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3 Abstract
py-

— An implementation,using Gaussian LU decomposition

| | with row interchanges,of Stiefel's exchange algo-
— -

rithm for determining a Chebyshev solution to an

L | overdetermined system of linear equations is pre-

, sented. The implementation is computationally

— more stable than those usually given in the 1lit-

erature. A generalization of Stiefel's algorithm

1s developed which permits the occasional exchange

_ of two equations simultaneously. Finally, some

experimental comparisons are offered.

—
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1. Introduction

— The problem of finding a vector X = COFRERY kx) which solves an
1 overdetermined system of equations

— r. (x) = z a; 5%; ds = 0 (i=1,...,m; where m> n)

} in the sense that |
L

L - 1<i<n 7; (®)] = <i 7; (0)
|

L for any x €¢ E° is treated by Stiefel in [1]. Such an X%X is called a
ig Chebyshev or minimax solution to the system. |

Given an overdetermined system of linear equations Ax = d whose

L matrix of coefficients satisfies the Haar condition (each n Xn sub-
matrix is nonsingular), Stiefel presents in [1] an algorithm called the

— exchange method for finding a Chebyshev solution. In a later paper,

| . [2], the exchange method is shown to be equivalent to the simplex method
applied to a suitable linear programming problem.

_ In this regard, Stiefel suggests the use of techniques drawn from
] | the simplex method for the implementation of his algorithm. These

techniques are characterized by their use of Jordan elimination, for the

1 most part without row or column interchanges to pick the most advanta-
geous pivots, for solving linear equation systems which arise during the

L computation. These methods are fast but computationally unstable. In
| this paper we propose acomputational scheme based upon the more stable

- 1



TT method of Gaussian LU-decomposition using row interchanges. Attention

; is paid to thepeculiaritiesof the exchange method to make computation
—

as fast as possible.
I

I. Afterwards a generalization of Stiefel's algorithm is presented

which permits the occasional exchange of two equations at once.

= Finally some experimental comparisons of selection rules for use

3 with the exchange method are tabulated. | |
oe

i .
~ 2. Background Theory |

3 There is a full treatment of the theory and the exchange method in |
Chapter 2 of [9]. (The exchange method is called the ascent algorithm

.

— in this work.) We therefore confine ourselves in this section and the

bo next to a statement of pertinent results, omitting proofs.

According to corollary 7.4.7., page 410, of [4], any overdetermined

i. system of linear equations has a Chebyshev solution. The following

lemma and theorem serveto characterize these solutions.

“

Lemma: Let B = [b, 1 be a Pp Xq matrix with rows Byseees B, .
;

— There is a vector y = (yys0s Vy) such that |
| | |

q

: )) b..y. <0 for all i=l,...,p
fz 107d |

| |

“ p

if and only if O # D @,B, for all nontrivial choices of
i=1

3 of nonnegative scalars Qos a, . ’
This lemmais a special case of corollary 6, page 115, of [5].

| |
- |

.
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Let Ax = d be an overdetermined system of m linear equations 1n

| n unknowns. For any vector X = (x 5000s x); denote the residuals
— |

3 | n )
- i=]l,..., m) by r.(x)

L x 24 5%3 d. (i ’ ’ ) oy i )
. th :

Let Ag be the 1 row of the matrix A .

Given any fixed vector, Vv = (Vi,.-e) Vv); we may assume with no loss

| of generality that the equations have been ordered and numbered so that
ee

max _ —

L 1<i<n jz. (v)] = jr, (v) = ve. = |r, (v)] > |p (V) >... > |r _(v) | >

| where 1 < k <m.

1 Theorem: There is a vector 2z for which |
max max

Lo 1<i<n [75 (2) < 1cicn [75 (v)]
k

| if and only if 0 # Y w, sgn(r.(v))A, for
— = i i i

211 nontrivial choices of nonnegative scalars

LIERREE Wy . |

C
For the purposes of the exchange method we restrict our attention

i

L : henceforth to overdetermined systems of m linear equations in n un-

: knowns, Ax = d, for which rank(A) =n .
~~ To begin, suppose that m = ntl . There is no loss of generality in

assuming that the equations have been ordered so that the first n rows,
- | |

SERRE A; of A are linearly independent. Thus, scalars SERERE LN
5 - can be found with A. # 0 such that

5



= n+l

| 0= 3 MA,
i=1

— oo n+l

a. Z hi

a Denoting sgn (A; ) by s;, set e = - wo , and solve the systemIA.
. J=1 !

