productions P is called

a phrase structure grammar if P contains exactly one symbol U which

appears only on the left of "' anda nonempty set @ (the alphabet)

of symbols which occur only to the right of "', called terminal |

symbols and always denoted by T, Ts Ts) eee « The symbols which
occur on the left of "2" are called nonterminal symbols and are

denoted by U, U, Uys Uys «on. The derivatives ofU are called |
sentential forms and the sentential forms consisting only of terminal

: symbols are called sentences of the language Lp determined by P. If

the grammar represents a programming language, the sentences are just

the programs of that language. |

In order to be able to recognize the beginning and end of a

sentence x, one usually puts a special marker -L at the beginning and

end of it. Formally we add the production <Program> > LUA to

the grammar..

Figure 1 contains, as an example, a grammar which will be used |

throughout the rest of the paper. The sentences of this grammar are

the set of all arithmetic expressions (enclosed byA and_l ) con-

sisting of the operand I, the binary operations * and + (* takes

precedence over +), and parentheses.



<Program> — { E | |

BE —->T

EE + T |

T —->P |

TT % P |

| P — (E) |

PT

| Nonterminal symbols: <Program> E T P.

Terminal symbols: I ( ) + * AL |

Fig. 1. Example of a grammar |

The sentential form LP + T ¥ PL has at least two derivations

(according to the grammar of Fig. 1):

(a) <Program>=pLE 1 => IE + TA=>UT + TL=>1P + T1L=>1LP + T *% PL

(v) <Prograr>=LE LP LE + TILE + T *PL=I1T+T *xPl = |

lp+T xp L

Both have the same syntax tree:

| EEA NY
ARN |

E + T oo
| /I\ |

r T*P BE
| Pp

Fig. 2. A syntax tree

10



A sentence which has two or more derivations with different —_——

trees is called ambiguous. A grammar (and also the corresponding |

| language) is called ambiguous if it contains an ambiguous sentence.

Let us suppose for the moment that a grammar is unambiguous (as

is the grammar of Fig. 1). One can generate sentences of a language by

deriving them from the symbol <Program>. When given a probable sentence,

though, one must work backwards and produce the opposite of a derivation.

A parse of a sentential form of a language is a sequence of productions

uscd to reduce the sentential form to <Program>. Two parses of

LP + T *%¥ Pl corresponding to the above two derivations are:

(a) T>T*P, T—>P, E—>T, EE + T , <Program>— LE L ;

(pb) TP, EST, T>T*P,E>E+T, <Program> —» AE .L. -

When parsing a sentential form, reductions are made by replacing a

substring which is the right part of a production by the corresponding |
left side. In other words, given the syntax tree, a reduction consists

| of cutting off (pruning) a set of adjacent leaves forming a complete oo

branch. Thus, in Figure 2, we could "prune" the branches "P" and

"T * P" (make reductions T — P and T — T * P).

~ In order to avoid the unimportant differences between parses which

are the same except for the order in which the reductions are executed,

we designate one as the canonical parse. Given a sentential form and

its syntax tree, the canonical parse is the one which always prunes the

leftmost branch first. Such a leftmost branch we call the handle

([Knu 65]). Thus for the trees (a), (b), (c) in Figure 3, the handles

11



are T, T ¥* P andE + T respectively. (b) is the result of pruning the

handle "T" of (a), while (c) arises by pruning the handle "T * P" of (b).

| <Program> PN | NN
oN SNSrT, FIN Fe
} 71S BEA
(a) (b) (c)

Figure 3 |

A left-right recognizer, or parsing algorithm, always finds a |

canonical parse. Of course, if a sentence is ambiguous, it has more

than one canonical parse -- one for each syntax tree. A left-right

: recognizer will find only one of these. In Section II.A certain

recognizers will be discussed which can be constructed automatically

from the grammar if the grammar satisfies certain restrictions. Part |

of the duty of the construction algorithm will be to check ibe definition

| of the programming language by verifying that theI is indeed

unambiguous. | | |

When given just a stringit is sometimes difficult to detect a

handle. For instance, with the string LE+ T * PL , according to

the grammar of Figure 1, E + T is not the handle. Reducing E + T to E

| yields LE * Pl, which is no longer a sentential form. The handle in

this case is T * P. Most of the recognizers to be discussed will have |

| means for detecting the handle, so that wrong reductions will not occur.

12 | :



Some conlusion has arisen over the terms "top-down" and "bottom-

up". These refer to two different methods of recognizing or parsing

a sentence of a language. Part of the confusion has arisen because

people draw their syntax trees differently - for example, the tree for

the string LT+ T L can be written as in (a) or (b) of Figure 4.

|

IN 1 E T
aN

<Progranm>

(1) (b)

Figure 4

We will use (a) throughout the paper.

The other part of the confusion has arisen because the two con-

cepts have actually merged as recognizers have become more sophisticated.

We will try to clear up this confusion here.

A pure top-down recognizer 1s entirely goal-oriented. The main

goal 1s of course the distinguished nonterminal symbol <Program> -- a

prediction 1s made that the string to be recognized 1s actually a

program. The next step 1s to see whether the string can be reduced to

Lne left part SPs eS of some production <Frogram> - §5,8,...5 .

Thums, 1f 5 1s a terminal symbol, the string must begin with the same

terminal symbol. If S, 1s nonterminal, our first subgoal is to see

whether some head of the string may be reduced to S At any step, if

135
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some subgoal 1s not met, the failure is reported to the next higher

level, which must try another alternative.

This type of recognizer gets its name from the way the syntax

tree 1s being constructed. At any point of the parse, certain

connections have been made (perhaps wrongly) by constructing the tree

from the top node and reading down to the string (Fig. 5).

<Program>

|
BE

Partial Top-Down Parse
T

/]
1 + I*I 1

Figure 5

If some of these connections are wrong —-- a subgoal cannot be met -—-

some of the connections must be erased and other alternatives tried

(backtracking or backup). A top-down recognizer may of course be

programmed 1n many different ways -- as recursive subroutines, as a

single routine working with a stack, etc. The significant feature is

that it 1s goal-oriented. |

In contrast, a pure bottom-up recognizer has essentially no goals

(except of course the implicit goal <Program>). The string is searched

for substrings which are right parts of productions. These are then

replaced -- perhaps wrongly if they are not really handles -- by the

corresponding left side. This may be illustrated by Fig. 6.

14



EEA

T

Partial Bottom-Up Parse

I |
L1 +1 x 1 4

Figure 6

In order to reduce backup, modified top-down recognizers have

been introduced. For instance, before starting out on a new subgoal,

a modified top-down recognizer may see whether some derivative of the

subgoal may actually start with the initial symbol of the substring in

question (look ahead) or whether the subgoal could occur with the partial

tree (memory). Examples of modified top-down recognizers are those 1in

[Ir 61] and [War 64]. Most of the syntax directed symbol processors

(II.B) used modified top-down recognizers.

Similarly, as will be seen in II.A, bottom-up recognizers can be

constructed (for suitable grammars) which eliminate backup entirely.

Such modified bottom-up recognizers generally look to the left and

right of a possible handle to see 1f 1t really 1s a handle or not.

It is these modifications which have led to the (con)fusion of

the two concepts. It is sometimes very difficult to tell whether a

particular recognizer 1s bottom-up or top-down. For instance, a pro-

duction language recognizer as generated by Earley's algorithm (cf.

Section II.A5) has some of the properties of both. If a recognizer

has any explicit goals and subgoals to meet, we tend to call it

5)



(modified) top-down, Since it is essentially goal-oriented.

Most of the remaining terminology should be familiar to anyone

with general knowledge of Computer Science. We will use a few data-

structure terms which require definition. The term list structure will

be used generically to describe any programming system making signif-

icant use of pointers (links) and dynamic storage allocation. A list

structure which does not allow more than one path between any two nodes

is a tree. A list structure which explicitly allows general connect-

1vity is called a plex. The term plex also loosely implies that each

element 1s a block of storage containing several (often two-way) links,

We will also use the terms LIFO (last-in-first-out) and FIFO (first-in-

first-out) as general rules for handling sequential information. For

those who worry about such things, the symbol TWS will be used as the

singular, plural, possessive and adjectival forms of "Translator

Writing Systems."



II. Review of Current Translator Writing Systems

IT.A. Recognizers which are constructed mechanically

In this section, several practical techniques for parsing,

or recognizing, sentences of languages defined by grammars will

be described and evaluated. A "practical" technique 1s one that

has been or 1s being used to write a compiler. Each of these

recognizers has a second important property -- there is an

algorithm for constructing, or generating, 1t from a suitable

grammar of the language, either 1n the form of tables to be used

by a set of basic routines or in the form of a program. We will

call such an algorithm a constructor.

This property of automatic generation 1s very important to

the compiler writer. Most of the constructors check the grammar

for unambiguity before actually constructing the recognizer -- a

decided advantage. Automatic construction of parts of a compiler

also means less work, leaving more time for considerations such

as code optimization. Moreover, the automatic construction will

guarantee that the recognizer follows the formal syntax.

Unfortunately, these recognizers and their constructors do

not solve all problems.- First of all, much of the syntax of a

language can not be defined by existing grammars. Secondly,

semantics form a much larger and more difficult part of a pro-

gramming language -- often either the grammar or the generated

recognizer must be changed 1n order to fit in semantics properly.

Thirdly, while a technique may be theoretically very nice, 1it

may not be practical. The usual programming language grammar may

17



for some reason not be accepted by the constructor of some

technique. If not, the grammar must be altered substantially or

another technique used.

We note 1n passing that the "efficlency" of several recog-

nizers have been compared by Griffiths and Petrick [Grif 65].

While theoretically interesting, this comparison 1s of no

practical value, since it is based mainly on the efficiency of

Turing machines corresponding to each of the recognizers. We

are interested in the practical problems of actual space used and

time consumed, as well as the problems of adequacy mentioned in

the last paragraph,

Some of the recognizers discussed here have been used in many

compilers by many people; we cannot list references to all of

them. For each recognizer we have given one reference to a

paper where not only the recognizer, but also its constructor, 1is

discussed. Some theoretically interesting recognizers which can

be mechanically constructed, as well as formal properties of

systems described here, are discussed briefly in section III.Bl.

Top-down methods will not be discussed here, although they

are used 1n some compilers. They are in general less efficient

than the recognizers to be discussed, since some amount of back-

up is almost always necessary. See [War 61] and [Irél] for

details of compilers which use modified top-down recognizers.

[Che 6ic] is a good tutorial paper on the use of top-down

18



recognizers in compiling, while [Flo 64b] also contains a good

description of the technique.

| The grammar in Figure 1 (page 10) will be used throughout
| this section as an example. At this point it may be advisable

| to briefly review section I.B for definitions and notations.
1. Operator Precedence (Floyd [Flo 63])

| The grammar 1s restricted to an operator grammar; no

| production may be of the form U - xU,U,y for some strings x
and y and nonterminals Uh Uy, This means that no sentential

| form contains two adjacent nonterminal symbols. This is not a
serious restriction; many programming language grammars are

| already in this form. Most programming languages grammars which

| are not, can be made into operator grammars without essentially
disturbing the structure of a sentence.

During the parse of a sentence ToT a LIFO stack will

contain symbols S51 SEEN of the partially reduced string

S918 Tyan Ine At any step, 1t 1s necessary to be able

to tell solely from the symbols 5. 1,5, and I. whether

1) S. 1s the tail of a handle (the leftmost substring for

which a reduction may be made) in the stack; or whether

2) 8s, 1s not the tail of a handle and T, must be pushed into
the stack.

In order to do this, the following three relations are defined

between terminal symbols Ty and Ty of an operator grammar.

19



1) T, = T, if there is a production U - xTT,y or U -

xT, U Toy where Uy 1§ nonterminal.

2) I, > I, 1f there 1s a production U = xU, Toy and a

derivation U = zT U = T.U,f dU1 p or Uy zT JU, for some z an 0

3) T,< T, if there is a production U - xT.U;y and a
derivation U = z or U, =»U.T.z for some z and U

1 2 1 272 2°

If at most one relation holds between any ordered pair

T,,T, of terminal symbols, then the grammar is called an operator
4 ce _—

precedence grammar and the language an operator precedence

language.

In an operator precedence language, these unique relations

may be used quite simply for detecting a handle (or any right

part of a production which may be reduced). Suppose T xT 1s a

substring of a sentential form, and suppose that the following

relations hold between Le the terminal symbols T5Tpy eee,  (n > 1)
of x, and T:

T < Ty = Ty =. . . = I, ® T .

(Note that nonterminals of x play no role here). Then x 1s what

Floyd calls a prime phrase; 1t 1s either the right part of a

production U —-x, or there 1s a production

U —-x'

where x' =» x and the only productions in the derivation x! =x

20
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are of the form u, = Ue The substring x may therefore be

replaced by the nonterminal U, yielding TUT.

The parse of a sentence (or program) 1s quite straightforward.

| Symbols are pushed into the stack until the relation I, > T
holds between the top terminal stack symbol I, and the next

| ‘ncoming symbol T. If the program is indeed a sentence of the
language, the top stack elements then hold a string IR as

described above. One searches back in the stack, using the

rel ntions, to find Ts and the beginning of x. x 1s then a handle

and can then be reduced to some U, yielding TV in the stack. The

process 1s then repeated by comparing TS with T.

The relations », = and < can be kept in an #x# matrix, where

f is the number of terminal symbols of the grammar. (In [Flo 63],

the matrix for an ALGOL-like language is about 3%5 x 35). The

comparison 1s then just a test of the relation in the matrix

element defined by the row corresponding to the top stack

| terminal symbol and the column corresponding to the incoming

symbol.

The space needed for the relations may be reduced to two

vectors of length £ if two precedence functions f(T) and g(T)

can be found such that I < Is implies £(T,) < g(T,) , T, 2 I;

implies £(T,) re g(T,) and I,» Is implies £(T,) > g(T,). These

functions can usually be found. Floyd outlines the algorithm for

finding the matrix of precedence relations and the functions f and

g (1f they exist). For the language of Figure 1 the following

precedence matrix and functions are generated:
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( rox +L) Tr f(r) g(T)

) > >» > ) 5 1

I > > > > I > 6

x |< < > > > > ® p 4

|< < < > > > + 2 2

( < < < < = ( 1 6

1 | < < < < x 1 1 1

Ficurel gives the algorithm for recognizing a sentence of an

operator precedence grammar. The precedence relations will have

been produced from the grammar by the constructor.

Semantic routines may only be called when a prime phrase,

or handle, 1s to be reduced. A separate routine is written to

process each different handle. This may mean that the grammar

has to be altered to allow the correct semantic interpretation.

