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Preface

"...for all of it is contained in a long
poem which neither I, nor anyone else, has

ever succeeded in wading through."

The Devil
in Man and Superman,
George Bernard Shaw

This paper arose from a number of years of ambivalence towards
éfforts to produce automated translator writing systems. While
much had been accomplished, the research seemed marred by xenophobia
and loose scientific standards. The immediate impetus was an
unsuccessful working conference in April 1967, which indicated
that the situation was every bit as serious as we had imagined.

Many people have aided in the preparation of this report. The
original draft of Section II.B3 (COGENT) was done by Fred Hansen
and the draft of Section II.B4 (META systems) was done by Jeff
Rulifson. David Gries prepared Sections I.B, II.A and III.B2 and
made important contributions elsewhere. In spite of this help and
more, this is in many ways a personal paper. The selection and
arrangement of material and the tone of the entire paper are entirely
Feldman's responsibility. Any resemblance of this work to a care-
fully prepared paper is due to the efforts of the typist, Miss
Elaine Callahan.

This work was supported in part by the U. S. Atomic Energy

Commission.







TABLE OF CONTENTS

I. Preliminaries

A. Introduction 1
B. Terminology 7
IT. Review of Current Translator Writing Systems 17
A. Recognizers which are produced automatically 17
1. Operator Precedence (Floyd) 19

2. Precedence (Wirth and Weber) 25

3. Extended Precedence (McKeeman) 28

4. Transition Matrices (Bauer and Samelson, Gries) 32

5. Production Language (Floyd, Evans, Earley) 36

B. Syntax-Directed Symbol Processors Lo
1. TMG (McClure) 4o

2. GARGOYLE (Garwick) . L2

%. COGENT (Reynolds) 42

L. The META Systems (Schorre, et al.) L6

C. Meta-Assemblers and Extendible Compilers 51
1. General Discussion and METAPLAN (Ferguson) 51

2. PIASMA (Graham and Ingerman) 53

3. XPOP (Halpern) 53

L. Extendable Compilers - Basic Concepts 55

5. Definitional Extensions (Cheatham) 57

6. ALGOL C (Galler and Perlis) 60

D. Compiler-Compilers 68
1. FSL and its descendants (Feldman, et al.) 69

2. TGS (Cheatham, et al.) 75

3. CC (Brooker, Morris, et al.) 80
III. Related Topics and Conclusions 85
A. Other Uses of Syntax-Directed Techniques 85
B. Related Mathematical Studies 89
1. Syntax 89

2. Semantics 99

C. Summary and Research Problems 105

Bibliography 114






I. Preliminaries

I.A. Introduction

Compiler writing has long been a glamour field within programming
and has a well developed folklore [Knu 62, Ros 64b]. More recently,
the attention of researchers has been directed toward various schemes
for automating different parts of the compiler writer's task. This
paper contains neither a history of nor an introduction to these
developments; the references at the end of this section provide what
introductory material there is in the literature. Although we will
make comparisons between individual systems and between various
techniques, this is certainly not a consumer's guide to translator
writing systems. Our intended purpose is to carefully consider the
existing work in an attempt to form a unified scientific basis for
future research.

Compiler writing is a large programming task with many aspects
and it is not surprising that many different techniques have been
proposed as aids to compiler writers. In a very real sense, any
system feature (e.g. trace, edit) which helps one produce large pro-
grams is a compiler-writing tool. This remark will become relevant
as we examine various systems for their specificity to compiler
writing. Since there has been no general agreement on terminology,

we will define a term Translator Writing System (TWS) to denote the

programs and proposed programs considered here. A translator written
in a TWS might be an interpreter, a compiler, an incremental compiler,

or an assembler.
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Relatively few existing translators have been implemented with
the aid of a TWS; the most common technigues involve the use of
(macro-) assemblers or conventional algebraic or list-processing
languages. There have been claims that this proves that TWS research
isvtherefore'a failure, but we find this argument unconvincing. For
one thing, there is little in the work of commercial compiler writers
which would lead one to believe in their infinite wisdom. Further,
commercial translators often involve the informal use of TWS con-
cepts and the division between conventional and TWS systems is not
always sharp.

It is even more difficult to classify the various TWS develop-
ments in & meaningful way. We have chosen to divide the work into
Vfour categories: those efforts concerned only with syntax, syntax-
directed symbol manipulating systems, macro processors of various
kinds, and compiler-compilers. The emphasis throughout is on recent
work; a fairly complete (though abominably edited) survey of earlier
work may be found in Burkhardt [Burk 65].

Unfortunately, one cannot understand the development of TWS
research without-some‘kncwledge of ité sociology. -This is doubly
unfortunate because neither the intercommunication nor the public-
ation behavior has been inspiring. One might be able to attribute
this to the great finapcial potential of a successful (i.e. accepted)
TWS. In any event, one must use care in reading much of the lit-

erature on TWS proposals.
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One common way to begin a TWS paper is with a statement like

"Most of the existing TWS systems lack property X, which is
essential." The author of such a statement rarely describes which
systems have property X, how they compare to his work, or even why
property X is essential. This kind of oversight occurs in other
contexts and may simply be the result of not reading the literature.
.In any event, there is a tremendous amount of rediscovery and very
little cross-referencing within the field.

Another statement often found runs something like "Our system
has been used to implement N compilers on M different computers.”
This rarely means that the TWS presented in that paper was used just
as presented and was completely adequate to the task. For example,
essentially no existing language can be adequately handled by any
of the syntax mechanisms mentioned in the TWS literature (cf. Section
III.B2, Floyd [Flo 62b]). One could make a much more significant
contribution by carefully describing both the strengths and weak-
nesses of one's work. To some extent this is due to referees and
reviewers who seem to judge a paper on what it claims to have done.

Another flaw has been the pievalence of a more-mathematical-
than~-thou attitude.. The worst form of this attitude seems to come
from confusing mathematical notation with mathematics. However,
even the serious work on mathematical models (Section III.B) seems
more concerned with applying known results than with developing
new ones. Many basic concepts in programming (e.g. the storage

location, transfer of control) have not been adequately formalized.
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These criticisms should not be construed as a complete rejection

of the field of TWS research. It has been and chtinues to be one
of the most active and fruitful areas of Computer Science. Many of
the outstanding workers in Computer Science have contributed to the
TWS development, and even the bad work seems well-intentioned. The
problem is that a lack of communication and a tendeﬁcy towards over-
enthusiastic reporting has marred the record.

Before describing the particular systems in the next section,
we should say a few things about the general problem of translator
writing. We will concentrate on compilers, because these contain
all the essential problems found in assemblefs and interpreters.
Considering the amount of effort that has gone into compiler writing,
there has been relatively little published on the subject. The
history [Knu 62, Ros 64b] and syntax methodology [Flo 6ib] have
been fairly well covered, but very little has been said about code
generation or interactions with the operating system. This lack
of literature has forced TWS designers to try to formalize systems
which were largely intuitive and had never been described carefully.
A further difficulty is thaf there are no accepted standards of
performance for translators, except such shibboleths as efficiency.
The efficiency of a compiler depends on its abilityvto conserve both
time and space, while translatiﬁg and during execution of the object
program. The error detection and recovery facilities, the editing
facilities and the speed of recompilétion have important effects on

efficiency. Since all these goals are not mutually compatible, one



can expect no absolute measure of efficiency for compilers. The
designers of the TWS considered here have varied considerably in
their preferred choice of compromises.

We have divided the review of TWS (Chapter II) into four major
parts. The first describes the efforts which are primarily aimed
at automatic syntax techniques. The second section deals with
systems where the syntax processing is augmented by a symbol manip-
Iulation language for producing output. The third section treats
the related topics of extendible compilers and meta-assemblers. The
final section describes systems which attempt to provide specific
techniques for many of the post—syntactic‘problems of translator
writing.

The related topics discussed in Chapter III have been chosen
to complement the review sections and are treated in much less
detail. The treatments of the other uses of syntax-directed
techniques and related mathematical studies are aimed at elucid-
ating their relationships with TWS efforts. Finally, we sketch a
number of potentially fruitful research topics related to the future
development of translator writing systems. The bibliography is
arranged alphabetically with references pertinent to a particular

section listed at the end of that section.




References for I.A

The Communications of the ACM, and to a lesser extent

The Computer Journal of the British Computer Society are the major

journals for publications on translator writing.

See especially
Comm. ACM 4 (Jan. 61)
Comm. ACM 7 (Feb. 64)
Comm. ACM 9 (Mar. 66)

Other general references:
Che 64a, Flo 64b, Hals 62, Knu 62, Ran 64, Ros 64b, Weg 62,

Wil 64b.

Formal descriptions of various programming languages:

Bac 59, Ber 62, Brook 61, Bro 63,
EvA 64, Gor 61, IBM 66, Naur 60, 63b,
Rab 62, Samm 61, Shaw 63, Tay 61,

Wir 66b, 66c.



I.B. Terminology

One of the minor irritants in the TWS literature is the lack of
uniform notation. In order to make this paper more readable, we have
taken the liberty to change the symbols and sometimes the syntax used
by various authors. For the discussions on syntax we have decided on
the notation used by Ginsburg ([Gin 66a], pages 8,9). However, as an
(non~conflicting) alternative, the notation of the ALGOL report [Naur
63b] and of the syntactic meta-language Backus-Naur Form (BNF) is used
where it i1s more readable. V

Many terms will be used in both a formal and an informal sense;
the default sense is the informal except in Sections II.A and III.B.
The formal definitions of such terms as "syntax" and "semantics" are
not generally agreed upon and we will discuss them further in Section
ITI.B. Informally, we consider syntax to be the specification of well-
formed statements in a language and semantics to be essentially any-
thing else.

In general, a language, L , will be some subset of the set of all
strings of symbols from an alphabet (. The specification of which
strings are in the language L (syntax of L) will be described in a

syntactic meta-language. The syntactic meta-language will be pro-

cedural and will describe either an algorithm for generating strings
of L (synthetic syntax) or for recognizing if a string over & is in
L (analytic syntax). Any process utilizing a non-trivial analytic

syntax will be called syntax-directed.

An individual statement in a syntactic meta-language will be

called a production. We have found no way to overcome the unfortunate



use of the word "production" in the TWS literature. The term was

originally used in mathematical logic to describe string transformations
which are more general than any considered here and which can be con-
sidered both analytic and synthetic. In going through a series of
applications in Computer Science the term "productions" began to be
applied to a set of rules for recognizing (reducing) a program (cf.
Section II.A5). This analytic meta-language is widely known as
"production language" even though its statements are reductions and
will be so described here.

A syntactic meta-language may include symbols not in Cl(ggg—

terminal symbols) which are used in defining a grammar. These will

~normally be enclosed in angular brackets '<' and '>' as in the Algol
report, and will appear informally in the text as well as in formal
syntax rules. In the sections dealing more formally with syntax (II.A
and III.Bl) we will bow to clarity and convention and omit the
brackets. These sections will also require a fairly extensive
technical vocabulary used less formally in the other sectioms.

For the formal discussions, cha;acters or symbols are represented
by Latin capitals S,T,U,..., strings of symbols by lower case Latin
letters 4, v, w, X, ¥y, 2,... . The set of all strings of finite
length (including the empty string €) over a set of symbols Vv is
denoted by “y*. If z = xy is a string, x is a head and y a tail of
z. A production U — u is an ordered pair consisting of a symbol U
and a nonempty string u. U is the left and u the right part of the

production. A set of productions is called a (synthetic) grammar .
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Given a grammar, we say that w=>v if there is a production U — u
and strings x and y (possibly empty - the empty string is represented
by €) such that w = xUy and v = xuy. "X is the transitive closure

of "=3"; w=3v if w = W W = Wysenes Wy (oW, (i> 1) and w, = v. If

i-
wzéﬁv, v 1is called a derivative of w. A set of productions P is called
a phrase structure grammar if P contains exactly one symbol U which
appears only on the left of "-' and a nonempty set 5{ (the alphabet)

of symbols which occur only to the right of "', called terminal

symbols and always denoted by T, Tl, T2, e+ « The symbols which

occur on the left of "' are called nonterminal symbols and are

denoted by7ﬁ; u, Ul’ U The derivatives of U are called

PLAEEREE

sentential forms and the sentential forms consisting only of terminal

symbols are called sentences of the language LP determined by P. If
the grammar represents a programming language, the sentences are Just
the programs of that language.

In order to be able to recognize.the beginning and end of a
sentence x, one usually puts a special marker -L at the beginning and
end of it. Formally we add the production <Program> — 1TA to
the grammar.

Figure 1 contains, as an example, a grammar which will be used
throughout the rest of the paper. The sentences of this grammar are
the set of all arithmetic expressions (enclosed by L and_L ) con-
sisting of the operand I, the binary operations * and + (* takes

precedence over +), and parentheses.



<Program> - | E
E-T
E-E+T
T->P
T ST %P
P > (E)
P>T
Nonterminal symbols: <Program> E T P.

Terminal symbols: I ( ) + * 4
Fig. 1. Example of a grammar

The sentential form LP + T ¥ PL has at least two derivations

(according to the grammar of Fig. 1):

(a) <Program>=»LE 1 =>1E + TA=>IT + TL=>1P+ T1=>1P+ T % PL
(b) <Program>=» LE LD LE+ TLDLE+ T *PL=>1T+ T *P L=

lp+T*pP L
Both have the same syntax tree:

<Pr OT

/\
/I\

/ N\
T*P

Hg— 13—

Fig. 2. A syntax tree

10




A sentence which has two or more derivations with different syntax

trees is called ambiguous. A grammar (and also the corresponding
language) is called ambiguous if it contains an ambiguous sentence.

Let us suppose for the moment that a grammar is unambiguous (as
is the grammar of Fig. 1). One can generate sentences of a language by
deriving them from the symbol <Program>. When given a probable sentence,
though, one must work backwards and produce the opposite of a derivation.
A parse of a sentential form of a language is a sequence of productions
used to reduce the sentential form to <Program>. Two parses of

LP + T * Pl corresponding to the above two derivations are:

(a) T>T %P, TP, E>T, E-E+T , <Program> - L E L ;

() TP ,E->T,T—>T*P, E5E+ T, <Program> » LE L.

When parsing a sentential form, reductions are made by replacing a
substring which is the right part of a production by‘the corresponding
lef't side. In other words, given the syntax tree, a reduction consists
of cutting off (pruning) a set of adjacent leaves forming a complete
branch. Thus, in Figure 2, we could "prune" the branches "P" and
"T * P" (make reductions T —» P and T — T * P).