’ AX 4 51
— : : =| + € X :

| Aa || *n “ *n

So r. (x) = ) ajy% - 4; = se for i=1,...,n .
J=1

- Furthermore, rq (X) = s_,1¢» as can easily be shown.

: Therefore, sgn(r, (x)) = s, sgn(e) for all i .

n+l n+l

— But 0 = 2 MA =) ESSER.
i=1 1=1

ntl | ntl

~ And so O = sgn(e) 0 = )) LOREN sgn(e)A, = ) A; |sen(r, (x))A, :

Hence, by the preceding theorem, x = (x sees x) is a Chebyshev solu- |
.

tion for the given system. (For an alternate discussion of (n+l) X n

_ systems see [6].)

| Returning to the general case (m > n+l), suppose for some set of

— n+l rows of A the first n of which are linearly independent (with

complete generality, the first n+l rows of A) we construct the



= Chebyshev solution x as above and find that, under correct ordering

| of equations nt+2 through m,

. EN EP ENC3] IER EMCO NESSES ECOL

| Then x 1s a Chebyshev solution to the full given system.

eg We further note that the value

L max _ max
| le] = 1<i<n+1 173 (2) i rs (0)

inf max

must be greater than the value 0 1<jen+1 | Ti, 0) for any other
yek — J

a .

collection of n+l rows A gees A from the matrix, since
| 1 n+l

-

|

inf max max

y <i (¥)] = seni Tk (x)| (x as avove)
“ max _

; |

Lu .

Following the convention put forth in [1], any subsystem

C

A, z | a.
{ 11 JL _| oh |

| Eo “n EN
L

Lo .

.

|
- .

p

| | |
L |



{ .

8 |
A.

| 1
of the given system with rank ‘ =n will be called a ref-

n+l

— erence subsystem, and the rows Ag gee ey A, will be called a refer-
- 1 n+l

a ence set. If x = CIPRERY x) is a Chebyshev solution to a reference

4 | subsystem, the value
- . |

| inf max

: <j<n+

Fo 1, 141 yeED 1<j<n+l 1s

| will be called the reference deviation for the reference subsystem. It
Lo = Ln

i is uniquely determined by the reference subsystem.
5. The Exchange Method

—

Stiefel's algorithm consists of starting with a reference subsystem

— and modifying it one equation at a time so as to increase the reference

deviation by each change. Each modification proceeds as follows:

We may assume that Ajseees A 41 is a reference set. Let
;

w X = (x 5000s x) be a Chebyshev solution to the corresponding reference

: subsystem computed as above. So we have ¢g, SERRE A+ which satisfy

N ntl

| a) YMA; =O |
“ i=1

| ntl |
Lo I RVLH |

n+l

C 2 Il
J=1



!

c) r, (x) = 8;€ for i=1,..., ntl, |

— where 5; = sgn(n, ) ’

- If x is not a Chebyshev solutionto the full given system, then by

: the discussion in the previous section, there is an aef{n+2,..., m]}
. } .

for which |r (x)! > lel . Let pisces Poy DE scalars for which

- | n+l
- : =

—

| "In order to proceed, we impose

1 Condition 1: A, #0 forall i=1,..., ntl.

i If this holds, let Bef{l,..., n+l} be such that
- |

_ °"fp _ max OP
T I<i<n+ ?

Mg 1<i<n 1 Ng

| where a, = sgn(r_(x)), and s = sgn(e) »
C

Now impose

9 Condition 2: Aqsenes NE TSEALE Ayo A, are a reference set:

| We form a Chebyshev solution x' = (x] 5000s x) to the reference subsystem
“.