For instance, the production

<COND>» —» IF <BE> THEN <BEXPR> ELSE <EXPR>

would have to be explicitly written as

<IFCI> — IF <BBE>

<IF-THEN> — <IFCD> THEN <BEEXPR>

<COND> — <IF-THEN> ELSE <EXPR>

so that the tests and jumps may be inserted at the proper places

by semantic routines.
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L START S, « 1 89815... 58, IS A STACK HOLDING A PORTION OF
i Co THE SENTENTIAL FORM UNDER ANALYSIS.

READ ONE SYMBOL FROM

3 SOURCE PROGRAM; STORE IN R | :

S S. A TERMINAL |
) 1 j No j «1 - 1

yMBOL? J |

| Yes - |
| S, > RI No (fr. 17 WolTeivl

| | S. «R
1

i Yes Yes: SN
| — STOP

_

| Q «8S, 1S 5S, A TERMINA No
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| J ej -1 MBOL? Jt]
Yes

| Yes

PROCESS PRIME PHRASE S. . ...S.
] J+l i

(CALL A SEMANTIC ROUTINE); GET

LEFT PART U; i « j + 1; S, «U

Fig. 7. Recognizer using operator precedences



However, the revised grammar to the generator will not in

all likelihood be essentially different from the original ref-

erence grammar of the language (see for example Floyd's

language in [Flo 63]). Although to our knowledge no compiler

contains a mechanically constructed recognizer of this type, the

precedence technique has been used in quite a few ALGOL, MAD and

FORTRAN compilers and will be used in many more. The technique

1s easy to understand, flexible, and very efficient.

It 1s rather difficult to figure out a good error recovery

scheme 1f the functions f and g are used, since an error can be

detected only when a probable handle turns out not to be one.

With the full matrix, an error 1s detected whenever no relation

exists between the top terminal stack symbol and the incoming

symbol. Therefore the functions should be used only 1f a

previous pass has provided a complete syntax check.

One objection to this technique 1s that the language may

still contain ambiguous sentences. The structure of the parse

tree 1s unambiguous 1f the grammar 1s a precedence grammar, but

the names of the nodes may not be. For a prime phrase x there

may exist more than one nonterminal to which it may be reduced.

This objection 1s partly answered by the fact that the non-

terminals are usually manipulated by semantic routines anyway,

and not so much by the syntax. The syntax defines the structure;

whether a node 1s named (say) "integer expression" or "real

expression" is a semantic matter.
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2. Precedence Languages (Wirth and Weber [Wir 66c])

Wirth and Weber modified Floyd's precedence concept. The

| grammar 1s not restricted to an operator grammar and the relations

! 9) , & and (> may hold between all pairs S155, of symbols:

1) 8, © 8, if there is a production U -xS,S.y

| 2) Sq Sy) Ss 1f there 1s a production U — xU,S,¥ (or U ~ xU. Uy)

| and a derivation U, = 28, (and U,= Sw) for some =z.
3) 8, © S, if there is a production U -x8,Uy

| and a derivation 0, => 8, for some z.

| If at most one relation holds between any pair S15, of
symbols, and if each right part 1s the right part of only one

| production, then the grammar 1s called a precedence grammar and
the language a precedence language. Any sentence of a precedence

|
| language has a unique canonical parse. As long as either the

relation &) or© holds between the top stack symbol 5, and

the incoming symbol T, T 1s pushed into the stack. When

8, > T, then the stack-is searched downward for the configuration

5:1 9, 5, ©... @8,; © 5;

The handle S SEEN 1s then replaced by the left part U of the

unique production U ::= 540054 (Lf the program 1s a sentence).
The main difference between this technique and Floyd's 1s that
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the relations may hold between any two symbols, and not just

: terminal symbols. Algorithms for generating the matrix of |

precedences and functions f and g similar to Floyd's are given

in [Wir 66c]. | | | |
For the grammar of Figure 1 relations + ® T, + © T; |

1® E, LOE; and ( & E, ( (© E hold. These conflicts may

be disposed of by changing the grammar to the following equivalent

one: |

<Program> —» JL E'l |

E' - E | | |
- E -» T

| EE -> E+ T

T' > T

T —- P | |

T —-» T *P

Po (EF) N

P -» I

The precedence matrix and functions are then
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E' ET T P ( I * + ) | s f(s) als)

E' @ E' 1 1

B @ © © E 2 2

d © eo vr 3 2

i! ®@ © @ © T 3 3

P Q © © © P 4 5

) © © © © ) 4 1

I @ @ © © I 4 h

* ee O © * 3 3

+ - © © © © © | + 2 2

(12 © © © © © © ( I a

12 ©& © © © & © 1 1 1

As with Floyd's recognizer, one may use either the prec-

edence matrix or the functions f and g. The matrix is much

larger than Floyd's (over 70 x 70 for ALGOL), since the relations

may hold between any two symbols. As with Floyd's recognizer,

semantic routines may-only be -called when a handle 1s detected.

Theoretically, the technique 1s very sound and efficient.

Since the relations may hold between any two symbols, it 1s 1n

a sense more reliable than Floyd's; if the precedence relations

are unique, one knows that a unique canonical parse exists for

each sentence. In practice, however, one must manipulate a

grammar for an average programming language considerably before

it 1s a precedence grammar. The reason is that not enough

or
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context 1s used in determining the precedence relations; very

often more than one relation holds between two symbols. It

may be necessary to insert intermediate productions (as 1n the

above example) or even to use a different symbol for (say) a

comma depending on 1ts context. A prescanner must then be

changed to look at the context and decide which internal symbol

to use for each comma. The final grammar could not be presented

to a programmer as a reference to the language.

This recognizer and its construdmr have been used to write

a sophisticated assembler, PL 360, ([Wir 66al) anda compiler

for a proposed successor to ALGOL [Wir66b]) on the IBM 360.

3. Extended Precedence (McKeeman [McKee 66])

McKeeman extended Wirth's concept by first of all separating

the precedence matrix into two tables - one for looking for the

tail, the other for the head of a handle - and secondly by

having the recognizer look at more context so that fewer

precedence conflicts arise. The constructor will therefore accept

a much wider class of grammars.

a) The top two symbols 5,125; of the stack andT, the

incoming symbol, are used to decide whether IT should be put

into the stack, or whether 5, 1s the tail of a handle and a

reduction should take place.

b) Similarly, in order to go back in the stack to find the

initial symbol of the handle, three symbols instead of two are used.
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This technique should be compared with the one proposed by

Eickelet al. [Ei 63]. See Section III.Bl. In practice, the number

of different triples is too large (over 10,000). Also, in most cases

two symbols suffice to determine uniquely what 1s to be done.

McKeeman's recognizer compromises by using Wirth's two-argument

precedences whenever possible and switching to triples only when

necessary. When looking to the right to see if the stack contains a

handle, a matrix MATRIX1 with entries (© or @ ) , @,

and@ ( © and either ©or€ ) is used. If @ holds between

the top stack symbol S. and the incoming symbol T then a list of

triples 1s searched to find the value of the following three-argument

function Pl;

| me 3.OT (S; is tail of a handle) in theP1(S, 15:57) = context S,,8.T

ES I. QS holds in the context 8, ,5.T
Of course this function must be single valued for all triples, and

the constructor checks this. A similar matrix MATRIXZ2 with entries

SS) 5 , and S ( & and either @ or & ) and a function P2 are

used when looking in the stack for the initial symbol of the handle:

TRUE S,1 ©8, (s is head of a handle)
PRS, 155,551) _ ~1n the context >4.15:5 541

FALSE 5,,@ 5, holds in the context

41% 38541 ‘
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For the grammar in Figure 1 the following matrices and functions Pl and

P2 are generated: | |

 MATRIXL. |

E T P ( I * + ) 1 | |

E SQ S © Function P1 not necessary,

n | © 5 6 © since the conflict @®
does not arise. |

P ©@ © © © |

) © © © @ | |

I @ @ 6 O |

* © © © |

+ © © © © | | | |

(1 © © © © © oo

11 © © © © & |

MATRIX? | |

| E T P ( I * + ) 4 Function P2 (only nec- oo

S So S essary triples which also
| form valid substrings of

T @ GQ @ @ some sentential form
P GE © 6 © listed) |

) @ @ 6 6G P2(1,E,+) = TRUE
I QO © ©  P2(1,E,L) = FALSE

* Oo © © | P2((,E,+) = TRUE
| | P2((,E,)) = FALSE

+ © © © | P2(+,T,*) = TRUE
(1 ® © © © B® P2(+,T,+) = FALSE

P2(+,T = FALSE

| P2(+,T,l) = FALSE



Lge yy

S «'4’

START S955. 0.05 IS A STACK HOLDING A PORTION OF

___/ i¢<O0 THE SENTENTIAL FORM UNDER ANALYSIS

READ ONE SYMBOL FROM

SOURCE PROGRAM; STORE IN R

n No ie«1i+1
< = . «R

USE MATRIX1 i

Yes

?

PL(S;_;584,R)? FALSE ©
TRUE

t+

_ USE MATRIX2 |

ol |@

{| TRUE

PROCESS RIGHT PART ByeeeBy OF A PRODUCTION
AND GET LEFT PART U; 1 «J; 5S, «U

Fig. 8 Recognizer using Wirth precedences plus McKeeman triples
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The recognizer which uses the matrices and triples 1s given in

Figure 8. Of course functions f and g may be used as 1n Floyd's or

Wirth's case, if they can be found.

The use of triples helps avoid most of the unpleasantries one

encounters with precedence grammars. But, again, semantic routines

may only be called when a handle 1s detected, so that 1t may be

necessary to alter the grammar for this reason. McKeeman is writing

a compiler for a subset of PL1 (in itself) on the IBM 360 using this

technique. He expects to use the final grammar as a standard reference

for the PL1 subset.

4. Transition Matrices (Samelson and Bauer [Sam 60], Gries [Grie 67a] )

- This technique for parsing sentences was first introduced by

Samelson and Bauer. It has been used by the Europeans for writing a

number of ALGOL compilers. NELIAC compilers use it under the name CO-

NO tables [Hals 62]. In [Grie 61a a constructor was written for the

recognizer. The grammar 1s restricted to an operator grammar. Essen-

tially one gets a transition matrix by replacing the precedence relations

in a Floyd precedence matrix by addresses, or numbers, of subroutines

which perform the necessary stack reductions or push the incoming symbol

onto the stack.

The constructor uses the following scheme to reduce the number of

elements 1n the stack which must be tested in order to find the beginning

of the handle. Suppose that

(4.1) <COND> — IF <BE> THEN <EXPR> ELSE <EXPR>

Jpr=



is a production of the grammar. At one point in parsing a sentence the

stack should look like (say):

« BOTTOM STACK TOP

A IF <B> THEN .

Instead, a representation for "IF <BE> THEN", say "IBT", is put in

the stack —-- the stack would look like

« BOTTOM STACK TOP « BOTTOM STACK TOP

"TF
wat C+ " 1"<BE> or IBT

THEN"

This 1s equivalent to changing production (4.1) to

"IE" —- IF

" IBT" — "IF" <BE> THEN

"IBTEE" — "IBT" <EXPR> ELSE

<COND> — "IBTEE" <EXPR>

The productions are then all of length one, two, or three. One row of

the matrix is allotted to each new symbol in quotes. One column is

allotted to each possible incoming terminal symbol. A stack element Ss

consists of two parts SL. and SEI The first 1s one of the quoted

symbols introduced by the generator (a kind of operator), the other 1is

empty or contains a nonterminal symbol (an operand). The basic

recognizer is
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5, « ("1", empty) 8,s++-8; IS A STACK HOLDING A
(Smarr) 1 O PORTION OF THE SENTENTIAL FORM

er ONE CHARACTER UNDER ANALYSIS. S. CONSISTS1, 2, .

(scan) FROM SOURCE PROGRAM; OF TWO PARTS S i and S i| STORE IN R (8;=(s1;,82,))

JUMP TO SUBROUTINE DEFINED

(Gory BY MATRIX ELEMENT CORRESPONDING
TO ROW OF Sl, and COL OF R.

The matrix and subroutines produced by the generator for the grammar of

Fig. 1 are

1 + * ( ) I

"L" [1 4 5 6 8

"E+" | 2 2 5 6 2 8

"TH 3 3 3 6 3 8

1: IF S2, =E OR S2, = T OR S2, =P
a 1 —_ 1 — 1

THEN SUCCESS EXIT ELSE ERROR;

2: IF S82, =T OR S82. =P
a— 1 - — 1

THEN BEGIN 1 « 1 - 1; Se. « FE; GOTO GOIN END ELSE ERROR;

: 2, =3: IFS2, = P

THEN BEGIN i « i = 1; 52, « T; GOTO GOIN END ELSE ERROR;

Lh: IF S2, =EORS2, =T ORS2, =P
— i — 1 — i

.. THEN BEGIN i «1 + 1; 8S, « ("E+", empty); GOTO SCAN END ELSE

ERROR;

Bi!



5: 1Fi'Se, = P OR S52. = T

THEN BEGIN i « i + 1; 8, « ("T*¥", empty); GOTO SCAN END ELSE

ERROR;

6: IF SZ. = empty

THEN BEGIN i «i + 1; 8, « ("(", empty); GOTO SCAN END ELSE

ERROR;

7: IF S82. = E OR 52, = T OR S52. = P

THEN BEGIN i « i - 1; Sa, « P; GOTO SCAN END ELSE_ ERROR;

8: IF 52, = empty

THEN BEGIN Se. «P; GOTO SCAN END ELSE ERROR;

A matrix for ALGOL is about 60x 40. The checks for ST, = empty

may be deleted by doubling the number of rows of the matrix (see [Grie

67al). Some alterations are usually necessary once the recognizer is

generated, but since semamtiecg: may be inserted at any step of the

parse ( in any of the subroutines 1-8 above), and not only when a

right part 1s recognized, the system 1s perhaps more flexible than the

previous three. The grammar does not have to be changed much, although

it must be an operator grammar. The constructor itself has not been

used to generate a compiler yet, but the generated recognizers resemble

to a large degree recognizers built by hand using the same technique

(see [Grie 65]).

| This 1s perhaps the fastest technique. Switching tables are

always used when speed 1s essential. Its drawbacks are the space used

| and the large number of subroutines needed to implement the technique.

0



5. Production Language (Floyd [Flo 61], Evans [Ev 64], Earley [Ear 65)

The production language introduced by Floyd and modified by Evans

consists of a set of productions of the form

Lo: s, 8; 8) | 8) sy | x6

A more natural name for this would be a reduction, since it 1s used to

indicate how to reduce, or parse a string.

