
© THE PL360 SYSTEM

: oo Edited |

EE By

| NIKLAUS WIRTH

| TECHNICAL REPORT NO. CS 68 oo

JUNE 5, 1967

COMPUTER SCIENCE DEPARTMENT

| School of Humanities and Sciences

STANFORD UNIVERSITY

@

KOE a

PRS *

Lone

-~a

r

-

.

-

.

THE PL360 SYSTEM

| Edited

Niklaus Wirth

| Computer Science Department

Stanford University

Stanford, California |

AAD AR

.

&

a ,

‘

!

/
i
i

L}

. R .

‘ .
J

ERC

THE PL360 SYSTEM

Page

l. Introduction and Survey . . Ce ee ee ee ee eee 1 |
2. Jobcontrol instructions « « « « « « o « oo 0 os 0 4 ee ee b.

Table of available system programs |

3. Description of system programs « « « + « « « o « o 0 «4 a 5

3.1. The PL360 compiler « « + « o « « « o « oo oo so 0 « 5 |

5.1.1. The form of input decks . «. « « « « « « « « « « = 5

= 3.1.2. The language « + « + « « so o « « o os « « o o o 5 |

| 5.1.2.1. Symbol representation 5 |
3.1.2.2. Standard identifiers +. « « . . 6

~. 3.1.2.3. Restrictions . « « «+ « + « «oo +o. 6 |

3.1.2.4. Supervisor functions 7

5.1.2.5. Examples of Programs . . Cee eee 9
3.1.3. Instructions to the compiler. + . . . 13

3.1.4. Error messages of the compiler 14

3.1.5. The format of "binary" cards . . . « + « « « . . 16

3.2. Program to duplicate card decks (DUPDECK) . +. « + + « . . 17

5.3. Program to list cards decks (LISTER) + + « « + « + « « L7 |

3.4. Tape updating utility program (TUP) « « « « . . 17 |

3.5. System Tape updating program (SYSTUP) . . . « . « « . . . 20 |
3.6. Syntax processor (SYNPROC): + « + + « + + vo « « « « « « . 26

’ 5.7. Program to generate cross-reference tables of identifiers

(XREF): + + + vv ev ete ee ee ee ee eee. 20

4. Program execution (run-time) errors . . +. + + + + + + « + « . . 31 |

5. The PL300 SYStem « + + « « + o 0 4 os oo oo 0 v 0 ov 0 ou . 32

5.1. Initial loading and operating the system 32
5.2. System organization . . « «+ + + «+ «4 4 4 4 4 «4 « « «+. BL

6. The PL360/0S system « « « « vv 4 vv «4 4 vv 4 4 oo ww. . LB |

6.1. PL360 programming under OS + + + «+ + « + « « + « + « . 48

6.2. 0S control statements for PL360 + « + + v « « « +o o « uo . 50

6.3. System organization « « « « « « + 4 « « 4 4 + + « «+ . . 58

Appendix:

Conversion of 026-punched cards « « « « « 4 +o + « « « « « « « . 62

References. « + « « o « o o +t 4 o o 4 & 6 4 te eee ee ee ee. 63

ae

.~

.

13

ja SU

.

-

.

.

| } A BA

1. Introduction and Survey |

This report describes the use and the organization of the operating

system which serves as the environment of the PL360 language defined in

the Companion Report CS 53 [1]. . |

The core of the system consists of a job sequencer which accepts
batches of jobs and receives instructions in the form of control cards.

These job control instructions are described in Chapter 2. A collection

. of library programs is available to the system and can be accessed by
: its program loader. Their use is described in Chapter 3. Among other

programs, the library contains the PL360 compiler. Paragraph 3.1.

. defines the symbol representations, the restrictions imposed on the
“language by this implementation, the various available system subroutines,

particularly those for input-output, and the usage of the compiler.

Chapter Ut indicates the error messages provided by the resident
supervisor routines upon the occurrenceof program checks and other

unintended situations. |

While chapters 2-4 are intended to serve as a user's reference

manual, chapters 5 and 6 outline the internal organization of the system

for the reader interested in further detail. The PL360 system was

first developed as a stand-alone, self-loading program, and its pro-

perties are therefore optimally adapted to the fewrequirements of the |

language. This system is described in Chapter 5. Asecond version

was designed to operate as a subsystem under IBM's 08/360, and consists
: of a set of linkage routines, as described in Chapter 6. |

The minimal configuration requirements(for the stand-alone version)

~~ are as follows:

1. Core memory, 64K bytes, with or without memory protection. |

| 2. Printer (1403), card reader/punch (2540), 2 tape drives.
The entire system was designed with the aim of a convenient, effi-

cient, and easy-to-use tool for the development of compilers and

operating systems. The set of library routines reflects this fact |

clearly. Apart from the lister and card duplication programs, there

exists a program to edit tape files, which the compiler 1s able to

accept as input in place of cards. Moreover, a system generation program

1

r ro : oo

is provided to perform the rapid creation of new systems or the inclusion |
of new or modified library programs. Listings of cross-references of

identifiers (in any language, and PL360 in particular) can be produced

by another library program to facilitate work with large scale source

programs. And finally, the Syntax Processor is used in the development

of compilers based on the principle of analysis of precedence grammars.

A further program to be available under the system is the Algol 66

4 compiler for whose development the PL360 project was undertaken. Since

at this time the Algol compiler is not yet generally available, the

description of its use is not incorporated in this report.

The implementation of the PL360 system and most of the library

programs was conducted by Mr. J. Wells. Mr. E. Satterthwaite developed

the linkage routines to 0S/360 described in Chapter 6, and Mrs. J. Keckler

wrote the cross-referencing library program (3.7).

This project was supported in part by the National Science Founda-

tion grant GP 684k.

2 | |

-

2. Jobcontrol instructions

Jobs in the input batch are separated by control cards to be inter- |

preted by the jobcontrol routine. They are characterized by a 0-2-8

punch in column 1, (denoted by #), and, if encountered by the READ

routine, give rise to an end-of-file indication. Information contained

in columns 2-9 (left adjusted) of control cards is inspected and |

interpreted as follows: |

; LOAD The subsequent cards are supposed to be "binary" (punched |

| by a compiler). They are loaded, and execution of the

. loaded program is initiated. |
|

EOF This instruction merely causes an end-of-file indication
|

to be given. It is to be used at the end of a binary deck |
or of a compiler source deck.

PAUSE The operator is notified and the system waits for instructions -

to be entered at the console (cf. 5.2). |

An input deck using the LOAD instruction has the following composition:

pp

binar cards y
CT ’

If any other text is contained in columns 2-9, it is interpreted as

the name of a program to be loaded from the system library. Infor-

mation in the remaining columns is ignored: The following programs are

presently available from that library, and they are described in the

following chapter:

PL360 The PL360 compiler |
DUPDECK Program to duplicate card decks

LISTER Program to list card decks |

5

| | ~-

SYNPROC Syntax processor program |
TUP Tape updating program | -

SYSTUP System tape updating program |

XREF | Program to generate table of cross-references

of identifiers | oo

) |

5. Description of system programs

| 3.1. The PL360 compiler (PL360)

5.1.1. The form of input decks

ST7
) PL3GO program +EOF 7

| F£PL36O name 4
5.1.2. The language

The PL360 programming language is described in the companion

report CS 53 (revised): |

“PL360, a programming language for the 360 computers".

The subsequent paragraphs specify the details pertinent to the present

implementation, such as symbol representation and specific limitations.

) 5.1.2.1. Symbol representation

Only capital letters are available. Basic symbols which consist

| of underlined letter sequences in the Report, are denoted by the same

letter sequences without further distinction. As a consequence, they

cannot be used as 1ldentifiers. The basic symbols are:

+ - * / () = < >

yy et @ # _ oo

=m <= >= =

0

/ po.

DO IF OF OR

ABS AND END FOR NEG SYN XOR)

BASE BYTE CASE ELSE GOTO LONG

NULL REAL SHLA SHLL ©SHRA SHRA

STEP THEN

ARRAY BEGIN SHORT UNTIL WHILE

COMMENT INTEGER LOGICAL SEGMENT

; FUNCTION OVERFLOW REGISTER

g | PROCEDURE | |
~5.1.2.2. Standard identifiers

Thefollowing identifiers are predeclared in the language, but may |

be redeclared due to block structure. Their predefined meaning is

specified in Report CS53 or in paragraph 3.1.2.4,

MEM FPI |

BL B2 B3 B+ B5 B6 B7 BS B9

B10 Bll Bl2 B13

RO RL R2 R3 Rt R5 R6 R7 RS

RO R10 R11 R12 R13

FO F2 FL TF6

FO1 F23 FuU5 F667 |

LA MVI MVC CLI CLC IM STM

SLDL SRDL IC STC CVD UNPK

: ED EX SET RESET | | |

READ WRITE PUNCH PAGE

READTAPE WRITETAPE REWIND MARKTAPE

FSPTM FSPREC BSPTM BSPREC

| DUMP FPIRESET |

ele2.3, Restrictions

The implementation imposes the following restriction upon the

language:

a. Only the first 10 characters of identifiers are recognized

as significant.

b. No go to statement -may refer to a label defined in a segment

different from the one in which the go to statement occurs.