- rel IS] 4

A : d Co
o B-1 a B-1 in the usual fashion, |

| fa41 dg+1

— ol hal Spl
A ) d

—
7



— i ! : ' h that
producing ey SERRE Mg-1’ Ag4p7ee A712 Ay SUC a

n+l

a') ) AA; FAA =O
i=1 oo |

n+l |
— da, + ALMI Tg,

i=1

; : , _ _ ifs | |

nl + 2 In
_ J=1

J#8
|_—

: c') r. (x') = s.e' for i=l,..., B=-1, B8+l,..., n+l, o

Tr !

| where s; = sgn(};) :

— We further have

3 Cor ati \B hy ye 3 B) -

- (Note that, by the choice of 8, the product of the term in brackets

with s = sgn(e) is nonnegative.)
—

| Furthermore,
(_

| ie Ng]: ] . i 1 + 1 —— if K 2] )) [a and c T
k=1
k#8

it can readily be shown that

g

ler] = clr (0) + (1-c)lel

- 8



= It is important to note that, if condition 1 is satisfied by the

second reference set (i.e., Ng #0 for i=l,..., g-1, B+l,..., ntl, o),
—

then c¢> O . Therefore |e¢'| > |e|, since r(x) > |el . The
- "strictness of the inequality let] > lel implies, by a simple contra-

: diction argument, that 1f an initial reference set is chosen and subse-

quently modified as above by exchanging successive non-reference set

3 rows of the matrix A for rows in the reference set, and if conditions
—

1 and 2 hold at each exchange, the process must converge upon a

— Chebyshev solution for the full system.

L. Jordan Elimination

- An excellent example of an implementation of the exchange method

which uses Jordan elimination is given on page 50 of [9].
L

Briefly, given indices fires 1g {ls m}, numbers |

. RARE A+ are found so that

: n+l

k=l ©

-- and

m1 k kK

= Setting s, = sgn (i) for k=l,..., n+l, the matrix
\

— -1

A; A;
. C=]

| BERN
3

9

C



EE 1s formed using a sequence of ntl pivot operations (Jordan elimination
; Each exchange step, then, involveg forming |

\

[x)5-00, Xn? e = la, Jee ey d, lc,| 1 n+l-

computing

| | n+l |

- r.= } a. x -q. for all j#i,,..., iJ Jk k J J? 177° “n+?k=1

| selecting « so that Ix | = max, and forming

Prt opnl = la ea sane )1cT| 1 n+l sl as o1

The last column of C has the form

GA/

GAo/

G

where

n+l

k=1 |

Hence, g ig selected ag an index for which

10



sgn(z_) sgn(e) pa/ Ca ntl = max .

An appropriate pivot operation on C ends the exchange step.

= The Me can be found in

— 5n 2 , 8n
—_ + 2n + =+ 1

| 3 5

operations (counting only multiplications and divisions), and the initial

Co computation of C requires an additional n’ + 30° + n operations.
In each exchange step the quantities

a.

require on© + Un + 2 operations to compute, and the updating of C
— .

demands an additional n® + 2n + 1 operations. Hence, k exchanges

_ may be carried out with

— hn” 2 11 |
| —— + (Gk + 5)n” + (6k +2) + 3h + 1

operations.

Co While row and column interchanges can be permitted during the

| initial sequence of Jordan elimination steps which forms CC, so that

= pivot elements of largest possible magnitude can be selected, no pivot

| choice is possible during the subsequent updatings of C . For simple
a

| examplesof the danger implicit in this fact see [10,11]. The danger

3 is studied at greater depth in [3,7,8].

= 11



| 5. LU Decomposition

| ;

- Starting from any reference subsystem of the given overdetermined |

system, the exchange method produces a new reference subsystem at the
—

cost of solving three nonsingular sets of n+l linear equations:

|
.

| A!

NE .
- | Px=r1

- Pp = Tz °

|
L -.

The vector ry is given, but To depends upon ) and rz depends

5 upon x . If three such systems of equations were given in isclation,
the general method of solution would consist of making an accurate

= LU decomposition of P using Gaussian elimination and backsolving six

| E triangular systems of linear equations. This can be done with
]

| 3
n 2

L operations. With Stiefel's algorithm, however, this price need not be

| : paid at every exchange. The matrix P', derived from P by one
C +

: exchange, differs from P only in its g oh column. If column inter-

1 changes are not permitted in computingLU decompositions, then the

| decomposition, L'U', of P' 1s identical in certain portions to the
|

- decomposition, LU, of P, affording a saving of work. Furthermore,

pivotal selection using row interchanges can be allowed. While an

example of a matrix is given in [7] for which this strategy is poor,

— 12



i it is the strategy commonly used and is almost always stable in practice |
| (e.g., see comments to this effect in [3] and [8]). In any event |

