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Abstract

An implementation, using Gaussian LU decg@position
with row interchanges,of Stiefel's exchange algo-
rlthm for determining a Chebyshev solution to an
overdetermined system of linear equations is pre-
sented. The implementation is computationally
more stable than those usually given in the lit-
erature. A generalization of Stiefel's algorithm
is developed which permits the occasional exchange

of two equations simultaneously. Finally, some

experimental comparisons are offered.
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1. Introduction

The problem of finding a vector X = (il,..., in) which solves an

overdetermined system of equations

n
= - = i=1,... H >
ri(x) Zé.aijxj d; =0 (i=1,..., m; where m> n)

in the sense that

12?§m |z (R)] < 121?§m Iri(x)l

-

for any x € E' is treated by Stiefel in [1]. Such an % is called a

Chebyshev or minimax solution to the system.

Given an overdetermined system of linear equations Ax = d whose
matrix of coefficients satisfies the Haar condition (each n X n sub-
matrix is nonsingular), Stiefel presents in [1] an algorithm called the

exchange method for finding a Chebyshev solution. 1In a later paper,

[2], the exchange method is shéwn to be equivalent to the simplex method
applied to a suitable linear programming problem.

In this regard, Stiefel suggests the use of techniques drawn from
the simplex method for the implementation of his algorithm. These

techniques are characterized by their use of Jordan elimination, for the

most part without row or column interchanges to pick the most advanta-

geous pivots, for solving linear equation systems which arise during the
computation. These methods are fast but computationally unstable. In
this paper we propose a- computational scheme based upon the more stable

1
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method of Gaussian LU-decomposition using row interchanges. Attention

is paid to the peculiarities of the exchange method to make computation

as fast as possible.

Afterwards a generalization of Stiefel's algorithm is presented
which permits the occasional exchange of two equations at once.
Finally some experimental comparisons of selection rules for use

with the exchange method are tabulated.

2. Background Theory

There is a full treatment of the theory and the exchange method in

Chapter 2 of [9]. (The exchange method is called the ascent algorithm

in this work.) We therefore confine ourselves in this section and the
next to a statement of pertinent results, omitting proofs.

According to corollary 7.4.7., page 410, of [4], any overdetermined
system of linear equations has a Chebyshev solution. The following

lemma. and theorem serve to characterize these solutions.

Lemma: Let B = [bij]‘be a p X q matrix with rows Biseees Bp

There is a vector y = (yl,..., yq) such that

q
Z b.,.y. <O for all i=l,..., p

b

if and only if O # 2: aiBi for all nontrivial choices of
i=1

of nonnegative scalars al,..., ap .

This lemma is a special case of corollary 6, page 115, of [5].
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Let Ax = 4@ be an overdetermined system of m linear equations in

n unknowns. For any vector x = (Xl""’ xn), denote the residuals

aijxj - di (i=l,..., m) Dby ri(x) .

™M

1

Let Ai be the ith row of the matrix A .

Given any fixed vector, Vv = {Vl,.-., vn), we may assume with no loss

of generality that the equations have been ordered and numbered so that

B ] = ()= e = (] > o (12 e 2 () |

where 1 <k S_m .

Theorem: There is a vector 2z for which

7y

(v)]

l<1<n| ()] < l<1<n
if and only if O # 2: Wy sgn(r (v))A for

all nontrivial choices of nonnegative scalars

1700 W

For the purposes of the exchange method we restrict our attention
henceforth to overdetermined systems of m linear equations in n un-
knowns, Ax = d, for which rank(A) =

To begin, suppose that m = ntl . There is no loss of generality in
assuming that the equations have been ordered so that the first n rows,

Al"'"’ An, of A are linearly independent. Thus, scalars xl,..., xn+l

can be found with A ., # 0 such that



0= }: A -
i=1
n+l
iz-:l Kidi
Denoting sgn(ki) by S5 set e = - %EI————— » and solve the system
2,1
SR
A ™ 4 1
: : =1 . + e . .
An *n dn *n
. n
So ri(x) = 2: 8;5% - d; =s;e for i=1,...,n.
J=1
Furthermore, rn+l(x) = S 416> as can easily be shown.

Il

Therefore, sgn(ri(x)) s; sgn(e) for all i .

ntl n+l
But 0= MA =3 A lsa, -
i=1 * A
n+l nt+l
And so O = sgn(e) O = 2: |)\i|si sgn(e)Ai = 2: Ikilsgn(ri(x))Ai .
i=1 i=1l

Hence, by the preceding theorem, x = (xl,..., xn) is a Chebyshev solu-
tion for the given system. (For an alternate discussion of (n+l) X n
systems see [6].)

Returning to the general case (m.z n+l), suppose for some set of
ntl rows of A the first n of which are linearly independent (with

complete generality, the first ntl rows of A) we construct the

L
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Chebyshev solution x as above and find that, under correct ordering

of equations n+2 through m,
lrl(x)| = L., = |rn+l(x>|h..>. lrn+2(x)| Z ‘e _>_ |rm(x)| .

Then x 1s a Chebyshev solution‘to the full given system.

We further note that the value

max _ max
lel - l_<_i_<_n+l‘ri(x)l -4 lri(x)|
must be greater than the value 1nfn L<§2§+l‘rk (y)| for any other
yeE - J
collection of n+l rows Ak yeees Ak from the matrix, since
1 n+l

inf max max

y 1San+1|rkj(y)| = 1SJ'Sn+1|rkJ. ()] (x as above)

"X e, ()] = el

= 1<i<m

Following the convention put forth in [1], any subsystem

prae - —~ — — -
A, Z a
el Wt _| M
Al zn dl
N n+%_ S _ n+l~
5
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A,
i
of the given system with rank . L =n will be called a ref-
Ai
n+l
erence subsystem, and the rows Ai ooy Ai will be called a refer-
1 nt+l

ence set. If x = (xl,..., xn) is a Chebyshev solution to a reference
subsystem, the value

inf max
le| = |r, x)|= +.. = |x. (x)| = 1n . |r. )]
1l ln+l yeEn 1<j<ntl lj

will be called the reference deviation for the reference subsystem. It

is uniquely determined by the reference subsystem.

5. The Exchange Method

Stiefel's algorithm consists of starting with a reference subsystem
and modifying it one equation at a time so as to increase the reference
deviation by each change. FEach modification proceeds as follows:

We may assume that Al,..., An+l is a reference set. Let
X = (xl,..., xn) be a Chebyshev solution to the corresponding reference

subsystem computed as above. So we have ¢, xl,..., Kn+l which satisfy

n+l
a) E: AAy =0
i=1

A
i=1 11
°) e = -5
Y Il
j=1 Y
6



c) ri(x) =s;e for i=1,..., n+l,

— where s, = sgn(xi) .

- If x 1is not a Chebyshev solution to the full given system, then by

the discussion in the previous section, there is an ae{n+2,..., m}

— . .
for which lra(x)l > el . Let pyse++s py,q Dbe scalars for which
- ‘ n+l
- A = .
: - : 9 igl piAi
o
v In order to proceed, we impose
b Condition 1: \; # 0 for all i=1,..., ntl .
i If this holds, let Be{l,..., n+l} be such that
o
- %P _  max Zo°fi
= . X ]
AB 1<i<n+l xi
; where o = sgn(ra(g)), and s = sgn(e) -
-
Now impose
L, Condition 2: Al,..., AB_l, AB+l,..., An+l’ Aa are a2 reference set:
; _ We form a Chebyshev solution x' = (xi,..., xﬁ) to the reference subsystem
—

‘ - _

- (4 =] aq ]

A . d : .

o g-1 = B-1 in the usual fashion,
§B+1 ) g5+1

3 z :

- An+l - l’lJ dl’l“"l
A . d

} - & L o .

.
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producing ', Ayscces Xé_l; Ké+l""’ Ape1? N, Such that

n+l
al) LA AL TR, =0
i=1 :
ifg
n+l
2: xidi * >‘a/doz
i=1
: . _ _ ifB
b') €' = - nt+l
gl + };llle
i7s
C') ri(x') = Sj'_e' for i=l,-o-’ B"l, _8+l,--~, n+1) o

| R— 1
where si = sgn(xi> .