In order to .avoid the unimportant differences between parses which
are the same except for the order in which the reductions are executed,

we designate one as the canonical parse. Given a sentential form and

its syntax tree, the canonical parse is the one which always prunes the

leftmost branch first. Such a leftmost branch we call the handle

([Knu 65]). Thus for the trees (a), (b), (c) in Figure 3, the handles
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are T, T * P and E + T respectively. (b) is the result of pruning the

handle "T" of (a), while (c) arises by pruning the handle "T * P" of (b).

<Progran> <Progran> <Program>

1l L 4 B 1 E
I 7N e

PN /TN

T T % P T % P

(a) (®) (c)

Figure 3

A left-right recognizer, or parsing algorithm, always finds a

canonical parse. Of course, if a sentence is ambiguous, it has more

than one cancnical parse -- one for each syntax tree. A left-right
recognizer will find only one of these. In Section II.A certain
recognizers will be discussed which can be constructed automatically
from the grammar if the grammar satisfies certain restrictions. Part

of the duty of the construction algorithm will be to check fhe definition
of the programming language by verifying that the grammar is indeed
unambiguous.

When given just a stringit is sometimes difficult to detect a
handle. For instance, with the string LE + T ¥ Pl , according to
the grammar of Figure 1, E + T is not the handle. Reducing E + T to E
yields LE * PLl, which is no longer a sentential form. The handle in

this case is T * P. Most of the recognizers to be discussed will have

means for detecting the handle, so that wrong reductions will not occur.



Some conlusion has arisen over the terms "top-down" and "bottom-
up". These rcfer to two different methods of recognizing or parsing
a sentence of a language. Part of the confusion has arisen because
people draw their syntax trees differently - for example, the tree for

the string LT + T L can be written as in (a) or (b) of Figure 4.

<Propram> T
I |
E L E + T
I AN
? + T 1 E L
T \I/
<Program>
(1) (v)

Figure 4

We will use (a) throughout the paper.

The other part of the confusion has arisen because the two con-
cepts have actually merged as recognizers have become more sophisticated.
We will try to clear up this confusion here.

A pure top-down recognizer is entirely goal-oriented. The main

goal is of course the distinguished nonterminal symbol <Program> —- a
prediction is made that the string to be recognized is actually a

program. The next step is to see whether the string can be reduced to

L e f S8, e i
ne left part 155 Sn of some production <Progrmm>—aslsg.usn.

Tinus, 1if Sl is a terminal symbol, the string must begin with the same

terminal symbol. If sl is nonterminal, our first subgoal is to see

whether some head of the string may be reduced to Sl' At any step, if

13




some subgoal is not met, the failure is reported to the next higher
level, which must try another alternative.

This type of recognizer gets its name from the way the syntax
tree is being constructed. At any point of the parse, certain
connections have been made (perhaps wrongly) by constructing the tree

from the top node and reading down to the string (Fig. 5).

<Progran>
E
Partial Top-Down Parse
//T
I
L 1+1x11
Figure 5
If some of these connections are wrong -- a subgoal cannot be met --

some of the connections must be erased and other alternatives tried

(backtracking or backup). A top-down recognizer may of course be

programmed in many different ways -- as recursive subroutines, as a
single routine working with a stack, etc. The significant feature is
that it is goal-oriented.

In contrast, a pure bottom-up recognizer has essentially no goals
(except of course the implicit goal <Program>). The string is searched
for substrings which are right parts of productions. These are then
replaced -- perhaps wrongly if they are not really handles -- by the

corresponding left side. This may be illustrated by Fig. 6.

14




T

\\\\\ Partial Bottom-Up Parse

P
|
I

= —'g
H——tg =——H

1

Figure 6

In order to reduce backup, modified top-down recognizers have

been introduced. For instance, before starting out on a new subgoal,

a modified top-down recognizer may see whether some derivative of the
subgoal may actually start with the initial symbol of the substring in
question (look ahead) or whether the subgoal could occur with the partial
tree (memory). Examples of modified top-down recognizers are those in
[Ir 61] and [War 64]. Most of the syntax directed symbol processors
(II.B) used modified top-down recognizers.

Similarly, as will be seen in II.A, bottom-up recognizers can be
constructed (for suitable grammars) which eliminate backup entirely.
Such modified bottom-up recognizers generally look to the left and
right of a possible handle to see if it really is a handle or not.

It is these modifications which have led to the (con)fusion of
the two concepts. It is sometimes very difficult to tell whether a
particular recognizer is bottom-up or top-down. For instance, a pro-
duction language recognizer as generated by Earley's algorithm (cf.
Section II.A5) has some of the properties of both. 1If a recognizer

has any explicit goals and subgoals to meet, we tend to call it




(modified) top-down, Since it is essentially goal-oriented.

Most of the remaining terminology should be familiar to anyone
with general knowledge of Computer Science. We will use a few data-

structure terms which require definition. The term list structure will

be used generically to describe any programming system making signif-
icant use of pointers (links) and dynamic storage allocation. A list
structure which does not allow more than one path between any two nodes
is a tree. A list structure which explicitly allows general connect-
ivity is called a plex. The term plex also loosely implies that each
element is a block of storage containing several (often two-way) links,
We will also use the terms LIFO (last-in-first-out) and FIFO (first-in-
first-out) as general rules for handling sequential information. For
those who worry about such things, the symbol TWS will be used as the
singular, plural, possessive and adjectival forms of "Translator

Writing Systems."

Lo




II. Review of Current Translator Writing Systems

IT.A. Recognizers which are constructed mechanically

In this section, several practical techniques for parsing,
or recognizing, sentences of languages defined by grammars will
be described and evaluated. A "practical" technique is one that
has been or is being used to write a compiler. FEach of these
recognizers has a second important property -- there is an
algorithm for constructing, or generating, it from a suitable
grammar of the language, either in the form of tables to be used
by a set of basic routines or in the form of a program. We will
call such an algorithm a constructor.

This property of automatic generation is very important to
the compiler writer. Most of the constructors check the grammar
for unambiguity before actually constructing the recognizer -- a
decided advantage. Automatic construction of parts of a compiler
also means less work, leaving more time for considerations such
as code optimization. Moreover, the automatic construction will
guarantee that the recognizer follows the formal syntax.

Unfortunately, these recognizers and their constructors do
not solve all problems.- First of all, much of the syntax of a
language can not be defined by existing grammars. Secondly,
semantics form a much larger and more difficult part of a pro-
gramming language -- often either the grammar or the generated
recognizer must be changed in order to fit in semantics properly.
Thirdly, while a technique may be theoretically very nice, it

may not be practical. The usual programming language grammar may

17




for some reason not be accepted by the constructor of some
technique. If not, the grammar must be altered substantially or
another technique used.

We note in passing that the "efficiency" of several recog-
nizers have been compared by Griffiths and Petrick [Grif 65].
While theoretically interesting, this comparison is of no
practical value, since it is based mainly on the efficiency of
Turing machines corresponding to each of the recognizers. We
are interested in the practical problems of actual space used and
time consumed, as well as the problems of adequacy mentioned in
the last paragraph,

Some of the recognizers discussed here have been used in many
compilers by many people; we cannot list references to all of
them. For each recognizer we have given one reference to a
paper where not only the recognizer, but also its constructor, 1is
discussed. Some theoretically interesting recognizers which can
be mechanically constructed, as well as formal properties of
systems desctibed here, are discussed briefly in section III.Bl.

Top-down methods will not be discussed here, although they
are used in some compilers. They are in general less efficient
than the recognizers to be discussed, since some amount of back-
up is almost always necessary. See [War 61] and [Ir6l] for
details of compilers which use modified top-down recognizers.

[Che 64c] is a good tutorial paper on the use of top-down

18



recognizers in compiling, while [Flo 64b] also contains a good
description of the technique.

The grammar in Figure 1 (page 10) will be used throughout
this section as an example. At this point it may be advisable
to briefly review section I.B for definitions and notations.

1. Operator Precedence (Floyd [Flo 63])

The grammar is restricted to an operator grammar; no

production may be of the form U —axUery for some strings x

and y and nonterminals U This means that no sentential

1192
form contains two adjacent nonterminal symbols. This is not a
serious restriction; many programming language grammars are
already in this form. Most programming languages grammars which
are not, can be made into operator grammars without essentially
disturbing the structure of a sentence.

During the parse of a sentence T T, a LIFO stack will

1"
contain symbols SOSl ...Si of the partially reduced string
Sosl"'SiTi?ij+l"Em' At any step, it is necessary to be able

to tell solely from the symbols Sil,Si and T. whether
J

1) Si is the tail of a handle (the leftmost substring for
which a reduction may be made) in the stack; or whether

2)8i is not the tail of a handle and Tj must be pushed into

the stack.

In order to do this, the following three relations are defined

between terminal symbols Tl and T2 of an operator grammar.

19




1) Tl = T2 if there is a production U - leTEy or U -

XT1U1T2y where Ul 15§ nonterminal.

2) Tl£>T2 if there is a production U - xUlTey and a
derivation U, =9 2T U, =52l U, £ du
erivatio 1 2T, or U, 2T U, for some z an X

3) Tl < T2 if there is a production U - foHy'and a

. . *
derivation UféTE,z or Ul =-=>U2T2z for some z and U2‘

If at most one relation holds between any ordered pair
T,,T, of terminal symbols, then the grammar is called an operator
£ e ————

precedence grammar and the language an operator precedence

language.

In an operator precedence language, these unique relations
may be used quite simply for detecting a handle (or any right
part of a production which may be reduced). Suppose TOxT is a
substring of a sentential form, and suppose that the following
relations hold between T,» the terminal symbols Tl’Tg"“’Tn(n > 1)

of x, and T:

Ite
=
its

T <T =T > T .
o] n

1 2

(Note that nonterminals of x play no role here). Then x is what

Floyd calls a prime phrase; it is either the right part of a

production U - x, or there is a production
U ->x'

where x'=» x and the only productions in the derivation X' =>x

20



are of the form Ui-% Uﬁ' The substring x may therefore be

replaced by the nonterminal U, yielding TOUT.

The parse of a sentence (or program) is quite straightforward.
Symbols are pushed into the stack until the relation Tn > T
holds between the top terminal stack symbol Tn and the next
incoming symbol T. If the program is indeed a sentence of the
language, the top stack elements then hold a string Tox as
described above. One searches back in the stack, using the
rel stions, to find TO and the beginning of x. x is then a handle
and can then be reduced to some U, yielding TOU in the stack. The
process 1s then repeated by comparing TO with T.

The relations », = and < can be kept in an Ix% matrix, where
{ is the number of terminal symbols of the grammar. (In [Flo 63],
the matrix for an ALGOL-like language is about 35 x 3%5). The
comparison is then just a test of the relation in the matrix
element defined by the row corresponding to the top stack
terminal symbol and the column corresponding to the incoming
symbol.

The space needed for the relations may be reduced to two

vectors of length £ if two precedence functions f(T) and g(T)

can be found such that Tl < T2 implies f(Tl) < g(Te) , Tl = T2
implies f(Tl) = g(Te) and Tl > T2 implies f(Tl) > g(Tz). These
functions can usually be found. Floyd outlines the algorithm for
finding the matrix of precedence relations and the functions f and

g (if they exist). For the language of Figure 1 the following

precedence matrix and functions are generated:

21



( I * + L) T £(T) e(T)
) > > > > ) 5 1
I > > > > I 5 6
* | < < > > > > * 5 L
+ < < < > > > + 3 2
( | < < < < = ( 1 6
1] < < < < & L 1 1

Ficure7 gives the algorithm for recognizing a sentence of an
operator precedence grammar. The precedence relations will have
been produced from the grammar by the constructor.

Semantic routines may only be called when a prime phrase,
or handle, 1is to be reduced. A separate routine is written to
process each different handle. This may mean that the grammar
has to be altered to allow the correct semantic interpretation.

For instance, the production

<CONI>» — IF <BE> THEN <EXPR> ELSE <EXPR>

would have to be explicitly written as

<IFCL> -» IF <BE>
<IF-THEN> - <IFCI> THEN <EXPR»

<COND> —» <IF-THEN> ELSE <EXPR>

so that the tests and jumps may be inserted at the proper places

by semantic routines.
22



START S, ' 4 8,,515...,8, IS A STACK HOLDING A PORTION OF
i co THE SENTENTIAL FORM UNDER ANALYSIS.
N
READ ONE SYMBOL FROM
SOURCE PROGRAMj; STORE IN R
SR S
(155, A TERMINAL\ N N
YMBOL? J J -
Yes

3ot ' -/SJ>WR='_L'?)IE.1‘—1+1_

Qe-SJ _/fSSJ.ATERMINA No |
jei-1 Jjei-1
Yes
o5 «qr
Yes

[PROCESS PRIME PHRASE S. .. ...S
i j+1 i

(CALL A SEMANTIC ROUTINE); GET
LEFT PART U; i « j + 15 S; « U

Fig. 7. Recognizer using operator precedences



However, the revised grammar to the generator will not in
all likelihood be essentially different from the original ref-
erence grammar of the language (see for example Floyd's
language in [Flo 63]). Although to our knowledge no compiler
contains a mechanically constructed recognizer of this type, the
precedence technique has been used in quite a few ALGOL, MAD and
FORTRAN compilers and will be used in many more. The technique
is easy to understand, flexible, and very efficient.

It is rather difficult to figure out a good error recovery
scheme if the functions f and g are used, since an error can be
detected only when a probable handle turns out not to be one.
With the full matrix, an error is detected whenever no relation
exists between the top terminal stack symbol and the incoming
symbol. Therefore the functions should be used only if a
previous pass has provided a complete syntax check.

One objection to this technique is that the language may
still contain ambiguous sentences. The structure of the parse
tree is unambiguous if the grammar is a precedence grammar, but
the names of the nodes may not be. Fbr<; prime phrase x there
may exist more than one nonterminal to which it may be reduced.
This objection is partly answered by the fact that the non-
terminals are usually manipulated by semantic routines anyway,
and not so much by the syntax. The syntax defines the structure;
whether a node is named (say) "integer expression" or "real

expression" is a semantic matter.
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2. Precedence Languages (Wirth and Weber [Wir 66c])

Wirth and Weber modified Floyd's precedence concept. The
grammar is not restricted to an operator grammar and the relations

© , ® and (® may hold between all pairs §,,8, of symbols:

1) 8, © s, if there is a production U - x8,8;y

2) 8, S 8, if there is a production U -xU 8,y (or U AJdeey)
and a derivation Ul—'é-ba’zsl (and U2£§Sew) for some z.

3) 5, @) S, if there is a production U - xS,Uy

and a derivation U1=é>sez for some z.