6

3.1.2.4. Supervisor functions

A set of standard functions is defined for elementary input and

output operations. The referenced supervisor routines make use of

parameter registers as specified below. They set the condition code

to 0, unless otherwise specified. Input-output devices are desig-

nated by logical unit numbers (cf. X.8.). |

READ Read a card, assign the 80 character record to the |

Fl memory area designated by the address in register RO .

| Set the condition code 1, if a control card is |

- encountered (cf. also chapters 2 and 4). |

WRITE Write the record of 132 characters designated by the oo
address in register RO on the line printer. Set the |

~ condition code to 1, if the next line to be printed |

appears on the top of a new page. |

PUNCH Punch the record of 80 characters designated by the |

address in register RO on the card punch.

READTAPE Read a record from the tape unit specified by the logi-

cal unit number in register R2 (cf. 5.2.). The

length of the record in bytes is specified by register |

RL, and it is assigned to the memory area designated |
by the address in register RO . Set the condition code |
to 1, if a tape mark is encountered. |

WRITETAPE Write a record on the tape unit specified by the logical |

unit number in register R2 . The length of the written

record in bytes is specified by register Rl; the

: record is designated by the address in register RO .

PAGE Skip to the next page on the line printer.

The following are tape handling functions. They affect the tape unit

specified by the logical unit number in register R2 .

MARKTAPE: Write a tape mark.

REWIND: Rewind the tape. | |

BSPREC: Backspace one record.

I

FSPREC: Fowardspace one record.

| ~ BSPTM: Backspace past the previous tape mark.

FSPTM: Forwardspace past the next tape mark.

A program interruption (cf. [3]) due to arithmetic operations records

the interruption code in the byte cell FPI . This cell, being part

| of the supervisor, is memory protected, and cannot be reset by the

user's program directly.

FPIRESET : Reset the value of the cell FPI to O.

DUMP A specified area of memory is printed in hexadecimal

form. Register RO must specify the starting address

. of the area and Rl must specify its length (in bytes).

The values of RZ2 and the condition code are altered

by a call of the dump routine. |

WRITETIME The time elapsed since the beginning of execution of

the present program is printed. The values of registers

RO-R2 and the condition code are altered.

m < : © oe \N
= pn Co x m .
C - : CC Cc H
AX XIT rr & CC rm Cc CC > > oe :

s CcCCcC TZ mm 2 mr om XCX XZ no
~ © CC GC CG TC x2ZXIX NE

ss sv es pw mom OTe Xe mC m GC More Zh ee A XC)~~ ~ X OF .
FI TH | R € ow TZ nC > a -e ZZ mo ZZ ZFEFMmmTmE oC < <<

— — Ce KX ss Go as m Cc GC: Kee fg =f od LAIN < mM A =
LU We — poling Co "TY pe fbf) tee C. = XX Mm CC i he i} XMM C me 25 = NMTmoeer-—x =]
os ws wv Wee OZ MOZwem OO ZO0 .e -2Z m= Xx CC Ixw xX Vp wr ol |

r~ pms Cc ox XC o~-tT se os bm OT < Za MMO dm CFO NZ 3
CTO - oo Te meOO De MZ hl rma Coe # || TDEEX—AMCIC < = iS
mirmrmZ i ee OZ CG GC H we CC om — we "nm2z Pol - TX — ps — (C =d OO =
< = < rr -— > mmx CC ve Jd ve = XX Sl Val al Val Z Mm <x 0)
Tore —_ BE OURee TCX + + HOG mim HU = ee [TOTS= CT Ww» =O HD 2
x xT A =z r~ - << |} Hl mT xX wf pp XI CO =~ AC To mee CMO

i an - ZOE em be em aL x fy “FnMeE BD Mm =e Hb
mall n sll all” ro CIR m Coe — i we Up ps - LN ™ wt wf GO ss ZZ OX i) fp rs
ws ws ws fT ~— we - e NNT se — nn I — TT TIT Te aM Mees OT mI m Zu: =]

. at pest - TIT itv: C&C = ety | MI we fj BK Dre Cc > xX mL '®)
-e = = Com Mmr p- — Co FIT ITZ Cc i Sr we pd -

m Xx mur CO Ti ws IT: [Ti we “C=is XX hx o
oO -— = Oe C x AY oz Z oC “ LVWIXICAMO nox L
c “ed em OZ ws we (C er ZeHF ND - =r =
= m (N20 v vn —] pd =z Z Co v= aL n= XX I I 2Z Moe =

m p= — af FA © Vv. re Bs Corso || Cm zz 0nz alas RP ANE ws IT

-— —t me 2 HZ Mm rm oe « Zz XXO C ~- © | rm
\O rr — 2X Zz [a ihn ee Dow > vO pu

we « =Z wv OC cx + + No w) - CMe + >
- ~ (Zs Cb bo = ZZ ws « Xx = or oT (Tai wf
=] "es ae oe -f . se es wb ' vw Kx es = XX TT Cc
r~ i well | mt CTI | we wo 0 w — rT a XK
rr =O r~ i J ITC Xn << OB rw . -e

. — LN o i rr ee rN CO >

eel 4 # = NZ = ws ™N No rl ws XT =

> w— x + + pal 1 o
x K + oN “s Ce OX
oo Je ——r J - =< ~ | CO
ay | S" -e we we gs) = -
T 2 we DC ed =~ -t TU

hoes -~ C ~ pd > oeoo — = x CC
r~ peli) -— Wn ‘ ys Zz » |
Zz +> se = CC - Z in
~ ~ ~~ tH > pd
V1 sr XI pe -— “«< | pa

- es » Tg wn 2 }

< < -e 4 T >
rm : p== BE
oO wr pe pro) m

| mDoZ

| ro | | oo | — XxX |

/ eo RE po

4 3 8 |

9 5 1

2 7 6 | | |

11 10 4 23 17 |

18 12 6 5 24% B |
25 19 13 7 1

2 21 20 14 8

9 3 22 16 15 | |

. 37 36 26 16 6 17 67 57 47 |
a 48 38 28 27 17 7 18 68 58
. 59 49 39 29 19 18 8 19 69

70 60 50 40 30 20 10 9 80
81 71 61 51 4} 31 21 11 1

2 73 72 62 52 42 32 22 12
13 3 14 b4 63 53 43 33 23 |
24 14 4 75 65 55 54 44 34

35 25 k5 5 76 66 56 46 45

10

.

BY] 4
ox as
C. G

po = CCo-
| pu rr Cm Fe

= G = CT x

(9 II a (oO C= CWUITosEs >2OMNC = A rr CO TD oem Temi IE tp yg CC
mT mT =z mT COLmITOComM Ic < mr ee Co CXC orm Xx =<
< i. ¢~ < c: ec POC Cm XC GC = CT ¢ C AoE = eg =m - «= =
pot — TG Os = [ap C5 = m= OO IF -— Cx — I ee ADT Co ee (OC po = SE GFR SON GIP a CAT FR SR up - =
= Tes m2 TIC Mm 2X ee Z TI MZ ZT MMmer ZIM 2 Mee 2 | ws OZ 2 A ~< TT = cz iu

h == i A > > Lo Gow XX p= | = co rm mom 7 JL TMi BX 2 NT
[a rm —_— CL =m -CX VD me Io (0 w= es CC ose =f — =~ oop w= XX LAC XT =m Xr rm A —
mr ee ZT EXT MME m OCC we NZ ZT OC 1] jo I TC oe It se ZL Ww = o- = rx CX rc
5 TT Co co I EN x wn IX it es = “s re — Cheer XAnopm Tr <=
=< J = CY we —- — > 5 mrEcoP x TI x xX Co» IN rn EER VERI we r= - he Sl Ol - I col he
En | wn ITH mMmMZ22XTMCr2 Xm = mm I Xm = -e IT Oo — - oo J — < ed ZC x Cc — asiVs
= — > I= = > r- ws ZF = Ise Zs I» LL VARS a = = I -J La -_ tT owl Comore I> e-— -—
- G pr willy VE GU Va Wi wl SHE Fo IN Fs) - = se x XK -~ SO fh HX CC OC pu LLIN "ox m2 xX awmrm Z x ©

- orm mms fl ee : - = =I Co 1] = X= we =~ TF « Tow = CC eC
T se NI Tel | -— TX it ove vw —- CC SE = - hb 4 o> —- CX c be =TCTee ~— 2,
+ IT FT eed Hh oiX Xm — mI vr itu AIT ZX To 2m I ZR a I» - Xn = Ln TF es rr :
ror als row 2 TOM (ql Cm >» ZC >» TC owe f-— CY oe x TEN wo —r pe

« £ vr IE ~ I TR x Ic Z2 > Cy 2 cz x wf lH CC > ££ x - TC XI XR Hx
se m 2 LTC zmT m= TT > rol o m > Tam — — x + 4 “ NZ Og > Joe I -
fi D> 30~~ x oxo Ww m=>» 2 Vv < > Cm =x A x < ~— < we Iv a = =

Vr AN xX —_— TC = ve (a m x vw ea = we =f ms C C: -. —-e CCl = Ge T

- > > > TT xX wT c (ot p= -n m = 7 ce pe oe JW > =< I Wu ws
~ rr =z we TT bem > Z =m — 3% Z x pv 2 mm wr 2 ji (nar << 4 TZ XK CO pot

12 mm = Cc ~— | we -’ p= n PC pt m rT A = ~ iT pF ~ I» ng
3 Zw Z ee = 7 — Oe .- ZZ eX c = x Co xX vo —z %te en = [77 mt p= 2 — it CY — a! — we -— vou << wv
a hon - > we Zz - mr = ba pes -m mm -— Lg pu mo - ee 7 we —

- oo .e -— Z mI = > ws C (a oO > w xT 8 — TO = Zz Tn =
- bo Uw» Co 2 x mo -— = - (a x A — h=2 ~~ T -_— pra o-oo fx