We start parsing a sentence by putting the first symbolL of the

sentence on the stack. Then we sequence through the productions,

comparing the top of the stack with the symbols S585, . directly

to the left of the first bar |. When a match is found, the matched

symbols Sq. 8p. in the stack are replaced by the symbols 51555 Ce.

(If no replacement is to be made the arrow -=' and symbols 51555 do not

appear.) The symbol @appearing as some S. matches any symbol on the

stack. Then, if "*" appears following the second | the next input

symbol 1s scanned and pushed onto the stack. Finally we start comparing

symbols of the stack again, beginning with the production labeled by

the name appearing at the right of the production (G1 in this case).

Any production may be labeled. Earley has written a generator which

produces from a suitable grammar a recognizer written in production

language.

The production language program generated from the grammar in

Fig. 1 is given in Fig. 9.



PROGRAMO ; 4 | ¥EO

T | [ERROR EXIT

EO:TO:PO: (| | *EO

I|- P|*PL

o | |ERROR EXIT

El: LE] | SUCCESS EXIT

((3)|- P|¥P1

| [ERROR EXIT

T1: T| | ¥PO

E+T ol EEL

Tol- Ec|EL

a | ERROR EXIT

Pl: T*Po|- To| TL

Pal— Te]T1

| [ERROR EXIT

Fig. 9 Production language recognizer

Semantics are introduced onee the productions have been gener-

ated by inserting "actions" of the form EXEC 1 , where 1 1s the

number of some semantic subroutine, directly after the second bar |

in any line of a production.
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This production language 1s the basis for a working ALGOL compiler

[EvA 64] and forms a significant part of FSL, a language for writing

compilers (see section II.D1l). A variation of the production language

is also used in TGS (cf. section II.D2). Once one has some practice,

it is quite a natural, flexible language to program in. A programmer

can learn to write compilers with 1t relatively easily. No compilers

have yet been written using a mechanically constructed recognizer,

but the MEC actions may be inserted in any production, so that in

general few alterations will have to be made in the grammar. More

context can be used by the recognizer, so that a grammar is more

likely to be accepted by this constructor than the other four.

It 1s perhaps the least efficient of the recognizers discussed,

'since at each step, the stack must be compared with successive pro-

ductions until a match 1s found. The productions, however, take up

less space than the other recognizers.and the efficiency can be im-

proved by good programming when they are constructed by hand.

We would venture to say that this branch of Translator Writing

Systems 1s fairly complete. One can devise only a finite number of

really different-left-right recognizers for parsing sentences using

limited context. Even the first four recognizers listed here differ

only in the programming techniques used —-- theoretically they are all

[1,1] bounded context in the terminology of section III.Bl.

The operator precedence technique 1s most well-known. It often

1s used to recognize portions of a language, most frequently arithmetic

and Boolean expressions, as is done in the IBM 3%60 FORTRAN compiler.
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See [Ar 66, Grie 65] for documentation of other compilers using this

technique. [Gall 67] also mentions it. The transition matrix

technique has been used to write several ALGOL compilers [Grie 65,

Sam 60] as well as NELIAC compilers, under the name CO-NO table

[Hals 62, Mas 60]. Both of the above techniques have undoubtedly been

used in many other compilers. The production language is used in an

ALGOL compiler [EVA 64], but is also a significant part of two

compiler-compilers [Feld 66, Mond 67]in which a number of other

compilers have been written [Rov 67, It 66]. Two other compiler-

compiler projects use this language [Fie 67, Grie 67b], while inde-

pendent variations of it have been used by ‘[Che 65] and others. The

precedence and extended precedence techniques have been used mainly

by their authors, Wirth [Wir 66a, Wir 66b] and McKeeman [McKee 66].

There are further discussions of syntax techniques in several other

sections.

For the theoretically inclined reader, section IIIL.Bl contains

discussions on more general, powerful and complicated left-right

recognizers, as well as some basic references on the theory of formal

languages.
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I1.B. Syntax Directed Symbol Processors

The programs discussed in this section are not properly called

compiler-compilers, although each has been used to write compilers.

Their common treatment of compiler-writing as a symbol manipulation

task makes each of these programs both more than and less than a TWS.

Since such systems are so general, they have been used heavily in the

various non-translator tasks described in Section III.A. In fact, the

discussion of AED [Ross 66] will be deferred to that section, because

1ts goals have been more general from the outset.

1. TMG (McClure [McCl65])

The TMG system was developed at Texas Instruments as a tool for

writing simple one-pass compilers. The syntax technique 1s a simple

top-down scan with backup. However, the embedding of semantic rules

enables one to write a more efficient recognizer than would be

possible with pure syntax.

The basic TMG statement form is:

<label> : <actions> / <identifier> *¥/ <identifier> .

The first <identifier? names the statement to be executed if the

<actiong> fail and the second <identifier> names the statement to be

executed on success. The <actioné& can be: intermediate goals for

the syntax recognizer, string computations on the input, or built-in

statements. These <actions> are all to be performed by the translator;

output of code 1s treated by a different construct to be discussed

below. There 1s a character-based symbol table which 1s built from
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input strings using the primitives MARKS and INSTALL. Consider the

following example.

INTEGER: ZERO* MARKS DIGIT DIGIT* INSTALL

The action ZERO* scans all leading zeros, then MARKS notes the

current value of the 1input-string pointer. The actions DIGIT DIGIT*

scan all characters in the class <digit>. The execution of INSTALL

causes the string starting at the pointer of MARKS to be entered into

the symbol table and a reference to it entered in the intermediate tree.

The only other information allowed 1n the table 1s a set of declared

FLAGS (Boolean variables).

The built-in routines include conditional arithmetic expressions,

number conversions and a few input-output functions. There are also

some system cells such as J, the input pointer, and SYMNRM, the length

of the last string entered. Output is also character-oriented, as the

following example will show:

LABELFIELD: LABEL = $(P1/ BSS / 0 // $)

This statement would be used to detect the label in some language.

The "=" signals an output routine which is bounded by "$("and "$)".

The body ofthe output statement will form one line of assembly code

label BSS 0 :

The symbol "P1" is a command to evaluate the first construct to the

left of the "=", presumably the symbolic name of the label. The "/"
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says insert a tab and "BSS"and "O" represent themselves. Finally, the

!

"//" places a carriage return in the output.

The TMG effort was a pilot project and its clumsy syntax would be

easy to fix. It has been used to write a number of compilers and a

related system TROL has been used by Knuth for teaching compiler-

writing. The EPL (Early PL/I) used in MULTICS was written as a two-

pass system, using two sets of TMG definitions, to get better code.

The TMG system does not seem to be as coherent as some to be considered

below, and would benefit from another iteration.

2. GARGOYLE (Garwick [Gar 64])

The GARGOYLE system was developed by a Norseman and 1s not very

well known in Vinland. It 1s also quite similar to TMG and so it will

not be covered in as much detail.

The syntax processor 1s, once again, basically a top-down

recognizer with the ability to direct the search. The descriptive

language form 1s a five-field line, essentially

<label> : <actior> ; <nextt ; <1link> ; <else>

The sequencing rule is more complicated than TMG with ERROR and EXIT

being special cases and three successor fields to consider.

The <action& combine tests and output statements in an ALGOL-

like syntax more pleasant than that of TMG. For example, a line in

the routine COMPILE is:

if U = '+' then f « 'FAD' ; INSERT
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where INSERT (in the <next> field) 1s an output routine with 'f' as a

parameter. In this case, 'U' is a temporary variable previously

filled in by character tests on the input string.

| There are a number of auxiliary features mentioned, but it 1is

| not always clear which ones are built in. The whole paper is somewhat

tentative, suggesting that Garwick's intent was to present a schema

for a TWS rather than a particular system. We have no information on

implementations, uses or extensions of GARGOYLE.

5. COGENT (Reynolds [Rey 651)

The COGENT system was designed at Argonne National Laboratory by

John Reynolds and implemented on a CDC 3600. A program written in

COGENT has two parts: the syntax and a set of processing routines

called generators.

The syntax 1s given by a synthetic grammar. Syntactic analysis

proceeds by producing list structure to represent the syntax tree.

For example, use of the production

<TERM> ::= <TERM> + <FACTOR>

would produce a list element <TERM> with pointers to the subexpressions

<TERM> and <FACTOR>. Alternatively, one can preceed a production by

action labels - names of generators which are capable of conditional

analysis of list structures and of (recursively) calling other

generators:

PROCESSTERM / <TERM> ::= <TERM> + <FACTOR>.
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Instead of a list element <TERM> being created, the generator

| PROCESSTERM is called with the sublists <TERM> and <FACTOR> as

arguments. The output of PROCESSTERM 1s then placed in the parse

| tree.

| Certain kinds of local ambiguity are allowed in COGENT. The

| object syntax processor goes into ambiguity mode, switching back and
| forth between possible parses each time a parse requires a new

character. No generator calls are made until the ambiguity 1s

resolved.

The generator language 1s based on list-processing operations

and the mechanism of failure. List elements may have varying numbers

of pointers to other elements. The types of list elements include

numbers (fixed or floating), generator entry pointers, dummy elements

(corresponding to LISP's NIL), identifier elements, and parameter

elements. Fixed point numbers may be of any magnitude and take up

sufficient words to represent that magnitude. This feature facilitates

symbolic mathematics applications of COGENT.

In addition to the conventional assignment statements, generators

may use synthetic and analytic assignment statements to describe the

synthesis and analysis of list structures. A synthetic assignment

statement has the form

<identifier> / = <template , <expression list>

where a <template 1s essentially a production 1n parentheses. For

example, the execution of the synthetic assignment statement
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z / = (TERM/ FACTOR * rFactor) , x, Y

where X had the value (FACTOR/ABE) and Y the value (FACTOR/BED),

would assign to Z a copy of (TERM / ABE * BED).

Similarly, analytic assignment statements of the form

<test expressior> = / <template , <identifier list>

are used to decompose an expression. The <test expressiorn> is

matched against the template. If they match, the value corresponding

to the has parameter (nonterminal) of the template 1s assigned to the

1th <identifier> of the <identifier list>. Thus, if Z has the value

(TERM / ABE * BED) , then the statement

7 = / (TERM / FACTOR * FACTOR) , X, Y

will give x the value (FACTOR / ABE) and Y the value (FACTOR / BED).

If <test expression> and <template do not match, the analytic

assignment statement fails. Failure is the method of branching in

COGENT. If no conditional statement includes the action that fails,

the entire‘generator fails. Thus failure proceeds up the chain of

generator calls until a conditional statement 1s encountered.

In addition to the above, the following features of COGENT

require mention: ID-tables, sganners and internal variables... :

The action label $IDENT, n/ specifies that the result of that pro-

duction (which must be a character string), should be placed in

identifier table n. If it is already there, a pointer to the old
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copy will be returned, 1.e. all identifiers in any given table have

unique character strings.

Generator entry pointers can be passed as arguments to generators.

This 1s useful, for example, for producing output for cards, printing,

etc. One generator, called a scanner, could reduce a list structure to

a character string and pass the characters one at a time to an output

routine through a formal parameter. There are also several internal

variables which may be set or tested by primitive generators and used

by various built-in routines. For example STANDSCN, the standard

scanner, calls on the routine indicated by an internal variable to

convert negative or floating point numbers.

COGENT 1s admittedly experimental and has several shortcomings:

the structure of the language for generators 1s not as neat as Algol

has shown languages can be, one syntax error 1n the input 1s fatal,

and list processing should be generalized to include arbitrary plex-

creation, rather than just plexes based on the syntax. COGENT has been

applied to a number of problems in symbolic mathematics. Reynolds has

suspended work on COGENT pending the development of a better theory of

data structures which he, among others, 1s working to develop.

4. The META Systems (Schorre [Schor 64] et al.)

The early history of Meta compilers 1s closely tied to the history

of BIGPLAN Working Group 1 on syntax-directed compilers. The latest

inventory listed twenty-five different Meta compiler systems on ten

different computers. The proliferation of these compilers is due in
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part to the fact that they are not only able to compile a metalanguage

but can be expressed in their own language and thus compile themselves.

Almost all of the systems have been used to implement translators for

other languages as well.

Although the original work was diversified, the current systems

are generally based on a model known as Meta-II, developed by Schorre.

Within this model, the parsing and translation processes for a language

are all stated in a set of BNFelike rules. These rules become recursive

recognizerswith embedded code generators when the language specifications

are implemented.

The rules do not allow left recursion; but use instead the

(prefix) iteration operator "§". Alternation (the bar in BNF) is

indicated by a slash, and parentheses are used for grouping in a normal

fashion. The following is a typical rule in Schorre's Meta-II language:

SUM = TERM $( '+' TERM .OUT('ADD')/

'~-' TERM .OUT('SUB') );

The rule defines a procedure for recognizing a sum 1n an algebraic

language. The word "SUM" -followed-by "=" defines the name of the rule,

while the right part of the rule is both an algorithm for testing an

input streal for the occurrence of a sum as well as a code generator

in case the sum is found. The above rule contains examples of the

three basic entities used in most Mete compilers. The mention of the

neme of another rule, in this case "TERM," causes a recursive call on

that 'recognizer to be invoked. The occurrence of a literal string '+'
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signifies that a test 1s to be made against the input stream for a plus

sign; most Meta systems have built-in recognizers for identifiers and

numbers as well as literals. In the ".OUT" construct, we see the

embedding of code generation.

The recursive nature of the rules and the method of handling

generated labels may be seen in the following example:

UNION = INTER ('OR' .OUT('BT' *¥1) UNION .LABEL *1/ , EMPTY);

INTER = PRIMARY ('AND' .OUT('BF' ¥1) INTER .ILABEL ¥1 / .EMPTY);

PRIMARY= .ID .OUT('LD' *) / '(' UNION ')';

For the input stream "(A OR B) AND (C OR' D)", the following

code would be produced, where LD, BT, BF are mnemonics for Load,

. Branch True, and Branch False respectively:

LD A

BT Ll

LD B

Ll

BF L2

LD C

BT L3

LD D

L3

L2
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The first mention of a *1 within a rule causes both the gen-

eration of a label and the output of that label. Subsequent references

within the same rule output the same label. That 1s, when a rule 1s

entered, new labels are generated. These labels only exist while the

rule 1s active. If a call 1s made to another rule, the labels are

pushed onto a stack. Upon return from the called rule, the previous

labels are restored. The "¥" causes the last item recognized by the

primitive .ID to be added to the output. EMPTY 1s a primitive which

has no effect on the input or output but 1s always satisfied or true.