If at most one relation holds between any pair Sl,S2 of
symbols, and if each right part is the right part of only one

production, then the grammar is called a precedence grammar and

the language a precedence language. Any sentence of a precedence

| language has a unique canonical parse. As long as either the
relation C) or @ holds between the top stack symbol Si and
the incoming symbol T, T is pushed into the stack. When

Si ® T, then the stack-is searched downward for the configuration
551 9, 5, @ ... @58;, @8y

The handle SJ. "'Si is then replaced by the left part U of the
unique production U ::i= Sj"’si (1f the program is a sentence).
The main difference between this technique and Floyd's is that
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the relations may hold between any two symbols, and not Jjust
terminal symbols. Algorithms for generating the matrix of
precedences and functions f and g similar to Floyd's are given
in [Wir 66c].

For the grammar of Figure 1 relations + & T, + & T;
1® E, LOE; and ( @ E, ( © E hold. These conflicts may
be disposed of by changing the grammar to the following equivalent

one:

<Program> —» L E'1l

E' > E
E - T
E - E+T
T' - T
T - P
T - T %P
P - (E')
P - I

The precedence matrix and functions are then
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E' E T T P ( I * + ) | s f(s)  als)
@ @ B 1 1

e © @ E 2 2

e © @ T 3 2

® e © © T 3 3

@ © e 6 P L 3

e @ e o ) b 1

@ & © 6 I b b

e & © * 3 3

= © © © 0 B | + 2 2
5 €& © © © © © ( 1 L
2 © @ © © © © 14 1 1

As with Floyd's recognizer, one may use either the prec-
edence matrix or the functions f and g. The matrix is much
larger than Floyd's (over 70 x 70 for ALGOL), since the relations
may hold between any two symbols. As with Floyd's recognizer,
semantic routines may-only be -called when a handle is detected.

Theoretically, the technique is very sound and efficient.
Since the relations may hold between any two symbols, it is in
a sense more reliable than Floyd's; if the precedence relations
are unique, one knows that a unique canonical parse exists for
each sentence. In practice, however, one must manipulate a
grammar for an average programming language considerably before

it is a precedence grammar. The reason is that not enough
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context is used in determining the precedence relations; very
often more than one relation holds between two symbols. It
may be necessary to insert intermediate productions (as in the
above example) or even to use a different symbol for (say) a
comma depending on its context. A prescanner must then be
changed to look at the context and decide which internal symbol
to use for each comma. The final grammar could not be presented
to a programmer as a reference to the language.

This recognizer and itsconstrudar have been used to write
a sophisticated assembler, PL 360, ([Wir 66a]) and a compiler

for a proposed successor to ALGOL [Wiré6b]) on the IBM 360.

3. Extended Precedence (McKeeman [McKee 66])

McKeeman extended Wirth's concept by first of all separating
the precedence matrix into two tables - one for looking for the
tail, the other for the head of a handle - and secondly by
having the recognizer look at more context so that fewer
precedence conflicts arise. The constructor will therefore accept
a much wider class of grammars.

a) The top two symbols Si-l’si of the stack and T, the
incoming symbol, are used to decide whether T should be put
into the stack, or whether Si is the tail of a handle and a
reduction should take place.

b) Similarly, in order to go back in the stack to find the

initial symbol of the handle, three symbols instead of two are used.
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This technique should be compared with the one proposed by
Eickel et al. [Ei 63]. See Section III.Bl. In practice, the number
of different triples is too large (over 10,000). Also, in most cases
two symbols suffice to determine uniquely what is to be done.
McKeeman's recognizer compromises by using Wirth's two-argument
precedences whenever possible and switching to triples only when
necessary. When looking to the right to see if the stack contains a
handle, a matrix MATRIX1 with entries (@ or@ ) , &,
and @ ( ® and either © or € ) is used. If ® holds between
the top stack symbol Si and the incoming symbol T then a list of
triples is searched to find the value of the following three-argument
function P1;

TRUE S.®T (S, is tail of a handle) in the
i i
Pl(Si l,Si,T) = context S, .8.T

FALSE T,@S holds in the context S, .S.T
i 111

Of course this function must be single valued for all triples, and
the constructor checks this. A similar matrix MATRIX2 with entries

@ » @ and ®( & and either @ or ® ) and a function P2 are

used when looking in the stack for the initial symbol of the handle:

TRUE sj—l ©Sj (Sj is head of a handle)

P2(s. in the context Sj—lsésj+l

J—l’sj’s

1) =
FALSE S. .(® S. holds in the context
-1

S j—ls js,j+l
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For the grammar in Figure 1 the following matrices and functions Pl and

P2 are generated:

MATRIXL.

E T P (I * + ) 1
E © © ©
T S © & ©
P © © © 0
) @ © & 06
I @ © © O
x © © ®
+ © © © ©
(1© © © © ©
L1 00 & 9
MATRIX2

E T P (I * + ) 1
E @ @ Q@
T @O @ @
P @ 6 6 &
) ® 06 66
I @ @ @ ©®
* ® @ 9
+ ® © @ ®
(1® © © &
LI® © © © ©

Function P1 not necessary,
since the conflict @

does not arise.

Function P2 (only nec-
essary triples which also
form valid substrings of
some sentential form
listed)

P2(L1,E,+) = TRUE
P2(y1,E,1) = FALSE
P2((,E,+) = TRUE
P2((,E,)) = FALSE
P2(+,T,*) = TRUE
P2(+,T,+) = FALSE
P2(+,T,)) = FALSE
P2(+,T,1) = FALSE




S «— |.L t
o So’sl""’si IS A STACK HOLDING A PORTION OF

ieo THE SENTENTIAL FORM UNDER ANALYSIS

f—

READ ONE SYMBOL FROM
SOURCE PROGRAM; STORE IN R

s No fei+l
i R='L'7) S R
USE_MATRIX1 i

@ Yes
(Pl(si-l’si’R)?> FALSE STOP
TRUE
—3 Jeg -1 r_J
Jed -1 73 .
\(USE MATRIX2
o @
(:?2(3._1,3.,sj+1)?f-— '
Jo— J FALSE
TRUE

PROCESS RIGHT PART JSi...Si OF A FPRODUCTION
AND GET LEFT PART U; i « Jj; S, «U

Fig. 8 Recognizer using Wirth precedences plus McKeeman triples
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The recognizer which uses the matrices and triples is given in
Figure 8. Of course functions f and g may be used as in Floyd's or
Wirth's case, if they can be found.

The use of triples helps avoid most of the unpleasantries one
encounters with precedence grammars. But, again, semantic routines
may only be called when a handle is detected, so that it may be
necessary to alter the grammar for this reason. McKeeman is writing
a compiler for a subset of PL1 (in itself) on the IBM %60 using this
technique. He expects to use the final grammar as a standard reference

for the PL1 subset.

4. Transition Matrices (Samelson and Bauer [Sam 60], Gries [Grie 67al)

This technique for parsing sentences was first introduced by
Samelson and Bauer. It has been used by the Europeans for writing a
number of ALGOL compilers. NELIAC compilers use it under the name CO-
NO tables [Hals 62]. 1In [Grie 678 a constructor was written for the
recognizer. The grammar is restricted to an operator grammar. Essen-
tially one gets a transition matrix by replacing the precedence relations
in a Floyd precedence matrix by addresses, or numbers, of subroutines
which perform the necessary stack reductions or push the incoming symbol
onto the stack.

The constructor uses the following scheme to reduce the number of
elements in the stack which must be tested in order to find the beginning
of the handle. Suppose that

(4.1) <COND> — IF <BE> THEN <EXPR> ELSE <EXPR>

He




is aproduction of the grammar. At one point in parsing a sentence the

stack should look like (say):

« BOTTOM STACK TOP

t IF <BE> THEN

Instead, a representation for "IF <BE> THEN", say "IBT", is put in

the stack —-- the stack would look 1like
« BOTTOM STACK TOP « BOTTOM STACK TOP
I|IF
st R " "
<BE> or IBT
THEN"

This is equivalent to changing production (4.1) to

" IF" - IF

" IBI" — "IF" <BE> THEN

"IBTEE" — "IBT" <EXPR> ELSE

<COND> — "IBTEE" <EXPR>
The productions are then all of length one, two, or three. One row of
the matrix is allotted to each new symbol in quotes. One column is
allotted to each possible incoming terminal symbol. A stack element Si
consists of two parts Sli and SQI- The first is one of the quoted

symbols introduced by the generator (a kind of operator), the other is

empty or contains a nonterminal symbol (an operand). The basic

recognizer is




S, ¢« ("1", empty) §,s++-5; IS A STACK HOLDING A
ieo PORTION OF THE SENTENTIAL FORM
v
- EAD ONE CRARACTER UNDER ANALYSIS. S, CONSISTS
2,.
@_,FROM SOURCE PROGRAMj OF TWO PARTS 51, and §2,
STORE IN R (8,=(814,82,))
!

JUMP TO SUBROUTINE DEFINED

BY MATRIX ELEMENT CORRESPONDING

TO ROW OF S1, and COL OF R.

The matrix and subroutines produced by the generator for the grammar of

Fig. 1 are

wlr ok 5

o R 3 3 3

(
6

"E+" |2 2 5 6 2
6

" L 5 6

W
o o O @

1. IF S2, = E OR 82,
1 —_ 1

T ORS2, =P
— i

THEN SUCCESS EXIT ELSE ERROR;

I

2: IFrS82, =TORS2, =P
— 1. — i
THEN BEGIN i « i - 1; SEi « E; GOTO0 GOIN END ELSE ERROR;
: 2., =
3: IF 82, P
THEN BEGIN i « i - 1; S2i « T; GOTO GOIN END ELSE ERROR;
h: IFS2, =EORS2, =T ORS2, =P
- 1 -_ 1 — 1
THEN BEGIN i « i + 1; S, « ("E+", empty); GOTO SCAN END ELSE
l —

ERROR;



5: IF;'82, =P OR S2, = T
A | — i
THEN BEGIN i « i + 1; S, « ("T*", empty); GOTO SCAN END ELSE
l — — ——
ERROR;
6: IF S2i = empty
THEN BEGIN i « i + 1; §, « ("(", empty); GOTO SCAN END ELSE
ERROR;
7: IFS2, =EORS2, =T OR 82, = P
_ 1 -_— 1 _— 1
THEN BEBIN i « i - 1; 82, « P; GOTO SCAN END ELSE ERROR;
8: IF SEi= empty

THEN BEGIN 32i « P; GOTO SCAN END ELSE ERROR;

A matrix for ALGOL is about 60 x 40. The checks for STi = empty
may be deleted by doubling the number of rows of the matrix (see [Grie
67&]). Some alterations are usually necessary once the recogniger is
generated, but since semamticsg: may be inserted at any step of the
parse ( in any of the subroutines l-8’above), and not only when a
right part is recognized, the system is perhaps more flexible than the
previous three. The grammar does not have to be changed much, although
it must be an operator grammar. The constructor itself has not been
used to generate a compiler yet, but the generated recognizers resemble
to a large degree recognizers built by hand using the same technique
(see [Grie 65]).

This is perhaps the fastest technique. Switching tables are
always used when speed is essential. Its drawbacks are the space used

and the large number of subroutines needed to implement the technique.
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5. Production Language (Floyd [Flo 61], Evans [Ev 6&], Earley [Ear 65D

The production language introduced by Floyd and modified by Evans

consists of a set of productions of the form

s |

A more natural name for this would be a reduction, since it is used to
indicate how to reduce, or parse a string.

We start parsing a sentence by putting the first symbol L of the
sentence on the stack. Then we sequence through the productions,
comparing the top of the stack with the symbols Sl’SE’ ... directly
to the left of the first bar | . When a match is found, the matched
symbols Sl' PYRRE in the stack are replaced by the symbols Si,Sé .

(If no replacement is to be made the arrow -= and symbols S',Sé do not
appear.) The symbol @ appearing as some Si matches any symbol on the
stack. Then, if "*" appears following the second | the next input
symbol is scanned and pushed onto the stack. Finally we start comparing
symbols of the stack again, beginning with the production labeled by

the name appearing at the right of the production (Gl in this case).

Any production may be labeled. Earley has written a generator which
produces from a suitable grammar a recognizer written in production
language.

The production language program generated from the grammar in

Fig. 1 is given in Fig. 9.
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PROGRAMO: 4] | ¥EO

| |ERROR EXIT
EO:TO:PO: (| | *EO
I|- P|*P1
o | |ERROR EXIT
El: LEL| | succESS EXIT
((®)|- P|*PL
E+| | %10
| |[ERROR EXIT
T1: T*| | *PO
E+Ta|- Ec|EL
To]- Ec|E1
| |ERROR EXIT
P1: T*Pa|— To|T1
Pal- Te|TL
ol |ERROR EXIT

Fig. 9 Production language recognizer

Semantics are introduced onee the productions have been gener-
ated by inserting "actions" of the form EXEC i , where i is the
number of some semantic subroutine, directly after the second bar

in any line of a production.



This production language is the basis for a working ALGOL compiler
[EvA 64] and forms a significant part of FSL, a language for writing
compilers (see section II.D1). A variation of the production language
is also used in TGS (cf. section II.D2). oOnce one has some practice,
it is quite a natural, flexible language to program in. A programmer
can learn to write compilers with it relatively easily. No compilers
have yet been written using a mechanically constructed recognizer,
but the MEC actions may be inserted in any production, so that in
general few alterations will have to be made in the grammar. More
context can be used by the recognizer, so that a grammar is more
likely to be accepted by this constructor than the other four.

It is perhaps the least efficient of the recognizers discussed,
'since at each step, the stack must be compared with successive pro-
ductions until a match is found. The productions, however, take up
less space than the other recognizers.and the efficiency can be im-
proved by good programming when they are constructed by hand.

We would venture to say that this branch of Translator Writing
Systems is fairly complete. One can devise only a finite number of
really different-left-right recognizers for parsing sentences using
limited context. Even the first four recognizers listed here differ
only in the programming techniques used —-- theoretically they are all
[1,1] bounded context in the terminology of section III.Bl.

The operator precedence technique is most well-known. It often
is used to recognize portions of a language, most frequently arithmetic

and Boolean expressions, as is done in the IBM %60 FORTRAN compiler.
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See [Ar 66, Grie 65] for documentation of other compilers using this
technique. [Gall 67] also mentions it. The transition matrix
technique has been used to write several ALGOL compilers [Grie 65,
Sam 60] as well as NELIAC compilers, under the name CO-NO table
[Hals 62, Mas 60]. Both of the above techniques have undoubtedly been
used in many other compilers. The production language is used in an
ALGOL compiler [EVA 6], but is also a significant part of two
compiler—-compilers [Feld 66, Mond 67] in which a number of other
compilers have been written [Rov 67, It 66]. Two other compiler-
compiler projects use this language [Fie 67, Grie 67b], while inde-
pendent variations of it have been used by ‘[Che 65] and others. The
precedence and extended precedence techniques have been used mainly
by their authors, Wirth [Wir 66a, Wir 66b] and McKeeman [McKee 66].
There are further discussions of syntax techniques in several other
sections.