=~ ‘eal ga > TT owe Tm - 2 A OO oO Ld = c -s To (op = hat Eo ma cc T™ XxX Tr
mT = OO > > O roo < = r~ = .e -- J -_ J & - pod

~ om {a -- La pd pa xX Z =< Oy AS be © pi - pe
= =X x oo we << IM Oy wy Ti > rm = —t i» oo cs >

: + > “e mx CC ia pt x r- = a oS oC I <
or x > poll = SC >» df 1s) re xa!) Sw =

or i we - — = i] rT > = < amo
ale < rT te ~ + or pn oC >» oo
oO > oH > c < pre oe op} = vs o
ani) ant 5) bt we -4 oO x 4 im i c we =< I» — =
x = -i - m {al > Ve — zZ xr x

x af I» = (-— (PN x: >
= x c — Cc - “ > — —

= >> om + = a) he mr
Ww ~~ — = PP» XX 2

=z > pd >
m : > : x mm x : wn ZX
> bd .e > e ~ ST

: = wv — Z 3
) x < oO se mx :
= m 7 x u A&C m
> x > > Noe WN
pe -» | ys) 2 we =
-e (gn -e -e . 2

=< nn|
> -J

} =x had
LX} :

i CT TTR, RRTRIErT TEE me

It SCALE < O THEN

BEGIN SCALE = ABS SCALE; SETTLXPUSIGN);
ENG ELSE RESET(EXPUSIOGN);

F23 3= 10L; tab = 1L3 Fol = F45;
WHILE SULALLE == 0 00 |

SEGIN SKULL (SCALE.L}; F23 t= F23%Fotl; F6T :1= F233

LT (EXT,EXT): IF < THEN F445 3= F45%F23;

tN 3 | | oo |

CLF OEXPOSIGN THEW ANSWLK= ANSWER / F455 |
‘ ELSE ANSWER = ANSWER ¥* F453 |

END |

| | IF 51LoN TitEN ANSWER = NEG ANSHERS } |
END 5 SE |

PRKLCLEDURE UUTKEAL (K4); oo A |
BEGIN CUMMENT CUNVERT NUMBER IN FOL INTOCHARACTER STRING AT akl; |

: FUNCTION LTR (1Ly#1200); | EEE
| INTEGER REGISTER EXP SYN RU, SCALE SYN R2, EXT SYN R33 |

LUNG REAL REGISTER X SYN FOL;

© LUNG REAL. CCNVLERT;

INTEGER CUNVERTED SYN CUNVEKT (4), EXPO SYN CUNVERT(O);
BYTE SIGN; So |

IF X = OL THEN MVC (13,Bl," O ") ELSE

BEGIN IF X < OL THEN SET(SIGN) ELSE RESETISIGN);

X = ABS X; CONVERT := Xj

COMMENT UbTAIN AN ESTIMATED DEC IMAL SCALE FACTOR FROM

EXPONENT PART; |

EXP t= EXPU SHRL 24 - 64 * 3017S; IF < THEN EXP == EXP + 25%S;
EXP := EXP SHRA 38 =1; SCALE := ABS EXP; |
COMMENT CUMPUTE F45 33= 10 *% SCALE;

F23 = 10L; F445 t= LL F667 = F45;

WHILE SCALE ~= 0 DC |
BEGIN SRDL (SCALE,1); F23 := F23%F67; F6T7 := F233;

LTR (EXTLEXT); IF < THEN F455 = F45%F23;
END 3

COMMENT NORMALIZE TU 1 <= X < 10 3 |

IF EXP < 0 THEN
BEGIN X $= X % F45; |

| WHILE X < 1L DO

BEEGIN X 2= X * 10Ls EXP $= EXP-13:

: END 3
END ELSE

BEGIN X t= X / F45;

WHILE X >= 10L LO

BEGIN X = X % Q.llj EXP = EXP+1; |

END 3

i END 3 |

X 33 X ® 1%70L ++ #4E00000000000005L;
CUNVERT := X; EXT :2= CONVERTED;

COMMENT EXT IS HERE USED TU HOLD RESULTING INTEGER;
IF EXT >= 100000000 THEN

BEGIN EXT = EXT / 103 EXP := EXP +13

LND 3 | :

MVC (13,81, . ’ "); |
CVD (EXTyCUNVERT); ED (9451 yCONVERTI(3));

IF SIGN THEN MVI (w-v,81(1)); | | |
CVD (LEXPyCUNVERT); ED (34,BLULD) CONVERT (6);
IF EXP < 0 THEN MVI ("=v,81(11)) ELSE MVI (%e®,B81{11));

END 3 Co |
END co oo

MVC (130, LINE(L)y LINELO))3 CUOSMENT FILL LINE WITH BLANKS
L: INREAL; R1 t= GLINE(G6); GUTREAL; RO := ALINE; WRITE: GOTO Ls

ALLDUNE: oo

END |

| 12

| 5.1.3. Instructions to the compiler |

The compiler accepts instructions inserted anywhere in the sequence | |

of input records. A compiler instruction card is marked by a $ char- |

acter in column 1, and an instruction in columns 2-20. Columns |

21-80 of such a record are ignored. |

$NOGO Compile, but do not attempt subsequent execution. |

$LIST List subsequent source records on the printer.

; $NOLIST Do not list subsequent source records. | oo
| $PUNCH Punch compiled program and data segments on cards.

_ $PAGE Skip a page in the listing. |

$0 Print source text only.

81 Indicate the addresses of all variables and procedures

_ upon thelr declaration. |

| $2 List addresses as after $1 . Also list the produced
machine code in hexadecimal notation. |

$TAPEN Read the subsequent source records from the tape unit |
| with logical number n . If n is omitted, tape unit |

7 is assumed.

|
|

: -

5.1.4. Error messages of the compiler |

Errors are indicated by the compiler with a message and a bar)

below the character which was read last.

Error No. Message | Meaning
00 SYNTAX The source program violates the PL360

syntax. Analysis continues with the

next statement.

| 01 VAR ASS TYPES The type of operands in a variable

| assignment are incompatible. |

02 FOR PARAMETER A real register instead of an integer

| register is specified in a for clause.

03 REG ASS TYPES The types of operands in a register

assignment are incompatible.

ol BIN OP TYPES The types of operands of an arithmetic

or logical operator are incompatible.

05 SHIFT OP A real instead of an integer register

is specified in a shift operation.

06 COMPARE TYPES The types of comparands are incompatible.

O7 REG TYPE OR # Incorrect register specification.

08 UNDEFINED ID An undeclared identifier is encountered.

09 MULT LAB DEF The same identifier is defined as a

label more than once in the same block.

~ 10 EXC INI VALUE The number of initializing values exceeds

| the number of elements in the array.

11 NOT INDEXABLE The function argument does not allow

for an index register. |

12 DATA OVERFLOW The address of the declared variable

in the data segment exceeds 4095 .

13 NO OF ARGS An incorrect number of arguments is

used for a function.

14

Error No. Message Meaning

14 ILLEGAL CHAR An illegal character was encountered;

it is skipped. oo

15 MULTIPLE ID The same identifier 1s declared more |

than once in the same block.

16 PROGRAM OFLOW The current program segment 1s too

large.

: 17 INITIAL OFLOW The area of initialized data in the

compiler is full. This can be circum-

} vented by suitable segmentation.

18 ADDRESS OFLOW The number used as index is such that

| the resulting address cannot be |

) accommodated.

19 NUMBER OFLOW The number is too large in magnitude.

20 MISSING . An end-of-file has been read before =a

program terminating "." was encoun- |

tered.

21 STRING LENGTH The length of a string is either O

or > 256 .

22 AND/OR MIX A compound condition must not contain

both ANDs and ORs .

23 FUNC DEF NO. The format number in a function decla~

ration is illegal.

2 ILLEGAL PARAM A parameter incompatiblewith the

specifications of the function is used.

At the end of each program segment, undefined labels are listed with

an indication of where they occurred.

15

3.1.5. The format of "binary" cards |

The compiler produces four types of "binary" cards if requested through .

the $PUNCH option. The card formats are:

Col 1 This column identifies the type of object card

S = procedure segment header

D = data segment header

E = external procedure or data segment header

g P = object program card

Col 2 Segment number in hexadecimal

Col 3-6 Length of segment if 8, D, or E card.

Relative address of first byte of object program

~on the card if P card.

Col 7-8 Count of object program bytes on card if

'P card. Blank if S, D, or E card |

Col 9-72 Object program bytes if P card.

Date is in Col 40-47 if S, D, or E card

Col 73-Th Segment number in decimal

Col 75 Type of segment (E, D, or 8)

Col 76-80 Sequence number in decimal. It starts with

1 for each segment.

Note: Columns 73-80 are ignored by the loader, and are punched for

| identification purposes only.

16 |

3.2. Program to duplicate card decks (DUPDECK)

J. Wells

This program duplicates the cards following the DUPDECK card up

to the next control card. There are two option cards which are not

punched and can appear anywhere in the deck.

$SEQUENCE The following cards are sequenced in columns

76-80 starting with 00001 and in increments

a of 1.

$NOSEQUENCE No sequencing numbers are provided. This is the

initial option.

3.3. Program to list card decks (LISTER)

This program lists the cards following the LISTER card up to the

next control card. There are four option cards which are not listed

and can appear anywhere in the deck. | |

$SEQUENCE The following cards are listed with a card count

starting with one and in increments of one. |

Sequencing 1s the initial option.

$NOSEQUENCE No sequencing numbers are listed.