Meta3 was an attempt to extend the basic Meta-II concept so that

ALGOL 60 could be compiled for a 7090. It added some ability for

semantic tests and register manipulation, but the additions never

proved adequate. Metab was the first Meta compiler that allowed

backup of the input stream. It also added extensive string push-down

stacks, attribute assignment and testing, and output formatting

features. An indication of the flexibility of Metab 1s the fact that

it is capable of translating JOVIAL to PL/1. The LOT system ([Kir66]),

another extension of Meta-l1I, added syntax constructs which gave the

programmer complete control of almost all system parameters and flags.

Normally, the setting of these parameters 1s done by control cards,

but embedding it in the metalanguage proved extremely useful in the

development of debugging aids. The LOT system was also used to gather

statistics on the efficiency of top-bottom syntax analysis.

There 1s currently a very active interest in the development of

Meta systems. The tendency in the newer systems 1s to build parsing
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trees and then, with another special-purpose language, test and

collapse the trees, producing output as a side effect (cf. Section

IT.D2). The slowness and inefficiency of Meta compilers is recog-

nized by their authors, but the ease of implementation, the boot-

strapping capabilities, and the large class of languages they can

handle are used to justify the work that has gone into their

development.

References for II.B:

Ab 66, Gar 64, Kirk 65, McCl 65, Met 64, Rey 65, Sch 6k,

Schor 6k,
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II.C. Meta-Assemblers and Extendible Compilers

These forms of TWS are similar in that they both attempt to ex-

tend the macro concept to higher level programming languages. The

basic idea in a macro processor 1s the systematic replacement of

certain symbols with their associated pieces of text. Although almost

all modern assemblers have sophisticated macro features, the best

descriptions of the idea are in the general papers by Strachey [Str65]

and Mooers and Deutsch [Moo 65]. The meta-assembler and the extendible-

compiler are based on two different conceptions of how to extend

macros to high level languages. The meta-assembler approach considers

the compiler to be special case of the assembler, while the extendible

compiler approach 1s to add text replacement features to standard

compilers.

1. General Discussion and METAPIAN (Ferguson [Fer 66])

The article by Ferguson 1s taken from the San Dimas conference

and contains a good introduction to meta-assemblers. The basic ideas

arose from observing that all assemblers have many features in common.

By building procedures for handling such things as symbol tables,

location counters and macros, one could speed up the writing of part-

icular assemblers. To construct an assembler for a particular machine

one would specify word size, number representations and the like.

Output for each machine would be programmed using format statements

and could easily include relocation or symbolic debugging information.
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While such a system seems feasible and quite useful, 1t 1s not obvious

how one would extend it to a TWS.

The use of a meta-assembler as a TWS 1s based on the previously

mentioned assumption that the compiler is a special case of the macro

assembler. Discussions of this assumption sound like a reincarnation

of the macro vs. high level language debate. The macro assembler side

1s on the defensive, is outnumbered and therefore has been the most

vehement 1n argument. The whole situation is further complicated by

a lack of agreement on what an assembler 1s (cf. discussion following

this paper [Fer 66]). An example will suffice for our purposes.

Ferguson describes how a meta-assembler would handle the compiler-

like statement:

IF F(A) PLUS 5 EQ G(B) GOTO L .

He would have IF, PLUS, EQ, and GOTO be defined as (prefix)

operators using a scheme called many-many macros. The many-many macro

has features for using and updating state information during text

replacement. This seems to be considered an outstanding contribution

to macro techniques and 1s certainly a prerequisite for reasonable

code selection. The many-many macro is flexible enough to implement

any known compiler; the real question is whether many-many macros are

a good way of doing it. The answer to this depends on the mechanisms

for recording and using state information and these were not discussed

in the paper.
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2. PLASMA (Graham and Ingerman [GraM65])

The meta-assembler effort of Graham and Ingerman concentrates

mainly on the problems of substitution and binding. They are much

less concerned with syntax than Halpern (next discussion), because

they assume a syntax-directed front end (presumably [Ing 66]) for a

compiler written in their system.

The basic input to their meta-assembler is a "line" which is a

list of lists. The first list 1s a generalized label consisting of a

symbol, the number of higher levels at which it 1s active, and the

number of lower levels at which it is active. The second list contains

the operation and the third contains the operands. The input is con-

verted into a tree and substitutions are made on the basis of the tree

structure. By allowing substitutions by symbol or numeric value,

they combine the text replacement with assembly functions.

The authors are continuing their work at RCA, Cherry Hill, and

will presumably report on it again. Their current efforts involve

even more elaborate substitution processes. They have not, as yet, put

forth specific suggestions on how their system might be used as the

basis for a compiler.

3. XPOP (Halpern [Hal 64])

Halpern 1s the most sanguine and vocal of the meta-assembler

proponents. His work on meta-assemblers 1s related to his controv-

ersial stands on natural language programs by his statement that

XPOP will allow one to implement something "closely approaching”
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natural language. One should try to separate his work, which 1s

reasonable, from the tub-thumping which mar his appearances in public

or in print.

The XPOP system follows fairly well the general meta-assembler

description by Ferguson. The basic input format 1s, once again, a

label followed by an operator and one or more operands. Halpern is

very interested in input forms and has three basic ways of altering

the syntax of the source language. The- first way 1s to change the

order of parameters by declaring a macro with the new parameter

ordering which expands to the original operator. The second feature

1s the ability to declare new separators and‘terminators at any point

in the text. The most unusual feature 1s the facility for adding

- noise words which are ignored, as well as keywords which mark the

next symbol as a parameter.

To handle the problems of generating output, XPOP has several

embellishments of the macro concept. It 1s possible to defer the

assembly of code sections; the sections awaiting a particular label

can accumulate in FIFO or LIFO fashion. There 1s one illustration of

how this feature 1s used to implement the DO statements 1n FORTRAN.

There 1s also mention of many-many macros and of assembly time

execution facilities. Once again, there 1s not enough information

presented to allow one to judge their suitability for translator

writing. The XPOP system has a large variety, of trace and debugging

aids which should add significantly to its usefulness.
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More recently, Halpern has produced an elaborate defense of XPOP-

like systems. He suggests that the <operator> <operand-string>

notation of macro systems 1s the canonical syntax of programming

languages as opposed to natural or mathematical languages. He further

separates the study of programming languages into three parts:

Functional (macros), Notational (change punctuation commands), and

Modal (assembly-time executions). Halpern's paper can be taken as the

philosophical statement of the meta-assembler position on TWS and

compared with other general descriptions of the problem.

4. Extendible Compilers =~ Basic Concepts.

Many attempts (starting with McIlroy [McI160]) have been made to

embed macro features in compiler systems. One approach was to retain

the macro syntax form, but add a number of built-in features which

are compiler-like. The SET system [Ben 6ha] included a skeleton

compiler withiinput-output, symbol manipulation, table handling, and

list processing features. These built-in routines were combined with

translation-time operations (Action Operators) in the attempt to

build a TWS. A more successful approach has been to use the structured

syntax of high-level languages as a basis for extension.

Many existing compilers incorporate simple forms of macro

expansion, the first probably being JOVIAL [Shaw 6% }. The most

primitive form 1s pure text replacement without parameter substitution.

For example, in B5500 ALGOL one could define a macro with the statement:

DEFINE LOOPl = FOR I «1 STEP 1 UNTIL #
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and later form statements like

LOOP1 N DO AIT] « O

which would be expanded into

FOR It1 STEP 1 UNTIL N DO A[I] «O .

The next step 1s to allow a macro definition with parameters.

This facility has been included in the AED-O compiler [Ross 66],

among others. In AED-O one might define a macro with the statement:

DEFINE MACRO LOOP (P1,P2) TOBE

FOR Pl «1 STEP 1 UNTIL P2 DO ENDMACRO

In this case, one could get the same result as above with the

short statement

LOOP (I,N) AII] « 0 .

These two simple macro forms would form a useful addition to any

high level language and one might imagine developing mechanisms which

parallel more sophisticated macro techniques. Although AED-O does

permit arbitrary strings as parameters and nested definitions,

features like conditional assembly do not seem to have been used in

high level languages. One reason for this 1s that compilers normally

depend heavily on the structure of the text; the next two sections

describe the complexities that arise in trying to extend compilers

with macro techniques.



5. Definitional Extensions (Cheatham [Che 66])

The definitional extension of high level languages 1s the latest

attack on the TWS problem by the Computer Associates group. This has

been the most active and productive group in the TWS area and has

developed a world-view which should be understood in reading their work.

We will discuss the mainstream of their activity in Section II.D2,

only a brief introduction will be given here.

Cheatham defines compiling as a six-step process involving:

lexical analysis, syntactic analysis, interpretation of the parse,

optimization, code selection, and output. The principal driving force

behind their work has been run-time efficiency, although other consid-

erations have played an important role from time to time. The current

TWS efforts of Computer Associates use a single language TRANDIR for

all the steps of compilation. TRANDIR consists essentially of an

algebraic section, a pattern matching section (cf. Section II.A5) and

a number of built-in functions. The language is procedural and, to

date, has been used only by experienced compiler-writers.

The paper under discussion shows signs of having been hastily

written and contains references to several internal documents in

preparation. This is clearly an early attempt along these lines and

will be expanded and clarified in subsequent papers. The extensions

to compilers mentioned here fall into two broad categories: a descrip-

tive meta-language Ly and a series of macro facilities.

The descriptive meta-language Ly 1s meant to be translated into

TRANDIR procedures, presumably by a (meta-meta) processor. The
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translation of the language Ly 1s based on a grammar inversion technique

combining notions of Wirth and Early (cf. Section ILA). To allow for

more powerful languages, one can append predicates (e.g. type checking)

and even arbitrary computations to the declarative syntax. Finally,

there are rules for outputting intermediate code attached to the syntax

rules. The declarative language has not been implemented, but Cheatham

claims that it has proved useful for the initial formulation of TRANDIR

compilers. While this 1s probably true, one would expect that the

translation to procedural form 1s not, at present, a mechanical

process. Further, the sophistication required of an Ly user does not

seem appreciably less than that required by TRANDIR.

The extensions to languages using macro techniques fall into

three basic categories: text, syntactic, and computational macros.

Text macros are assumed to be well understood and would presumably be

similar to those described above. It 1s 1n treating syntactic macros

that Cheatham begins to face seriously the problems of adapting macro

concepts to compilers.

The basic features of syntactic macros are free format and type

specifications for parameters: An example would be

LET N BE INTEGER

MACRO MATRIX (N) MEANS 'ARRAY[1:N, 1l:N]' .

The advantage of free format over the conventional <operator> ,

<operand 1list> format are obvious; the specification of parameters

allows conditional assembly and better error detection. The call of a
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syntactic macro would be set off by a special delimiter (e.g. %) and

would have to have a detectable termination. These problems can be

avoided by adding the macro form directly to the syntax tables of the

translator. The corresponding declaration would be: |

LET N BE INTEGER

SMACRO MATRIX (N) AS ATTRIBUTE MEANS 'ARRAY[1:N,1:N]'

where ATTRIBUTE 1s a syntactic type in the definition of the underlying

language . Neither of these schemes presents an implementation problem

in TRANGEN (cf. Section ITI.D2), but either of them could have drastic

results 1f misused.

In discussing syntactic macros, Cheatham touches upon the problem

of adding 'semantics' to the macro definition. This 1s the analogue of

the many-many macros and the assembly-time actions used in meta-assemblers.

Cheatham's conclusion that this approach 1s not feasible should be

compared with the meta-assembler approach which has put most of its

eggs 1n this basket. His solution 1s to provide a number of primitive

operations (e.g. table expansions) and to point out the existence of a

complete meta-language behind the extendible language.

The third type of macro extension is called the computational macro.

With this technique the substitutions are made 1n the intermediate code

resulting from a declared macro. This requires that the macro body be

restricted to constructs for which the intermediate code can be

compiled (with formal parameters) independent of context. If this

condition can be met, the computational macro 1s a useful and efficient

tool. A simple computational macro might be the following mapping
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function for a 4 x 4 upper left triangular matrix M.

TAKE I,J AS INTEGER

MAP M(I,J) = (11-I) * 1/2 + J-6;

where TAKE and MAP are declarators in the language, Since this code

1s for array accessing, 1t should not be inserted into the source

text and the computational macro form 1s most appropriate. As Cheatham

points out, computational macros have long been used by compiler writers

to produce accessing code for arrays. The paper includes several

examples of accessing functions, a subject that will reappear in the

discussion of Perlis and Galler paper 1n the next section. The

important point 1s that Cheatham has provided a procedural way of

. describing access functions while Perlis and Galler try to generate the

code from non-procedural descriptions.

6. ALGOL C (Galler and Perlis [Gall 671)

This 1s a very long, difficult and important paper by two of the

outstanding workers in the field of programming languages. Although

there are many significant aspects of the paper, we will discuss here

only those dealing with extendible compilers. Other topics will be

treated in Section III.B as significant first steps 1n new research areas.

The basic 1dea 1s, once again, to add macro-like facilities to a

high level language. For this purpose they define an extension of

ALGOL called ALGOL C which 1s meant to be well suited to extension.

Any extension of ALGOL C is called an ALGOL D and a program in any of Co

these can be mechanically reduced to an equivalent ALGOL C program.
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The extensions are accomplished through constructs rather like

Cheatham's SMACROS. Because they want to do the macro processing in

very sophisticated ways, Perlis and Galler allow redefinitions only in a

few fixed syntactic categories. The augmented language ALGOL C contains

many features for handling arrays as well as those more directly con-

cerned with extendibility. Among the latter are operators for con-

version between location and value:

(a) A unary operator with integer result:

loc of x

where x is a <procedure identifier> , <variable, or <array identifier>.

loc of x 1s essentially the address of the word(s) containing the

valuz of X.

(b) Two binary operators whose left operand 1s a <type> or 1s missing,

implying real, and whose right operand is an integer expression, rep-,

resenting the "address" of some <procedure , <variable> or <array>:

<type> xg of x

<type> pic of x .

These represent "value contents of" and "procedure identifier contents

of", respectively. Thus

real vc of (log of x) = x

1f x 1s a variable of <type> real.
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(c) The notions of location and value are extended to <procedure> Ss

with the help of an application operator @). The precise syntax

changes are bound up with the array conventions, but revised definitions

of <primary> and <function designator> should convey the intent.