For the theoretically inclined reader, section III.Bl contains
discussions on more general, powerful and complicated left-right
recognizers, as well as some basic references on the theory of formal

languages.
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II.B. Syntax Directed Symbol Processors

The programs discussed in this section are not properly called
compiler-compilers, although each has been used to write compilers.
Their common treatment of compiler-writing as a symbol manipulation
task makes each of these programs both more than and less than a TWS.
Since such systems are so general, they have been used heavily in the
various non-translator tasks described in Section III.A. In fact, the
discussion of AED [Ross 66] will be deferred to that section, because

its goals have been more general from the outset.

1. TMG (McClure [McCl65])

The TMG system was developed at Texas Instruments as a tool for
writing simple one-pass compilers. The syntax technique is a simple
top-down scan with backup. However, the embedding of semantic rules
enables one to write a more efficient recognizer than would be
possible with pure syntax.

The basic TMG statement form is:

<label> : <actions> / <identifier> *¥/ <identifier>
The first <identifier? names the statement to be executed if the
<actiong> fail and the second <identifier> names the statement to be
executed on success. The <action& can be: intermediate goals for
the syntax recognizer, string computations on the input, or built-in
statements. These <actions> are all to be performed by the translator;
output of code is treated by a different construct to be discussed

below. There is a character-based symbol table which is built from
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input strings using the primitives MARKS and INSTALL. Consider the

following example.
INTEGER: ZERO¥* MARKS DIGIT DIGIT* INSTALL

The action ZERO* scans all leading zeros, then MARKS notes the
current value of the input-string pointer. The actions DIGIT DIGIT*
scan all characters in the class <digit>. The execution of INSTALL
causes the string starting at the pointer of MARKS to be entered into
the symbol table and a reference to it entered in the intermediate tree.
The only other information allowed in the table is a set of declared
FLAGS (Boolean variables).

The built-in routines include conditional arithmetic expressions,
number conversions and a few input-output functions. There are also
some system cells such as J, the input pointer, and SYMNRM, the length
of the last string entered. Output is also character-oriented, as the

following example will show:
LABELFIELD: LABEL = $(P1/ BSS / 0 // $ )

This statement would be used to detect the label in some language.
The "=" signals an output routine which is bounded by "$(" and "$)".

The body ofthe output statement will form one line of assembly code

label BSS 0

The symbol "P1" is a command to evaluate the first construct to the

left of the "=", presumably the symbolic name of the label. The "/"
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says insert a tab and "BSS" and "0" represent themselves. Finally, the
'//" places a carriage return in the output.

The TMG effort was a pilot project and its clumsy syntax would be
easy to fix. It has been used to write a number of compilers and a
related system TROL has been used by Knuth for teaching compiler-
writing. The EPL (Early PL/I) used in MULTICS was written as a two-
pass system, using two sets of TMG definitions, to get better code.
The TMG system does not seem to be as coherent as some to be considered

below, and would benefit from another iteration.

2. GARGOYLE (Garwick [Gar 64])

The GARGOYLE system was developed by a Norseman and is not very
well known in Vinland. It is also quite similar to TMG and so it will
not be covered in as much detail.

The syntax processor is, once again, basically a top-down
recognizer with the ability to direct the search. The descriptive

language form is a five-field line, essentially
<label> : <actiom> ; <next> ; <1link> ; <else>

The sequencing rule is more complicated than TMG with ERROR and EXIT
being special cases and three successor fields to consider.

The <action& combine tests and output statements in an ALGOL-
like syntax more pleasant than that of TMG. For example, a line in

the routine COMPILE 1is:

if U = '+' then f « 'FAD' ; INSERT
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where INSERT (in the <next> field) is an output routine with 'f' as a
parameter. In this case, 'U' is a temporary variable previously
filled in by character tests on the input string.

There are a number of auxiliary features mentioned, but it is
not always clear which ones are built in. The whole paper is somewhat
tentative, suggesting that Garwick's intent was to present a schema
for a TWS rather than a particular system. We have no information on

implementations, uses or extensions of GARGOYLE.

5. COGENT (Reynolds [Rey 65})

The COGENT system was designed at Argonne National Laboratory by
John Reynolds and implemented on a CDC 3600. A program written in
COGENT has two parts: the syntax and a set of processing routines
called generators.

The syntax is given by a synthetic grammar. Syntactic analysis
proceeds by producing list structure to represent the syntax tree.

For example, use of the production

<TERM> ::= <TERM> + <FACTOR>

would produce a list element <TERM> with pointers to the subexpressions
<TERM> and <FACTOR>. Alternatively, one can preceed a production by
action labels - names of generators which are capable of conditional
analysis of list structures and of (recursively) calling other

generators:

PROCESSTERM / <TERM> ::= <TERM> + <FACTOR>.
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Instead of a list element <TERM> being created, the generator
PROCESSTERM is called with the sublists <TERM> and <FACTOR> as
arguments. The output of PROCESSTERM is then placed in the parse
tree.

Certain kinds of local ambiguity are allowed in COGENT. The
object syntax processor goes into ambiguity mode, switching back and
forth between possible parses each time a parse requires a new
character. No generator calls are made until the ambiguity is
resolved.

The generator language is based on list-processing operations
and the mechanism of failure. List elements may have varying numbers
of pointers to other elements. The types of list elements include
numbers (fixed or floating), generator entry pointers, dummy elements
(corresponding to LISP's NIL), identifier elements, and parameter
elements. Fixed point numbers may be of any magnitude and take up
sufficient words to represent that magnitude. This feature facilitates
symbolic mathematics applications of COGENT.

In addition to the conventional assignment statements, generators

may use synthetic and analytic assignment statements to describe the

synthesis and analysis of list structures. A synthetic assignment

statement has the form

<identifier> / = <template , <expression list>

where a <template is essentially a production in parentheses. For

example, the execution of the synthetic assignment statement
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z / = (TERu / FACTOR * FacTor) , X, Y

where X had the value (FACTOR/ABE) and Y the value (FACTOR/BED),
would assign to Z a copy of (TERM / ABE * BED).

Similarly, analytic assignment statements of the form
<test expression> = / <template , <identifier list>

are used to decompose an expression. The <test expression> is
matched against the template. If they match, the value corresponding
to the ith parameter (nonterminal) of the template is assigned to the
.th

171 <identifier> of the <identifier 1list>. Thus, if Z has the value

(TERM / ABE * BED) , then the statement
z =/ (TERM / FACTOR * FACTOR) , X, Y

will give x ‘the value (FACTOR / ABE) and Y the value (FACTOR / BED) .
If <test expressiom> and <template do not match, the analytic
assignment statement fails. Failure is the method of branching in
COGENT. If no conditional statement includes the action that fails,
the entire‘generator fails. Thus failure proceeds up the chain of
generator calls until a conditional statement is encountered.
In addition to the above, the following features of COGENT
require mention: ID-tables, scanners and internal variables..
The action label $IDENT,n/ specifies that the result of that pro-
duction (which must be a character string), should be placed in

identifier table n. If it is already there, a pointer to the old
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copy will be returned, i.e. all identifiers in any given table have
unique character strings.

Generator entry pointers can be passed as arguments to generators.
This is useful, for example, for producing output for cards, printing,
etc. One generator, called a scanner, could reduce a list structure to
a character string and pass the characters one at a time to an output
routine through a formal parameter. There are also several internal
variables which may be set or tested by primitive generators and used
by various built-in routines. For example STANDSCN, the standard
scanner, calls on the routine indicated by an internal variable to
convert negative or floating point numbers.

COGENT is admittedly experimental and has several shortcomings:
the structure of the language for generators is not as neat as Algol
has shown languages can be, one syntax error in the input is fatal,
and list processing should be generalized to include arbitrary plex-
creation, rather than just plexes based on the syntax. COGENT has been
applied to a number of problems in symbolic mathematics. Reynolds has
suspended work on COGENT pending the development of a better theory of

data structures which he, among others, is working to develop.

4. The META Systems (Schorre [Schor 64] et al.)

The early history of Meta compilers is closely tied to the history
of 8IGPLAN Working Group 1 on syntax-directed compilers. The latest
inventory listed twenty-five different Meta compiler systems on ten

different computers. The proliferation of these compilers is due in
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part to the fact that they are not only able to compile a metalanguage
but can be expressed in their own language and thus compile themselves.
Almost all of the systems have been used to implement translators for
other languages as well.

Although the original work was diversified, the current systems
are generally based on a model known as Meta-II, developed by Schorre.
Within this model, the parsing and translation processes for a language
are all stated in a set of BNFelike rules. These rules become recursive
recognizers with embedded code gemerators when the language specifications
are implemented.

The rules do not allow left recursion; but use instead the
(prefix) iteration operator "§". Alternation (the bar in BNF) is
indicated by a slash, and parentheses are used for grouping in a normal

fashion. The following is a typical rule in Schorre's Meta-II language:

SUM = TERM $( '+' TERM ,OUT('ADD')/

'~-' TERM .OUT('SUB') );

The rule defines a procedure for recognizing a sum in an algebraic
language. The word "SUM" -followed-by "=" defines the name of the rule,
while the right part of the rule is both an algorithm for testing an
input streat for the occurrence of a sum as well as a code generator
in case the sum is found. The above rule contains examples of the
three basic entities used in most Mete compilers. The mention of the
neme of another rule, in this case "TERM," causes a recursive call on

that'recognizer to be invoked. The occurrence of a literal string '+
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signifies that a test is to be made against the input stream for a plus
sign; most Meta systems have built-in recognizers for identifiers and
numbers as well as literals. In the ".OUT" construct, we see the
embedding of code generation.

The recursive nature of the rules and the method of handling

generated labels may be seen in the following example:

. UNION = INTER ('OR' .OUT('BT' *1) UNION .LABEL *1 / . &EMPIY);
INTER = PRIMARY ('AND' .OUT('BF' ¥1) INTER .LABEL ¥1 / .EMPTY);

PRIMARY= .ID .OUT('LD' *) / '(' UNION ')';

For the input stream "(A OR B) AND (C OR' D)", the following
code would be produced, where LD, BT, BF are mnemonics for Load,

. Branch True, and Branch False respectively:

LD A
BT Ll
LD B

Ll
BF L2
LD C
BT L3
LD D

L3

L2
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The first mention of a *1 within a rule causes both the gen-
eration of a label and the output of that label. Subsequent references
within the same rule output the same label. That is, when a rule is
entered, new labels are generated. These labels only exist while the
rule is active. If a call is made to another rule, the labels are
pushed onto a stack. Upon return from the called rule, the previous
labels are restored. The "¥" causes the last item recognized by the
primitive .ID to be added to the output. .EMPTY is a primitive which
has no effect on the input or output but is always satisfied or true.

Meta 3 was an attempt to extend the basic Meta-II concept so that
ALGOL 60 could be compiled for a T7090. It added some ability for
semantic tests and register manipulation, but the additions never
proved adequate. Meta5 was the first Meta compiler that allowed
backup of the input stream. It also added extensive string push-down
stacks, attribute assignment and testing, and output formatting
features. An indication of the flexibility of Meta5 is the fact that
it is capable of translating JOVIAL to PL/1. The LOT system ([Kir66]),
another extension of Meta-II, added syntax constructs which gave the
programmer complete control of almost all system parameters and flags.
Normally, the setting of these parameters is done by control cards,
but embedding it in the metalanguage proved extremely useful in the
development of debugging aids. The LOT system was also used to gather
statistics on the efficiency of top-bottom syntax analysis.

There 1s currently a very active interest in the development of

Meta systems. The tendency in the newer systems is to build parsing
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trees and then, with another special-purpose language, test and
collapse the trees, producing output as a side effect (cf. Section
II.D2). The slowness and inefficiency of Meta compilers is recog-
nized by their authors, but the ease of implementation, the boot-
strapping capabilities, and the large class of languages they can
handle are used to Jjustify the work that has gone into their

development.

References for II.B:

Ab 66, Gar 64, Kirk 65, McCl 65, Met 64, Rey 65, Sch 6k,

Schor 64,
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IT.C. Meta-Assemblers and Extendible Compilers

These forms of TWS are similar in that they both attempt to ex-
tend the macro concept to higher level programming languages. The
basic idea in a macro processor is the systematic replacement of
certain symbols with their associated pieces of text. Although almost
all modern assemblers have sophisticated macro features, the best
descriptions of the idea are in the general papers by Strachey [Str65]
and Mooers and Deutsch [Moo 65]. The meta-assembler and the extendible-
compiler are based on two different conceptions of how to extend
macros to high level languages. The meta-assembler approach considers
the compiler to be special case of the assembler, while the extendible
compiler approach is to add text replacement features to standard

compilers.

1. General Discussion and METAPIAN (Ferguson [Fer 66])

The article by Ferguson is taken from the San Dimas conference
and contains a good introduction to meta-assemblers. The basic ideas
arose from observing that all assemblers have many features in common.
By building procedures for handling such things as symbol tables,
location counters and macros, one could speed up the writing of part-
icular assemblers. To construct an assembler for a particular machine
one would specify word size, number representations and the like.
Output for each machine would be programmed using format statements

and could easily include relocation or symbolic debugging information.



While such a system seems feasible and quite useful, it is not obvious
how one would extend it to a TWS.

The use of a meta-assembler as a TWS is based on the previously
mentioned assumption that the compiler is a special case of the macro
assembler. Discussions of this assumption sound like a reincarnation
of the macro vs. high level language debate. The macro assembler side
is on the defensive, is outnumbered and therefore has been the most
vehement in argument. The whole situation is further complicated by
a lack of agreement on what an assembler is (cf. discussion following
this paper [Fer66]). An example will suffice for our purposes.

Ferguson describes how a meta-assembler would handle the compiler-

like statement:

IF F(A) PLUS 5 EQ G(B) GOTO L

He would have IF, PLUS, EQ, and GOT0 be defined as (prefix)
operators using a scheme called many-many macros. The many-many macro
has features for using and updating state information during text
replacement. This seems to be considered an outstanding contribution
to macro techniques and is certainly a prerequisite for reasonable
code selection. The many-many macro is flexible enough to implement
any known compiler; the real question is whether many-many macros are
a good way of doing it. The answer to this depends on the mechanisms
for recording and using state information and these were not discussed

in the paper.




2. PLASMA (Graham and Ingerman [GraMé5])

The meta-assembler effort of Graham and Ingerman concentrates
mainly on the problems of substitution and binding. They are much
less concerned with syntax than Halpern (next discussion), because
they assume a syntax-directed front end (presumably [Ing 66]) for a
compiler written in their system.

The basic input to their meta-assembler is a "line" which is a
list of lists. The first list is a generalized label consisting of a
symbol, the number of higher levels at which it is active, and the
number of lower levels at which it is active. The second list contains
the operation and the third contains the operands. The input is con-
verted into a tree and substitutions are made on the basis of the tree
structure. By allowing substitutions by symbol or numeric value,
they combine the text replacement with assembly functions.