3.4. Tape Updating Utility Program (TUP)

The TUP starts out in the command mode. It reads and interprets

: a sequence of commands, each of which is punched on a card beginning

in column one. If on any card "LISTER" is punched in columns 12-17,

the information processed during the interpretation of the command is

. listed on the printer. The commands are:

$INPUTn Unit A is assigned the logical device number

n (in decimal). This can be used only before

a command that uses the input tape A .

$OUTPUTn Unit B is assigned the logical device number

n (in decimal). This can be used only before

a command that uses the output tape B .

LY

$NEWTAPE The subsequent card deck is read and put onto

tape on unit B . Every record is provided with

a sequence number. The increment is 10 . All

80 columns of the cards can be used. Note: No

other command may. follow $NEWTAPE .

$LISTER The information on tape unit A is read and

| listed, including the sequence numbers.

$PUNCH The information on tape unit A is read and

° punched without sequence numbers. |

$RESEQUENCE The records on unit A are read, provided with

new sequence numbers (increment 10), and written

B onto tape on unit B .

$ UPDATE - The TUP enters the update mode in which it updates
the information on unit A with information read

from cards. The updated information is written |

onto unit B . The following instructions are

obeyed in the update mode:

$DELETE m n Records with sequence numbers m through

n are detected. m and n are five

digit numbers punched in columns 12-16

and 20-24 respectively. (Leading
zeroes must be punched!) If n is

) missing, only one card is deleted.

$INSERT m The subsequent card records are inserted

| after the record with sequence number

m . All cards are treated as data to

| be inserted, up to the command card.

$END

| The inserted records are provided with

sequence numbers with increments of one.

All records on the input tape A having

a sequence number identical to one given

. to an inserted record are deleted. All

80 columns on data cards may be used.

18

$END The TUP returns to the update mode. |

$LISTER m Listing starts (or resumes) with record

m. m is punched in columns 12-15

(cf. .$DELETE). |

$NOLISTER m Listing stops at the record with sequence

number m . Note: all inserted and

replaced records are listed in any case.

Fc Other cards: All other cards are treated as data |
| cards, and must be provided with a se-

i | | quence number in columns 75-80 . If

) its sequence number coincides with the |

sequence number of a record on the input |

| ~ tape, then this record is replaced by the

one read from the card, otherwise the

card record is inserted at the appropriate

place. |

Note: Cards in the update deck must be properly

sequenced, i.e. the numbers on "other |

cards," and the parameter m on command |

cards must be an lncreasing sequence.

| If there are no cards in the update deck, |

B then tape A 1s simply copied onto

. tape B . |

The standard tape assignments are: |

Input Unit A: logical unit 6 (182) |

| Output Unit B: logical unit 7 (183)

The PL360 compiler uses logical unit 7 as its standard source tape |

input unit when $TAPE is specified, however $TAPEn (in decimal) can :

be used in the compiler to correspond to unit B of TUP .

19

3.5. System Tape Updating Program (SYSTUP)

The SYSTUP can be used to list, copy, update, or punch system

tapes. The program assumes the update mode unless a control card

changes the mode. All system control cards must occur before the first

program identification card or $INSERT card. The control cards can

occur in any order because all system control cards are read before any

action 1s taken. |

5.5.1. Program Identification Card

; The copy, punch, and update modes of the SYSTUP are controlled by a
: program identification card. Columns 2-9 of this card are the pro-

gram name by which this program is recognized by job control as well
as by SYSTUP, columns 10-72 are simply a comment field to be used for

version identification, columns 73-80 are the version date field. If

the date field is blank then the current date is put into the date field.

The program identification card becomes the first record for the program
on the output tape. Column one is completely ignored on the card.

3.5.2. Mode Control Cards

$ INPUTn The input tape is assigned the logical device

number n (in decimal). Device 4 is the standard

input unit if $INPUT is not used.

$OUTPUT The output tape is assigned the logical device |
number n (in decimal). Device 9 is the standard

output unit if $OUTPUT is not used.

" $PUNCH This indicates a punch run for the SYSTUP. All

the programs specified by program identification

cards following this card are punched. Each |

: program punched has the tape program identifica-

tion card first followed by the object deck and

ending with an EOF control card so that the

deck is in the form that SYSTUP uses to load a

program. At each program identification card,

) the input tape is rewound and searched for the

specified program. Therefore, there is no specific

order required for the cards. $COPY or $LIST
should not be used in a punch run.

| 20

|

oo i

$COPY This indicates a copy run for the SYSTUP. All

the programs specified by program identification

| cards following this card are copied onto the new

system tape. These programs are found on the input

tape by rewinding the input tape each time and
searching the tape for the program. A monitor is

put on the new tape from one of the three sources

described below. A copy run can be used to

H reorder a system tape. $PUNCH or $LIST should
| not be used in a copy run.

$LIST This indicates a listing of the programs on the

| input tape is desired. The input tape is rewound

oo | and the program identification headers are listed

h on the printer. For a list run the entire deck

should be the $LIST and possibly a $INPUT card

| followed by an end-of-file card. |

If a $PUNCH, ¢$COPY, or $LIST card is not encountered in the

system control cards, then an update run is performed. Any update

run is a sequential merge between the changes specified by the card

deck and the input tape. The update function behaves in the following

three ways:

1. If the current card is $INSERT then one of the following occurs:

: a. 1f columns 10-17 are blank, then the deck set following the

$INSERT card is immediately loaded onto the output tape with-

out refering to the input tape;

: b. if columns 10-17 are not blank, then the input tape is copied

to the output tape up to and including the program whose name
is in columns 10-17 . Then the following deck set is loaded

as in case "a."

2. If the current card is a program identification card then one of

the following occurs:

a. If the end of the input tape has been read, the program is

simply loaded onto the output tape.

21 |

b. Otherwise, the input tape is copied to the output tape up to

the program name on the program identification card. If an

object deck indication follows the identification card then

the new version of the program is loaded on to the output tape;

otherwise the program is deleted from the output tape.

3. If the end of the card deck has been reached, then the rest of the

input tape is copied on to the output tape. Note that this means

. that an update run with no update deck simply copies all the input

tape programs to the output tape.

~ Therefore, the update mode has the following general features:

1. All programs on the input tape that are not specified in the update

deck are simply copied to the output tape in the same order.

2. Programs can be inserted, changed, or deleted.

3. The EOF card separates each and every update step in the program

and each EOF card signifies a return to the normal updating mode.

Each update step is dependent on previous steps only because of

order.

4. The end of both the card deck and the input tape must be reached

before the update is completed. If the end of the input tape is

reached while searching the input tape for a program name, then

the current update step is completed just as if the end of the

. input tape had been read before starting that step.

5.5.3. Deck Indications

~ There are three ways to specify the location of the object program

fora given program identification card.

1. The card object deck immediately follows in the card reader.

| It is loaded until the next end-of-file card (usually an

EOF card). |

2. $TAPE with columns 10-17 blank indicates that the program

is unlabelled and can be found on the scratch tape. The |

‘scratch tape is rewound and loaded.

22

3, $TAPE with columns 10-17 not blank indicates that the pro-

gram is to be found labelled on another system tape mounted on

the scratch unit. The scratch tape 1s rewound and searched

for the program namedin columns 10-17 . That program is then

loaded. Note that the program name on the $TAPE card need
not be the same as the one on the program identification

card. Therefore, this feature can be used to rename a program.

. If the desired program is on a tape other than the scratch tape (log-
: ical device 5) then $TAPEn can be used to specify the logical

device (in decimal). However, n can not be the same as the input tape.

3.5.4, Monitor for New Tape

In order to make a self loading tape for either an update or copy

run, it is necessary to first put a copy of the monitor on the new tape.

Normally the monitor can just be copied from the input tape. Therefore,

this was made the default option. However, the following two sources

for the new monitor are also allowed.

1. $LOAD signifies that the monitor is to be loaded from the

cards following in the card reader. The object deck 1s assumed

to be an absolute 360 assembly language object deck. The

transfer address on the END card must specify the initial

| program status word. The length of the monitor is determined

from the ESD card and is aligned to a half segment address.

- The first end-of-file card (usually a EOF card) signifies the

end of the monitor deck. After the monitor has been loaded,

| the normal update of system programs 1s done unless the input

tape is logical unit O . In that case the decks following

| are loaded without using an input tape. This allows SYSTUP

to be used To make the first system tape also.

2. $MONITOR signifies that the monitor is to be copied from low

core. The length of the monitor must be the same as the one

on the input tape (aligned to a half segment). The address

at which execution will start must be in the half word starting

25

at memory location 20 (decimal). The use of this feature is

intended mainly to facilitate the making of system tapes with

different device assignments.

The monitor is always loaded startingat the timer position whenever the

system tape is initial-program-loaded. Any information wanted in core

below the timer must be moved there by the monitor after it has been

loaded.

’ 5.5.5. Examples of usage

1. Copy the system tape from device 4 to device 9 .

£SYSTUP

£EOF |

2. List the~program headers on the system tape on device 6 .

#ASYSTUP

$INPUT6

$LIST

#EOF |

3. Punch object decks of PL360 and TUP from system tape on

device 4 . |

£ASYSTUP

$PUNCH

PL360

TUP

#EOF

L. Compile LISTER program and update the system tape from device
| 6 to device 8 with the new version of LISTER and insert

an object deck of PNAME immediately after LISTER.