<primary> ::= <unsigned number> | <varilable |

<function designator> | (<arithmetic

expression>) |

loc of <procedure identifier> |

<type> vc of <arithmetic expressior>

<function designator> ::= <procedure identifier> @ <actual

parameter part> |

(picof <arithmetic expression>) ®

<actual parameter part>

Thus, one 1s able to manipulate the names of procedures in much the

same way as address variables and could, for example, have procedure

arrays. These additions to ALGOL to form ALGOL C constitute only a

small part of the extra mechanism; most of it 1s embedded 1n the

various forms of ALGOL D.

All ALGOL D languages will have fairly much the same syntax. The

common syntax for all ALGOL D's 1s the same as ALGOL C except for the

replacement of <type> , <arithmetic expression>, <Boolean expression>

and <assignment statement> with a set of rules which enable the def-

inition of special forms for these syntactic types. The introduction

of new definitions occurs as a series of declarations at the beginning
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of a block. The detailed description of this process 1s quite com-

plicated and we will present only an overview followed by an example.

The basic intention 1s to allow the definition of new data types

and their associated operators. The problem of finding symbols for

these operators 1s solved by assuming a large alphabet of boldface

characters. By assuming an operator precedence grammar (cf. Section

II.Al), one can define the precedence of new operators in relation to

operators of known precedence as in MAD [Ar 66]. The remaining

problems with operators involve data types and will be deferred for

a few sentences.

New data types are defined in terms of ALGOL C or previously

defined types by a means statement. This may include formal para-

meters which, 1f present, play a crucial role in all further proc-

essing, e.g. matrix (u,v) means array [l:u, l:v].

One then combines operator and type information in a set of

context statements. A context statement describes, for an operator,

the data types of its operands and its result. It also contains a

<string> which 1s (eventually) reducible to the appropriate ALGOL C

text. The following example of [pseudo) LISP definitions should help

clarify these notions.

List Definition Set:

The following set of definitions is based on the LISP [McCar 62b]

primitives. The basic LISP predicates "atom" and "eq" are assumed to
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have been defined as Boolean procedures:

Boolean procedure atom(x); list x;

atom := cdr x = 0;

Boolean procedure eq(x,y); list x,y;

eq := car Xx = car y A atom(x) A atom(y);

'NIL' in LISP 1s represented here by 0. The following definitions are

used to organize lists as structures of names.

(1) list means integer array [1:2];

(2) cons = *

(3) car © cons;

(4) cdr = car;

(5) of< cons;

(6) list a cons list b =_list 'list(a,b)';

(7) car list a = list 'a[l]';

(8) cdr list a = list 'a[2]';

(9) loc oflist a = integer;

(10) integer a := list b = integer 'a :=_loc of b';

Statement (1) defines the new data type list as a two-element integer

array. Statements (2) through (5) state the relative precedence of the

four LISP operators. Statements (6) through (9) define expressions;

e.g. (7) defines the car of a list 'a' to be the first element of the

modeling array. Statement (10) defines the assignment statement for

assigning a list to an integer variable.
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(11) op(F) f of list x = list 'E(1ist (loc of F,0),x)';

(12) op(F) £ of op(G) g =

list 'list (loc of list (lec of F,0), loc of G)';

(13) listy of op(F) £ = list 'list_(y, loc of F)';

(14) listy of list x = list 'E(y,x)';

Context definitions (11) through (14) provide an efficient rule for

sequencing through a composition of operations on lists, each one of

which operates only on atoms to produce atoms or even lists. The pro-

cedure E 1s organized so that as each atom of data 1s encountered the

remaining operators in the composition are applied to 1t. Thus the

lists are not totally decomposed and composed for each successive

operator. In a <declaratior> such as op (H) h, the <actual parameter>

H represents the <procedure to be used to apply h to a list. The

lists are assumed to be nonrecursive, in the sense that no list is a

sublist of itself.

The block containing these list definitions must also contain the

procedure E:

list procedure E(f,x); list f,x;

E := 1f atom(x) then (if atom(f) then (list pic of car f) (x)

else E(carf, (list pic of cdr f))) else B(f, carx) cons

E(f,cdr x);
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An example of a LISP program 1s:

begin op(F)f; op(G)g; integer c; list a, b, d, h, k;

integer procedure subst (x, y, z); listx, y, z;

subst:= if atom(z) then (if eq(z,y) then x else z) else

subst(x,y, carz) cons subst (x,y, cdr z);

list procedure F(x); listx; F := subst(a,k, x);

list procedure G(x); listx; G := subst(d, h, x);

c := (f of g) of b end;

The example above does justice neither to LISPna to the Galler-

Perlis system. The full design of their system has ALGOL C defined by

—~ a similar definition set 1n the outermost block. In each subsequent

block the translator builds a type table and a context table using the

local definition set. The actual processing of local ALGOL D text 1s

quite involved. This arises from the facts that contexts are recursive

and that ALGOL C text can be interspersed with locally defined text.

The discussion in the paper 1s further complicated by a desire to

optimize the computation in addition to producing ALGOL C code.

We have deliberately, 1f not successfully, distorted the intent

of Galler and Perlis' paper. They were also concerned with arrays, and

more particularly with saving space 1n matrix calculations. It would

have been preferable on all sides for them to have made the separation

of issues themselves. As we have mentioned, the paper contains import-

ant discussions of subjects other than extendible compilers. Its

contribution to our topic 1s more theoretical than practical. They

€6



have shown that very sophisticated macro-processing 1s possible and

can lead to substantive changes in an algebraic language. One would

guess, however, that inefficiency at translation time and sensitivity

to programming errors would seriously restrict its practicality.

There is, 1n addition, a general question of how often one would want

to change a high-level language; this will be taken up again in

Section III.C.

References for II.C.

Benn 6ha, 64b, Brook 60b, Che 64a,66, Fer 66, Gal 67,

GraM 65, McIl 60, Mea 63%, Moo 65, Str 65
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IT.D; Compiler-Compilers

The distinguishing characteristic of this set of TWS 1s the

attempt to automate many of the post-syntactic aspects of translator

writing. Such systems might better be called compiler-writing-systems

because they include significant programs which are resident at trans-

lation and execution time, as well as meta-language processors. The

programs 1n this section are much more complex than most of those dis-

cussed previously; none has ever been implemented by someone not in

contact with a previous effort of the same type. The following excerpt

from a paper on FSL outlines basic philosophy and should serve as an

adequate introduction to our discussion of compiler-compilers. The

other compiler-compiler projects discussed in this section have similar

philosophies; we will point out the differences in the appropriate

sections.

When a compiler for some language, L, 1s required, the following

steps are taken. First the formal syntax of L, expressed in a syntactic

meta-language, 1s fed into the syntax loader. This program builds

tables which will control the recognition and parsing of programs in

the language L. Then the semantics of L, written in a semantic meta-

language, 1s fed into the Semantic Loader. This program builds another

table, this one containing a description of the meaning of statements

in L. Finally, everything to the left of the double line in Figure 1

1s discarded, leaving a compiler for L.
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Fig. 10,A compiler-compiler

The resulting compiler 1s a table-driven translator based on a

recognizer using a single pushdown stack. Each element in this stack

consists of two machine words -- one for a syntactic construct and the

other holding the semantics of that construct. then a particular con-

struct 1s recognized, its semantic word and the semantic table deter-

mine what actions the translator will take. The BRasic Compiler

includes input-output, code generation routines and other facilities

used by all translators.

1. FSL and its descendents (Feldman [Feld 66])

The problem faced in the original FSL effort was the development

of a language for describing the post-syntactic (semantic) processing.

An adequate semantic meta-language should permit the description of

the source language to be as natural as possible. Tt should be

readable so that other people can understand the meaning of the source



language being defined. It should allow a description which is

sufficiently precise and complete to enable efficient automatic

compilation. Finally, the meta-language should not depend on the

characteristics of a particular computer.

Since there are satisfactory ways of representing syntax, the

formalization of semantics should make possible a complete formal

description of computer languages. With a complete formal description

avallable, one could organize a compiler as shown in Figure 10.

The syntax meta-language used in FSL 1s very close to the Floyd

[Flo 61] and Evans [EvA 64] production language and is discussed in

Section II.A5. A statement in this syntax language may include a

command "EXEC n" which is a call on the semantic statement labeled

-.n. The only other interaction between syntax and semantics 1s the

pairing of syntactic and semantic descriptions 1n the pushdown stack.

This clean division of syntax and semantics has some advantages, but

has proved to be a great handicap in implementing certain languages.

The semantic meta-language, called the Formal Semantic Language

(whence FSL), was the main focus of effort and will be discussed in

some detail here. The overriding consideration in FSL was machine

independence as opposed to object code optimization in the TRANGEN

effort discussed below. The plan was to have the meta-language be

machine independent, with the machine dependent aspects of translation

handled by a large set of primitives imbedded in the basic compiler.

Statements in the meta-language would be compiled into machine code

made up largely of calls on primitive routines. Some examples should

serve to 1llustrate this approach.
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Suppose the syntax phase 1s processing a REAL declaration and

| calls semantic routine 1 with the identifier being declared in the
second position of the stack (LEFT2).

l: TO « STORLOC; SET[TO,DOUBLE];

ENTER [SYMB; LEFTZ, TO, REAL, LEV];

STORLOC « STORLOC+2

'The current value of STORLOC (the storage pointer) 1s placed in a

temporary and tagged with bits marking it a double-precision operand.

Then a description of the variable is placed in the symbol table, SYMB.

The entries for the variable are its name, the tagged address, the

word REAL, and the current level. Finally, STORLOC 1s increased by

two, allocating two cells to the double-precision variable.

When an identifier 1s scanned 1n an arithmetic statement,

semantic routine 2 1s called.

2: IF CONST[LEFT1l] THEN RIGHT1 « LEFT1

ELSE IF SYMB[LEFT1,,$,] = REAL

THEN RIGHT1 « SYMB[LEFT1,$,,]

ELSE FAULT-

In semantic routine 2, the predicate CONST 1s applied to the

identifier (in LEFT1) to test if it is a constant. If so, the stack

1s adjusted and the routine terminates. If not, the identifier is a

variable and must be looked up in the symbol table. The table-lookup

1s accomplished in FSL through a special table operand of the form
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SYMB[ LEFT1,,$,] .

This operand initiates a search of the table SYMB for an entry in the

first row which equals the contents of LEFT1l. Then the position of

the $ is used to select the desired entry of the matched row.

In routine 2 the third entry (data type) of the matched row 1s

selected and compared with the string construct REAL. If they are

the same, the variable was declared to be REAL and all is well. In

this case the second entry (tagged address) of the matched row in

SYMB 1s assigned as the semantics of the real variable. If the

variable 1s not of type REAL or 1s not in the table at all, the state-

ment FAULT 1 will be executed. This causes the printing of an error

message on the listing of the source language program being compiled.

Finally, suppose the syntax has recognized an addition which 1s

to be compiled and calls semantic routine 3.

3. CODE (VALUE2 « LEFT4 + LEFT2);

The code brackets 'CODE('and ')' specify that the statement

within them 1s to be compiled into object code, rather than executed

during translation. This statement will produce a call on a code

generating routine which uses the semantic descriptions in the second

and fourth positions of the stack to compile an addition code-sequence.

The result of an addition 1s itself an expression and the syntax 1is

presumed to have put its symbol (E) into the second position of the

stack. The assignment to VALUEZ will associate the semantics of the



result (e.g. DOUBLE, in accumulator) with the syntactic symbol. The

FSL system allows almost all constructs to appear inside code brackets

(to be done at execution time) or outside code brackets (to be done

during translation).

The semantic meta-language, FSL, allows a compiler writer to

declare and use a variety of data structures in building a translator.

Besides the tables mentioned in the examples, there are stacks, masks,

strings, and conventional cells. The language also includes other

features such as chaining, addressing levels, and output statements

which facilitate compiler writing. The Formula Algol compiler was

largely written in FSL and the description [It 66]of that implemen-

tation provides a good study of the strengths and weaknesses of FSL.

The weaknesses of FSL can be characterized as the lack of sev-

eral conveniences and a number of basic structural defects. The lack

of conveniences such as index variables, assembly language embedding

and debugging aids are due to its development as a thesis (hit and

run) project and have been remedied in later systems. The structural

defects result mainly from the attempt to preserve machine independence.

An FSL system 1s useful to the extent that the compiler-writer's

needs are met by the facilities of the semantic meta-language. This,

in turn, 1s possible only 1f there are suitable formalizations of the

pertinent concepts. Thus all the research problems listed in

Section III.C (e.g. data structures, paging, parallelism) are

problems in any FSL system. Neither of the systems now running have

good facilities for global code optimization or multipass compilers,
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but these problems are being attacked by Gries [Grie67b] at Stanford

and the CABAL group [Fie 67] at Carnegie. There are, however, limits

to the level of code optimization which can be achieved in a machine-

independent way. There is a sense in which any FSL system is predes-

tined to failure; techniques will always be used before they are

sufficiently well understood to be formalized. Such a system can still

be very helpful and the search for meta-language representations should

lead to careful study of new techniques.

The only other FSL-like system completed to date is VITAL [Mond 67]

at the Lincoln Laboratory. VITAL runs 1n a time-sharing environment

and differs from FSL mainly in system features. These, along with a

number of notational improvements, make VITAL much easier to use, but

are of little theoretical interest. As an illustration we present the

routines described above as they would appear in VITAL.

1: ENTER[SYMB; LEFT2, (STORLOC|DOUBLE), REAL, LEVI;

TALLY[ STORLOC, 2]

2: IFNOT LEFT1 IS CONSTANT THEN

IF SYMB[LEFT1, TYPE] = REAL THEN

RIGHT] « SYMB[LEFT1, SEMANTICS]

ELSE FAULT 1 :

3: RIGHT2 « CODE(LEFT4 + LEFT2)

There are also several substantive changes from FSL, including a con-

ditional 1n the syntax language which depends on semantic information.

The combined features of persistent storage and compile-time execution
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facilitates the writing of incremental compilers, VITAL also allows the

compiler-writer direct access to the accumulator marker and semantic

words 1f he so chooses.

The FSL systems have undoubtedly been handicapped by being imple-

mented on uncommon machines, the G-20 and the TX-2. To compensate for

this there are now three separate implementations for the IBM 360 series

in progress. The CABAL group at Carnegie [Fie 67]is designing a system

for multipass compilers using a semantic language which 1s a minimal

extension of ALGOL in the direction of FSL. The work under Gries at

Stanford [Grie67b] will also be multipass-oriented, but will use a

special purpose semantic language. The Lincoln Laboratory effort under

J. Curry will probably be quite similar to VITAL. All of these projects

may be considered attempts to combine the virtues of FSL with those of

TGS, bur next subject.