We further have

PaC., PO
= ! ——&—d - —-l—g = PP +1: i .
M=o [ =2 ™ 1 (i=1,..., ntl; i#p)

(Note that, by the choice of B, the préduct of the term in brackets

with s = sgn(e) is nonnegative.)

Furthermore,

n+l A
if k=[] + 3 Ial and o =Lal
o k=1 k K

k#8

it can readily be shown that

el = ele, ()l + (1-e)lel -



i
'

It is important to note that, if condition 1 1is satisfied by the
second reference set (i.e., xi #£0 for i=l,..., g-1, B+l,..., n+l, o),
then ¢ > O . Therefore |e¢'| > |e|l, since lra(x)l > |e] . The
strictness of the inequality Ie{1 > Iel implies, by a simple contra-
diction argument, that if an initial reference set is chosen and subse-
quently modified as above by exchanging successive non-reference set
rows of the matrix A for rows in the reference set, and if conditions
1 and 2 hold at each exchange, the process must converge upon a

Chebyshev solution for the full system-

4. Jordan Elimination

An excellent example of an implementation of the exchange method
which uses Jordan elimination is given on page 50 of [9].
Briefly, given indices {ij,..., i ..} ¢ {l,..., m}, numbers

Xl""’ hn+l are found so that

and

Setting s, = sgn(xk) for k=l,..., n+l, the matrix

k
-1
AE . L] . AE
1 n+l
C =
1 R ]
9



Each exchange step, then, involves forming

[x seeey X, ] = [4, seeey d, lc,
1 n ll ln+l

computing

n+l

r =

3 z: 853 % - dj for all j%il,...,
k=1

in+l’
selecting o  so that ]ral = max, and forming

T
[pl,..., pn+l] = [aa’l,..., 2, sgn(ra)]c .

The last column of ¢ has the form

rxl/G

Ap/G

_)‘n+l/G_1 ’
where

n+l1

6= ¥ Il

k=1

Hence, g 1ig selected as an index for which

10



sgn(l&) sgn(e) pB/CB,n+l = max .

An appropriate pivot operation on C ends the exchange step.

can be found in

The xk
3
n 2 ., 8n
242 =+ 1
3 T3

operations (counting only multiplications and divisions), and the initial
3

computation of C requires an additional n~ + 5n2 + n operations.

In each exchange step the quantities

Kpseees Xn+l’ €5 P12ttt Ppey

require 2n2 + 4n + 2 operations to compute, and the updating of C
demands an additional n2 + 2n + 1 operations. Hence, k exchanges

may be carried out with

3
£%~ + (3k + 5)n2 + (6k + %i)n + 3+ 1

operations.

While row and column interchanges can be permitted during the
initial sequence of Jordan elimination steps which forms C, so that
pivot elements of largest possible magnitude can be selected, no pivot
choice is possible during the subsequent updatings of C . For simple
examples of the danger implicit in this fact see [10,11]. The danger

is studied at greater depth in [3,7,8].

11
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5. LU Decomposition

Starting from any reference subsystem of the given overdetermined
system, the exchange method produces a new reference subsystem at the

cost of solving three nonsingular sets of n+l linear equations:

1

PTX = r2
P = .

P Tz

The vector rl is given, but Ty depends upon ) and r5 depends
upon x . If three such systems of equations were given in isolaticn,
the general method of solution would consist of making an accurate

LU decomposition of P wusing Gaussian elimination and backsolving six
triangular systems of linear equations. This can be done with

.’gf + 4n® + 0(n)

operations. With Stiefel's algorithm, however, this price need not be
paid at every exchange. The matrix P', derived from P by one
exchange, differs from P only in its Bth column. If column inter-
changes are not permitted in computing LU decompositions, then the
decomposition, L'U', of P' 1is identical in certain portions to the
decomposition, LU, of P, affording a saving of work. Furthermore,

pivotal selection using row interchanges can be allowed. While an

example of a matrix is given in [7] for which this strategy is poor,

12



it is the strategy commonly used and is almost always stable in practice
(e.g., see comments to this effect in [3] and [8]). 1In any event
it is superior to the strategy of making no pivot selection.

The work done in carrying ouy‘ k exchange steps, involving columns

Bl""’ Bk of P, can be cut to

3
(k+1)(—r51-+l+n2+7n)-n;l(uk+1)+_7..1§..;£_l9

L2 ¥
5 L

k k
B) - (n+3) Ygj+ (en+32)Y 8,
J J=1 J=1

1

operations.

For example, if 31 = oee. = Bk = g » this becomes

3
(k + 2} + EE + 1)n° + o(n),

roughly half the work that would be required if no advantage were taken

of the similarities between P and P'

6. Detailed OQutline of an LU Implementation

1. Select n+l indices {il,..., in+l} c {1,..., m} so that the

matrix
— -
Ai d.
1 1
P = . .
Ai di
n+l n+l
L J

13
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is nonsingular. If this cannot be done, terminate with an
appropriate indication. The user may then check whether the

system Ax = d can be satisfied exactly.

Perform the Gaussian reduction of PT into the product of a
unit lower triangular matrix L and an upper triangular matrix
U . All information about L and U can be stored in the
space initially occupied by PT plus one vector (for inter-
change information). In each column the element of largest
magnitude on or below the diagonal is to be used as the pivot.
If the LU decomposition of a matrix differing from PT only
in the Bth column is available, one can save computation by
using the first PB-1 columns and (as pointed out by W. Kahan
of Toronto) the upper-right-hand (B-1) X (n-B) submatrix of
this decomposition as the corresponding segments of the decom-

position of pT . P rank(PT) < n+l, terminate.

Solve

e
'_J
f
=
&
I
HO*re0

This requires the forward-solution of

Lv =

HO¢*++O

14
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6.

followed by the back-solution of U\, = v . (Permutations

due to the row interchanges of step (2) are ignored in the
remainder of the outline). If vl,..., vn are available from
a forward-solution invbl;ing an L whose first B-1 columns
are identical with those of the matrix 1L being used here,
only VB,..., vn need be computed. If any Xi is zero,

terminate.

Set

n+l

~ e =1/ 2: lxil .
i=1

If e 1is less than any value of ¢ previously computed for

the current data, go to step (9).

Solve
sgn(;)
Px = ¢ .
Xn+l will turn-out to be -1 .
Compute
n
r.(x) = a.. x -d

15



10.

for each
jg{il,..., in+l} .

Let o be an index for which Ira(x)l is maximal. If
Ira(x)l <es then (x),..., x ) is a candidate as the

Chebyshev solution of Ax = d; go to step (10).

n

T (dth

- column of A?) .

Solve PE A

Find Be{l,..., n*tl} so that

Hg

— senlr_(x)]

A

is maximal. Replace the set of indices fil,..., in+l} by

{il"") iB_l) o> iB+l)"'J in+l}

Replace the Bth colum of BT by Ag . Go to step (2).

Restore the preceeding set of indices {il,..., and

in+l}

recover the preceeding LU decomposition.

Iteratively refine the solution to the system

sgn(n,)
Px = ¢ :l

sgn(np)

16



according to the scheme given on page 121 of [3]. (The con-
vergence of this refinement process is established in [12]1).

w

Check the residuals rj(x) for

jg{il,..., in+l} .

It

max

lra(X)I =

Irj(x)‘ < e

then give [xl,..., x ]T as the Chebyshev solution. If this

n+l
residual check is not successful, but the refinement process
has been carried out before and the last refined value of ¢
is greater than the current refined value of ¢, return the

last refined values of x .y Xn as a doubtful solution.

10
Otherwise return to step (7).

T« Remarks on the Outline

We have ignored scaling strategies in programming our implementation.

Step (10) serves to improve the final values of ¢, Xppeees X
It is usually performed only once. It is not uncommon to produce values
for e, Xpseers X, which are correct substantially to full machine
precision; i.e., compare runs A and D in the appendix. The decisions

made in step (lOL after the refinement, have been included as an attempt

to supply the Chebyshév solution for the reference subsystem having the

17



largest reference deviation in those infrequent cases where the test

max
Jg{ll,coo’ 1n+-]_

} ,rj(x)l <e
consistently fails to be satisfied.