#PL360

$NOGO |

| Gia source de*}

| 2

EOF

| #SYSTUP

$INPUT6

$ OUTPUTS

LISTER

$TAPE

EOF |

| $ INSERT
N PNAME

. (object deck) :
£ZEOF

Note: The SYSTUP deck is ended only by reading the next job card

| or a pause card. | |

22

5.6. Syntax Processor (SYNPROC)

The syntax processor program can be used to process simple prece-

dence grammars in order to determine the precedence matrix and the

f-g functions as described in EULER by-Wirth and Weber [2]. The main

input to the processor consists of the productions of the language.

Each production is punched on one card. Columns 1-72 of the card

are used for the production divided into six 12-character symbol fields.

2 The left symbol of the production occurs in columns 1-12 . (If
columns 1-12 are blank, then the left part of the previous production

is used as the left part of the current production). The right part

consists of 1-5 symbols punched in columns 13-24, 25-36, 37-48,

49-60, 61-72 respectively. (Note that blank spaces are significant)!

As standard procedure, the syntax processor reads and lists all

of the productions, constructs a symbol table in two parts (nonterminal

and terminal), assigns each symbola number, and finally determines the

precedence matrix if it exists or prints out the conflicts that make the

matrix not exist.

The following option cards are recognized by SYNPROC

$SYMBOLS The symbol table should be read in before reading

| the productions. Each symbol must be on a separate

card 1n columns 1-12 . The nonterminal symbols

are read first. A "$8" card signifies the end

; of the nonterminals and the start of the terminals.

A second "$$" card is used to separate the

terminal symbols from the productions. Every

| symbol in the language must occur on a card. The
| terminal and non-terminal symbol groups can be |

reordered in any desired fashion. In this way

the user can specify his own symbol numbers.

$SYMPUNCH If the symbol table was calculated by the processor,

oo then thls causes the symbol table to be punched in

the form used by SYNPROC (including the "$SYMBOLS"

and two "$8" cards).

| 26

-

$CHECK | After the symbol table has been listed, a check

is made whether any productions have identical right

parts. All such occurrences are listed. No check

is made if the card is omitted.

$MATRIX If the precedence matrix exists then it is printed

out in blocks 100 symbols wide. If the grammar

has more than 99 symbols, then the matrix will |

. be printed in two parts or in three parts if more
a than 199 symbols.

- SLEFT In general it is tedious to look up relations using |

the precedence matrix. If the precedence matrix

exists, then $LEFT will cause each symbol to
- be listed along with the relation and symbol of

all symbols that have a relation to the right of

the symbol. Five relations are printed per line

in order to condense the output. oo

$RIGHT This is entirely analagous to $LEFT.

$FUNCTIONS | If the precedence matrix exists then the f and

g precedence functions are calculated. If they |

| exist then they are listed; otherwise the prece-
dence chain that makes them not exist is printed.

$TAPE The results of the syntax processor are put on the

’ $TAPER system scratch tape (or tape n if n is speci-
fied). If the matrix does not exist then no

: tape output is made. If the functions are asked

: for then they are output on tape if they exist

or no tape output is made if they don't exist.
The output consists of an 80-character control |

record followed in order by the symbol table,

production table, matrix, and functions (if

| calculated), described as follows:

27

1. Control record

Cols 1-4 number of nonterminal symbols

Cols 5-8 total number of symbols, M

Cols 9-12 total number of productions, N

Cols 13-16 length of symbol table in bytes, 12(M + 1)

Cols 17-20 length of production table in bytes, 12(N + 1)

Cols 21-24 length of matrix in bytes, O64(M + 1)

3 Cols 25-28 length of functions in bytes, 2(M + 1)

2. Symbol table

The symbol table consists of twelve byte entries which are the

nonterminal and terminal alphabetic symbols in order of their number.

Symbol O is the blank symbol; thus the symbol table has M+ 1 elements

and is a 12(M + 1) byte record.

3%. Production table | |

Each production is represented by six short integers that contain

the symbol number for each part of the rule. All symbol numbers have

been doubled in the table in order to facilitate half word indexing

in function calculations. The symbol number (OQ fills out all right

parts that were less than five symbols. Since each rule takes 12

bytes and the first entry is not used, there are 12(N + 1) bytes in

the record.

4. Matrix |

: The matrix is output in a completely packed form with 2 bits

used for each relation (00 no relation, Ol < relation, 10 > relation,
11 = relation). The processor can handlea maximum of 256 symbols so

there are 64 bytes for each row. The first row signifies symbol O

so there are 64(M+ 1) bytes in the record.

5. Functions

The f and g functions are respectively the last two records on

the tape. The function values are short integers so each record is

o(M + 1) bytes long including a functional value of O for symbol O .

28

The control cards can appear in any order and at any place in the

| deck, except that $SYMBOLS and the symbol cards must obviously be

| placed before the first production.

5.7. Program to generate cross-reference tables of identifiers (XREF)
| J. Keckler

The cross-reference routine will list alphabetically all identifiers

in a source program with the numbers of the lines on which they occurred.

Go An identifier is defined as a string of one or more letters and digits,

the first character being a letter. According to various input options,

3 one may request that certain identifiers not be references (e.g. reserved

words) or that only specified identifiers be cross-referenced. The

input program may be on cards or tape, and a listing of it may be sup-
pressed. _ | |

Control Cards

1. #XREF

2. 8PL360 to ignore all PL360 basic tokens, standard

identifiers and identifiers on card(s) 3,

cross-referencing all others

or |

$IGNORE to ignore the identifiers on card(s) 3,

monitoring all others |

or

) $MONITOR to cross-reference only the identifiers on

card(s) 3, ignoring all others

($IGNORE is assumed if card 2 is omitted)

3. A list of identifiers in free field, taking

as many cards as necessary.

(If omitted,the list is assumed to be empty)

L. 8NOLIST to supress the listing of the input program |
or

$LIST to list the input program

' =

(8LIST is assumed if U4 is omitted. These cards

may occur anywhere within the input card deck to

obtain appropriate listing action) |

5. $CARD indicates the input program is on cards
or

$TAPEn indicates input program is on logical tape unit

| n, where n is a one or two digit integer. If

- n 1s omitted, logical unit 7 is assumed.

| (Card 5 must not be omitted)

- 6. input source deck, if on cards, followed by

| #EOF |

Program Size Limitations |

500 unique identifiers |

5000 total characters of identifiers | |
8000 total references to the identifiers

200 unique special identifiers to be monitored or ignored

500 total characters of special identifiers

Sample Deck Setups

+XREF

$CARD
input deck
+EOF

+X REF

$PL360
$CARD |
input deck
+EOF

+XREF |

$PL360
ALFA BETA GAMMA

$NOLIST
$TAPES

30

4. Program execution (run-time) errors

The following error conditions can occur at run time and are diagnosed .

by the supervisor. They result in program termination, (unless other-

wise specified), and a dump of the data area of the interrupted program.

| a. A "program-check" interruption occurred. This is indicated by the

message

PRG PSW XXXXXXXXXXAXXXXX

x where XX ... X denotes the program status word upon interruption
in hexadecimal notation. If interruption occurred due to an arith-

} metic operation, the interruption code is stored in the byte cell |

: FPI (floating point interruption), and control is returned to the
: * :
interrupted program. Such interrupts are counted, and the counts

are listed(if # 0) after the end of program execution.

b. An attempt is made to read beyond the present job card file. |

The message

EOS PSW XXXXX XXX XXXXXX 7

1s printed. |

c. An illegal logical unit number has been used for an input-output

operation. The message | |

DEV PSW XXXXXXXXXXXXXXXX

. is printed.

d. The operator intervenes by causing an external interrupt. The

message |

: EXT PSW XXXXXXKXXXXXXXXX

appears on the line printer and the operator console, and the system

expects to receive instructions from the operator.

*Also, the condition code is set to 3 . | |

51

La

. TY !

13

-

1

-

.

5. The PL360 system

5.1. Initial loading and operating the system .

The process of initial loading consists of the following steps:

| a. Reset system | | |

b. Mount system tape on any 9-track unit

c. Stack jobs on the card reader |

d. Make card reader, line printer, and tape 5 (used by the

compiler) ready

e. Select the unit carrying the system tape on the Load Unit

- | Switches

} f+ Press the Load Key |

g. Enter the date (8 characters) from the typewriter

‘Execution of the Job sequence stacked on the card reader is imme-

diately started. Control is returned to the operator when either

| a. a PAUSE control card is encountered, or

b. the operator presses the External Interrupt key.

The computer then accepts instructions from the operator via

typewriter. Each message must be terminated with an EOB (end of

block) character. The following free-field instructions are accepted: |

a. dump XXXXXX, NNNNNN EOB

dump XXXXXX EOB

. dump EOB

The values of the registers and of the NNNNNN byte cells

+ starting at the initial address XXXXXX are listed in hexadecimal |

form. If the initial address is omitted, it is taken as the end of

the user's program segment area, and if the count is omitted, the

dump extends over the entire data segment area (cf. 5.2).

b. device XX EOB

Devices are designated by logical numbers. The correspondence

between logical numbers and actual device addresses is established

by the device table. The above command causes the address AAA of |

52

the device with logical unit number XX to be typed out. Subsequent

typing of the device address BBB causes that device to be assigned .

the logical unit number XX, and the device with address AAA to

be given the logical unit number YY, which previously designated

device BBB (if any). As a result, every device in the system will

always be designated by at most one logical unit number.

before after

1 XX : AAA XX : BBB
| YY : BBB YY : AAA

The standard device assignment used on the SLAC computer is:

0 Typewriter 009
~1 Printer OOE

2 Cardreader 00C

5 Card Punch 00D

L System tape 282
5 Tape 181 (7-track)
6 Tape 182
7 Tape 183
8 Tape 184
9 Tape 283

c. EOB

Processing resumes with the next job in sequence-

; The operator is informed about abnormal conditions encountered by

the error analysis routines of the elementary input - output programs

contained in the supervisor. The following messages are typed:

a. XX YYY NOT RDY

b. XX YYY NOT OP |

c. XX YYY I/O ERROR CCCC DDDD

d. XX YYY DEV END CCCC DDDD

XX represents the logical number of the afflicted device, YYY its

physical address, CCCC the encountered channel status, and DDDD
the device status.