The authors are continuing their work at RCA, Cherry Hill, and
will presumably report on it again. Their current efforts involve
even more elaborate substitution processes. They have not, as yet, put
forth specific suggestions on how their system might be used as the

basis for a compiler.

3. XPOP (Halpern [Hal 64])

Halpern is the most sanguine and vocal of the meta-assembler
proponents. His work on meta-assemblers is related to his controv-
ersial stands on natural language programs by his statement that

XPOP will allow one to implement something "closely approaching"
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natural language. One should try to separate his work, which is
reasonable, from the tub-thumping which mar his appearances in public
or in print.

The XPOP system follows fairly well the general meta-assembler
description by Ferguson. The basic input format is, once again, a
label followed by an operator and one or more operands. Halpern is
very interested in input forms and has three basic ways of altering -
the syntax of the source language. The- first way is to change the
order of parameters by declaring a macro with the new parameter
ordering which expands to the original operator. The second feature
is the ability to declare new separators and‘terminators at any point
in the text. The most unusual feature is the facility for adding
- noise words which are ignored, as well as keywords which mark the
next symbol as a parameter.

To handle the problems of generating output, XPOP has several
embellishments of the macro concept. It is possible to defer the
assembly of code sections; the sections awaiting a particular label
can accumulate in FIFO or LIFO fashion. There is one illustration of
how this feature is used to implement the DO statements in FORTRAN.
There 1is also mention of many-many macros and of assembly time
execution facilities. Once again, there is not enough information
presented to allow one to judge their suitability for translator
writing. The XPOP system has a large variety, of trace and debugging

aids which should add significantly to its usefulness.
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More recently, Halpern has produced an elaborate defense of XPOP-
like systems. He suggests that the <operator> <operand-string>
notation of macro systems is the canonical syntax of programming
languages as opposed to natural or mathematical languages. He further
separates the study of programming languages into three parts:
Functional (macros), Notational (change punctuation commands), and
Modal (assembly-time executions). Halpern's paper can be taken as the
philosophical statement of the meta-assembler position on TWS and

compared with other general descriptions of the problem.

4. Extendible Compilers - Basic Concepts.

Many attempts (starting with McIlroy [McI160]) have been made to
embed macro features in compiler systems. One approach was to retain
the macro syntax form, but add a number of built-in features which
are compiler-like. The SET system [Ben 6ha] included a skeleton
compiler with:input-output, symbol manipulation, table handling, and
list processing features. These built-in routines were combined with
translation-time operations (Action Operators) in the attempt to
build a TWS. A more successful approach has been to use the structured
syntax of high-level languages as a basis for extension.

Many existing compilers incorporate simple forms of macro
expansion, the first probably being JOVIAL [Shaw 6% ]. The most
primitive form is pure text replacement without parameter substitution.

For example, in B5500 ALGOL one could define a macro with the statement:

DEFINE LOOP1 = FOR I « 1 STEP 1 UNTIL #
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and later form statements like

LOOP1 N DO AII] « O

which would be expanded into

FOR It 1l STEP 1 UNTIL N DO A[I] «<O .

The next step is to allow a macro definition with parameters.
This facility has been included in the AED-O compiler [Ross 66],

among others. In AED-O one might define a macro with the statement:

DEFINE MACRO LOOP (P1,P2) TOBE

FOR Pl « 1 STEP 1 UNTIL P2 DO ENDMACRO

In this case, one could get the same result as above with the

short statement

LOOP (I,N) AII] « O

These two simple macro forms would form a useful addition to any
high level language and one might imagine developing mechanisms which
parallel more sophisticated macro techniques. Although AED-O does
permit arbitrary strings as parameters and nested definitions,
features like conditional assembly do not seem to have been used in
high level languages. One reason for this is that compilers normally
depend heavily on the structure of the text; the next two sections
describe the complexities that arise in trying to extend compilers

with macro techniques.
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5. Definitional Extensions (Cheatham [Che 66])

The definitional extension of high level languages is the latest
attack on the TWS problem by the Computer Associates group. This has
been the most active and productive group in the TWS area and has
developed a world-view which should be understood in reading their work.
We will discuss the mainstream of their activity in Section II.D2,
only a brief introduction will be given here.

Cheatham defines compiling as a six-step process involving:
lexical analysis, syntactic analysis, interpretation of the parse,
optimization, code selection, and output. The principal driving force
behind their work has been run-time efficiency, although other consid-
erations have played an important role from time to time. The current
TWS efforts of Computer Associates use a single language TRANDIR for
all the steps of compilation. TRANDIR consists essentially of an
algebraic section, a pattern matching section (cf. Section II.A5) and
a number of built-in functions. The language is procedural and, to
date, has been used only by experienced compiler-writers.

The paper under discussion shows signs of having been hastily
written and contains references to several internal documents in
preparation. This is clearly an early attempt along these lines and
will be expanded and clarified in subsequent papers. The extensions
to compilers mentioned here fall into two broad categories: a descrip-
tive meta-language LD and a series of macro facilities.

The descriptive meta-language LD is meant to be translated into

TRANDIR procedures, presumably by a (meta-meta) processor. The
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translation of the language LD is based on a grammar inversion technique
combining notions of Wirth and Early (cf. Section ILA). To allow for
more powerful languages, one can append predicates (e.g. type checking)
and even arbitrary computations to the declarative syntax. Finally,
there are rules for outputting intermediate code attached to the syntax
rules. The declarative language has not been implemented, but Cheatham
claims that it has proved useful for the initial formulation of TRANDIR
compilers. While this is probably true, one would expect that the
translation to procedural form is not, at present, a mechanical
process. Further, the sophistication required of an LD user does not
seem appreciably less than that required by TRANDIR.

The extensions to languages using macro techniques fall into
three basic categories: text, syntactic, and computational macros.
Text macros are assumed to be well understood and would presumably be
similar to those described above. It is in treating syntactic macros
that Cheatham begins to face seriously the problems of adapting macro
concepts to compilers.

The basic features of syntactic macros are free format and type

specifications for parameters: An example would be

LET N BE INTEGER

MACRO MATRIX (N) MEANS 'ARRAY[1:N, 1:N]'

The advantage of free format over the conventional <operator> ,
<operand list> format are obvious; the specification of parameters

allows conditional assembly and better error detection. The call of a




syntactic macro would be set off by a special delimiter (e.g. %) and
would have to have a detectable termination. These problems can be
avoided by adding the macro form directly to the syntax tables of the

translator. The corresponding declaration would be:

LET N BE INTEGER

SMACRO MATRIX (N) AS ATTRIBUTE MEANS ‘'ARRAY[1:N,1:N]’

where ATTRIBUTE is a syntactic type in the definition of the underlying
language . Neither of these schemes presents an implementation problem

in TRANGEN (cf. Section III.D2), but either of them could have drastic

results if misused.

In discussing syntactic macros, Cheatham touches upon the problem
of adding 'semantics' to the macro definition. This is the analogue of
the many-many macros and the assembly-time actions used in meta-assemblers.
Cheatham's conclusion that this approach is not feasible should be
compared with the meta-assembler approach which has put most of its
eggs 1in this basket. His solution is to provide a number of primitive
operations (e.g. table expansions) and to point out the existence of a
complete meta-language behind the extendible language.

The third type of macro extension is called the computational macro.
With this technique the substitutions are made in the intermediate code
resulting from a declared macro. This requires that the macro body be
restricted to constructs for which the intermediate code can be
compiled (with formal parameters) independent of context. If this
condition can be met, the computational macro is a useful and efficient

tool. A simple computational macro might be the following mapping
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function for a 4 x b upper left triangular matrix M.

TAKE I,J AS INTEGER

MAP M(I,J) = (11-I) * 1/2 + J-6;

where TAKE and MAP are declarators in the language, Since this code

is for array accessing, it should not be inserted into the source

text and the computational macro form is most appropriate. As Cheatham

points out, computational macros have long been used by compiler writers

to produce accessing code for arrays. The paper includes several
examples of accessing functions, a subject that will reappear in the
discussion of Perlis and Galler paper in the next section. The
important point is that Cheatham has provided a procedural way of
describing access functions while Perlis and Galler try to generate the

code from non-procedural descriptions.

6. ALGOL C (Galler and Perlis [Gall 67])

This is a very long, difficult and important paper by two of the
outstanding workers in the field of programming languages. Although
there are many significant aspects of the paper, we will discuss here
only those dealing with extendible compilers. Other topics will be
treated in Section III.B as significant first steps in new research areas.

The basic idea is, once again, to add macro-like facilities to a
high level language. For this purpose they define an extension of
ALGOL called ALGOL C which is meant to be well suited to extension.
Any extension of ALGOL C is called an ALGOL D and a program in any of
these can be mechanically reduced to an equivalent ALGOL C program.
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The extensions are accomplished through constructs rather like
Cheatham's SMACROS. Because they want to do the macro processing in
very sophisticated ways, Perlis and Galler allow redefinitions only in a
few fixed syntactic categories. The augmented language ALGOL C contains
many features for handling arrays as well as those more directly con-
cerned with extendibility. Among the latter are operators for con-
version between location and value:

(a) A unary operator with integer result:

loc of x

where x is a <procedure identifier> , <variable, or <array identifier>.
loc or_x is essentially the address of the word(s) containing the

valus of x.

(b) Two binary operators whose left operand is a <type> or is missing,
implying real, and whose right operand is an integer expression, rep-,

resenting the "address" of some <procedure , <variable> or <array>:

<type> y¢ of x

<type> pic of x

These represent "value contents of" and "procedure identifier contents

of", respectively. Thus
real vc of (loc of x) = x

if x is a variable of <type> real.
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(c) The notions of location and value are extended to <procedure> s
with the help of an application operator @ . The precise syntax
changes are bound up with the array conventions, but revised definitions

of <primary> and <function designator> should convey the intent.

<primary> ::= <unsigned number> | <variable
<function designator> | (<arithmetic
expression>) |

loc of <procedure identifier> |

<type> vc of <arithmetic expressior>

<function designator> <procedure identifier> @ <actual
parameter part>
(pic of <arithmetic expression>) @

<actual parameter part>

Thus, one is able to manipulate the names of procedures in much the
same way as address variables and could, for example, have procedure
arrays. These additions to ALGOL to form ALGOL C constitute only a
small part of the extra mechanism; most of it is embedded in the
various forms of ALGOL D.

All ALGOL D languages will have fairly much the same syntax. The
common syntax for all ALGOL D's is the same as ALGOL C except for the
replacement of <type> , <arithmetic expression> , <Boolean expression>
and <assignment statement> with a set of rules which enable the def-
inition of special forms for these syntactic types. The introduction

of new definitions occurs as a series of declarations at the beginning
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of a block. The detailed description of this process is quite com-
plicated and we will present only an overview followed by an example.

The basic intention is to allow the definition of new data types
and their associated operators. The problem of finding symbols for
these operators is solved by assuming a large alphabet of boldface
characters. By assuming an operator precedence grammar (cf. Section
II.Al), one can define the precedence of new operators in relation to
operators of known precedence as in MAD [Ar 66]. The remaining
problems with operators involve data types and will be deferred for
a few sentences.

New data types are defined in terms of ALGOL C or previously
defined types by a means statement. This may include formal para-
meters which, if present, play a crucial role in all further proc-
essing, e.g. matrix(u,v) means array [liu, 1:v].

One then combines operator and type information in a set of
context statements. A context statement describes, for an operator,
the data types of its operands and its result. It also contains a
<string> which is (eventually) reducible to the appropriate ALGOL C
text. The following example of [pseudo) LISP definitions should help
clarify these notions.

List Definition Set:
The following set of definitions is based on the LISP [McCar 62b]

primitives. The basic LISP predicates "atom" and "eq" are assumed to
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have been defined as Boolean procedures:

Boolean procedure atom(x); list x;

atom := cdr x = 0;

Boolean procedure eq(x,y); list x,y;

eq := car x = car y A atom(x) A atom(y);

'NIL' in LISP is represented here by 0. The following definitions are

used to organize lists as structures of names.

(9)

(10)

list means integer array [1:2];

cons = ¥

car > cons;

odr ¢ cax;

of < cons;

list a cons list b =_list 'list(a,b)';
car list a = list 'a[1l]';

cdr list a = list 'a[2]';

loc of list a = integer;

integer a := list b = integer 'a :=_loc of b';

Statement (1) defines the new data type list as a two-element integer

array.

Statements (2) through (5) state the relative precedence of the

four LISP operators. Statements (6) through (9) define expressions;

e.g. (7) defines the car of a list 'a' to be the first element of the

modeling array. Statement (10) defines the assignment statement for

assigning a list to an integer variable.
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(11) op(F) f of list x = list 'E(list (loc of F,0),x)';

Il

(12) op(F) £ of op(G) g =

list 'list (loc of list (lee of F,0), loc of G)';

(13) list y of op(F) £ = list 'list_(y, loc of F)';

(14) list y of list x = list 'E(y,x)';

Context definitions (11) through (14) provide an efficient rule for
sequencing through a composition of operations on lists, each one of
which operates only on atoms to produce atoms or even lists. The pro-
cedure E is organized so that as each atom of data is encountered the
remaining operators in the composition are applied to it. Thus the
lists are not totally decomposed and composed for each successive
operator. In a <declaratiorn> such as op (H) h, the <actual parameter>
H represents the <procedure to be used to apply h to a list. The
lists are assumed to be nonrecursive, in the sense that no list is a
sublist of itself.

The block containing these list definitions must also contain the

procedure E:

list procedure E(f,x); list f,x;

E := if atom(x) then {Ef atom(f) then (list pic of car f) (x)
else E(car f, (list pic of cdr f))) else E(f, car x) cons
E(f,cdr x);




An example of a LISP program is:

begin op(F)f; op(G)g; integer c; list a, b, d, h, k;

integer procedure subst (x, y, z); list x, y, z;

subst:= if atom(z) then (if eq(z,y) then x else z) else

subst(x,y, car z) cons subst (x,y, cdr z);

list procedure F(x); list x; F := subst(a,k,x);
" list procedure G(x); list x; G := subst(d,h,x);
c := (f of g) of b end;

The example above does justice neither to LISPna to the Galler-
Perlis system. The full design of their system has ALGOL C defined by
a similar definition set in the outermost block. In each subsequent
block the translator builds a type table and a context table using the
local definition set. The actual processing of local ALGOL D text is
quite involved. This arises from the facts that contexts are recursive
and that ALGOL C text can be interspersed with locally defined text.
The discussion in the paper is further complicated by a desire to
optimize the computation in addition to producing ALGOL C code.