Le it is superior to the strategy of making no pivot selection. :

| The work done in carrying out k exchange steps, involving columns

: Byres By. of P, can be cut to

y | 3

LL | (k + 1)E + kn” + Tn) - 22L(hk + 1) + Le* 20| 3 5 3

| 2 = 2 1

- BRED ANCES FENCES)?
| . j=1 j=1 J=1

operations.

For example, if B; = +++ = By = , this becomes
_

no Lk e
i (k + 2) + Se + 4)n” + 0(n), |

L roughly half the work that would be required if no advantage were taken
of the similarities between P and P' .

|
-

-

I © 6. Detailed Outline of an LU Implementation

I | 1. Select ntl indices ESPRERY ite {l,..., m} so that the
| matrix

| | 1 1

| | P = : :
| As d,

i ) n+l n+1



ou |

is nonsingular. If this cannot be done, terminate with an

a appropriate indication. The user may then check whether the

: system Ax = d can be satisfied exactly.

2. Perform the Gaussian reduction of pt into the product of a

| unit lower triangular matrix IL and an upper triangular matrix
a.

U . All information about L and U can be stored in the

- space initially occupied by pl plus one vector (for inter-

: - change information). In each column the element of largest
-

| magnitude on or below the diagonal 1s to be used as the pivot.

| If the LU decomposition of a matrix differing from PY only

in the g th column is avallable, one can save computation by

- using the first B-1 columns and (as pointed out by W. Kahan

| of Toronto) the upper-right-hand (B-1) X (n-B) submatrix of
8

this decomposition as the corresponding segments of the decom-

position of pt - Af rank (pT) < ntl, terminate.

; 5. Solve |

| Prt | = wf | =
— . . .

Mtl M+1 0

| This requires the forward-solution of

L

| O |
| Lv =| .
— . :

| 0

: - -1

Lo :

.

L
1h



followed by the back-solution of U) = v . (Permutations

3 due to the row interchanges of step (2) are ignored in the |

| remainder of the outline). If Vises, V are available from

~ a forward-solution involving an L whose first B-1 columns

| are identical with those of the matrix I being used here,

only Vg res Vo need be computed. If any As is zero,

i terminate.

~ 4h. Set |

ntl

— -. e€ = 1/ y ey °
i=1

If e is less than any value of ¢ previously computed for

L the current data, go to step (9).

| 5. Solve

sgn(ry)
- Px = ¢ o

X will turn-out to be =1 .
/ n+l
-

| | 6. Compute

: 5r.(x) = a. x _- d,

LL 1s



for each

| JE{ise es Se :

Let oo be an index for which |x _(x)] is maximal. If

— ENCE ¢, then (xq5000s x) is a candidate as the
i Chebyshev solution of Ax = d; go to step (10). |

Bh | 7. Solve Py = A> (oF column of AT) .

— 8. Find Be{l,..., ntl} so that

LL

2 senlr (x)]
| A o

| is maximal. Replace the set of indices fiseee, 141) by

_ Replace the gh column of PT by a . Go to step (2). |

| : 9. Restore the preceeding set of indices {ieee SR and
recover the preceeding LU decomposition.

— 10. Iteratively refine the solution to the system

- seni)
| Px = ¢ .

_ sgn (hq)

16



—

according to the scheme given on page 121 of [3]. (The con-

“ vergence of this refinement process is established in [12]).

— Check the residuals rs (x) for

nN SERENE fet

_ If

max

| lr (x) = 75" |r (x) < es
C _ o J J

. then give [x15 X 41) as the Chebyshev solution. If this

residual check is not successful, but the refinement process

~— has been carried out before and the last refined value of eg

| is greater than the current refined value of ¢, return the

last refined values of Xyseees x as a doubtful solution.

_ Otherwise return to step (7).

ns 7. Remarks on the Qutline |

-— We have lgnored scaling strategies in programming our implementation.