2. TGS (Cheatham et al. [Plas 66, Che 65])

One of the most productive groups in TWS research has been the

small consulting company, Massachusetts Computer Associates (COMPASS).

Although their TWS have undergone many changes, the basic world-view

and goals of their effort have remained rather constant. The COMPASS

work has been marked by careful attention to systems questions and to

object-code optimization. Other aspects of their effort are discussed

in Section II.C5 which deals with an extendible compiler scheme within

IGS

The first attack on the TWS problem at COMPASS was called CGS

[War ©4] and was quite different from their current work. Although
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they have abandoned this approach, we will discuss it briefly here

because 1t seems to be rediscovered periodically. The CGS system was

based on a top-down recognizer which produced a syntax tree to be used

in further analysis. The input to this phase was essentially BNF. The

second phase was the generation of intermediate code using a tree-matching

language called GSL. The actual code selection process was written in a

third language, MDL. This effort was abandoned because trees were

found to be slow to build and difficult to do pattern recognition upon,

The TGS systems differ from CGS, as well as the other systems

described in this section, in the use of a single language for describing

all phases of the compiler. This language, TRANDIR, is compiled into

an interpretive code which 1s processed by the TRANGEN interpreter. If

one combines the syntax and semantic loaders of Fig. 10, the FSL model

applies quite well to TGS. In fact, there has been good communications

between these two efforts and they have converged to a marked degree.

The communication has not, however, been perfect; two concurrent

implementations of TGS and FSL took place within a few hundred yards of

each other without making contact.

The TRANDIR language contains a pattern-matching subset which 1s

essentially the same as the syntax language used in FSL (cf. Section

IT.A5). The TGS version is more flexible in that it can be used on a

variety of stacks and can match on properties other than identity of

symbols. The pattern matching features can be used in various code

optimization techniques as well as 1n syntax analysis.

The remaining features in TRANDIR language are quite similar to

the semantic language in FSL. There is a "symbol description" (SD)
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connected with each syntactic construct which 1s the analog of the

"semantic word" in FSL. There are fairly elaborate facilities for

declaring tables, stacks, masks, etc. for use by the translator. These

various storage methods with the associated operators provide a very

flexible means of recording and accessing the information needed for

compiling efficient code. The FSL notion of code brackets is replaced

in TGS by a series of symbol manipulation primitives to help the

compller writer produce output code. The operation of a TGS compiler

can be best described by working through an example fairly completely.

The example will be taken from a compiler for a miniature algebraic

language L described in [Plas 66}. The basic compilation technique

chosen 1s to use a tabular intermediate code as 1s common in COMPASS

compilers [Che 66]. A typical intermediate code translation of

Z «X *Y

would be

¢ TIMES X Y
() STORE Zi 0

The intermediate code will be processed by a code selection phase

which will produce the final output for later assembly.

Consider first the TGS statement:

...VAR AE // EMIT(STORE,COMP(1),COMP(0));

EXCISE; TRY (ENDST).
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The left part (up to the //) of this statement is a pattern of

type <variable> <expression> which 1s compared with main stack

(SYMLIST). If a match 1s attained the remainder (action part) of the

statement 1s executed. The action EMIT produces a STORE intermediate

instruction with the operands being the first and zeroth elements of

the stack as matched. Since there 1s no resulting semantic descrip-

tion (SD), the action EXCISE 1s used to erase the two matched elements

from'the stack. Finally, the action TRY(ENDST) directs TRANGEN to try

to match the pattern labelled ENDST.

A somewhat more complicated routine would be used for recognizing

a multiplication:

...VAL $* VAL // PHRASE(SYMRES(TIMES,COMP(2),COMP(0)));

AESET: SYNTYP (COMP(0)) = AE; TRY (AE1)

When one understands that "$*" denotes the terminal symbol "*",

the left part of this statement should be clear. The action SYMRES is

a call on a routine which performs an EMIT of the same parameters and

also returns an SD as its value. This SD becomes a parameter to

PHRASE which uses 1t to replace the matched portion of the stack. The

action labelled AESET causes the syntactic type of the new top element

to be assigned the value "AE". Finally, the statement TRY (AEl) leads

to further expression processing.

These two TGS statements, if appearing 1n reverse order, would

compile "Z « X * Y" into intermediate language. In the real world,

typical statements would involve table operations, string commands,
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conditionals and other more complicated TRANDIR constructs. There are

also fairly sophisticated <procedure> features which improve the

readability as well as the writability, of translators.

In any event, the intermediate code will itself be processed by

another set of TRANGEN routines called the code selectors. These are

written in the same form as the syntax routines considered above.

For example:

// TIMES INMEM INMEM...

LOADMQ (XM+1) .

This statement has a pattern involving a predicate INMEM (meaning in

memory) on stack entries rather than symbols to match. (The delimiters

"//" and" . .." indicate that the pattern is to be matched against the

intermediate code portion of the stack). The subroutine LOADMQ 1s

called with a pointer to the second stack operand as parameter. This

user-written routine will assemble a LOAD MQ command 1f necessary and

will adjust the SD in the stack to reflect the fact that one operand is

now in the MQ register. A similar routine will be used to compile the

appropriate multiply sequence. The result will be in the accumulator

and TRANGEN will eventually match the statement:

// STORE *%  *INAC . . .

IF SIGN(SYMBOL(ACHOLDS) )THEN

C5: EMIT (CHS);

C4. EMIT (STO, ARG(1l));

C5: LINE (TEMPS) = 0;

ACHOLDS = 0; MQHOLDS = 0; TO (STEP)
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The pattern here contains a "*¥*" which is always matched and a *

meaning indirect reference. If the operand in the accumulator, which

1s described by ACHOLDS 1s negative a "complement" (CHS) instruction

must be emitted. The store command is emitted in any case without any

tests on the variable to be replaced. The succeeding actions effect

the state of the translator, reclaiming the temporaries and freeing the

AC and MQ registers. Finally there is a transfer to the action STEP

which sequences through the intermediate code.

The TGS system has been implemented on several computers and has

been used in the construction of a variety of compilers. The compiler

writers have been professionals and have not been constrained to stay

within the formal system. The use of TGS has been sufficiently

valuable to COMPASS that they continue to use it on commercial com-

plilers. The main differences between TGS and FSL accurately reflect

the difference in design goals: TGS allows more flexibility by

requiring more detailed information from the compiler-writer. The

efforts of Gries [Grie 67b] at Stanford and Fierst [Fie 66] at Carnegie

are attempts to have the best of both by allowing simple code state-

ments as well as multi-phase- processing. Both VITAL [Mond 67] and

the most recent TGS [Plas66] are interactive and have sophisticated

trace, edit, and debug features.

3, CC (Brooker, Morris, et al. [Brook 671)

The CC (Compiler-Compiler) project at Manchester University 1s

the oldest and one of the most isolated TWS efforts. Rosen [Ros 6ha]
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has attempted to play Marco Polo to this imperial court, but trade has

been slow. The CC system has been running for some time and has been

used to implement several algebraic languages [Cou 66, Kerr 67].

The CC effort has concentrated on problems of semantics; the

syntax analysis 1s top-down with memory and one symbol look-ahead

(cf. Section IIA). The result of syntax analysis is a complete syntax

tree which 1s used by the semantic phase. This is, of course, a slow

process and there are informal provisions for other techniques. We

will follow the formal treatment here, taking some liberties with

their notation.

The input to the syntax phase is like BNF except for the optional

use of a repeat operator (¥) to replace simple recursions. The notion

of non-terminal symbol 1s divided into PHRASE and FORMAT. The FORMAT

non-terminals may be introduced in macro-fashion and each has an

associated (semantic) ROUTINE. The FORMAT symbols are further qual-

ified as [SS], [AS], [BS] meaning respectively source statement, aux-

i1liary statement, and pre-coded basic statement. For example, a source

language assignment statement might be defined as:.

FORMAT [SS] = <varilable « <expressiom .

Among the useful auxiliary statements would be:

FORMAT [AS] = LOAD <preceeding + <term>

FORMAT [AS] = ACC «ACC <> <term>
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Each of these would have an associated routine, whose first line

contains 1ts calling syntax rule (FORMAT). The routine for the

assignment statement might be:

1) ROUTINE[SS] = <variable « <expression>

2) LET <expressior> = <preceeding + <term> <terms>

3) LOAD <preceeding + <tern>

. 4) L2: GOTO L1 UNLESS <terms> = <tern> <terms>

5) ACC « ACC <> <term>

6) GOTO L2

7) Ll: STORE ACC IN <variasble>

8) END

In order to understand this routine we need two PHRASE

definitions:

PHRASE <expression> = <preceeding > <term> <term>

PHRASE <terms> = <> <term> <terms> <empty>

Notice that the unusual form of recursive definition facilitates

sequential code generation. °

Line: 1) 1s the header containing the syntactic construct (FORMAT)

associated with this routine. Line 2) 1s a substitution statement and

1s not an important consideration here. The rest of the statement is

a loop for compiling a string of 'add' and 'subtract' commands and

then storing the result. The statement on line 3) is a call on another

ROUTINE[AS], this one forming as many successive products and quotients
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as possible. Other statement forms such as GOTO and STORE are pre-

sumably pre-coded and thus of form ROUTINE[BS]. Notice that state-

ments like that on line 9) imply "using up" syntactic constructs as

they are processed.

The built-in part of CC contains, besides [BS] routines, a fairly

complete resident system (PERM). There is also a facility for deleting

many routines at the completion of the compiler building (PRIMARY)

phase. If these routines are left in, the compiler 1s an extendible

one in the sense of Section II.C. In fact, the earlier CC systems

would be better described as extendible compilers altogether.

In the earlier versions of CC, the formats and format routines

for a language were kept in an encoded form and interpreted by the

compiler. The actual mechanism was a tree matching and substitution

process somewhat similar to that of Galler and Perlis (cf. Section

III1.C6). The detailed procedure is quite complicated and is described

rather completely in Rosen [Ros 6ha]. The current CC system is

interesting in that viable extensions to a language can often be

"compiled into" the translator with considerable savings in time and

space. There are still some routines which must be interpreted and

the ratio of the two types for a given extension 1s not easy to

determine.

The CC group has recently produced a number of reports on the

uses and performance of their system. These include the first attempt

ever to compare a TWS with handwritten compilers [Brook 67]. Brooker

was able to (in a year) reduce the space required by a factor of two
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and the time by about five by hand coding an Atlas Autocoder compiler.

The results are hard to interpret without more information; the formal

CC system uses techniques which are intrinsically time and space

consuming. One hopes that this attempt will induce the CC group,

as well as others, to make more careful studies. There are also

two adaptations of CC technique underway in England. The first

involves imbedding much of the CC system in the ALGOL-like language

ATLAS AUTOCODER [Br 67a]. The other effort is an ambitious attempt

to generalize CC to a source and object code independent system

[Cou 67].
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III. Related Topics and Conclusions

IIT.A. Other Uses of Syntax-Directed Techniques

Very early in the TWS development, it was observed that syntax-

directed techniques could be used in a wide variety of problems. A

syntax-directed approach can be considered whenever the form of the

input to a program contains a significant part of the content.

Individual applications of syntax-directed techniques tend not to get

written up. The applications presented here are based largely on

personal knowledge and, though perhaps representative, are certainly

not comprehensive.

The TWS systems described in Section II vary widely in the ease

with which they are put to other uses. The syntax-directed symbol

processors are the most flexible and seem to be the most widely

applied. One such system, AED [Ross 66], was designed from the out-

set to be a general purpose processor. Because of certain peculiarities

of attitude and terminology, the AED project has had little effect on

other TWS efforts.

The syntax phase of AED 1s based on a precedence technique similar

to those described 1n Section II.A. By incorporating type checking and

the ability to add hand-coded syntax routines, the AED parser becomes

more powerful at the cost of violating the underlying theory. It is,

however, the intermediate representation of AED statements that is

most interesting. This is based on the use of plexes, which are data

structures whose elements each can have many links. The construction

and processing of the "modelling plex" are accomplished with a set

of macro routines. These might include routines for code generation,
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computer graphics or programmed-tool commands. Reference [Ross 63]

1s a good introduction to the AED system with detailed examples of its

use 1n several problem areas.

The essential features in the AED system are the precedence matrix

in syntax and the plex manipulations 1n semantics. A somewhat different

approach to the syntax-directed universe can be developed from the

general compiller-compiler model discussed in Section II.D. In this

scheme, the entire semantic mechanism, including the choice of data

structures, can be different for each application area. In the VITAL

[Mond 67] effort, two basically different data structure languages

(both written in VITAL) are being compared 1n a syntax-directed graphics

package [Rob 66].

Most of the other applications of TWS systems have been in

symbol manipulation tasks of one sort or another. Some of the first

applications [Schor 65] were in symbolic mathematics. A TWS would be

used to help model the structure of an expression, perhaps for

simplification or differentiation. The use of TWS (esp. COGENT, META)

in symbolic mathematics 1s currently widespread and has given rise to

systems [Cla66] constructed specifically for that purpose. There

have also been a few pure mathematicians (e.g. [Gro 66]) who have

found the syntax-directed model useful.

The most widespread and least surprising application of TWS 1s

in problems of format conversions. These arise in connection with

large data files and in translating between closely related source-

language to source-language translators. Once again, the syntax-

86

parr ee



directed symbol processors of Section II.B have been used the most

often. These systems have also been of some use in such varied

tasks as: logic design, translating geometric descriptions, and

simulation.

There are also a number of applications of TWS techniques to

produce command sequences for special purpose devices. For example,

a fairly sophisticated TWS [Cas 66] was used in translating commands

for various components of a satellite tracking system.

In addition to their direct application in many fields, the TWS

have inspired work in several others. One active area has been the

syntactic-description of pictures. There ara:a numberof:published

papers (e.g. [Nar 66]) and a great deal of current work which has not

yet seen print. The pattern matching features incorporated in the

new list-processing languages [Ab 66, It 66]Yare partially inspired

by TWS.

Computational linguistics, 1n both its theoretical and practical

aspects, 1s closely related to TWS studies. The applications here,

though fewer than one would suspect, have been significant. The

syntactic theories of computational linguistics and TWS both are

based on the early work of Chomsky [Chom 63] and share many ideas.

The implementations of English syntax (esp. [Kun 62]) developed con-

currently with top-down TWS, but the natural language efforts have

been slow to incorporate the efficiency improvements developed in TWS

work. In applied semantics, the DEACON project [Th 66], whose approach

was quite novel to linguists, can be looked upon as a straight-forward
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application of TWS techniques (cf. [Nap 67]). One can expect to see

more 1nteraction between these research areas as linguists attempt to

test semantic theories and TWS workers attempt to cope with non-

procedural languages.