We have deliberately, if not successfully, distorted the intent
of Galler and Perlis' paper. They were also concerned with arrays, and
more particularly with saving space in matrix calculations. It would
have been preferable on all sides for them to have made the separation
of issues themselves. As we have mentioned, the paper contains import-
ant discussions of subjects other than extendible compilers. Its

contribution to our topic is more theoretical than practical. They
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have shown that very sophisticated macro-processing is possible and
can lead to substantive changes in an algebraic language. One would
guess, however, that inefficiency at translation time and sensitivity
to programming errors would seriously restrict its practicality.
There is, in addition, a general question of how often one would want
to change a high-level language; this will be taken up again in

Section III.C.

References for II.C.

Benn 6ia, 64b, Brook 60b, Che 64a,b66, Fer 66, Gal 67,
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II.D, Compiler-Compilers

The distinguishing characteristic of this set of TWS is the
attempt to automate many of the post-syntactic aspects of translator
writing. Such systems might better be called compiler-writing-systems
because they include significant programs which are resident at trans-
lation and execution time, as well as meta-language processors. The
programs in this section are much more complex than most of those dis-
cussed previously; none has ever been implemented by someone not in
contact with a previous effort of the same type. The following excerpt
from a paper on FSL outlines basic philosophy and should serve as an
adequate introduction to our discussion of compiler-compilers. The

other compiler-compiler projects discussed in this section have similar
philosophies; we will point out the differences in the appropriate
sections.

When a compiler for some language, L, is required, the following
steps are taken. First the formal syntax of L, expressed in a syntactic
meta-language, 1is fed into the syntax loader. This program builds
tables which will control the recognition and parsing of programs in
the language L. Then the semantics of L, written in a semantic meta-
language, is fed into the Semantic Loader. This program builds another
table, this one containing a description of the meaning of statements
in L. Finally, everything to the left of the double line in Figure 1

is discarded, leaving a compiler for L.
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Fig. 10. A compiler-compiler

The resulting compiler is a table-driven translator based on a
recognizer using a single pushdown stack. FEach element in this stack
consists of two machine words -- one for a syntactic construct and the
other holding the semantics of that construct. When a particular con-
struct is recognized, its semantic word and the semantic table deter-
mine what actions the translator will take. The Basic Compiler
includes input-output, code generation routines and other facilities

used by all translators.

1. FSL and its descendents (Feldman [Feld 66])

The problem faced in the original FSL effort was the development
of a language for describing the post-syntactic (semantic) processing.
An adequate semantic meta-language should permit the description of
the source language to be as natural as possible. It should be

readable so that other people can understand the meaning of the source
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language being defined. It should allow a description which is
sufficiently precise and complete to enable efficient automatic
compilation. Finally, the meta-language should not depend on the
characteristics of a particular computer.

Since there are satisfactory ways of representing syntax, the
formalization of semantics should make possible a complete formal
description of computer languages. With a complete formal description
available, one could organize a compiler as shown in Figure 10.

The syntax meta-language used in FSL is very close to the Floyd
[Flo 61] and Evans [EvA 64] production language and is discussed in
Section II.A5. A statement in this syntax language may include a
command "EXEC n" which is a call on the semantic statement labeled
-n. The only other interaction between syntax and semantics is the
pairing of syntactic and semantic descriptions in the pushdown stack.
This clean division of syntax and semantics has some advantages, but
has proved to be a great handicap in implementing certain languages.

The semantic meta-language, called the Formal Semantic Language
(whence FSL), was the main focus of effort and will be discussed in
some detail here. The overriding consideration in FSL was machine
independence as opposed to object code optimization in the TRANGEN
effort discussed below. The plan was to have the meta-language be
machine independent, with the machine dependent aspects of translation
handled by a large set of primitives imbedded in the basic compiler.
Statements in the meta-language would be compiled into machine code
made up largely of calls on primitive routines. Some examples should

serve to illustrate this approach.
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Suppose the syntax phase is processing a REAL declaration and
calls semantic routine 1 with the identifier being declared in the

second position of the stack (LEFT2).

1: TO « STORLOC; SET[TO,DOUBLE];
ENTER [SYMB; LEFT2, TO, REAL, LEV];

STORLOC « STORLOCH2

'The current value of STORLOC (the storage pointer) is placed in a
temporary and tagged with bits marking it a double-precision operand.
Then a description of the variable is placed in the symbol table, SYMB.
The entries for the variable are its name, the tagged address, the
word REAL, and the current level. Finally, STORLOC is increased by
two, allocating two cells to the double-precision variable.

When an identifier is scanned in an arithmetic statement,

semantic routine 2 is called.

2: IF CONST[LEFT1] THEN RIGHTl « LEFT1
ELSE IF SYMB[LEFT1,,$,] = REAL
THEN RIGHT1 « SYMB[LEFT1,$,,]

ELSE FAULTL -

In semantic routine 2, the predicate CONST is applied to the
identifier (in IEFT1) to test if it is a constant. If so, the stack
is adjusted and the routine terminates. If not, the identifier is a
variable and must be looked up in the symbol table. The table-lookup

is accomplished in FSL through a special table operand of the form




SYMB[ LEFT1,,$,] .

This operand initiates a search of the table SYMB for an entry in the
first row which equals the contents of LEFT1. Then the position of
the $ is used to select the desired entry of the matched row.

In routine 2 the third entry (data type) of the matched row is
selected and compared with the string construct REAL. If they are
the same, the variable was declared to be REAL and all is well. In
this case the second entry (tagged address) of the matched row in
SYMB is assigned as the semantics of the real variable. If the
variable is not of type REAL or is not in the table at all, the state-
ment FAULT 1 will be executed. This causes the printing of an error

message on the listing of the source language program being compiled.

Finally, suppose the syntax has recognized an addition which is

to be compiled and calls semantic routine 3.

3: CODE(VALUE2 « LEFT4 + LEFT2);

The code brackets 'CODE(' and ')' specify that the statement
within them is to be compiled into object code, rather than executed
during translation. This statement will produce a call on a code
generating routine which uses the semantic descriptions in the second
and fourth positions of the stack to compile an addition code-sequence.
The result of an addition is itself an expression and the syntax is
presumed to have put its symbol (E) into the second position of the

stack. The assignment to VALUE2 will associate the semantics of the
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result (e.g. DOUBLE, in accumulator) with the syntactic symbol. The
FSL system allows almost all constructs to appear inside code brackets
(to be done at execution time) or outside code brackets (to be done
during translation).

The semantic meta-language, FSL, allows a compiler writer to
declare and use a variety of data structures in building a translator.
Besides the tables mentioned in the examples, there are stacks, masks,
strings, and conventional cells. The language also includes other
features such as chaining, addressing levels, and output statements
which facilitate compiler writing. The Formula Algol compiler was
largely written in FSL and the description [It 66] of that implemen-
tation provides a good study of the strengths and weaknesses of FSL.

The weaknesses of FSL can be characterized as the lack of sev-
eral conveniences and a number of basic structural defects. The lack
of conveniences such as index variables, assembly language embedding
and debugging aids are due to its development as a thesis (hit and
run) project and have been remedied in later systems. The structural
defects result mainly from the attempt to preserve machine independence.

An FSL system is useful to the extent that the compiler-writer's
needs are met by the facilities of the semantic meta-language. This,
in turn, 1is possible only if there are suitable formalizations of the
pertinent concepts. Thus all the research problems listed in
Section ITII.C (e.g. data structures, paging, parallelism) are
problems in any FSL system. Neither of the systems now running have

good facilities for global code optimization or multipass compilers,

73



but these problems are being attacked by Gries [Grie67b] at Stanford
and the CABAL group [Fie 67] at Carnegie. There are, however, limits
to the level of code optimization which can be achieved in a machine-
independent way. There is a sense in which any FSL system is predes-
tined to failure; techniques will always be used before they are
sufficiently well understood to be formalized. Such a system can still
be very helpful and the search for meta-language representations should
lead to careful study of new techniques.

The only other FSL-like system completed to date is VITAL [Mond 67]
at the Lincoln Laboratory. VITAL runs in a time-sharing environment
and differs from FSL mainly in system features. These, along with a
number of notational improvements, make VITAL much easier to use, but
are of little theoretical interest. As an illustration we present the

routines described above as they would appear in VITAL.

1: ENTER[SYMB; LEFT2, (STORLOC|DOUBLE), rREAL, LEVI;
TALLY[ STORLOC, 2]
2: IFNOT LEFT1 IS CONSTANT THEN
IF SYMB[LEFT1, TYPE] = REAL THEN
RIGHT1 « SYMB[LEFTl, SEMANTICS]
ELSE FAULT 1 :

3: RIGHT2 « CODE(LEFT4 + LEFT2)

There are also several substantive changes from FSL, including a con-
ditional in the syntax language which depends on semantic information.

The combined features of persistent storage and compile-time execution
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facilitates the writing of incremental compilers, VITAL also allows the
compiler-writer direct access to the accumulator marker and semantic
words if he so chooses.

The FSL systems have undoubtedly been handicapped by being imple-
mented on uncommon machines, the G-20 and the TX-2. To compensate for
this there are now three separate implementations for the IBM 360 series
in progress. The CABAL group at Carnegie [Fie 67] is designing a system
for multipass compilers using a semantic language which is a minimal
extension of ALGOL in the direction of FSL. The work under Gries at
Stanford [Grie67b] will also be multipass-oriented, but will use a
special purpose semantic language. The Lincoln Laboratory effort under
J. Curry will probably be quite similar to VITAL. All of these projects
may be considered attempts to combine the virtues of FSL with those of

TGS, bur next subject.

2. TGS (Cheatham et al. [Plas 66, Che 65])

One of the most productive groups in TWS research has been the
small consulting company, Massachusetts Computer Associates (COMPASS) .
Although their TWS have undergone many changes, the basic world-view
and goals of their effort have remained rather constant. The COMPASS
work has been marked by careful attention to systems questions and to
object-code optimization. Other aspects of their effort are discussed
in Section II.C5 which deals with an extendible compiler scheme within
165 . ,

The first attack on the TWS problem at COMPASS was called CGS

[War 64] and was quite different from their current work. Although
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they have abandoned this approach, we will discuss it briefly here

because it seems to be rediscovered periodically. The CGS system was
based on a top-down recognizer which produced a syntax tree to be used

in further analysis. The input to this phase was essentially BNF. The
second phase was the generation of intermediate code using a tree-matching
language called GSL. The actual code selection process was written in a
third language, MDL. This effort was abandoned because trees were

found to be slow to build and difficult to do pattern recognition upon,

The TGS systems differ from CGS, as well as the other systems
described in this section, in the use of a single language for describing
all phases of the compiler. This language, TRANDIR, is compiled into
an interpretive code which is processed by the TRANGEN interpreter. If
one combines the syntax and semantic loaders of Fig. 10,the FSL model
applies quite well to TGS. In fact, there has been good communications
between these two efforts and they have converged to a marked degree.

The communication has not, however, been perfect; two concurrent
implementations of TGS and FSL took place within a few hundred yards of
each other without making contact.

The TRANDIR language contains a pattern-matching subset which is
essentially the same as the syntax language used in FSL (cf. Section
II.A5). The TGS version is more flexible in that it can be used on a
variety of stacks and can match on properties other than identity of
symbols. The pattern matching features can be used in various code
optimization techniques as well as in syntax analysis.

The remaining features in TRANDIR language are quite similar to

the semantic language in FSL. There is a "symbol description" (SD)
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connected with each syntactic construct which is the analog of the
"semantic word" in FSL. There are fairly elaborate facilities for
declaring tables, stacks, masks, etc. for use by the translator. These
various storage methods with the associated operators provide a very
flexible means of recording and accessing the information needed for
compiling efficient code. The FSL notion of code brackets is replaced
in TGS by a series of symbol manipulation primitives to help the
compiler writer produce output code. The operation of a TGS compiler
can be best described by working through an example fairly completely.
The example will be taken from a compiler for a miniature algebraic

language L, described in [Plas 66]. The basic compilation technique

to

chosen is to use a tabular intermediate code as is common in COMPASS

compilers [Che 66]. A typical intermediate code translation of
Z «X *Y
would be

@ TIMES X Y

@ STORE Z @

The intermediate code will be processed by a code selection phase
which will produce the final output for later assembly.

Consider first the TGS statement:

...VAR AE // EMIT(STORE,COMP(1),COMP(0));

EXCISE; TRY (ENDST).
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The left part (up to the //) of this statement is a pattern of
type <variable> <expression> which is compared with main stack
(SYMLIST) . If a match is attained the remainder (action part) of the
statement is executed. The action EMIT produces a STORE intermediate
instruction with the operands being the first and zeroth elements of
the stack as matched. Since there is no resulting semantic descrip-
tion (SD), the action EXCISE is used to erase the two matched elements
from'the stack. Finally, the action TRY(ENDST) directs TRANGEN to try
to match the pattern labelled ENDST.

A somewhat more complicated routine would be used for recognizing

a multiplication:

...VAL $* VAL // PHRASE(SYMRES(TIMES,COMP(2),COMP(0)));

AESET: SYNTYP (COMP(0)) = AE; TRY (AE1)

When one understands that "$*" denotes the terminal symbol "¥",
the left part of this statement should be clear. The action SYMRES is
a call on a routine which performs an EMIT of the same parameters and
also returns an SD as its value. This SD becomes a parameter to
PHRASE which uses it to replace the matched portion of the stack. The
action labelled AESET causes the syntactic type of the new top element
to be assigned the value "AE". Finally, the statement TRY(AEl) leads
to further expression processing.

These two TGS statements, if appearing in reverse order, would
compile "Z « X * Y" into intermediate language. In the real world,

typical statements would involve table operations, string commands,
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conditionals and other more complicated TRANDIR constructs. There are
also fairly sophisticated <procedure> features which improve the
readability as well as the writability, of translators.

In any event, the intermediate code will itself be processed by
another set of TRANGEN routines called the code selectors. These are
written in the same form as the syntax routines considered above.

For example:

// ~TIMES  INMEM INMEM...

LOADMQ (XM+1) .

This statement has a pattern involving a predicate INMEM (meaning in
memory) on stack entries rather than symbols to match. (The delimiters
"//"and " . .." indicate that the pattern is to be matched against the
intermediate code portion of the stack). The subroutine LOADMQ is
called with a pointer to the second stack operand as parameter. This
user-written routine will assemble a LOAD MQ command if necessary and
will adjust the SD in the stack to reflect the fact that one operand is
now in the MQ register. A similar routine will be used to compile the
appropriate multiply sequence. The result will be in the accumulator

and TRANGEN will eventually match the statement:

// ~STORE *%  *INAC .
IF SIGN(SYMBOL(ACHOLDS))THEN
C5: EMIT (CHS);
C4: EMIT (STO, ARG(1l));
C5: LINE(TEMPS) = 0;
ACHOLDS = 0; MQHOLDS = 0; TO (STEP)
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The pattern here contains a "¥*" yhich is always matched and a *
meaning indirect reference. If the operand in the accumulator, which
is described by ACHOLDS is negative a "complement" (CHS) instruction
must be emitted. The store command is emitted in any case without any
tests on the variable to be replaced. The succeeding actions effect
the state of the translator, reclaiming the temporaries and freeing the
AC and MQ registers. Finally there is a transfer to the action STEP
which sequences through the intermediate code.