33

Message a. is given when a device is not ready. Execution

resumes when the device is put into the ready state. Messages b.,

c., and d., are respectively given when a device is not operating, Co

when a malfunction is encountered, or when an error is discovered

upon device end interrupt caused by the reader, punch, or printer. |

The operator must reply with one of the following messages:

a. ignore EOB

b. exit EOB (resume processing with next job)

| c. EOB (retry the operation after I/O ERROR; ignore the

- DEV END condition) | |

| Note that if a storage dump 1s desired before processing the next

job, then the interrupt key must be pressed first. If the operator
response is not recognized by the system, then "RETRY" istyped out. |
In order to cancel a response, the CANCEL character must be typed

before typing EOB. In either case a correct response should then

be typed by the operator.

5.2. System organization

The PL360 system is a resident monitor which is logically divided

into two parts: |

1. The interrupt service routines, including the SVC routines

performing input-output.

2. The jobcontrol routine which acts as the main program.

| 34

The storage layout during execution of a program is as follows:

0 | :
Interrupt and

Input-Output |
subroutines’ |

Card Loader |

Tape Loader

; JOBCONTROL

- OPERATOR CONTROL

| DUMP ROUTINE

——]
RL

Data segments

Upon initial program loading, the core size and the availability

of memory protection are determined. Before a program is loaded,

memory is cleared. The program is then treated as a procedure and

called with the following information in the registers:

R2 = return address

R?> = address of first byte following the "last! program
segment

Rt = address of first byte of the "first" data segment

25

PL360 programs are compiled as if they were declared as segment proce- |
dures. Additionally, the return address in RO is saved upon entry |

and restored upon exit.

During execution of a program, the monitor is memory protected

(if possible). The protected area includes the segment reference
table, which consists of 64 entries.

On the following pages, flowcharts are given of the main system

routines:

— | Table of Flowcharts

. | page

Initial program loading . « « + « + « « « « oo « « + + «oo OF

JOBCONTROL . + =o + vo ee ee ee ee ee es ee sees. 38

Tape 108A « « v + + o « o 4 oe te et ee ee eee ee ee. 39 oo
Card 108d . vv + 4 ve 4 ee eee ee ee ee ee eee .o. ho

LOADSYS (system program loader) . . « « « « = « « « « « « « o 41

EXECUTE (call for program execution) «+ « « « « « « « « « « «» Ul

ERROR EXIT: + + o « oo oo tt 0 eee ee a eee ee ew 1

CONTROL (operator control routine). « + « « « « « « o « « « « hl |

SUPErVisor Call « « « + o + 4 +e 4 + 4 ae ee ee ee wo... h2

DO TO + «+ « « 0 + a + te tv oe eee eee eee eee. h3

TAPE TO + + « + oo oe ee eee ee ee eee ee eee. bh

© DYPE TO + + se a ee ee ee ee eee ee ee eee eee. by y

© STARTIO + + + + vv oo et nee eee eae ee ee... bE |
© CSW CHECK + + + + vo oo eee ee ee eee eee. bE

Interrupt service routine . « . . =.I 1

36

>»PO0 VIA
> Zr m

> 5 xX 6 20 wl? QR(Mw ” ES 9X
mR °I

dA
c™,
mT — 3

—
Pp |

| ~

1 ’
ey RY
vz A

3° 2
X

. ¥8| |229 — ? := mc Sax Oo» z
W Mm Zam & 0 »© 4S 73% m 8

: 5 ma

5 +
| R

1%)

3

aINYY

dav. L INIT ADH? WYND | .
=03d Alidam

| (311dwo2) oo

JFIVL SAS

o

ANIL 3LISM ROSA avo]
ANIA ANY VOT,

ON=>403 ‘3200
ANAND C qAIND
IoC LNI34

| Leg NI
<AN) FOL

lxaN anid

Qadq33N |

APY INV Ig

HONNA “SLNNQD
A23HD WNaY

| ~0d4 LIAM |

N03LNODHO[

| | TO Sea O LOADED. FRoM TAPE

RETURN ERR |
NO D
SEQ

| ALLOCATE New
DATA SEGMENT=

| ALLOCATE NEW LOAD

vA ; S SEQ PROG SEGMENT ERR
Fi

TAPE LOAD es

SET

REF TABLE

E Seq

PROGRAM

j Too

LoAD L AIRGE |
| ERR

| SET PARAMS READ SEG
To LOAD

SELMENT FROM TAPE

N ge i

) re) 3h

o Z oF

O

>> |
-

Zz »
oO PO

1, |
E A 9

™

) $ oS

XZ ye WZ51 IIR] [893] |9.R
sis [37g [738

EE)ry 2 e

| -

LOAD SYS EXECUTE CONTROL ERROR EXIT

| CET |
resthae

HEADER MESSAGE
| PRINT ERROR

| LIMITS MESSAGE SELECTED PSW

SET PROGRAM | READ |

STATUS WORD MESSAGE

| HEADER |

= "PROG RE-
QUESTED PRINT CORE

PRINT DUMP WITH
CORE DUMP PRESET

PROGRAM LIMITS

TAPE

LOAD CHANGE
| DEVICE

| RETUKN

RETURN j

NT A | DISPLAY To JoBcoNTROL
Ree ne » OR ALTER
>Jjo8 NOT oN MEMORY
TAPE"

REWIND TAPE

To JOBCONTROL RETURN |

mx

nolL ow r 3 t 2 |
g 8 <3 2 He » 4® “il 3 =

e X z ©

CC

;
= VJ 0
i) ¥ rT 2 <| v [7 ~ —

: m ply Z 3 oOny | x ® x

| 2 A 0
Ww >

| 3 >
LP C

) — 22 3Zz

| 2:3 Jl
) AUN FRI
) 88 §|°

0

|»)
m

7 =

2 C3 I
A ? 2

(3 : -AH
=
%

= = p=
Blogm

) > AN Ww isXN

-4 NNOITX 2

»
2 le
=

=)

Ti

o

o| RN
| WN uy

2 m

4 :

;
& 5

on | wn

- > ws (53) 2A ii eemetme= — g — p) ’ a ——
| gE 7 B N 2

n I F 3 || Rh”, a Ly a

375 LET
gS wv v oo

2] 5 | hs£L

3%) ; : :& -
= ®)

| §

| on | ap 3

m) .

—

0 1

4 $

| 2 : | 1 oo

| 3
AES |N27
mn =<

CONSTRUCT SET CAW SET CAW

CCW ERR CNT «0 BACRSPACE

DEV NO. | "ERR CNT &

VALID? ERR CNT «0 | ERR CNT +1

To | |
ERROR EXIT |

WAIT

(os) OPERATOR FORoo ANY INT.
= TAPE

Ecov IRREC BUS NoT INT(on NK Nat a ERR Y oP CLEARED
1}

WAIT
FOR |

| | | DEV. INT;

NoT REwvV IRREC XK
| RDY ERR ERR

| | RETURNY

EE | TYPE 10
: | CONSTRUCT oo | |

1 ecew | } CSW «DEY ST .
| DEVICE

| | RETRY | OPERATOR}-SNRE Co CHECK
SET CAW

| DEV © TYPWR JEVST «0

| AIT |
| WA! P «"UNITO(|

ANY INT

IMM DP NOTRDY Rechv | | 2 WTR
INT CLEARED Busy IRREC

OK foreP ERR 3 [ere
J :

FOr

TYPWR NIT;

Cr> (oPerATOR |

NOT RDY RECOV |
IRREC

ERR

1 Tok

SET

MESS CNT

|, RETURN CL

| |

| | , TEST C213SIO CSW 1 START
"Busy LIT" OK i 10

CC= 0

| ATTENTIO
rrr CoN UNIT END

CHANNEL END

DEV END

STORE STATUS
IN

| DEV ST° TABLE

lt

oN OK CLEARED IMM. |oP

, RETURN |

I | 2ENSE | NOT RDY
DEVICE Rats DATA ERR |

IRREC. | ERR ok BUSY REcov] ERR IRREC] ERR

RETURN

SI Urn := 0 . an pi

3 & F0 * 2 RZ |
2 qf rn < z m > 0
J ry E+ Zz g zl
po)

—~ XI 2

3 3 ® m
m oO < Am

33 = z om ><
9. » - —
= 3 A

—

— |

Bl -v rt
Pav 0 oO x X » 2

w

) UO < FRA o 2— ne | > |
WN

2)

| 3 ES
2d —~ Mm
$0 wn

—

6. The PL360/0S system |
E. Satterthwaite

A PL360 system is available which is compatible with IBM System/360 3

| Operating System (0S). The PL360/0S system is processed as a single
| OS job step; it consists of a core-resident linkage routine originally

| coded in 0S Assembler Language and a set of PL360 system programs on
a (logical) system tape. Among the latter set of programs is a core-

resident job sequencing routine, which controls the processing of a

5 batch of PL360 jobs as directed by the PIL360 control cards described
| ~ in chapter 2. In addition, OS Job Control Language (JCL) statements

| must precede the PL360 batch to control 0S job sequencing and the

association of PL360 logical input/output devices with OS data sets.