Note that the LU decomposition of fT is used to solve the system
of equations Px = ¢ sgn(d) (step 5). In [3] it is shown that the
computed solution to Ax = b via LU decomposition is the exact solution
to (A + K)x = b, where a bound on ”K”co can be placed. It is easily
shown that the computed solution to ATy = d via the LU decomposition
of A is the exact solution to (A + H)y = d, where the same bound

pertains to ”HH°° .

8. Algol 60 Description

procedure Chebyshev (A,d,h,m,n,refset,epz,insufficientrank,zerolambda);
value m,n; integer m,n; real array A,d,h;

integer array refset; real epz; label insufficientrank, zerolambda;

begin

real procedure ipr (ii,ff,uu,aa,bb,cc);

value £4,uu,cc; real aa,bb,cc; integer ii, 24 ,uu;

begin comment single-precision inner-product routine;

real sum;

sum := ccj
for ii := IL step 1 until uu do sum := sum + aaxbb;
ipr := sum;

18



Erratum:

Insert in §8 before the Algol 60 procedure

of Computer Science Report No. 67, Stanford

University.

The parameters to procedure Chebyshev are:

identifier type
m integer
n integer
A real array
d real array
h real array
refset integer array
epz real
zerolambda label
insufficientrank label
The parameters m, n, A,

We direct the user's attention to'the identifier eta

comments
Number of equations.
Number of unknowns.

Matrix of coefficients.
Array bounds - [O:m-1, O:n-1].

Right~hand-side vector.
Array bounds - [0O:m-1].

Solution vector.
Array bounds - [O:n-1].

Final reference equation numbers.
Array bounds - [O:n].

Final reference deviation.
Exit for conditlon 1 failure.

Exit for condition 2 failure,
or in case rank(A) <n .

and d are not changed by Chebyshev.

appearing in the

procedure and to the comment explaining its value and purpose.

/ga



i

end ipr;

real procedure ip2 (ii,£7,uu,aa,bb,cc);

comment ip2 is a version of ipr which accumulates the prodﬁcts aaxbb in
a double-precision sum; whose final value, rounded to single-
precision, is taken as the value of ipZ2.;

procedure trisolv (fis,fid,fie,sis,sie,fi,si,sof,rhs,mat,piv,vip);

value fis,fid,fie; integer fis,fid,fie,sis,sie,fi,si;

real sol,rhs,mat,piv; real procedure vip;

begin real t1,t2;

comment trisolv solves a triangular system of linear equations. The
off:diagonal part of the system's matrix is given by mat, the
diagonal part by piv, and the right hand side of the system by
rhs. The solution is developed in sol. By appropriately
setting the first five parameters, either an upper or a lower
triangular system can be treated. Column-by-column Gauss
decomposition of a matrix can be compactly expressed using
trisolv. vip is a vector inner-product routine.;

for fi := fis step fid until fie do

begin tl := -vip (si,sis,sie,soL,mat,-rhs); t2 := piv;

si := fi; sol := if t2 = 1 then tl else t1/t2;

end;
end trisolv;
Boolean finished; switch decompbranch := return,itr;
switch failures := insufficientrank,zerolambda;
integer ml,nl,npl,i,j,k,2,b,al,al,£st,£0,£1,L01,cnt;

real lasteps,preveps,ref,s,t,cps;eta,cnorm,snorm;

19
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real array P[o:n,o:n],lam,rv,sv,x,w,xr[o:n];

integer array rl[o:n},ix[o:m=1];

comment The subsystem of n+l equatioﬂs currently being investigated
is listed in ix[o],...,ri;[n] . The other equations are listed
in the remainder of 1ix . r contains row indices. Row inter-
changes during the Gauss decomposition of P are carried out

by permuting the elements of r ;

procedure resid (vip); real procedure vip;

begin

comment resid computes those components of the residual vector Ax-d

associated with the equations not in the reference subsystem.
The sign, magnitude, and associated equation number of the
largest component are saved. vip is a vector inner-product
routine. ;

ref := -1;

:= npl step 1 until ml do

——

for j
begin

N

:= ix[jl;
t := vip (k,0,nl,x[k],A[i,k],-d[i]);
if abs (t) > ref then begin ref := abs (t);
al := j; s := sign (t);
end;
end;
end resid;

ml := m-1; nl := n-1; npl := nt+l;

lasteps := 0; preveps := -1;

20
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for i := 0 step 1 until n do r[i] := ix[i] := i;
for i := npl step 1 until ml do ix[i] := i;

comment The initial reference subsystem is chosen by making a copy of
the transpose of A bordéred with d and carrying out a
Gaussian reduction upon it with row and column interchanges
used to select the largest possible pivot at each stage.;
real array TAB[o:n,o:ml];

for j := O step 1 until ml do

begin
TAB[n,j] := d[j];

for i := O step 1 until nl do TAB[i,j] := A[j,il;

end ;

for i := O step 1 until n do

t := 0
for j := 1 step 1 until n do
k :=r[jl;

for £ := i step 1 until ml do

begin
ref := TAB[k,ix[£]];

if abs (ref) > t then

abs (ref); af := j; b := £; end;

begin s := refj t :
end;

end;

21



if t = O then begin j := 1; go to singular; end;
k := r[af]; rla2] := r[i]; 2£st := r[i] := k;
k := ix[bl; ix[b] := ix[i]; al := ix[i] := k;

for j := i+l step 1 until ml do

begin
L= ix[jl;

ref := TAB[fst,2]/s;

for k := i+l step 1 until n do
begin
al := rl[k];

TAB[al,2] := TAB[af,£] - TAB[af,al] X ref;
end;

end;

end ;

end;

b :=

comment

The following segment of the program performs a column-by-column
Gaussian reduction of the matrix associated with the reference
equations, forming an upper and a lower triangular matrix into
the array P . (BEach diagonal element of the lower triangular
matrix is one.) Interchanges of rows take place so that the
largest pivot in each column is employed. It is assumed that
b-1 columns have already been decomposed. If the matrix is

not of full rank, the exit insufficientrank is taken, and it

is left up to the user to determine if the given overdetermined

system can be solved exactly.;

22



body:
£0 := Dby L1 := btl; L0l := b-1;

for i := Db step 1 until n do

begin
£ := ix[20];
trisolv (if i=b then O else b,1,£01,0,3-1,j,k,P[£0,r(k]],
Af rl[jl=n then da[4] else A[£,r[j]1],P[k,r[j]],1,ipr);
trisolv (£0,1,n,0,£01,3,k,P[£0,r[k]],
if r[3l=n then a[£] else A[4,r[31],P[k,r[j]1],1,ipr);
ref := O;

for j := £0 step 1 until n do

begin
t := P[20,r[j]];
if ref < abs (t) then begin ref := abs (t); s := t; k := j; end;

end;

if ref = 0 then begin j := 1; g9 to singular; end;

if 20 = n then go to decompbranch[all;

J = rl[kl; r[k] ;= r[£0]; r[20] := j;

for j := 21 step 1 until n do P[20,r[j]] := P[£0,r[j]])/s;

2101 := £0; £0 := f1; 21 := 21+1;

end;
singular:
for i := O step 1 until n do refset[i] := ix[i];

go to failures[j];

return:

comment Solve for the lambdas. ;

23



trisolv (b,1,n,0,3j-1,3,k,sv[k], if r[jl=n then -1 else O;