The TGS system has been implemented on several computers and has
been used in the construction of a variety of compilers. The compiler
writers have been professionals and have not been constrained to stay
within the formal system. The use of TGS has been sufficiently

valuable to COMPASS that they continue to use it on commercial com-
pilers. The main differences between TGS and FSL accurately reflect
the difference in design goals: TGS allows more flexibility by
requiring more detailed information from the compiler-writer. The
efforts of Gries [Grie 67b] at Stanford and Fierst [Fie 66] at Carnegie
are attempts to have the best of both by allowing simple code state-
ments as well as multi-phase- processing. Both VITAL [Mond 67] and
the most recent TGS [Plas66] are interactive and have sophisticated

trace, edit, and debug features.
3. CC (Brooker, Morris, et al. [Brook 67])

The CC (Compiler-Compiler) project at Manchester University is

the oldest and one of the most isolated TWS efforts. Rosen [Ros 6hal
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has attempted to play Marco Polo to this imperial court, but trade has
been slow. The CC system has been running for some time and has been
used to implement several algebraic languages [Cou 66, Kerr 67].

The CC effort has concentrated on problems of semantics; the
syntax analysis is top-down with memory and one symbol look-ahead
(cf. Section IIA). The result of syntax analysis is a complete syntax
tree which is used by the semantic phase. This is, of course, a slow
process and there are informal provisions for other techniques. We
will follow the formal treatment here, taking some liberties with
their notation.

The input to the syntax phase is like BNF except for the optional
use of a repeat operator (*) to replace simple recursions. The notion
of non-terminal symbol is divided into PHRASE and FORMAT. The FORMAT
non-terminals may be introduced in macro-fashion and each has an
associated (semantic) ROUTINE. The FORMAT symbols are further qual-
ified as [SS], [AS], [BS] meaning respectively source statement, aux-
iliary statement, and pre-coded basic statement. For example, a source

language assignment statement might be defined as:.
FORMAT[SS] = <variable « <expressior> .

Among the useful auxiliary statements would be:

FORMAT [AS] LOAD <preceeding > <term>

FORMAT [AS] ACC « ACC <® <term>



Each of these would have an associated routine, whose first line
contains its calling syntax rule (FORMAT). The routine for the

assignment statement might be:

1) ROUTINE[SS] = <variable « <expression>

2) LET <expression> = <preceeding £ <term> <terms>
3) LOAD <preceeding £ <tern>

4) L2: GOTO L1 UNLESS <terms> = <term> <terms>

5) ACC « ACC < <term>

6) GOTO L2

7) Ll: STORE ACC IN <variable>

8) END

In order to understand this routine we need two PHRASE

definitions:

PHRASE <expression> = <preceeding I <term> <termg>

PHRASE <termg> = <£> <term> <terms> | <empty>

Notice that the unusual form of recursive definition facilitates
sequential code generation. -

Line: 1) is the header containing the syntactic construct (FORMAT)
associated with this routine. Line 2) 1is a substitution statement and
is not an important consideration here. The rest of the statement is
a loop for compiling a string of 'add' and 'subtract' commands and
then storing the result. The statement on line 3)is a call on another

ROUTINE[AS], this one forming as many successive products and quotients
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as possible. Other statement forms such as GOTI0 and STORE are pre-
sumably pre-coded and thus of form ROUTINE[BS]. Notice that state-
ments like that on line 5)imply "using up" syntactic constructs as
they are processed.

The built-in part of CC contains, besides [BS] routines, a fairly
complete resident system (PERM). There is also a facility for deleting
many routines at the completion of the compiler building (PRIMARY)
phase. If these routines are left in, the compiler is an extendible
one in the sense of Section II.C. 1In fact, the earlier CC systems
would be better described as extendible compilers altogether.

In the earlier versions of CC, the formats and format routines
for a language were kept in an encoded form and interpreted by the
compiler. The actual mechanism was a tree matching and substitution
process somewhat similar to that of Galler and Perlis (cf. Section
III.C6). The detailed procedure is quite complicated and is described
rather completely in Rosen [Ros 64a]. The current CC system is
interesting in that viable extensions to a language can often be
"compiled into" the translator with considerable savings in time and
space. There are still some routines 'which must be interpreted and
the ratio of the two types for a given extension is not easy to
determine.

The CC group has recently produced a number of reports on the
uses and performance of their system. These include the first attempt
ever to compare a TWS with handwritten compilers [Brook 67]. Brooker

was able to (in a year) reduce the space required by a factor of two
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and the time by about five by hand coding an Atlas Autocoder compiler.
The results are hard to interpret without more information; the formal
CC system uses techniques which are intrinsically time and space
consuming. One hopes that this attempt will induce the CC group,

as well as others, to make more careful studies. There are also

two adaptations of CC technique underway in England. The first
involves imbedding much of the CC system in the ALGOL-like language
ATLAS AUTOCODER [Br 67al. The other effort is an ambitious attempt

to generalize CC to a source and object code independent system

[Cou 67].
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III. Related Topics and Conclusions

ITI.A. Other Uses of Syntax-Directed Techniques
Very early in the TWS development, it was observed that syntax-
directed techniques could be used in a wide variety of problems. A

syntax-directed approach can be considered whenever the form of the

input to a program contains a significant part of the content.
Individual applications of syntax-directed techniques tend not to get
written up. The applications presented here are based largely on
personal knowledge and, though perhaps representative, are certainly
not comprehensive.

The TWS systems described in Section II vary widely in the ease
with which they are put to other uses. The syntax-directed symbol
processors are the most flexible and seem to be the most widely
applied. One such system, AED [Ross 66], was designed from the out-
set to be a general purpose processor. Because of certain peculiarities
of attitude and terminology, the AED project has had little effect on
other TWS efforts.

The syntax phase of AED is based on a precedence technique similar
to those described in Section II.A. By incorporating type checking and
the ability to add hand-coded syntax routines, the AED parser becomes
more powerful at the cost of violating the underlying theory. It is,
however, the intermediate representation of AED statements that is
most interesting. This is based on the use of plexes, which are data
structures whose elements each can have many links. The construction
and processing of the "modelling plex" are accomplished with a set

of macro routines. These might include routines for code generation,
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computer graphics or programmed-tool commands. Reference [Ross 63]
is a good introduction to the AED system with detailed examples of its
use in several problem areas.

The essential features in the AED system are the precedence matrix
in syntax and the plex manipulations in semantics. A somewhat different
approach to the syntax-directed universe can be developed from the
general compiler-compiler model discussed in Section II.D. In this
scheme, the entire semantic mechanism, including the choice of data
structures, can be different for each application area. In the VITAL
[Mond 67] effort, two basically different data structure languages
(both written in VITAL) are being compared in a syntax-directed graphics
package [Rob 66].

Most of the other applications of TWS systems have been in
symbol manipulation tasks of one sort or another. Some of the first
applications [Schor 65] were in symbolic mathematics. A TWS would be
used to help model the structure of an expression, perhaps for
simplification or differentiation. The use of TWS (esp. COGENT, META)
in symbolic mathematics is currently widespread and has given rise to
systems [Cla66] constructed specifically for that purpose. There
have also been a few pure mathematicians (e.g. [Gro 66]) who have
found the syntax-directed model useful.

The most widespread and least surprising application of TWS is
in problems of format conversions. These arise in connection with
large data files and in translating between closely related source-

language to source-language translators. Once again, the syntax-
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directed symbol processors of Section II.B have been used the most

often. These systems have also been of some use in such varied
tasks as: logic design, translating geometric descriptions, and
simulation.

There are also a number of applications of TWS techniques to
produce command sequences for special purpose devices. For example,
a fairly sophisticated TWS [Cas 66] was used in translating commands
for various components of a satellite tracking system.

In addition to their direct application in many fields, the TWS
have inspired work in several others. One active area has been the
syntactic-description of pictures. There are: a number of:published
papers (e.g. [Nar 66]) and a great deal of current work which has not
yet seen print. The pattern matching features incorporated in the
new list-processing languages [Ab 66, It 66]¥re partially inspired
by TWS.

Computational linguistics, in both its theoretical and practical
aspects, is closely related to TWS studies. The applications here,
though fewer than one would suspect, have been significant. The
syntactic theories of computational linguistics and TWS both are
based on the early work of Chomsky [Chom 63] and share many ideas.
The implementations of English syntax (esp. [Kun 62]) developed con-
currently with top-down TWS, but the natural language efforts have
been slow to incorporate the efficiency improvements developed in TWS
work. In applied semantics, the DEACON project [Th 66], whose approach

was quite novel to linguists, can be looked upon as a straight-forward
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application of TWS techniques (cf. [Nap 67]). One can expect to see
more interaction between these research areas as linguists attempt to
test semantic theories and TWS workers attempt to cope with non-
procedural languages.

The last, but by no means the least, of the applications
considered here is to teaching. Several of the TWS systems described
above have been used as the basis for courses on translator-writing.
These have ranged from undergraduate courses to faculty seminars
and have been well regarded. Although they can be taught without
machine problems, these courses are much more successful when the
students have easy access to the TWS under discussion. This approach
to teaching was sufficiently appealing to cause D. Knuth at Cal Tech

" to implement a version of TMG (called TROL) largely for that purpose.
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IITI.B. Related Mathematical Studies

Computer science owes much to mathematics and is beginning to pay
off that debt. Both the syntax and semantics of programming languages
have inspired formal treatments. 1In this section we will briefly dis-
cuss the developments most relevant to TWS and provide an entree to the

literature on the formal aspects of programming languages.

IIT.Byl. Syntax

We will discuss briefly some theoretically interesting left-right
recognizers and their construction algorithms. Of course, given a
grammar G and a string X, there is a relatively simple method for test-

ing whether x belongs to L One can generate all strings belonging to

G
LG of length equal to length (x) and see whether x has been generated.
This is not very practical. 1In contrast to those in II.A., these have
not yet been used to write compilers, due to their complexity. The
construction algorithms are interesting because they give sufficient
conditions for the unambiguity of a grammar, besides mechanically pro-
ducing the efficient left-right recognizer. By efficient we mean that
no backup is necessary - the recognizer can always detect the handle.
a) (1,1) Grammars - Eickel et al. [Ei 6p]

By inserting intermediate productions (cf. Section II.Ak), the
constructor changes the grammar to one consisting of production of
length one or two - U -8 or U —>81%,

When looking for a handle at the top of the stack, the two top
stack symbols and the incoming terminal symbol must uniquely determine
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the step to be taken. Thus, for each triple (Sl’se’T) one and only

one of the following conditions must hold:

1) 8182 is a handle and one reduction U ::= SlS2 may be executed.
2) 8, is a handle and one reduction U ::= §, may be executed.
3) T must be pushed into the stack.

L) SlsET may not appear as a substring of a sentential form (error).

The algorithm for producing the triples and the corresponding action is
given in [Ei 63], along with examples. This algorithm and the recog-
nizers produced have been programmed and tested, but not used to write

compilers.

b) Bounded Context Grammars

A grammar is called an (m,n) bounded context grammar if and only

if the handle is always uniquely determined by the m symbols to its
left and n symbols to its right. A left-right recognizer may thus
find the unique canonical parse of a sentence of an (m,n) bounded
context grammar by considering at each step at most m symbols to the
left (into the stack) and n terminal symbols to the right of a possible
handle. The first four types' of grammars discussed in Section II are
(l,l) bounded context grammar, as are all grammars accepted by the
Eickel-Paul-Bauer-Samelson constructor [Ei 63].

Recognizers for (m,n) bounded context grammars for m> 1, n > 1
are likely to make unreasonable demands on computer time and storage
space. Therefore (m,n) bounded context grammars have not been used

so far in compilers. There have been three major papers on bounded
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context analysis. Each of them defines "context bounded" slightly
differently. The idea behind all of them, though, is the same, and
we will not discuss the differences here.

The paper by Floyd on Bounded Context [Flo 6ka] and the paper by

Irons on Structural Connections [Ir 64] should be read by any person

interested in delving further into the mysteries of bounded context.
However neither gives an algorithm for actually generating the recog-
nizer . Eickel's aim [Ei 64] is to describe the recognizer and its
construction in detail (and is therefore less readable than the other
two). The recognizer uses the usual stack, and a pointer p to the tail
symbol of a possible handle. As in [Ei 63] the grammar is restricted
to productions of length 1 or 2 (this is not a restriction ONthe

language) . The generator produces 5-tuples
(%38 5y,k,U)

where X,y are strings with length (x) < m and length (y) < n, S is a

symbol, U a non-terminal, and k a number. Suppose the stack contains

S.o. . .Sp—ls ps p+l.‘.si

Sp, the symbol at the reduction position, is then tail of a possible

handle. The 5-tuples are searched until one is found such that S = Sp;

x 1s a tail of S S ..S and y is a head of Sp+l"°si’ The step to be

taken depends on the corresponding k and U as follows:
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k action

0 stop - syntax error
1  replace handle SP by U (make a reduction U - Sp)
2 replace handle S S_ by U (make a reduction U - S S );
P-1p p-17p
P +-P-1
'3 if p = i then push next symbol onto stack else p « ptl

4 push next symbol onto stack (more context needed on the right).

Eickel has programmed and tested both the constructor and recog-
nizer, but no compiler has been written using this technique. The
constructor starts by limiting the length of x and y to 1 and producing
all possible 5-tuples. If two (or more) 5-tuples exist with the same
X,y and S but different i (or the same i but different U), then the
grammar is not (1,1) bounded context. For such 5-tuples, the lengths
of x and y are alternately (or in some other predetermined order)
increased, thus adding more context, until the conflict is resolved
or some maximum m,n are reached.