The last, but by no means the least, of the applications

considered here is to teaching. Several of the TWS systems described

above have been used as the basis for courses on translator-writing.

These have ranged from undergraduate courses to faculty seminars

and have been well regarded. Although they can be taught without

machine problems, these courses are much more successful when the

students have easy access to the TWS under discussion. This approach

to teaching was sufficiently appealing to cause D. Knuth at Cal Tech

"to implement a version of TMG (called TROL) largely for that purpose.
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IIT.B. Related Mathematical Studies

Computer science owes much to mathematics and 1s beginning to pay

off that debt. Both the syntax and semantics of programming languages

have inspired formal treatments. In this section we will briefly dis-

cuss the developments most relevant to TWS and provide an entree to the

literature on the formal aspects of programming languages.

ITI.Bylh. Syntax

We will discuss briefly some theoretically interesting left-right

recognizers and their construction algorithms. Of course, given a

grammarG and a string Xx, there is a relatively simple method for test-

ing whether x belongs to Lge One can generate all strings belonging to

Lo of length equal to length (x) and see whether x has been generated.

This 1s not very practical. In contrast to those in II.A., these have

not yet been used to write compilers, due to their complexity. The

construction algorithms are interesting because they give sufficient

conditions for the unambiguity of a grammar, besides mechanically pro-

ducing the efficient left-right recognizer. By efficient we mean that

no backup 1s necessary - the recognizer can always detect the handle.

a) (1,1) Grammars - Eickel et al. [Ei 6B]

By inserting intermediate productions (cf. Section II.A4), the

constructor changes the grammar to one consisting of production of

length one or two - U—»8 or U — 545

When looking for a handle at the top of the stack, the two top

stack symbols and the incoming terminal symbol must uniquely determine



the step to be taken. Thus, for each triple (8,,8,,T) one and only
one of the following conditions must hold:

1) S15, 1s a handle and onereduction U ::= 51%, may be executed.

2) 5, 1s a handle and onereduction U ::= So may be executed.

3) T must be pushed into the stack.

4) S.8,T may not appear as a substring of a sentential form (error).

The algorithm for producing the triples and the corresponding action 1s

given in [Ei 63}, along with examples. This algorithm and the recog-

nizers produced have been programmed and tested, but not used to write

compilers.

b) Bounded Context Grammars

A grammar 1s called an (m,n) bounded context grammar if and only

1f the handle 1s always uniquely determined by the m symbols to its

left and n symbols to 1ts right. A left-right recognizermay thus

find the unique canonical parse of a sentence of an (m,n) bounded

context grammar by considering at each step at most m symbols to the

left (into the stack) and n terminal symbols to the right of a possible

handle. The first four types' of grammars discussed in Section II are

(1,1) bounded context grammar, as are all grammars accepted by the

Eickel-Paul-Bauer-Samelson constructor [Ei 63].

Recognizers for (m,n) bounded context grammars for m> 1, n > 1

are likely to make unreasonable demands on computer time and storage

space. Therefore (m,n) bounded context grammars have not been used

so far in compilers. There have been three major papers on bounded
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context analysis. Each of them defines "context bounded" slightly

| differently. The idea behind all of them, though, 1s the same, and
we will not discuss the differences here.

| The paper by Floyd on Bounded Context [Flo 64a] and the paper by
Irons on Structural Connections [Ir 64] should be read by any person

interested 1n delving further into the mysteries of bounded context.

However neither gives an algorithm for actually generating the recog-

nizer . Eickel's aim [Ei 64] is to describe the recognizer and its

construction in detail (and 1s therefore less readable than the other

two). The recognizer uses the usual stack, and a pointer p to the tail

symbol of a possible handle. As in [Ei 63] the grammar is restricted

to productions of length 1 or 2 (this is not a restriction On the

language). The generator produces >-tuples

(x38 3¥,k,U)

where x,y are strings with length (x) < m and length (y) <n, S is a

symbol, U a non-terminal, and k a number. Suppose the stack contains

55 the symbol at the reduction position, 1s then tail of a possible

handle. The 5-tuples are searched until one is found such that S = Sp?

Xx 1s a tail of S s 851 and y 1s a head of Sparc 05 The step to be
taken depends on the corresponding k and U as follows:
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k action

0 stop - syntax error

1 replace handle S by U (make a reduction U = 8)
2 replace handle SS by U (make a reduction U = S_ _S );

P-1P p-1'p

P +-P-1

3 1f p = 1 then push next symbol onto stack else p «ptl

4 push next symbol onto stack (more context needed on the right).

Eickel has programmed and tested both the constructor and recog-

nizer, but no compiler has been written using this technique. The

- constructor starts by limiting the length of x and y to 1 and producing

all possible 5-tuples. If two (or more) 5-tuples exist with the same

x,y and S but different 1 (or the same 1 but different U), then the

grammar is not (1,1) bounded context. For such 5-tuples, the lengths

of x and y are alternately (or in some other predetermined order)

increased, thus adding more context, until the conflict 1s resolved

Or some maximum m,n are reached.

Wirth and Weber [Wir 66c] extended the idea of precedences (see

Section II.A2) to strings. Thus we have x@®y , xy and x(>) y where

length (x) < m and length (y) < n. A (m,n) precedence grammar 1s of

course also (m,n) bounded context according to our definition. A

precedence grammar accordingto Section II.A2 is a (1,1) precedence

grammar.
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c) Deterministic Push-Down Automata (DPDA). Ginsburg and Greibach

[Gin 66D]

A DPDA 1s a formalization of the concept of a left-right recognizer

working with a stack and using the usual notation of automata theory -

| one has a set K of "states" containing a start state k, a set of inputs

A(terminal symbols), a set [7 (corresponding to our nonterminal

symbols) containing a start symbol TU, and a mapping 5;

’ : (states x (nonterminal symbols) X (input symbols)) =

(states Xx (strings of nonterminal symbols))

or

| § + (XK x IM x (@ul€)) ) » (K x 0 *)
This mapping § must be a function (single valued). Other restrictions

are also placed on it to take care of the empty symbol € which may

appear anywhere in the input. At each step we have a triple

k coe “on

state stack rest of input

(where i> 1), the initial triple-being (k,T, T...T). At each step,

with the help of the mapping (k,0;,T) = (k505 0 Un) where n > 0,
the triple gets changed to

LL ur, TL oo. WT

A string (of inputs) 1s accepted 1f the final state k 1s a member of

a set of final states F.
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A language (a set of strings of input symbols derivable from some

grammar) 1s deterministic 1f 1t 1s accepted by some DPDA. Ginsburg

and Greibach prove some interesting properties of DPDAs and determin-

istic languages. Note that a deterministic language is defined by a

DPDA - and not by certain properties of the grammar defining the

language. What 1s significant for us here 1s the relation to LR(k)

languages of Knuth (below).

d) IR(k) Grammar (Knuth [ Knué5])

A grammar is IR(k) if and only if a handle is always uniquely

determined by the string to 1ts left and the k terminal symbols to its

right. The corresponding language is an IR(k) language. Thus, when

- parsing a sentence using a stack, the left-right recognizer may look

at the complete stack (and not just a fixed number of symbols in 1t)

and the following k terminal symbols of the sentence. This is the

most general type of grammar for which there exists an efficient left-

to-right recognizer that can be mechanically produced from the grammar.

In fact, a grammar accepted by any of the other constructors discussed

is LR(1). Thus, the IR(k) condition is the most powerful general test

for unambiguity that 1s now available.

Knuth gives two algorithms for deciding whether a grammar 1s

IR(k) or not, for a given k. The second algorithm also constructs

the recognizer - if the grammar is IR(k) - essentially in the form of

a DPDA (above). Knuth shows that for each LR(k) language L there

exists a DPDA which accepts L. Moreover, for each language L accepted

by a DPDA there 1s an LR(l) grammar which defines L. Thus, any LR(k)

Wi
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language is also IR(1). Earley [Ear 67] has written a constructor for

an IR(k) grammar, whose output is in the form of productions, similar

to but more complicated than the Floyd-Evans productions.

e) Recursive functions of regular expressions (Tixier [Tix 671)

Many compilers break the syntax analysis into small parts. Thus,

one subroutine will recognize <expressions> while another will handle

<declarations>. A saving of space arises because the character set

involved in each subroutine 1s quite small. For instance, one might

have three 20 x 20 precedence matrices instead of one 60 x 60 matrix.

Tixier has formalized this concept quite nicely 1n his thesis.

One can consider a non-terminal symbol as a variable denoting the

set of terminal strings which are derivable from it. The productions

can then be transformed into sets of equations using the set operations

union (+), product and closure (¥). Thus the productions

<identifier> «<letter>

<ldentifier> «<identifier> <letter>

may be written equivalently as

<identifier9 = <letter>+ <identifier> <letter>

or

<identifier> = <letter3 <letter>*

Tixier has rewritten the 120 productions for Euler [Wir 67c] as 7

functions of 7 variables, 3 of which we give here (the symbols "(",
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")'" are meta-symbols used to bracket set expressions):

program = Jlblock1

block = begin((new id + label id);)"(1:) expr (;(i:) expr) end
expr = (out + if expr then expr else + 1 ([expr]+.)* aN

(goto primary + block + catena)

The point 1s that one can now mechanically construct a finite

state automaton,which is very efficient, to accept each of the above

expressions. One can then connect these automata by a pushdown stack,

so that they may (recursively) call each other. Thus, when the finite

state automaton for "program" (see above) decides that a "block" must

be recognized, it places in the stack a return point to itself and

calls the "block" automata.

Tixier has formalized this in his thesis and shows how to construct

an efficient restricted DPDA for a certain class of grammars, called

RCF, These languages are thus IR(1).
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The diagram below presents an inclusion tree for the classes of

grammars accepted by the particular constructors discussed in this

section and 1n Section II.A.

deterministic (IR(n))

RCF (m,n) bounded Product ion

context language

(1,1) grammar

(a (b)

Extended transition matrix

precedence

Cc

) (c)

precedence operator precedence

(a) Although (1,1) grammars and extended precedence grammars both use

triples, the advantage for (1,1) grammars arises from the automatic

intermediate reductions performed, which essentially allows more context.

(b) Transition matrix grammars fall somewhere between (1,1) and (0,1)

bounded context.

(c) We are making the assumption here that the operator precedence

conditions have been augmented to include conditions for a unique

canonical parse (cf. Section II.Al). Otherwise inclusion does not hold.

The advantage of the matrix technique over operator precedence 1s, as 1n

(a), the use of automatic intermediate reductions.
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References for III.B.Il,

Introduction to the theory of formal languages

Bar 64, Gins 66a.

Pure or modified top-down algorithms

Barn 62, Br 62a, Che 6ic, GraR 64, Ing 66, Ir 63a, Kun 62, Kir 66,

Rey 65, Scho 65, War 6k.

Construction of efficient recognizers - sufficient conditions for

unambiguity

Ea 65, Ea 67, Ei 63, Ei 64, Flo 63, Flo 6b, Gins 66b, Grie 67a, Ir Oh,

Knu 65, McKee 66, Paul 62, Wir 66c, Tix 67.

Surveys, tutorials on recognizer techniques

Che 6ic, Flo 64b, GraM 64.

Ambiguity in context free languages

Can 62, Flo 62a, Flo 62b, Gor 63, Lang 64, Ross 64.

13 different ways to define languages

Gorn 61.
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IIT.B.2. Semantics

Any formal study of the semantics of programming languages

immediately confronts the problem of separating syntax from semantics.

Programming languages combine ideas from logic (where the problem 1s

solved) and natural language (where 1t 1s no longer taken seriously).

In most treatments of programming languages, syntax 1s taken to be

precisely these aspects of language describable in the syntactic meta-

language under discussion. This practice has the unpleasant effect of

changing the definition of syntax with each change in meta-language.

Computer scientists trained in logic (e.g. [Tix 67]) would like

us to adopt the definitions used there although this approach has not

proved effective for natural language and has immediate problems in

programming languages. For example, are the statements

x «Y / 0.0

Ll: GOTO L1

well-formed in ALGOL 60? Surely, an algorithm capable of handling data

types could detect these errors, and the question 1s now one of how far

to go. It 1s not obvious that one could produce a notion of syntax

which satisfied a logician's tastes and still left well-formedness a

decidable property.

The situation 1s further complicated by the fact that all major

languages contain statements unparseable by the formal syntax alone.

An example from AILGOL 60 is:
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X « IF B THEN C ELSE D > E

the structure of which depends on whether "C" is Boolean or arithmetic.

Thus, 1n practice, syntax-directed compilers must incorporate "semantic"

features 1n the syntax phase. One ingenious approach to the separation

question is the abstract syntax [McCar62a] of McCarthy. He is mainly

concerned with semantics and considers (analytic) syntax to be just the

set of predicates and functions necessary to extract pertinent infor-

mation from the form of a source string. This does not "solve" the

problem of defining syntax but does enable one to consider semantics

without facing the separation question.

As usual, formal studies of semantics have lagged behind work on

the syntax of programming languages. By far the best general work on

this subject is [Ste 66] where the discussions, even more than the

papers, provide an overview of formal semantics. The various formal-

izations that have been presented are all procedural; they are either

abstract machines or imperative formalisms such as the h-calculus

[Chu.51]. This is reasonable to expect, but greatly restricts the

choice of existing mathematical models.

Since the formalizations are procedural one might prefer the word

"effect" to "meaning" in the description of programming languages.

This 1s not the place to defend the notion of semantics as effect and

we will adopt it merely as a convenient way of looking at things. This

view does lead one to expect a program to have different effects depend-

ing on an "environment" and this will prove useful in our discussion.
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It might also lead one to suspect that the choice of semantic meta-

language will be influenced by the intended use of a formal description.

The existing efforts in formal semantics may be separated into

| those concerned with proofs about programs and those interested in

| elucidating the processing of programs by computers. Among the latter,
| one might include the semantic meta-languages described in Section II.D,
| although this is not de rigueur. There are, however, slightly abstracted

translation models (e.g. [Wir 66c]) which are considered acceptable.

| In any such model, a language can have very different effects depending

on whether its translator is an interpreter or a compiler. This seems

reasonable to programmers, but disturbs mathematical types who would 1
| prefer to see meaning reside 1n the algorithm rather than the program.

A related set of developments are the attempts to define all programming

| languages by reduction to a single high level | Ste66] or machine-

like [Brat 61, Ste 61] language. |
| The approaches to formalization described above are more closely |

| related to TWS, but are far too complex to be very useful in proofs.