Finally, the linkage routine must be supplied as an object module if

it is not available in a system library.

Section 6.1 contains information about the use of the previously

described PL360 system programs under 0S. Section 6.2 is an intro-

| duction to the use of the Job Control Language as it pertains to the

PL360/08 system. The internal organization of the system is described

in section 6.3. Understanding of parts of these sections requires

some familiarity with OS concepts and terminology. Furthermore, only

the more elementary uses of OS job and data management facilities

can be described in detail. The publication IBM Operating System/360:
Concepts and Facilities (IBM Form €28-6535) contains an introduction

: to OS and further references.

6.1. PL360 Programming Under OS

. 6.1.1. Input/Output Considerations

OS data management services allow the problem programmer to code

1/0 requests in a manner which is relatively independent of physical

device characteristics. Some of the 1/0 requests in the linkage |
routine have been so coded; details are provided in section 6.3.

Supervisor I/O function statements are written in PL360 as described

in section 3.1.2.4; however, the following restrictions are made:

L8

4 } } -

a. READ

Reading any card with a "/*" in columns 1 and 2 will

cause termination of the PL360 system. The message

'PL360/0S TERMINATED BY OS DELIMITER |

will be printed at the top of the next printer page.

b. Tape Functions

(1) Since physical tape marks have special significance to

5 0S, logical tape marks are written as special records.
| Such records are 18 bytes long; the first 14 bytes

are EO, (corresponding to 0-2-8 punches). Since
| such records are recognized as tape marks and since the

last four bytes are reserved for system pointers, such

records should not be written using the WRITETAPE

function.

(2) Whenever possible, use of the BSPREC and BSPTM

functions should be avoided. Certain design goals

require the use of the OS BSP instruction in performing

these functions; BSP 1s very inefficiently implemented

| | in current versions of 0S (through Release 10).

(3) A variety of physical devices may be used as logical tape

units. OS and/or these devices impose limits on the

) maximum record length which can be processed. These

limits are: |

| | Physical Device Maximum Record Length (bytes)
2400-2402 tape 32760

| 2311 disk | 3625

2314 disk 7188

2302 disk Lo8L

2301 drum 20483

2303 drum 4892

2521 data cell | 2000

| 49

Attempts to write records longer than those allowed for

the physical device will cause termination of the PIL360

job with an I/O error indication. A record length para-

meter is passed to each program in register 6. In

addition to any user defined significance, this para-

| meter is used by the PL360 compiler and system tape

update programs as described in section 6.1.2. The value

of the record length parameter may optionally be speci-

: fied as a PL360/0S system parameter (see section 6.2.5.1);
| the default value is 3624.

i c. WRITETIME |

8 The printed time is real time. With some OS options, only

part of that time was used by the PL360 system.

6.1.2. System Program Limitations |

In addition to the input/output considerations above, certain |

restrictions are made on the use of the system programs.

6.1.2.1. The PL360 Compiler

The language processed is PL360 with the restrictions and exten-

sions of section 5.1.2. Some programs which can be compiled by the

stand-alone system will cause segment overflow errors in the 0S

version, since the first 368 bytes of data segment O are unavail-

. able for data and since supervisor function statements generate

twelve bytes of code instead of two. Compiled segments will be written

on the scratch tape as multiple records, if necessary, to limit maximum

. record length to that specified by the record length parameter.

6.1.2.2. The System Tape Updating Program

Since the PL360/0S system linkage routine (monitor) is not

included on the system tape, section 3.5.4 is not relevant. $LOAD

and $MONITOR cards should not be used. Maximum record length on

any new system tape generated will not exceed that specified by the

record length parameter.

o0

6.1.3. Program Execution Errors

Errors are processed as described in chapter 4 with the following

exceptions:

a. The external interrupt facility is unavailable.

b. An end-of-job (EOJ) error is also caused by an attempt to

read beyond the end ofa data set on any logical tape.

c. The PSW displayed for input/output and EOJ errors has the

+ form

| 00000ONNXCOCOCKK

where NN is the logical device number and XXXXXXXX specifies

the location of the instruction following the one linking to

the I/O routine.

Following the detection of errors, the system will attempt to proceed

to the next PL360 job. Certain serious 1/0 errors cannot be accepted

by OS and will terminate the PL360 system. In addition, the linkage

routine, the job sequencing routine, and the problem program have

identical memory protection keys, and the program reference table both

shares this key and is addressed using register 14%. Thus it is possible

for a problem program error to cause PL360 system failure. Under

OS options using memory protection, OS supervisory programs and user

programs initiated by other OS jobs in the system will be protected

from such modification.

51

6.2. O08 Control Statements for PL360 |

6.2.1. Introduction | }

In this section, the reader is assumed to be familiar with 0S

concepts and facilities and to have access to the publication IBM

System/360 Operating System: Job Control Language, (IBM Form C28-6539).
Use of the system with a card object module of the linkage routine and

a full set of JCL statements will be described. At some installations,

i a catalogued procedure or load module may be available to reduce the

| number of non-PL360 cards; documentation of the use of such facilities

~ 1s considered an installation responsibility.

. 6.2.2. PL360/0S Job Setup

A P1360/0S job consists of two or more job steps. In the first

step, the O05 linkage editor is used to produce a load module of the

P1360 linkage routine. In each subsequent step, a batch of PL360 jobs

| is processed. For each such job step, DD cards are used to associate

PL360 logical devices and OS data sets. Such associations are fixed

during each job step but may be altered between job steps. The card

deck organization required is shown schematically below:

TT

repeat as 7
required yl

) ZN delimiter card

| N PL360 job batch

| SR < OS job step contrcl cards
(— for PL360

| N © delimit |
| | elimiter card
N linkage routine object module

| linkage editor job step control cards

job card |

oe |

The OS JCL statements required are described below. Information con-

cerning the syntax and format of the cards containing these statements

may be found in the IBM JCL manual (IBM Form C28-653%9); the notation

introduced in that manual is used in the following description. The

delimiter card contains a "/*¥" in columns 1 and 2 . The PL360

job batch must contain the PI360 control cards as described in chapter
2; in particular, it should be noted that the 08 delimiter card is not

| a substitute for a PL360 EOF card.

| 6.2.3. The Job Card

This card must be prepared according to individual installation

standards.

6.2.4. The Linkage Editor Job Step Control Cards

~ For most efficient resource utilization, the JCL statements for |

this step should be copied from those of the linkage editor step of

the installation's standard catalogued procedure ASMFCLG, with the

data set SYSLIN equated to SYSIN. A typical set of statements

follows: |

//LKED EXEC ~PGM=IEWL,PARM='NCAL'

//SYSLIN DD DDNAME=SYSIN

//SYSIMOD DD DSNAME=&GOSET (MAIN), UNIT=SYSDA, X

// SPACE=(TRK, (20,10,1)),VOLUME=REF=SYS1. SCRTCH3, X

-// DISP=(,PASS),DCB=(RECFM=U, BLKSIZE=3625),
//SYSUT1 DD SPACE=(TRK,(20,10,1)),VOLUME=REF=SYS1.SCRTCHL

//SYSPRINT DD ~~ DUMMY

//SYSIN DD *

6.2.5. The 0S Job Step Control Cards for PL360 |

6.2.5.1. The EXEC Statement |

Execution of the load module produced by the link edit step (named

LIKED) is specified by a statement of the form

55

CTTem - - oo EE I B..

//stepname EXEC PGM=%.LKED.SYSLMOD |
or |

//stepname EXEC PGM=*.LKED.SYSIMOD,PARM=blocksize . | | |

| An integer should be specified for -blocksize; this parameter is optional

| (see section 6.1.1). The name of each job step within a job should be

unique. |

6.2.5.2. The DD Statements |

: DD statement names for the PL360/0S system should be of the form

DEVICEn, where n is the number of the PL360 device to be associated

) with the described data set. The devices and associated logical |

- characteristics supported by the standard PL360/0S system are as

| follows: | | |

Device Number Logical Device Type |

| 1 line printer

2 card reader

5 | card punch | |

4 tape (system)

5 tape |
6 tape |

I tape |

8 tape | | |
- 9 tape |

Data sets associated with devices 1 through 3 should consist of |

~ OS format F records with the following attributes:

Device Number Logical Record Length Blocksize

(bytes) (bytes)

1 133 (1) (2)

2 80 80 | |

3 80 (2)

51 |

EEA BR ch 0 oT ie mem Te =

| (1) includes an ASCII carriage control character supplied by

the linkage routine oo

(2) specified by DD statement.

Data sets associated with devices & through 9 should consist of OS |

format U records; any logical tape marks to be processed must have

been written by the PL360/08 system. DD statements for devices 1

through 4 are required; those for devices 5 through 9 are optional.

k If a device in the latter set is referenced and the correspondingDD

| statement is missing, the PL360 job will be terminated with an I/O error

message. | |

Section 2 of the IBM JCL manual (Form (28-6539) contains model

DD statements for most common applications. The following notes |

should be considered a supplement to that section.

a. For DEVICEl and DEVICES, the DCB parameter

is required. Appropriate values for the subparameters

BILKSIZE and BUFNO must be specified. For all the

other data sets, no DCB information 1s required.

b. If deferred mounting of magnetic tape volumes is

requested, tapes need not be mounted until (and unless)

referenced. With this option, the unit parameter has

the form

UNIT= (address, ,DEFER) .

Appropriate serial numbers should be supplied for

unlabeled tapes, since they are used in mounting instru-

tions directed to the operator.