Plk,r[§]),1,ipr);
trisolv (n,-1,0,j+1,n,j,k,lam[k],sv(3],P{k,r[311,P[J,r(31],ipr);
comment Compute epsilon for the r;ference subsystem of equations.;
t := 0;

for i := O step 1 until n do t := t+abs(lam{i]);

eps := 1/t;
comment Each new value of eps must be greater than the previous one.
If this is not so, the solution may have been "overshot".;

if eps < lasteps then go to ed;

lasteps := eps;
comment Solve for the vector x, the Chebyshev solution of the reference
subsystem of equations.;

for i := O step 1 until n do xr[i] := sign(lamfi]) X eps;

trisolv (0,1,n,0,1-1,1,j,wl3l,xr[11,P[i,r[31],P[1,r[i]],ipr);
trisolv (n,-1,0,i+l,n,i,3,x[r[31],w[i],P[i,r[3]],1,ipr);
comment x[n] should be -1 . It can be used to purify eps and the other
components of X .;
ref := -x[nl;

for i := O step 1 until nl do x[i] := x[i]/ref;

eps := eps/ref;
comment For each index ix[n+l),..., ix[m-1] compute the residual
Alix[3j],0) x x[o] + «.. *+ A[ix[j),n-1] X x[n-1] - d[ix[j]] .
If the largest of these in magnitude is not greater than eps,
go to itr to refine the vector x, for it may be the Chebyshev

solution of the full system.;
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resid (ipr);
if ref < eps then go to itr;
ovr:

k := ix[af];

comment The following linear-system solution is computed in order to

determine which equation is to be dropped from the reference
set of equations.;
trisolv (0,1,n,0,i-1,i,J,w[j), if r[il= n then d[k]
else Alk,r[i]],P[j,r[i]],1,ipr);

trisolv (n,-1,0,i+l,n,i,J,w(jl,w[i],P[j,r[i)],P[i,r[1i]]),ipr);

comment s i; the sign of the residual with greatest magnitude. Find

the largest of the ratios w[k]/lam[k] x s . If any component
of lam is zero, the exit zerolambda is taken.;

ref := lam[n]; b := n;

if ref = 0O then begin j := 2; go to singular; end;

ref := w[n]/ref x s

for j := 0 step 1 until nl do

t := lam[j);

if t=0 then begin j := 23 &0 to singular; end;
t o= wl[jl/t x s;

if t > ref then begin b := j; ref := t; end;

end

comment Form a new reference subsystem by exchanging the ix[af]-th

and ix[b]l-th equations.;
ix[af] := ix[b]; ix[b] := k; al :=1; go to body;
ed:
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comment Restore the previous reference subsystem.;

eps := lasteps; al := 2;
j := ix[a); ix[af] := ix[b]; ix[b] := j; go to body;
itr: |

lasteps := 0; cnt := O;

comment Iteratively refine the vector x;

ilp:
ent := cnt + 1 EE cnt > 10 then §2_33 insufficientrank;
cnorm := snorm := O;
for t := O step 1 until n do
k := ix[i];
t := abs (x[i]);
if snorm < t then snorm := t;
rv[i] := -ip2 (§,0,n,x[j], if j=n then d[k] else A[k,j], -xr[i]);
end;

trisolv (0,1,n,0,i-1,i,3,rv[jlev(il,Pli,r(3)]),P[i,r[i]],ip2);

trisolv (n,-1,0,i+l,n,i,Jj,wlr(3)),rv[il,P[i,r[j]],1,ip2);

for i := O step 1 until n do
begin

s :=wl[i];
x[i] := x[i] + s;
s := abs (s);

if cnorm < s then cnorm := s;

end;

if cnorm/snorm > eta then go to ilp;
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comment eta is to be preset with a small positive multiple of the largest
positive single-precision machine number « having the property

that 1+w = 1l-w = 1 1in single-precision arithmetic. The small

.

multiple will depend upon“the peculiarities of the machine's
rounding process and will have to be empirically determined.;
ref := -x[n]
for i := O step 1 until nl do x[i] := x[i]/ref;

eps := eps/ref;

comment Determine whether a Chebyshev solution has been found. If any

residual is greater in magnitude than eps while eps is smaller

than a value produced from an earlier refinement, give up, print

>

a warning, and return the best x computed thus far.;
resid (ip2);
if ref < eps then finished 1= true
else if eps > preveps then finished := false

else begin comment Print out "DOUBTFUL SOLUTION";

g0 to skip; end;
preveps := eps; refset[n] := ix[n];

for i := 0 step 1 until nl do

begin
refset[i] := ix[il;
h[i] := x[i];

end;

if — finished then go to ovr;

skip:

epzZ := preveps;

end Chebyshev;
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9. Sample Runs

The output reproduced in the appendix was produced by four programs
implementing the exchange method. At each exchange step the reference
set, value of ¢, values for the‘-xi, and the non-reference residuals
- were listed followed by the equations to be switched in the next exchange.
Upon termination, a count of exchanges and solution refinements (where
applicable) was printed along with the computation time reguired
(print time excluded). The computed Chebyshev solution for the full
system was then printed followed by the final referencé set and a list
of all residuals.

A common data system, Ax = d, was given to the four programs.

The matrix A consisted of the 17 X 9 Hilbert matrix segment

ai,j =E’_'T_j'+_l (i=0,--., 16; j=0,..., 8) .

The right-hand vector d had components

d; = 1 (i=0y.0.., 16) .

Output A was produced by a version of the program given in
section 8 using double-precision arithmetic.

Output B was produced by a program using the techniques out-
lined in section 4. This program, however, based its computation on

the matrix

[
| =

1 nt+l

1 -4. N
1 n+l
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rather than on the matrix C . This permits the initial
3
n 2
-— + 0(n
£+ o)

operations for the calculation of the Ki to be saved, for the last

column of B satisfies

([ nnl
b A, =0
=1 k,n+l 1k
< %il
- b a, =1
W= k,n+l ik

-

Now, however,

n+l
E = l/ kz-——l Ibk,n+ll

must be computed separately at each exchange. Note that, on the sample
data, this program has failed to recognize the terminal reference set,
giving the wrong answer.

The suggestion has been made that the exchange method be imple-
mented using Jordan elimination techniques, but that a section of code
be provided to clean up the solution once it has been attained. Output
C was produced by such a program. Clean-ups were carried out in double-
precision. Since this program, just as program B, failed to recognize
the final reference set at the first encounter, the clean-up section
was called upon twice for the given data set - once to put the program
back on the right track, and once for the final solution refinement.

By good fortune the final reference set was recognized the second time

around.
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Output D was produced by a B5500 Burroughs Extended Algol version

of the procedure given in section 8.

10. Double-Exchange Algorithm

Instead of introducing one vector into the reference set, we con-
sider the problem of introducing two vectors simultaneously. (What
follows can easily be generalized to the problem of introducing several
vectors simultaneously.)

Without loss of generality, we assume that Al""’ An+l form a
reference set. ILet xl,-.., Xn+ be such that

1

n+l

kz=:1 My = 0

under the normalization

n+l

L MG = -1

k=1
Then

n+l
e=1/ 2, Inl>o,
k=1

and if x 1is the Chebyshev solution for this reference subsystem,

sgn(xk) = sgn(rk(x)) for k=l,..., n+l .
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For ease of notation we write

i

-
| B = sgn(ri(x))Ai for all i
(-
o= = = .o +
| Tk sgn(rk(x)))\k Ikkl for k=l,..., n+l
Thus
f
-
%El 351
. 7.B. = 0 and e=l/ T
— k=1 kK'k k=1 k
— We assume that
~ lxr ()] > 1r ()] >e
@y - o
“
: for some oy 1% > n+l . Since Bl""’ Bn+l have rank n, there
i
- exist
[L_ (1) (1) (2) (2)
Wy Taeees Mot+1 and By Taeees “‘n+l
i
|
-
so that
(-
=)
ij };l b B, for j=l, 2

(_.-‘-... r...,..,\
H
oy
o
—
[}
~—

will be unique if we also demand that

—

n+l
- (3) .
da.‘_' E: ) b for j=1, 2
J k=1
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We wish to find rows ’AB (B,,B, €{1,..., n+l}) to exchange with
1 P 172
- ’Aa in order to form a reference set with a greater reference
1 -2

deviation ¢' . Associated with this will be a reference subsystem
Chebyshev solution x' . Demanding suitable agreement between the signs
of rk(x) and rk(x'), we may use the characterization theorem of
section 2 to determine Bl and 82 . Viz., we ask for numbers Yq

and Yo such that

n+l
5: (l) (2)

+ + - =

YlB YEB . (1'. ylp,. YE“" )B. 0

1 2

with

3
1

L =¥y20 for j=1, 2

AN AN R

a
1l

fOI‘ i=l, s ey l’l+l
and for two indices 61,62

! 1]
T s = O
Bl 62

(3)

The normalizations of the by have been chosen so that

T{% ]
e' =1/ ( L R S
: =1 °‘2J
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We wish to choose Y12 Yo under the above constraints so as to maximize

¢' . This is equivalent to determining the minimum of

i=1 1 %
n+l n+l n+l
(1) ()
o DIRE LYY EAEED WA NNV LD N
ST B B~ S U = A

Since

n+l

T
k=1 k

is fixed, and (as can easily be shown)

()
e. =3y w -1>0 (j=1, 2),
J g1 K

we wish to determine Y12Y¥p 2 O so0 that
Y181 T Yo%
is maximized subject to

1 2
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This is a standard linear programming problem. Note that the single-
exchange algorithm can be expressed as the above problem with the addi-

tional constraint

y2=O.