For those who consider proofs to be the sole end of formalization (and

| would be reading this paper at all) the preceding paragraph will be

considered an anathema. An interesting halfway house 1s to be found in

the work of Van Wijngaarten and de Bakker [Bak 65, Wij 66]. They

| attempted to reduce the complexity of their model by using a universal

Turing machine. This machine had only a few rules, which would inter-

| pret additional rules, eventually forming a translator which would

recursively translate e.g. ALGOL. The difficulty was that the formalism

was so primitive that the ALGOL semantics became a large paper and
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neither proofs nor insight seemed to result.

Most mathematically based attempts at formalization have stressed

tractability and have almost all been based on existing mathematics.

There are only a few imperative systems 1n logic, and each has been

used in formalizing some aspect of computer science. Most of the work

in formal semantics is based on the h-calculus of Church [Chu 51] and

the combinator calculus of Curry [Cur 58].

Both of these theories were primarily concerned with the role of

variables and their successes 1n programming languages have been largely

in that area. The h-expression plays a crucial role in LISP and 1is

discussed as a programming concept in various LISP documents

It 1s also the most popular vehicle for attempting to formalize

semantics. The work of Landin and Strachey [Lande 66] is particularly

interesting because they combined their research with the development

of an extension of ALGODL60 called CPL [Burs 65, Cou 65].

The applications of h-calculus to semantics have been pursued most

diligently by Landin. In a series of papers he considers the relation-

ships between programming languages (ALGOL) and an augmented h-calculus

called imperative applicative expressions (IAE). The declaration and

binding of variables in ALGOL 1s modelled quite clearly and the formal-

ization has helped point out some weak spots in ALGOL. The IAE system

(like pure LISP) 1s purely functional and must represent statements as

O-adic functions with side effects on the environment. In fact, much

of Landin's description of ALGOL can be viewed as a generalization of

the "program feature" in LISP [McCar 62b]. Thus far, these efforts
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have neither achieved the descriptive clarity nor maintained the

tractability of h-calculus in accordance with the original plan. The

most conspicuous benefit of the work has been CPL [Cou 66] which is

an extremely civilized language. There 1s presently an active group

at M.I.T. which is pushing this approach as far as it 1s ever likely

to go.

Although he introduced the h-calculus into computer science,

McCarthy has taken a somewhat different approach to formal semantics.

His term "theory of computation" indicates that he 1s more concerned

with algorithms than with algorithmic languages. His approach utilizes

a state vector, operations upon it, abstract syntax and conditional

expressions. Typical state functions are

c(x,a)

A(x, z,Q)

read the contents of symbolic position 'x' in state vector 'a' and

the state resulting from substituting 'z' for 'x' in state vector 'a'.

He 1s then able to get conditional expression definitions of

machine-code-like operations and constructs found by the abstract

syntax. The resulting formalism 1s fairly tractable and McCarthy

and his students have been able to push through a number of proofs

[ McCar 67].

A more recent, and intuitively more satisfying, approach has been

developed by Floyd [Flo 67). He considers the flow chart of a program

written in an ordinary (fixed) programming language. The basic idea
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1s to attach a proposition to each connection in the flow chart; the

proposition 1s to hold whenever that connection 1s taken during

execution (thought of as interpretation). With these propositions and

some related mechanisms, Floyd establishes techniques for proving

properties of the form "If the initial state satisfied Rl then the

final state will satisfy R2,if reached." Proofs of termination are

handled by showing that some function of, say, the positive integers

decreases as the program 1s executed. There are current efforts to auto-

mate both the generation of propositions and the proofs of correctness

for restricted languages.

Our description of the work in formal semantics has been

sufficiently shallow to perhaps be misleading. Most of these efforts

- have their comrades and fellow-travellers and the development has been

richer than we suggested; the references at the end of this section

should cover all major trends related to TWS. The impact of formal

semantics, especially the proof-oriented kind, has been limited to a

few 1solated insights. There has been no work having the impact of

e.g. Krohn and Rhodes on automata theory. It 1s our conjecture that

this breakthrough is not to be found-in existing imperative logics;

programming languages will have to be faced directly as mathematical

and natural languages have been.

References for III.B.Z

Bak 65, Braf 63, Burg 64, Burs 65, Chu 51, Cal 62, Cur 58, Flo 67, Ir 61,

Ir 63b, Landi 63, 65, 66, Luc 65, McCar 62a, 67, Org 66, Rig 62,

Ste 64, Tars 56, Tix 67, Zem 66.
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ITI.C. Summary and Research Problems

The TWS described in this paper represent the most recent devel-

opments 1n a long line of research by many outstanding computer

scientists. Each category described in Section II has its peculiar

strengths and weaknesses and a preferred problem domain. After a

brief summary of the relations between the various categories, we will

suggest a number of fruitful areas for future research.

The automatic constructors of recognizers, described in Section

II.A, are tools which are potentially useful in any problem attacked

with a syntax-directed approach. By automatically producing an efficient

recognizer, such systems should extend the useful range of syntax-

directed techniques. The major problem is to find a convenient way of

embedding semantic definitions in the synthetic syntax. A solution to

this problem would also produce a marked improvement in the capabilities

of the syntax-directed symbol processors of Section II.B. These TWS

all have fairly convenient methods for introducing semantics, but all

share the use of relatively inefficient recognizers. The already far-

reaching applications of such systems could be significantly widened by

the development of more efficient recognizers.

The meta-assemblers described in II.C are presently much better

sulted to assembler-writing than compiler-writing. They have, however,

introduced several significant additions to macro languages which will

have a long range effect. By extending the facilities of meta-assemblers

for translation-time actions and adding a syntax phase one could make

them comparable to the syntax-directed symbol processors of Section II.B.
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The work on extendible compilers 1s more recent and difficult to

assess accurately, Although it seems clear that some macro facility

should be included in any high-level language, the more exotic systems

may be limited in their usefulness. In any event, it seems unlikely

that extendible compilers will compete with compiler-compilers in the

original implementation or radical change of a translator.

The compiler-compilers of Section II.D are the high point in the

evolution of specialized TWS. This specialization has made them by far

the most useful for compiler-writing, but has its attendent costs. The

compiler-compilers are harder to implement and are often unsuited to

tasks appreciably different from compiling. As the semantic languages

attempt to encompass more sophisticated programming constructs, one can

expect the specialization to become even more pronounced. There is,

however, a tendency to allow the insertion of different specialized

semantic languages 1n a TWS, preserving the syntax and system features.

None of the TWS discussed here 1s a panacea. We have attempted to

show that 1t 1s unreasonable to expect one and the results of various

attempts at a universal programming system of any kind tend to support

this position. We do feel that, taken as a whole, the TWS efforts have

solved many of the significant problems in compiler writing and documen-

tation [Naur 63a). There are now enough available techniques to satisfy

a great variety of possible TWS requirements. It is our contention

that future work on general TWS should be considered development and

perhaps undertaken by a different set of people. The area most suitable

for research seems to be the careful consideration of a number of

isolated problems related to TWS.
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The syntactic aspects of TWS have received considerable attention

and have fewer outstanding questions. The three problems that do come

to mind are closely related to semantics and to one another. One

problem 1s to find a satisfactory way of embedding extra-syntactic

features to allow "syntax" to correspond more closely to one's intuition

[Gil 66]. A related issue is the absence of an adequate technique for

embedding semantics in the rules of a synthetic grammar without know-

ledge of the details of the recognizer constructing program being used.

Finally, there 1s the problem of graceful degradation (this year's OK

phrase) in automatic recognizer constructing programs. One would like

the systemto use efficient techniques where possible and automatically

move to more general schemes (rather than quit) when the going gets

rough.

There has been much less work on the post-syntactic aspects of

TWS. There have been three basically different approaches to this

"semantics" problem. The first approach is to provide a general pur-

pose list-processing.or other symbol manipulation capability (cf.

Section II.B). The second is to provide a number of data structures

and built-in routines especially designed for compiler-writing (cf.

II.D2). The third approach partakes of the first two, but also

attempts to automate significant parts of the compiler-writing task

(cf. II.D). By making use of macros and subroutines, either of the

first two techniques can look, to the average user, like the highly

automated system. From this point of view, the key problem in

semantics 1s finding general purpose routines for handling significant

aspects of compiler writing. We feel that the TWS approach has been
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proven feasible and that the general problem should now be considered

in the development stage. There are, to be sure, several kinds of

programming languages (e.g. simulation [Te 66]) still beyond the pale,

but each has a few basic concepts that need to be studied first. In

short, future research in IWS should be directed toward understanding

(and eventually, automating) the outstanding problems in programming

languages.

“With this formulation of TWS research, we have, of course, pro-

vided a guaranteed annual project for everyone. A justification for

this can be found in the many contributions to programming systems which

have resulted from considering meta-problems. In the remainder of this

section, we will discuss a number of interesting problems which might

be amenable to a TWS approach and provide an entrde into the literature

for each. The references listed at the end of the section for each

subject are either very recent or comprehensive or are already used as

a reference in this paper.

One question of long standing that 1s still open 1s the formal

description of machine languages. A solution here could be used as a

third input to a TWS, describing the target machine. This problem has

been attacked, both theoretically and directly, but nothing has come

close to being usable by a TWS. The availability of parallel processors

adds a new level of complexity or, better, a new research area. Most

of the work on software for parallel processors has been concerned with

particular machines and 1s not within the scope of this paper. There

have been some significant abstract [Kar 66] and concrete [Shed 67,

Sto 67] theories which might serve as a foundation for research in
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parallelism. Parallelism in high level languages [Dij 65]is also

beginning to receive attention.

Another hoary question concerns a theory of code selection and

enhancement (the "optimization" problem). Not only has the theory been

weak, but there are still only a half-dozen or so types of code enhance-

ment 1n general use by compiler writers. The most striking improvements

in program performance usually come from restructuring the entire

approach to the problem. This could be-called optimization-in-the-large

but we will discuss it as one aspect of non-procedural programming. The

accepted definition of "non-procedural", like that of "semantics", has

yet to appear. A programming system will be called non-procedural to

the extent that it makes selections and rearrangements of procedural

steps 1n response to some higher order problem statement.

Non-procedural programming languages have been discussed under many

rubrics: declarative languages, problem-oriented languages, question-

naire systems and the like. Most of this work is theoretically unin-

teresting (cf. [vou 65]); one writes a large routine and the user

supplies parameters. Fairly good non-procedural systems for limited

problem areas have been developed 1n computer graphics, relational

languages [Rov 67], array processing [Gal 67] and numerical analysis

[Ri 66]. The analogue computer, of course, has always been programmed

this way and some promising systems [Schl 67] are being developed by

extending the languages used 1n hybrid computing. Cheatham envisions

adding non-procedural features of a general sort to the extendible

compller discussed in Section III.C5. Another approach would be to use
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the more sophisticated syntax forms and transformations developed in

natural language processing.

We have felt for some time that TWS efforts shared many interests

with natural language systems. There have been the so-called query

languages [Corn 66] and, of course, COBOL [Samm 61], but these make only

superficial contact with the problem. The recent interest in conver-

sational and non-procedural programming languages along with the

syntax—-directed natural language systems (cf. Section III.A) should

lead to a significant interchange of ideas.

There are several open problems concerning the connection between

TWS and executive systems. One of the major benefits of a TWS is

eliminating the effort (often more than half the total) of interfacing

each compiler to the executive. One indication of the past work in

this area 1s that the word "executive" has not occurred before this

paragraph. There has always been a small group interested in "envir-

onmental" questions for compilers [Le 66], but they had little effect

before the time-sharing revolution. The (hoped for) availability of

multi-access time-sharing systems gives rise to several additional

research problems related to TWS.

The main task of any large time-sharing executive 1s resource

allocation. The resources to be allocated include programs such as

compilers as well as various memory and processing units. The research

problem 1s to devise a scheme for allowing translators to exchange

information with the executive so as to produce significantly better oo

system performance. The most pressing need in current systems is for

main memory, and there have been several schemes [Bob 67, Coh 67, Rov 67]
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to help reduce swapping for particular languages. A related problem 1s

the optimal (not maximal) use of pure procedure in both the TWS [Feld 67]

and the resulting object code. While an elegant compiler-executive

interface will be very difficult to achieve, even a theoretically

uninteresting solution should prove of great practical value.

There are two other problems relating to executive systems which

we will mention briefly here. Control languages should be improved by

adding syntax processing; ideally using the same syntax code already in

the TWS. A more ambitious project would be the application of syntax-

directed techniques to the construction of executive programs themselves.

One additional related problem 1s debugging aids. There has been a

great deal of work on on-line debugging systems [EvT 66], but most of

it has been at the assembly language level. There have been some good

symbolic dump facilities,in particular batch-made compilers but these

have not found their way into print or into TWS. There has also been

very little effort [Ir 65] on the problems of automatic error detection

and recovery 1n syntax-directed processors. Once again, even a bad

system would be of great value to users.

The final research area to be discussed here is the study of data

structures. This field seems to include everything from matrix manip-

ulations to file handling, and has strong interrelationships with almost

everything. In some sense, data structures are the current problem in

computer science and 1t would be presumptuous to try to survey the out-

standing issues. We will mention a few aspects connected with TWS and

indicate how data structure considerations occur 1n the other research

problems mentioned here.
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One central question in any TWS 1s the choice of data structures

built-in at both translation and execution time. The survey in Chapter

IT describes the translation time structures; essentially nothing has

been done to provide built-in structure operators for execution time.

Many sophisticated data-structure languages have been written using

WS (e.g. [Ab 66, It 66, Rov 67]), but the structure operators have all

been hand-coded. There have been several recent attempts (e.g. [Ross 66,

IBM 66, Wir 66b] to devise a single general data-structure; such a

structure could easily be incorporated in a TWS. The problem 1s that

current proposals all become very inefficient in some area where data-

structures are now applied. The question of choosing the right structure

for a given algorithm takes one far into non-procedural programming.

~ Similarly, one could make major advances in global optimization and

natural language processing with data-structure improvements. In fact,

there are rich connections among all the research problems mentioned

here and many others as well; the TWS problem will, by its nature,

always be related to several frontiers of programming research.

Our brief survey of recent TWS efforts has turned out to be an

embarassingly long paper. We have attempted to show how a large number

of bright people, working almost in isolation, have brought about a

reasonable understanding of many aspects of systems programming, With

better communication and higher scientific standards, one could hope for

even more significant advances and more rapid application of the ideas

developed in research. It was this hope that led us to write this

paper and perhaps led you to read it.
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