6.2.5.3. Examples |

The following examples illustrate appropriate JCL statements for

the PL360 job step in the situations described.

a. PL360 programs are to be compiled and executed. The

system is on unlabeled tape (reel identification

GSG140); the scratch area is to be on disk; standard

unit record options are desired.

DD

EC oom oo oo So EE

//GO EXEC ~~ PGM=*.LKED.SYSLMOD | |

//DEVICEL DD SYSOUT=A,DCB=(BLKSIZE=133,BUFNO=2)
//DEVICE2 DD DDNAME=SYSIN |

//DEVICE3 DD UNIT=SYSCP,DCB=(BLKSIZE=80, BUFNO=.) |

//DEVICEL DD ~~ UNIT=(183, DEFER),LABEL=(,NL), X
// VOLUME=SER=GS G140,DISP= (OLD, KEEP)

//DEVICES DD SPACE=(TRK, (20,10)), VOLUME=REF=SYS1.SCRTCHL

| //SYSIN DD * |

| b. In the first job step, named GOl, a system program on

unlabeled tape (reel identification SC1278) is to be |

3 compiled; the compiled program is to be used in a system

update to a new tape reel. In the next job step, named

| ~ G02, the new system tape is to be used, and logical |
card punch output 1s to be blocked and written on | ;

magnetic tape. | |

//GOL EXEC PGM=*%.IKED.SYSILMOD, PARM=32760

//DEVICEL DD SYSOUT=A,DCB= (BLKSIZE=133, BUFNO=2)

//DEVICE2 DD DDNAME=SYSIN |

//DEVICE3 DD UNIT=SYSCP,DCB= (BLKSIZE=80, BUFNO=2)

| //DEVICE4 DD UNIT=(183, ,DEFER),LABLE=(,NL), X |
// VOLUME=SER=GSG140,DISP= (OLD, KEEP) |

) //DEVICES DD UNIT= (2400, ,DEFER), LABEL=(,NL)

//DEVICE7 DD UNIT= (184, ,DEFER),LABEL=(, NL), | x oo
// VOLUME=SER=SC1278,DISP=(0LD,KEEP)

.//DEVICE9 DD UNIT=(283, ,DEFER),LABEL=(,NL), X

-// VOLUME=SER=GSG141,DISP=(NEW, PASS)

//SYSIN DD *

//G02 EXEC ~~ PGM=*.LKED.SYSLMOD |

//DEVICEL DD SYSOUT=A,DCB=(BLKSIZE=133, BUFNO=2) |

//DEVICE2 DD DDNAME=SYSIN | | | |

//DEVICE3 DD UNIT= (282, ,DEFER), LABEL=(, NL), X |

56 |

// VOLUME=SER=GSG201 ,DCB= (BLKSIZE=240, BUFNO=1), X

// DISP=(NEW,KEEP) y

//DEVICEL DD DSNAME=% .GOLl.DEVICEQ,DISP=(OLD,KEEP)

//DEVICE5 DD SPACE=(TRK, (40,10)),VOLUME=REF=SYS1.SCRTCH1

//SYSIN DD *

7

6.3. System Organization

6.3.1. Storage Organization

The PL360/0S system consists of a linkage routine, coded in 0S

Assembler Language,and a set of system programs, coded in PL360. |
Among the latter is a job sequencing routine. That routine and the

linkage routine are permanently core-resident; other PL360 system and

user programs are loaded as directed by control cards. During execu- |

a tion of a PL360 job, storage is organized as indicated schematically
| in the following diagram: | | oo

Linkage Routine |

(Linkage Area I)

| Ft
on

Hs

Job Control & |
& |

Program and Data =

: Segments =
Qu
H
®

0 .

: Program o |
; : wm

Segments | |

(Linkage Area II)

Data

Segments |

58

The linkage routine occupies about 0000, 4 bytes of storage. The job
sequencing, program and data segments, and the free storage area occupy

a block of storage obtained by a GETMAIN instruction. The length

(in bytes) of the block lies between the values of COREMIN and

COREMAX defined in the linkage routine source code. In the standard

system, these have values of 65536 and 131072 respectively.

The two linkage areas contain save areas and identical copies of

the program reference table, which contains the segment base addresses.

Area I is used by the job sequencing routines and is filled by the |

loader programs. Area II is used by problem programs; the reference
table of Area I is copied into Area II at the completion of loading.
The contents of register 14 always address the base of the linkage

area in use; thecontents of register 15 normally address the base

of the program segment being executed. |

The linkage areas consist of 92 full words each, used as follows:

Displacement (Bytes) USE |
+ O user program segment base addresses

+ or) (segments O through 63)
+ =) oo job sequencing segment base addresses+ 316 (segments 64 through 79)

+ 520 linkage routine entry vector address

+ 32) linkage routine register save area |

+ oe)
; + 356 reserved | |

+ 360 reserved

| + 364 return address (to job sequencing)

6.3.2. The Linkage Routine

6.3.2.1. Linkage Conventions

Supervisor function statements in PL360 generate machine code
of the following form (refer to section 6.3.1):

L 15,320(14) load entry vector address

BAL 15,12%n(15) link to n'th entry point

L 15,4%m(1k) "reestablish addressing

59 |

where it 1s assumed that the statement occurs in segment m . Elements

of the entry vector have the following form:

| STM 12,3,3%24(14) save registers

L 12,320(14) establish linkage routine addressability

B routine branch to service routine.

The return sequence has the form:

CLI *+1,0 set condition code to O

a IM 12,3,324 (1k) restore registers
| BR 15. return

) For certain services specified in section 3.1.2.4, instructions to set |

~ the condition code appropriately replace the first instruction. In

addition, most routines require a separate save and restore of register

14 in a location addressable through register 12 .

6.3.2.2. Unit Record Input/Output |

1/0 to the logical printer, card reader, and card punch is per-

formed using the OS queued sequential access method with move-mode Co

GET and PUT logic. Automatic buffering is supplied by 0S. The card

reader uses a block size of 80 bytes and two buffers; blocking and

buffering information for the other logical devices is provided on the

corresponding DD cards. The logical record length for the card punch |

is 80 bytes; for the printer, it is 133 bytes and an ASCII carriage

control code is prefixed to each record by the linkage routine.

Following a skip to channel 1, the next skip code is supplied after

LINESMAX lines have been printed or a PAGE statement is executed.

. LINESMAX is defined in the linkage routine source code; the standard

- value is 60 . |

6.3.2.3. -Tape Input/Output

I/O to the logical tape units is performed using the 0S basic

sequential access method with READ, WRITE, and BSP logic. Records

are considered to have the 0S undefined format; those shorter than

18 bytes are automatically padded to that length. No buffering is

provided, and by issuing a CHECK instruction, the linkage routine

60

- --

assures that all 1/0 requests are completed before returning. Tape

marks are written as special 18 byte records, the first fourteen

bytes of which contain EO, ¢ (corresponding to an 0-2-8 punch). For
each logical device, a count (NBLOCKS) is maintained of the number

of records written or read following either the load point or the
inter-record gap which precedes the last tape mark record. When a

tape mark record is written, the current count value is recorded in

the last four bytes of that record, and the count is reset.

: 6.3.2.4. Other Linkage Routine Services oo
A portion of the linkage routine is used for system initializa-

tion. Storage is obtained by a GETMAIN instruction, linkage to

capture program interruptions is established by a SPIE instruction,
and logical devices 1 through 4 are opened by an OPEN instruction.

Other devices are automatically opened the first time they are refer-

enced. Upon system termination, storage is freed and logical devices

1 through 5 are closed. Other devices will automatically be closed

by the system if necessary. The card and tape loaders are also

included in the linkage routine; they are coded to be used as PL360
procedures.

6.3.3. The Job Sequencing Routine

The job sequencing routine is a minor adaptation of the correspon-

ding routine for the stand-alone system. Status switching and access

- to the device table have been deleted. The program logic is described
in section 5.2.

61 |

WEE

Appendix: Conversion of 026-punched cards

The system accepts the following two control cards anywhere in

the input deck:

+026 and +029

These control cards do not give rise to end-of-file indications, but |

cause the READ routine to perform a character translation on subse-

x quently read cards, or to omit the translation respectively. |

| The translation, causedby #026, permits the use of cards punched

- on Stanford's extended 026 keypunch equipment. The translation is

specified by the following table. Note that letters and digits do not

undergo translation. |
|

holes 026 029 hex.

12-3-8 4B

0-4-8 ((LD |
12-5-8 [(LD

12 + + LE |

0-6-8 < LE
12-0 & 50 |

1-3-8 § $ 5B |
11-4-8 * * 5C | |
12-4-8)) 5D |

| 11-5-8) 5D
11-6-8 ; SE

11 - . 60 |
0-1 / / 61

11-7-8 9 6C | |

11-0 > 6F

5-8 : : TA
12-7-8 # 7B |

0-7-8 | @ 7C |
7-8 7D
3-8 = = TE |
L 8 1 1 TF

62

NE JE

i

-

.

.

: —

[]

-

-

-

References

[1] N. Wirth, "A programming language for the 360 computers", -.
Technical Report CS 53, Stanford University, June 1967.

[2] N. Wirth and H. Weber, "EVLER, A generalization of Algol, and
its formal definition", Part 1, Comm ACM 9/1, pp. 13-23. | |

[3] IBM System/360 principles of operation, IBM Sys. Ref. Lib.
a A22-6821-2.

!

|

63

£3 t=

= #)

.

.

- a

T

-

-

-

-