Thus the €' of the double-exchange can be no less than the ¢' given
by the single.exchange of section 3. Note further that conditions 1
and 2 of section 3 do not appear in the development of the double-
exchange.

Computation can be simplified by considering the dual to the above

linear programming problem. We introduce the surplus variables
Z 40’ zn+5 and minimize

n+l
TZ

i=1

subject to

z; > 0 for all i,

n+l
Z ""}(zl)zr " Zpte T 72
k=1

and

n+l

(2) -
);1 e Pk T ez T %2
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If either surplus variable is nonzero in the solution, then B
1

and Ba cannot simultaneously be introduced into the reference set.
2

The correct single-exchange, however, is then readily obtainable from
the dual problem solution.

In section 16 are presented some timing results from a program
implementing this algorithm. Comparing these results with those from
the single-exchange implementations of sectlions 13-15, we see
that the extra effort involved is not paid for by a net reduction in
time. Also we have observed that in practice rather less than half
of the exchange steps carried out permit the simultaneous switching

of two reference equations.

11. Computational Comparisons of Variations for the Exchange

In the procedure given in section 8, the non-reference equation
chosen to enter the reference system at each exchange was the ath,

whose residual satisfied

(a) |r (x)] =, . |, () .
o 1¢(reference sei} i

indices

According to the theory, however, the exchange method will converge so
long as the reference deviation after each exchange exceeds the refer-
ence deviation before. And for this to be true, it is sufficient only
that o satisfy ']ra(x)l > |e] (conditions 1 and 2 given section

3 being assumed always to hold).
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Alternate versions of the procedure presented in section 8 were

prepared for Stanford's B5500 wherein the few statements determining

o according to (a) were changed for statements implementing other
selection rules. The unaltered procedure and the alternates, together
with an implementation of the double-exchange method described in
section 10, were run on random systems of equations of several sizes.
Averages of times required and number of exchanges made are given. Note

that the procedure of section 8 gave the most favorable times.

12. The Data

Data fo;'the comparison runs was generated by a procedure written

in Burroughs Extended Algol. The brocedure produced a matrix

i=0,auo, m"l

A= lay] §=0,.v., n-1

and a vector

d = [di] i=0,..-, m'l

each of whose elements had the form € X 1, where E was a pseudo-

random variable distributed approximately uniformly in the interval

Io, +1], as computed by the mixed congruential method

€& = ©

é vl = (e - 5)g, + 211527139 moa 277

for n>1 ,
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and T was chosen pseudo-randomly from among the numbers

+1, +8'l, +8'2, +8'5, -1, -8‘1, -8“2, 872,

Every decision rule was applied to ten system, each of m equations

in n unknowns, where

(m,n)e{(10,4), (20,4), (30,4), (40,4), (20,9), (30,9), (40,9), (30,19)} .

13. Selection of the Equation with Largest Residual Magnitude

The procedure given in section 8 produced the following statistics

(w = mean; o = standard deviation):

Time Required (Seconds)

NS b 9 19

10 u=0.677

0=0.110

20 p=1.079 |u=k.0k3

0=0.1k2 [0=0.850

30 u=1.246 |u=5.947 |u=28.620

0=0.236 | 0=1.170 {o=6.802

o) w=1.558 u=7.265

0=0.266 [o=1.T40
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Number of Exchanges

m& b 9 19

10 | u=3.%0

o=1.56

20 p=5.90| p=9.10

0=1.81| 0=3.05

30 w=5.90 u=l§.h0 u=l6.80

c=2.21| o=3.64 0=5.21

- ko u=6.70| p=1k.60

0=2.101{ g=5.16

14. Selection of the First Suitable Equation Found

The first variant program examined each non-reference equation in
turn until one was found whose residual magnitude exceeded the reference
deviation. That equation was selected for introduction into the ref-

erence system. Statistics for this variant follow.
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15. Selection So As to Give the Greatest Reference Deviation Increase

Given any non-reference row Aa for which lra(x)l > Iel, solve

Then, if B 1is such that

sgn(e) sen(r_ (x))ug

*g
is maximal, Ad must replace Ai in the reference set. The new
B
\'s can be computed as follows:
Ny = XB/uB
My .
Mo A T g (i#8)
B
Then
xl Xl
el = 2BL e ool + - LBl fep
where
n+l
k=3 Il
i=1l
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Using these results, a variant of the procedure given in section 8
was prepared in which the non-reference equation selected to enter the
reference system at each exchange was that one which would give the

greatest value to |g'|

Time Required (seconds)

£\<1L‘ 4 9 19

20 p=1.315 | u=5.900

0=0.327 | g=1.886

30 p=1. 528 u,=9.798 p,=)+2-)+81

0=0.313 | g=2.423 | g=7.921

40 w=2.134 | y=14.685

0=0.465 | g=3.825
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L acaammnh }

10

20

30

Lo

Number of Exchanges

M

19

u=3. 50

o=1.3%6

-

u=4.60

o=1.T74

u,=8 . lo

o=2.84

u=3.90

o=1.04

0=2.20

u=l6.20

c=3.03

u=5.10

o=1.70

p=13.40

7=53.23

16. Double-Exchange Algorithm

R>\<:

10

Time Required (seconds)

19

1=0.900

0=0.147

20

u=l-258

0=0.215

u=k.557
0=0.83%6

30

pw=l.L442

0=0.271

u=6.h87

0=0.951

u=56.650
0=8.179

Lo

- w=1.912

0=0.677

u=9. 413

o=1.507

4o




*
Number of Exchange Cycles

m n )-I- 9 19

o=1.02

20 p=3.90 | u=5.60

0=1.38 | 0=1.80

30 u=3.60 [ u=8.10 | p=14.7

o=1.36 | 0=1.70 | o=k.67

4o | u=5.10 | p=12.k

*
(An exchange cycle consisted of the simultaneous switching of two
equations, where possible. Otherwise it consisted of a standard single-

exchange. )
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kxkad HILBERT DATA *awnus

17 EQUATIONS IN 9 UNKNOWNS

EXCHANGE ALGORITHM IN DOUBLE=PRECISION

REFERENCE SET:

0 2 11 1 5 16 3
1.655665,11074,00287,19989,638
3,97047,60096,43108,06759,278

»2,70355,98109,22439,41451,33@
4,55974,74511,68592,81444,73@
»3,26294,80229,02832,31393,35@
1,20427,47950,72163,13981,298
©2,48030,00464,27790,08801,458
2.87782,84818,63886,24654,61@

=1.75788553710,63890,56612,908

4,394905,84805,13472,43622,04@
“2.57761,12267,27838,37828,096
1.07571,35978574505,82246,038
10002“5154291’63795p29485)839
1,95676,92968,B81866,18250,258
2,48292,91781,18352,39794,148
1498447,14020,05852,36957,660
3,46169,10322,94211,82277,298
EXCHANGE EQUATION

REFERENCE SET:

0 2 14 1 5 16 3
3o29205)0210“:33056’37236p263
5.40550:73215ﬁ77523’85646’17?