Wirth and Weber [Wir 66c] extended the idea of precedences (see
Section II.A2) to strings. Thus we have x®y , xQy and xQy where

length (x) < m and length (y) < n. A (m,n) precedence grammar is of

course also (m,n) bounded context according to our definition. A
precedence grammar according to Section II.A2 is a (1,1) precedence

grammar.
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c) Deterministic Push-Down Automata (DPDA). Ginsburg and Greibach

[Gin 66b]

A DPDA is a formalization of the concept of a left-right recognizer
working with a stack and using the usual notation of automata theory -
one has a set K of "states" containing a start state k, a set of inputs
@ (terminal symbols), a set [' (corresponding to our nonterminal

symbols) containing a start symbol T, and a mapping §;

S : (states x (nonterminal symbols) X (input symbols)) -
(states x (strings of nonterminal symbols))

or

§ : (K x M x (@Ul€}) ) » (K x p %)

This mapping § must be a function (single valued). Other restrictions
are also placed on it to take care of the empty symbol € which may

appear anywhere in the input. At each step we have a triple

(k > UpeeeU s Tj...Tm )

state stack rest of input
(where 1> 1), the initial triple—being(E,ﬁ,Tl“.Tm).At each step,
with the help of the mapping (k’Ui’Tj') = (kl,U]'_-. . Un) where n > 0,

the triple gets changed to

T |
m

tLLLur, T, oo
(kl, UpeenUy UpeeeUs Ty
A string (of inputs) is accepted if the final state km is a member of

a set of final states F.
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A language (a set of strings of input symbols derivable from some

grammar) is deterministic if it is accepted by some DPDA. Ginsburg

and Greibach prove some interesting properties of DPDAs and determin-
istic languages. Note that a deterministic language is defined by a
DPDA - and not by certain properties of the grammar defining the
language. What is significant for us here is the relation to LR(k)

languages of Knuth (below).

d) IR(k) Grammar (Knuth [ Knué65])
A grammar is IR(k) if and only if a handle is always uniquely
determined by the string to its left and the k terminal symbols to its

right. The corresponding language is an IR(k) language. Thus, when

- parsing a sentence using a stack, the left-right recognizer may look

at the complete stack (and not just a fixed number of symbols in it)
and the following k terminal symbols of the sentence. This is the
most general type of grammar for which there exists an efficient left-
to-right recognizer that can be mechanically produced from the grammar.
In fact, a grammar accepted by any of the other constructors discussed
is LR(1). Thus, the IR(k) condition is the most powerful general test
for unambigquity that is now available.

Knuth gives two algorithms for deciding whether a grammar is
IR(k) or not, for a given k. The second algorithm also constructs
the recognizer - if the grammar is IR(k) - essentially in the form of
a DPDA (above). Knuth shows that for each LR(k) language L there
exists a DPDA which accepts L. Moreover, for each language L accepted

by a DPDA there is an LR(l) grammar which defines L. Thus, any LR(k)
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language is also IR(1). Earley [Ear 67] has written a constructor for
an LR(k) grammar, whose output is in the form of productions, similar

to but more complicated than the Floyd-Evans productions.

e) Recursive functions of regular expressions (Tixier [Tix 671)

Many compilers break the syntax analysis into small parts. Thus,
one subroutine will recognize <expressions> while another will handle
<declarations>. A saving of space arises because the character set
involved in each subroutine is quite small. For instance, one might
have three 20 x 20 precedence matrices instead of one 60 x 60 matrix.
Tixier has formalized this concept quite nicely in his thesis.

One can consider a non-terminal symbol as a variable denoting the
set of terminal strings which are derivable from it. The productions
can then be transformed into sets of equations using the set operations

union (+), product and closure (*). Thus the productions

<identifier> e <letter>

<identifier> «<identifier> <letter>
may be written equivalently as

<identifier9 <letter> + <identifier> <letter>

or

<identifier> <letter3 <letter>*

Tixier has rewritten the 120 productions for Euler [Wir 67c] as 7

functions of 7variables, 3of which we give here (the symbols "(",

9




")" are meta-symbols used to bracket set expressions):

program = Lblock L
] , ] %, % * *
block = begin((new id + label id);) (i:) expr(;(i:) expr) end
*
expr = (out + if expr then expr else + i ([expr]+.)* )

(goto primary + block + catena)

The point is that one can now mechanically construct a finite
state automaton,which is very efficient, to accept each of the above
expressions. One can then connect these automata by a pushdown stack,
so that they may (recursively) call each other. Thys, when the finite
state automaton for "program" (see above) decides that a "block" must
be recognized, it places in the stack a return point to itself and

calls the "block" automata.

Tixier has formalized this in his thesis and shows how to construct

an efficient restricted DPDA for a certain class of grammars, called

RCF, These languages are thus IR(1).
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The diagram below presents an inclusion tree for the classes of
grammars accepted by the particular constructors discussed in this

section and in Section II.A.

deterministic (IR(n))

(m,n) bounded Product ion

context language

(l,l) grammar

Extended transition matrix

(c)

operator precedence

precedence

(a) Although (l,l) grammars and extended precedence grammars both use
triples, the advantage for (1,1) grammars arises from the automatic
intermediate reductions performed, which essentially allows more context.
(b) Transition matrix grammars fall somewhere between (1,1) and (0,1)
bounded context.

(c) We are making the assumption here that the operator precedence
conditions have been augmented to include conditions for a unique
canonical parse (cf. Section II.Al). Otherwise inclusion does not hold.
The advantage of the matrix technique over operator precedence is, as in

(a), the use of automatic intermediate reductions.
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Introduction to the theory of formal languages

Bar 64, Gins 66a.

Pure or modified top-down algorithms

Barn 62, Br 62a, Che 64c, GraR 64, Ing 66, Ir 63a, Kun 62, Kir 66,

Rey 65, Scho 65, War 6k.

Construction of efficient recognizers - sufficient conditions for

unambiguity
Ea 65, Ea 67, Ei 63, Ei 64, Flo 63, Flo &b, Gins 66b, Grie 67a, Ir 64,

Knu 65, McKee 66, Paul 62, Wir 66c, Tix 67.

Surveys, tutorials on recognizer techniques

Che 64c, Flo 64b, GraM 6k4.

Ambiguity in context free languages

Can 62, Flo 62a, Flo 62b, Gor 63, Lang 6%, Ross 6.

13 different ways to define languages

Gorn 61.
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III.B.2. Semantics

Any formal study of the semantics of programming languages
immediately confronts the problem of separating syntax from semantics.
Programming languages combine ideas from logic (where the problem is
solved) and natural language (where it is no longer taken seriously).
In most treatments of programming languages, syntax is taken to be
precisely these aspects of language describable in the syntactic meta-
language under discussion. This practice has the unpleasant effect of
changing the definition of syntax with each change in meta-language.

Computer scientists trained in logic (e.g. [Tix 67]) would like
us to adopt the definitions used there although this approach has not
proved effective for natural language and has immediate problems in

programming languages. For example, are the statements

x «Y /0.0

Ll1: GOTO L1

well-formed in ALGOL 60? Surely, an algorithm capable of handling data
types could detect these errors, and the question is now one of how far
to go. It is not obvious that one could produce a notion of syntax
which satisfied a logician's tastes and still left well-formedness a
decidable property.

The situation is further complicated by the fact that all major
languages contain statements unparseable by the formal syntax alone.

An example from ALGOL 60 is:
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X « IF B THEN C ELSE D > E

the structure of which depends on whether "C" is Boolean or arithmetic.
Thus, 1in practice, syntax-directed compilers must incorporate "semantic"
features in the syntax phase. One ingenious approach to the separation
question is the abstract syntax [McCar62a] of McCarthy. He is mainly
concerned with semantics and considers (analytic) syntax to be just the
set of predicates and functions necessary to extract pertinent infor-
mation from the form of a source string. This does not "solve" the
problem of defining syntax but does enable one to consider semantics
without facing the separation question.

As usual, formal studies of semantics have lagged behind work on
the syntax of programming languages. By far the best general work on
this subject is [Ste 66] where the discussions, even more than the
papers, provide an overview of formal semantics. The various formal-
izations that have been presented are all procedural; they are either
abstract machines or imperative formalisms such as the h-calculus
[Chu.51]. This is reasonable to expect, but greatly restricts the
choice of existing mathematical models.

Since the formalizations are procedural one might prefer the word
"effect" to "meaning" in the description of programming languages.

This is not the place to defend the notion of semantics as effect and
we will adopt it merely as a convenient way of looking at things. This
view does lead one to expect a program to have different effects depend-

ing on an "environment" and this will prove useful in our discussion.
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It might also lead one to suspect that the choice of semantic meta-
language will be influenced by the intended use of a formal description.
The existing efforts in formal semantics may be separated into
those concerned with proofs about programs and those interested in
elucidating the processing of programs by computers. Among the latter,
one might include the semantic meta-languages described in Section II.D,
although this is not de rigueur. There are, however, slightly abstracted
translation models (e.g. [Wir 66c]) which are considered acceptable.
In any such model, a language can have very different effects depending
on whether its translator is an interpreter or a compiler. This seems
reasonable to programmers, but disturbs mathematical types who would
prefer to see meaning reside in the algorithm rather than the program.
A related set of developments are the attempts to define all programming
languages by reduction to a single high level [ Ste66] or machine-
like [Brat 61, Ste 61] language.

The approaches to formalization described above are more closely
related to TWS, but are far too complex to be very useful in proofs.
For those who consider proofs to be the sole end of formalization (and
would be reading this paper at all) the preceding paragraph will be
considered an anathema. An interesting halfway house is to be found in
the work of Van Wijngaarten and de Bakker [Bak 65 , Wij 66]. They
attempted to reduce the complexity of their model by using a universal
Turing machine. This machine had only a few rules, which would inter-
pret additional rules, eventually forming a translator which would
recursively translate e.g. ALGOL. The difficulty was that the formalism

was so primitive that the ALGOL semantics became a large paper and
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neither proofs nor insight seemed to result.

Most mathematically based attempts at formalization have stressed
tractability and have almost all been based on existing mathematics.
There are only a few imperative systems in logic, and each has been
used in formalizing some aspect of computer science. Most of the work
in formal semantics is based on the h-calculus of Church [Chu 51] and
the combinator calculus of Curry [Cur 58].

Both of these theories were primarily concerned with the role of
variables and their successes in programming languages have been largely
in that area. The h-expression plays a crucial role in LISP and is
discussed as a programming concept in various LISP documents
It is also the most popular vehicle for attempting to formalize

semantics. The work of Landin and Strachey [Lande 66] is particularly
interesting because they combined their research with the development
of an extension of ALGOL 60 called CPL [Burs 65, Cou 65].

The applications of h-calculus to semantics have been pursued most
diligently by Landin. In a series of papers he considers the relation-
ships between programming languages (ALGOL) and an augmented h-calculus
called imperative applicative expressions (IAE). The declaration and
binding of variables in ALGOL is modelled quite clearly and the formal-
ization has helped point out some weak spots in ALGOL. The IAE system
(like pure LISP) is purely functional and must represent statements as
O-adic functions with side effects on the environment. In fact, much
of Landin's description of ALGOL can be viewed as a generalization of

the "program feature" in LISP [McCar 62b]. Thus far, these efforts
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have neither achieved the descriptive clarity nor maintained the
tractability of h-calculus in accordance with the original plan. The
most conspicuous benefit of the work has been CPL [Cou 66] which is
an extremely civilized language. There is presently an active group
at M.I.T. which is pushing this approach as far as it is ever likely
to go.

Although he introduced the h-calculus into computer science,
McCarthy has taken a somewhat different approach to formal semantics.
His term "theory of computation" indicates that he is more concerned
with algorithms than with algorithmic languages. His approach utilizes
a state vector, operations upon it, abstract syntax and conditional

expressions. Typical state functions are

c(x,a)

A(x, z,a)

read the contents of symbolic position 'x' in state vector 'a' and
the state resulting from substituting 'z' for 'x' in state vector 'a'.
He is then able to get conditional expression definitions of
machine-code-like operations and constructs found by the abstract
syntax. The resulting formalism is fairly tractable and McCarthy
and his students have been able to push through a number of proofs
[McCar 67].

A more recent, and intuitively more satisfying, approach has been
developed by Floyd [Flo 67]. He considers the flow chart of a program

written in an ordinary (fixed) programming language. The basic idea
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is to attach a proposition to each connection in the flow chart; the
proposition is to hold whenever that connection is taken during
execution (thought of as interpretation). With these propositions and
some related mechanisms, Floyd establishes techniques for proving
properties of the form "If the initial state satisfied Rl then the
final state will satisfy R2, if reached." Proofs of termination are
handled by showing that some function of, say, the positive integers
decreases as the program is executed. There are current efforts to auto-
mate both the generation of propositions and the proofs of correctness
for restricted languages.

Our description of the work in formal semantics has been
sufficiently shallow to perhaps be misleading. Most of these efforts
- have their comrades and fellow-travellers and the development has been
richer than we suggested; the references at the end of this section
should cover all major trends related to TWS. The impact of formal
semantics, especially the proof-oriented kind, has been limited to a
few isolated insights. There has been no work having the impact of
e.g. Krohn and Rhodes on automata theory. It is our conjecture that
this breakthrough is not to be found-in existing imperative logics;
programming languages will have to be faced directly as mathematical

and natural languages have been.

References for III.B.2

Bak 65, Braf 63, Burg 64, Burs 65, Chu 51, Cal 62, Cur 58, Flo 67, Ir 61,
Ir 63b, Landi 63, 65, 66, Luc 65, McCar 62a, 67, Org 66, Rig 62,
Ste 64, Tars 56, Tix 67, Zem 66.
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ITT.C. Summary and Research Problems

The TWS described in this paper represent the most recent devel-
opments in a long line of research by many outstanding computer
scientists. Each category described in Section II has its peculiar
strengths and weaknesses and a preferred problem domain. After a
brief summary of the relations between the various categories, we will
suggest a number of fruitful areas for future research.

The automatic constructors of recognizers, described in Section
II.A, are tools which are potentially useful in any problem attacked
with a syntax-directed approach. By automatically producing an efficient
recognizer, such systems should extend the useful range of syntax-
directed techniques. The major problem is to find a convenient way of
embedding semantic definitions in the synthetic syntax. A solution to
this problem would also produce a marked improvement in the capabilities
of the syntax-directed symbol processors of Section II.B. These TWS
all have fairly convenient methods for introducing semantics, but all
share the use of relatively inefficient recognizers. The already far-
reaching applications of such systems could be significantly widened by
the development of more efficient recognizers.

The meta-assemblers described in II.C are presently much better
suited to assembler-writing than compiler-writing. They have, however,
introduced several significant additions to macro languages which will
have a long range effect. By extending the facilities of meta-assemblers
for translation-time actions and adding a syntax phase one could make

them comparable to the syntax-directed symbol processors of Section IIL.B.
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The work on extendible compilers is more recent and difficult to
assess accurately, Although it seems clear that some macro facility
should be included in any high-level language, the more exotic systems
may be limited in their usefulness. 1In any event, it seems unlikely
that extendible compilers will compete with compiler-compilers in the
original implementation or radical change of a translator.

The compiler-compilers of Section II.D are the high point in the
evolution of specialized TWS. This specialization has made them by far
the most useful for compiler-writing,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>