*3,59146,43813,B4385,18429,928
5,93749,90812,11901,92471,060
“4,17859,65144,44931,34071,220
1.52049,75097,12577,52825,278

»3,09350,90379,71150,66375,698

3.551235,22422,42775,98985,69@
=2,14895,91603,99356,68537,18¢
5,32811,40323,12399,58580,08@
'1.04956,72051.91559:03804.689
~2.27328,65222,76318,77735,800
-1.08864;60005:93963)99208'959
-3,91191,80148:65456’42774»219
'1.30090;31465.42742,35611!823
5.51335,12173,87940,65038,29@
0-64657’18263:6879a:95518p659
EXCHANGE EQUATION

REFERENCE SET:
0 2 14 1 5 16 3

11 WITH EQUATIO

O WITH EQUATIO

5.30006,47585,98979,14408,700 «3 = EPS

6.27879,92051,09165,06026,78@

8 4 9
=3 a EPS -

3 a Xt 0)

5= Xt 1)

6 = Xt 21

7 = Xt 3)

8 = Xt 4)

8 = Xt 5)

8 = Xt 6}

8 = Xt 71

7T 5 Xt 81
=3 = RESIDUALL
=3 = RESIDUALC
=2 = RESIDUALL
=2 = RESIDUALL
=2 = RESIDUALL
=2 = RESIDUALTE
=3 = RESIDUALL

N 14

8 4 9
=3 = EPS

3 = Xr 0]

5 = Xt 1)

6 = X{ 2]

7T = Xt 3}

8 a Xt 4)

8 = X[ 5)

8 = Xt 6]

8 = Xt 7]

7 = Xt 8)
=2 = RESIDUALL
=4 = RESIDUALL
=2 = RESIDUALTL
=3 = RESIDUALEL
=2 = RESIDUALC
=3 = RESIDUALL
“3 = RESIDUALL

N 1

8 4 11

3 = Xt -0)

S}

101
61

12 .

13)
14)
15)

7]

10}

121
13}
i1)
151



-4,09612,36199,45232,02513,468
6,67733,07627,41189,48351, 348
-4,64706,7643R,19307,65657,348

1,67565,40534,98B19,77968,696-

«3,38355,28056,64260,96258,72@
3.85958,25436,98084,77619,298
=2,32292,40280,66317,48340,808@
5.73258,79224,06205,97422,598@
~2.61547,83860,89942,20876,978
-4,40861,93560,47416,28225,158
«“4,10282,78390,15665,83395,498
6,41483,09155,73710,43478,4980
2,48599,96575%,45978,62499,508
5.20435,98784,03175,26575,978@
2.53687,03218,72219,94661,28@€

TERMINATION

NUMBER OF EXCHANGES MADE WAS
TIME IN SECONDS = 5¢48

SOLUTION VECTOR?
6.,27879,92051,09165,06026,78@
-4 ,09612,36199,45232,02513,46€
6,67733,07627,41189,48351, 348
“4 ,647065s76438,19307,65657,348
1.67565,40534,98819,77968,690@
=3,38355,28056,64260,96258,728
3,85958,254365,98084,776192290
=2,32292,40280,66317,48340,808
5.73258,79224,06205,97422,59€

k7

NO®® ®ODNOW

NOOOD®ODNOOWUNW

Xt 1]
Xt 2]
Xt 31
Xt 4}
Xt 51
Xt 61
Xt 71
Xtg 81
RESIDUALL
RESIDUALL
RESIDUALL
RESIDUALC
RESIDUALL
RESIDUALC
RESIDUALL
Xt 01}
Xt 11
Xt 21
Xt 3]
Xt 4)
Xt 51
Xt 61
Xt 71
Xt 81

101
6]
121
13)
91
15]
7]
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REFERENCE SET:
0 2 14 1 5 16 3

RESIDUALS:?
5,30006,47585,99232,20639, 300

»5,30006,47585,98899,13948,566.

5,30006,47585,99232,20639, 30
=5,30006,47585,98677,09488,078@
5,30006,47585,99232,20639»3080
»5,30006,47585,99176,69524,178@
-4,40861,93560,47416,28225,15@
2.53687,03218,72219,94661,28@
5,30006,47585,98954,65063,686
2.08599,96575,45978,62499,500
-2,61547,83860,89942,20876,970
«5,30006,47585,99232,20639,30€
=4,10282,78390,15665,83395,408
6,41483,09155,73710,43478,490
5,30006,47585,98899,13948,56@
5,20435,98784,03175,26575,978
»5,30006,475685,99287,7175%54,420

-3
-3
-3
=3
=3
-3
-3
-3
-3
-3

=3
-3
-4
=3
-3
=3

L8

11

RESIDUALC
RESIDUALL
RESTDUALL
RESIDUALC
RESIDUALC
RESIDUALL
RESIDUALL
RESIDUALTL
RESIDUALTL
RESIDUALC
RESIDUALL
RESIDUALC
RESIDUALTL
RESIDUALC
RESIDUALL
RESIDVALL
RESIDUALL

03
11
2]
3]

3}
6]
7]

9]
10)
11)
12)
13)
14}
151
16)



L

ri.'l’« r~_.‘ — r

—

—

— r— r—

aknrx HILBERT DATA #*ankn
17 EQUATIONS IN 9 UNKNOWNS
TABLEAU~JORDAN ALGORITHM

COMPUTATION:

REFERENCE SET:

-

0 2 11 1 5 16

EPS = 1,655523068338=03

Xt 0) = 3,967545797508403

Xt 1) = =2,7018670547884+05

Xt 21 = 4,5572960226704+06

Xt 3] = =3,261422535888+07

Xt 4) = 1,2037794129984+0A8

Xt 5) = =2,47939286B42p+08

X{ 6) = 2,8768838486104+08

Xt 7)1 = =1,757363248278408

XU 8) = 4,393718637020+07
RESIDUALL 10) = =2,593994140638=03
RESIDUALL 6] = 1.129150390638=03
RESIpDUALCL 12) = 1,001358032239=02
RESIDUALL 13] = 1,957321166998=02
RESIDUALL 14) = 2.,487564086910=02
RESIDUALL 15) = 1,98707580566F=02
RESIDUALL 7] = 3.50952148438@=03

EXCHANGE EQUATION

REFERENCE SET:

EXCHANGE EQUATION

REFERENCE SET:

0

2

14

14 WITH EQUATION

0 2 14 1 5 16

EPS = 3,283101470788=03

XL 0) = 5,394102722120403

X{C 1] = =3,5845346909884+05

XU 21 = 5,926966466300+06

XU 3) = =4,1717267640284+07

Xt 41 = 1,518164465350408

Xt 5) = =3,089051880820+08

XL 61 = 3,546402234550+08

XU 7) = =2,14618733457@+08

XL 8) = 5,3215609771204+07
"RESIDUALC 10] = =1,046752929696=02
RESIDUALL 61 = 2,136230468758=04
RESIDUALL 12) = =1,065063476568=02
RESIDUALL 13) = =3,570556640630=03
RESIDUALL 11) = =1,312255859388~02
RESIDUALL 15) = 5.706787109406=03
RESIDUALL 7] = 4,852294921886=03

11 WITH EQUATION



L

- e r— F - r— r— Tﬁ.m- — — r— rw:;‘

-

r—

EPS =

Xt
Xt
X
X(
X(
X(
X(
X(
X{

0]
1]
r3
3)
4)
3]
6]
7]
8]

5
=
=
=
=

=

027490255522€~03

6,25957197210&403
-4,084668078720+05

6,660130004700+06

~4,635957755860+07
1.67191156159@+08
"3,3764523975468408
3,8519343337764+08
~2,318558082038+08
5.722328674500407

RESIDUALTL
RESIDUALT
RESIDUALL
RESIDUALT
RESIDUALTL
RESIDUALTC
RESIDUALTL

10] = =2,471923828130=03

61
12]
131

9]
151

7]

A uan s

“4,028320312500=03
“4,1503906250008=03
8,544921875000=04
2.,716064453130=03
5¢401611328136=03
2.868652343756=03

EXCHANGE EQUATION

REFERENCE SET:

0

EPS =

X
X
Xt
X
X
Xt
Xt
Xt
X

0]
1]
2]
3]
41
51
61
7]
81

5.

o nananw nn

2 15 1 5
286956166468=03
6,266837272300+03
=4,089030849658+05
6,666739045000+06
"4,640263866400+07
1,6733740649784+08
~3,379248217188+08
3,8549668542364+08
~2,320300230048+08
5.,726446347108+07

16

15 WITH EQUATION

RESIDUALL
RESIDUALL
RESIDUALT
RESIDUALL

RESIDUALT
-RESIDUALC
‘RESIDUALT

101
61
12]
131
9]
141
71

TERMINATION

“2,716064453138=03
=4,425048R2813P=03
=4,089355468750=03
40577636718?5@-0a
2+38037109375R=03
5,249023437508=03
2.807617187508=03

NUMBER OF EXCHANGES WAS 3

50

i1



TIME IN SECONDS = Q.18

SOLLUTION
Xt 01 =
Xt 131 =
Xt 21 =
Xt 31 =
Xt 41 =
X{ 51 =
Xt 631 =
Xt 71 =
Xt 8) =

VECTOR
6,266837272300+03
~4,0890308496504+05
6,6667390450004+06
-4,640263866u4004+07
1.67337006497@+08
=3,37902482171804+0R
3,85496685%423@408
=2,37030023004#4+08
5.,7264463471084+07

51



[ aerinid

REFERENCE SET:

0 2 15 1 5 t6

RESIDUALS?

RL 0) = 5,03054932963@=03
RL 1) = “5.,422996449086~03
RL 2) = 5.,213819480858=03
RL 3) = *5,371528525158=03
RL 41 = 5.2125587977868=03
RL 51 = =5,294128506530=03
RL 6] = “4.351757061360=~03
RL 71 = 2.577717493358=03
RL 8] = 5429555141585@=03
RL 9] = 2,44170932121@=03
RC 10 = "2.67697239932A=03
RL 11) = “5,355667924330=03
R[{ 12] = =4,13586084108@=03
R 13) = 6373025890608 =04
Rl 14) = 5,322239438788=03
RC 15) = 5.242799588258=013
RL 16) = "5.260471501400=03

52
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wwkkd HILBERT DATA *ahkx«
17 EQUATIONS IN 9 UNKMOWNS
TABLEAU=JNRDAN ALGORITHM WITH CLEAN=UPS

COMPUTATIONS

REFERENCE SET:

0 2 11 1 5 16 3 8 4 9

EPS = 1,65552306R338=03

Xt 01 = '3,96754579750P+03
XL 1) = =2,7018670547864+05
XL 21 = 4,557296022675406
X[ 3) = =3,241422535886407
X{ 41 = 1,2037704129968+08
XL 5) = =2,47939286R8426+08
X[ 6) = 2,68768838486104+08
XU 7] = =1,757363248276+08

XU 8) = 4,393718637020407

RESIDUALL 10) *2+59399414063F=03
RESIDUALL 61 1,12915039063P~03
RESIOUALL 12] 1.00135R03223F0=02
RESIODUALL 1312 1.957321166990=02
RESIDUALL 14) 24B75080RA0E~DD
RESIDUALL 157 = 1.98707580566F-02
RESIDUALL 71 = 3.509521484386~03
EXCHANGE FQUATION 14 WITH FQUATION 11

nononn

REFERENCE SET:

0 2 14 1 5 16 3 8 4 9
EPS = 3.2831014707RA=03 .
X{C 0) = 5,394102722127+03

X[ 1) = =3,58453469N98R408%
Xt 2] = 5,9269644663004+06
XC 3] = =4 ,97172764027+07
XU 4] = 1,518144465350+08
Xt 5) = =3,089005188082#408
X[ 6] = 3,54640223455w4+08
XU 7) = =2,14A187334576+08

X[ B8) = 5,32156997712f+07

RESIDUALL 10]) »1.,04675292060R=02
RESIDUALL 6) 2,13623046875R«04
RESIDUALL 12 ~1,06506347656RP=02

H

u

RESIDUALL 13) = =3,570556640638=03
RESIDUALL 11] = =1,312255859388=02
RESIDUALL 15) = 5,706787109408~03
RESIDUALEL 7) = 4.,85229492188f=03

EXCHANGE EQUATION 11 WITH EQUATION 0

REFERENCE SET: -
0 2 14 1 5 16 3 8 4 11

3




s
L

-

r—r— r— r— [

=

EPS =
Xt 0]
xt 11
Xt 21
XU 3]
Xt 4)
X{ 5]
X[ 61
xt 71
Xt 81
RESIDUALTL
RESIDUALTC
RESIDUALTL
RESIDUALL
RESIDUALT
RESINUALC
RESIDUALL

nwun uu

EXCHANGE EQUATION

0274902555228 =03

6.,25957197210€+03
“4,084668078726405
6,6601300047060+06
~4,635957755866407
1,67191156159p+08
=3,37645239754R408
3,8519343337764+08
-2,318558082030408
5,722328674506407

101
6]
121]
13]
9]
151
71

H s unnu

REFERENCE SET:

=2.471923828138-03
=4,028320312500=03
=4,15039062500€6~03
Be504921875000=04
2¢716064453130=03
5.4016113281368=03
2.B68652343758=03

0 2 15 ) 16

FPS = 5,284956166460=03

X{ 0) = 6,26683727230€+03

X{ 1) = =4,08903084965/4+05

X{ 21 = 6,66673904500R+06

X{ 3) = =4,60025638664084+07

x{ 4) = 1,6733740649728+08

X[ 5] = =3,37924821718#+08

XU 6] = 3,85496485423w4+08

X{ 71 = =2,320300230048+08

XL 81 = 5,726446347100+07
RESIDUALL 10) = =2,716064453138=03
RESINDUALL 61 = =~4,42504882813@=03
RESIDUALL 12) = =4,08035546875@0=03
RESINDUALL 13) = 4,5776367187508=04
RESINDUALL 9] = 2,38037109375@=03
RESIDUALL 141 = 5.,2490234375068=03
RESIDUALL 7] = 2,807617187508~03

DOUBLE=PRECISION IMPROVEMENT

REFERENCE SET:

0 2

15

5 16 3 8

5.27844,60693,62039,81163»1560 «3
6,26576»18067,80047,904R1»13F
=4,08829,048047,36084,00166»410
6,66547,14708,78323,27085,970
=4,63934,08332,78590,99856,31@
1.67302,98250,58417,63301,99@

3,B5414,13353,25437,640N06,680
“2,31979,H1570,50R57 744665800
5,72519,98266,81440,61070,73@

3
5
6
7
8
=3,37853,62341,23599,23544,09@ 8
8
8
7
3

5l

15 WITH EQUATION

14

8 4 11

i1
EPS
Xt 0}
Xt 11
Xt 2]
Xt 31
Xt 4)
Xt 5]
X{ - 6)
Xt 7]
Xt 8]

RESIDUALL 10)



-4 ,37417,88682,24776,195465,13® =3 = RESINUALL 61

-l ,04298,63798,4B512,16842,230 =3 = RESIDUALL 12)

~ 7.29110,39988,26042,87569,16% =4 = RESIDUALL 13)
2., 45568,04766,19148,67774,15@ =3 = RESIDUALL 9]
5¢39490,96191,16761,145831,83°9 =3 = RESINDUALL 14)

C 2.54498,84901,42729,98658,726@ =3 RESIDUALL 72

- EXCHANGING EQUATINN 15 NITH’EQUATIDN 14
IMPROVEMENT COMPLETE = SNLUTION NOT YET ATTAINED

..

REFERENCE SET:

- 16 0 2 8 1 4 11 3 14
FPS = 5,33509677215@=03
Xt 0) = 6,271517680108+03

4 Xt 1) = =4,0913492700964+05
Xt 2) = 6,6606743029084+06
Xt 3) = =4,64188111470R407
XL 41 = 1,67384270496@+08

— X{ 5) = =3,38001744455A4+08
XL 61 = 3,8556R624224R+08
Xt 7)1 = =2,3206573830184+08

. Xt 81 = 5,727176281400407
RESIDUALL 10] = =2,99072265625R=03
RESIDUALL 6) = =4,516601562508~03

[ RESIDUALL 12) = =4.,4250488281368=03
RESIDUALL 13) = 4,272460937500=04
RESIDUALL 9) = 2,197265625008=03
RESIDUALL 15) = 5.,035400390638~03

~ RESIDUALL 7] = 2,197265625008=03
DOUBLE=PRECISION IMPROVEMENT
REFERENCE SET:

16 0 2 8 1 4 11 3 14 5
. 5.30006,47585,99124,11354,728 =3 = EPS

— 6,27879,92051,09148,09028,688 3 = Xr 0]

“4,00612,36199,45217,87480,488 S = X[ 1]

. 6,67733,07627,41163,91494,088 6 = X[ 2]

- 4 ,64706,76438,19289,03505,148 7 = X[ 3]
1.67565,40534,98812,94935,71f 8 = X[ 4)
=3,38355,28056,64247,14797,908 8 = X[ 5)

- 3,85958,25u36,98969,13231,21® B8 = X 6)
~2.32292,40280,66308, 185464280 B = X{ '7)

5,73258,79224,06183,38542,498 7 = X[ B8]

g “2,61547,83R60,00108,74222,34@ =3 = RESIDUAL[L 10)
-4 ,40861593560,46417,08152,9308 =3 = RESIDUALL 61
=4,10282,78390,15554,81165,240 =3 = RESIDUALL 12)

6,41483500155,76485,99234,658 w4 = RESIDUALL 13)

— 2,48599,96575,45923,113R4,380 =3 = RESIDUALL 9)

5.20435,98784,03230,77691,098 =3 = RESIDUALL 15)

{- 2,53687,03218,72775,05812,518® =3 = RESIDUALL 7]
TERMINATIBN

L NUMBER OF EXCHANGFS WAS 3
NUMBER OF SOLUTION REFINEMENTS WAS 2

L 55



N

r— r— r— r— o

r—-

TIME IN SECONDS = 722
SOLUTION VECTOR?

Xt 01l = 6,278799205100+03
XL 1) = =4,09612361995R@4+05
XL 21 = 6,677330762800406
Xt 3) = =4,64070676438204+07
Xt 4) = 1,6756540535004+08
X{ 5) = =3,38355280567A4+08
¥L 61 = 3,8595825436908+08
Xt 7] = =2,32292402B0604+08
Xt 8) = 5,73258792240@407

56




——

REFERENCE St T:

16 0o 2 R 1 4 11
RESTDUALS:
RL 0 = 5,1406B1667149=03
R[L 1) = *5,43696106409R=013
R[L 21 = 5,1800611744R8<013
R 3] = =5,4060933076998~013
RL 4] = 5,203720524726-03
RL 5) = =5,3R77834272530=03
RL 6) = =4,4R8913723469a~03
RL 7)1 = 2,462456000460=03
R{L 8) = 5,230800727300=02
RL 9) = 2,4p137425212m=03
RE 10) = =2,6761179878Ru-01
RL 111 = =5,385718275265A+03
R[ 12) = =~4,154811618490-03
RL 13) = 5,90306B8449800=04
RL 141 = 5,25141799559n-03
RL 15) = 5,1=8003969R06~03
R{ 16) = =5,34433614R220=013

o7

14
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- RESIDUALC 101]
" RESIDUALL 61

wkknr HILBERT DATA *xkkux

17 EQUATIONS IN 9 UNKNOWNS
GOLUB=BARTELS PROCEDURE
COMPUTATION:

REFERENCE SET:
c 2 11 1 5 16 3 8 4 9

EPS = 1,638740968008~03

X{ 01 = 3,954765136726+03
XL 1] = =2,694271884778+05
X{ 2] = 4,54586958984€4+06
Xt 3) = =3,254013444530407
XU 41 = 1,201271788236+08
X{ 5) = =2,47461156623€+08
Xt 6) = 2,87170803023#+08
Xt 7)1 = =1,754394392026+08

4,38671014765€+07

=2,655029296886=03
1.129150390636=03
1,007461547858=02
1.968765258798=02

Xt 81
RESIDUALL 101
RESIDUALL 6]
RESIDUALL 121
RESIDUALL 13)

uu

HHHnn

RESIDUALL 14] 2.496337890638=02
RESIDUALC 15) 1.,995086669928=02
RESIDUALL 71 3,631591796888=03

EXCHANGING EQUATION 11 WITH EQUATION 14

REFERENCE SET:
0 2 14 1 5 16 3 8 4 9

EPS = 3,2794276773908=03
Xt 0] = 5,39426611328@+03
X{ 1) = =3,584942485358+05
Xt 21 = 5,927948390600+06
Xt 3] = =4,1725583041004+07
Xt 4) = 1,51850098514@+08
X{ 51 = =3,08978286177@+08
X{ 61 = 3,547276950460+08
XL 71 = =2,146730846908+08
XL 81 = 5,3229399582184+07

“1.,0467%2929698=02
=6.,103515625008=05

RESIDUALTL 12] “1.,089477539068=02

uon wan

RESIDUALL 13) ~3,875732421888=03
RESIDUALL 111 ~1.324462890636=02
RESIDUALCL 15) 5.706787109408=03
RESIDUALL 71 = 4,943847656258«03

EXCHANGING EQUATION 9 WITH EQUATION 11

REFERENCE SET:
0 2 14 1 5 16 3 8 4 11

= 5,30913757»,208~-03
Xt 01 = 6,276373046900403
Xt 1) = =4,09471R295896+05

58
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f

r

r— r— r

Xt 21}
Xt 31
Xt 4]
Xt 51
Xt 61
xt 71
Xt 831 =
RESIDUAL
RESIDUALTL
RESIDUALTC
RESIDUALL
RESIDUALL
RESIDUALL
RESIDUALTL

ITERATIVE

REFINED V
EPS = 5.
Xt 01
XC+« 1]
Xt 21
Xt 31
Xt 4]
Xt 51
X{ 63
Xt 71
XLt 81
RESIDUALC
RESIDUALC
RESIDUALC
RESIDUALL
RESIDUALL
RESIDUALC
RESIDUALL

o un a8 HN

TERMINATI

NUMBER OF
NUMBER OF

6,6752813066004+06
=4,645779785740+07
1.67523101313€+08
~3,382768370598+08
3.,858754992090+08 -
~2.322460488978+08
5,731517357208+07
101 =2+5939941406368~03
6] =4,394531250000=03
121 ~4,15039062500€=03
13) 6,408691406300=04
9] 2¢532958984388~03
151] 5,03540039063€«03
7] 2.2888183593868=03

n

IMPROVEMENT

ALUES?S
300064758598=03
6,278799205100+03
=4,0961236199568+05
6,67733076280€8+06
=4,647067643820+07
1,675654053500+08
~3,383552805670+08
3,859582543690+08
=2,32292402806#+08
5.732587922400+07
10) =2,676117987886=03
- 6] *4,489137234696=03
121 ~4,15681161849@=03
131 5.903068449808=04
9] 204213742521268=03
15] 5015800396980€=03
71 2.462456009668=03

nn

unn

ON

EXCHANGES MADE WAS 2
SOLUTION REFINEMENTS WAS

29
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rr— r— r— [ r— r""‘" r— r

—

TIME IN SECONDS = 3,10

SOLUTION VECTOR?

X
X
X
X ¢
Xt
X
Xt
X
Xt

0)
1]
2]
3]
4)

51

6)
7]
81

6,278799205100403
-4,096123619950+05
6,677330762800+06
-4,647067643820407
1,675654053500408
=3,383552805670+08
3,859562543690+08
*2,322924028066+08
5,732587922400+07

60
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REFERENCE SET:

0 2 14 1 5 16 3
RESIDUALS: )
RC 0) = 5,140681667148=03
RE 1) = =5,436941064096=03
RL 2] = 5,180061174486=03
RL 3] = =5,406933076996=03
RL 4) = 5,203720524728=03
RL 5) = =5,387783422530-03
RE 6) = =4,48913723469@=03
RL 7) = 2.,462456009666=03
RL 8] = 5,230890727306=03
RL 9] = 2,421374252120=03
RC 10] = =2,67611798788€=03
RC 11) = =5,357182752656=03
R[ 12) = =4,156811618496=03
RC 13) = 5,903068449800=04
RC 14) = 5,251417995598=03
RC 15] = 5,158003969808=03
RC 16) = =5,344336148220=03

61