Step (10) serves to improve the final values of ¢, Xpseers X
= It is usually performed only once. It is not uncommon to produce values

for ee, Xyseees x which are correct substantially to full machine~~

| precision; i.e., compare runs A and D in the appendix. The decisions

. made in step (10), after the refinement,have been included as an attempt

to supply the Chebyshév solution for the reference subsystem having the

L7



|
-

largest reference deviation in those infrequent cases where the test

IE i) lr(x) <e

a consistently fails to be satisfied.

, Note that the LU decomposition of pT is used to solve the system
— of equations Px = ¢ sgn()) (step 5). In [3] it is shown that the

- computed solution to Ax =b via LU decomposition is the exact solution

- to (A + K)x = b, where a bound on Ix can be placed. It is easily
g shown that the computed solution to Aly = d via the LU decomposition

of A is the exact solution to (A + H)y = d, where the same bound

- pertains to Ill .

| 8. Algol 60 Description |

B procedure Chebyshev (A,d,h,m,n,refset,epz,insufficientrank,zerolambda);

a value m,n; integerm,n; real array A,d,h;
integer array refset; real epz; label insufficientrank, zerolambda;

| | real procedure ipr (ii,ff,uu,aa,bb,cc);

BN value fl,uu,cc; real aa,bb,cc; integer ii, Zf,uu;
_ begin comment single-precision inner-product routine;

- sum := cc; |

for i := IZ step 1 until uu do sum := sum + aaxbb;
B ipr := sum,

R | 18



Erratum: Insert in §8 before the Algol 60 procedure
of Computer Science Report No. 67, Stanford
University.

The parameters to procedure Chebyshev are: |

identifier type comments

N m integer Number of equations.

| n integer Number of unknowns.

" A real array Matrix of coefficients.
| Array bounds - [O:m-1, O:n-1]. |

d real array Right~hand-side vector.
_ Array bounds - [O:m-~-1].

h | real array Solution vector.

| Array bounds - [O:n-1].

| refset integer array Final reference equation numbers.
Array bounds - [O:n].

epz real Final reference deviation. |

~ zerolambda | label Exit for condition 1 failure.

insufficientrank label Exit for condition 2 failure,
or in case rank(A) <n .

The parameters m, n, A, and d are not changed by Chebyshev.

We direct the user's attention to the identifier eta appearing in the

procedure and to the comment explaining its value and purpose.

[Fa |



end 1ipr;

3 real procedure ipe (ii, £2,uu,aa,bb,cc);
comment ip2 is a version of ipr which accumulates the products aaXbb in

= a double-precision sum, whose final value, rounded to single-

precision, 1s taken as the value of ipz.;

” procedure trisolv (fis,fid,fie,sis,sie,fi,si,sofl,rhs,mat,piv,vip);

11 value fis,fid,fie; integer fis,fid,fie,sis,sie,fi,si;
real sol,rhs,mat,piv; real procedure vip;

- begin real tl,t2;

| comment trisolv solves a triangular system of linear equations. The

~ off-diagonal part of the system's matrix is given by mat, the

1 diagonal part by piv, and the right hand side of the system by
| rhs. The solution is developed in sol. By appropriately

— setting the first five parameters, either an upper or a lower

triangular system can be treated. Column-by-column Gauss

. | decomposition of a matrix can be compactly expressed using

trisolv. vip is a vector inner-product routine.;

| for fi := fis step fid until fie do

— oo begin tl := -vip (si,sis,sie,sol,mat,-rhs); t2 := piv;

| | si := fi; sol := if t2= 1 then tl else t1/t2;

: end;

1 end trisolv; | |
| Boolean finished; switch decompbranch := return,itr;

L switch failures := insufficientrank,zerolambda;

integer ml,nl,npl,i,j,k,L,b,al,al,Lst,£0,41,001,cnt;

— real lasteps,preveps,ref,s,t,cps,eta,cnorm,snorm;

— 9



Eea —

i
| real array Plo:n,o:n],lam,rv,sv,x,w,xr[o:n];

L integer array rlo:n},ix[o:m-1];
comment The subsystem of n+l equations currently being investigated

— is listed in ix[0],..., ix[n] . The other equations are listed

L in the remainder of ix . r contains row indices. Row inter-
changes during the Gauss decomposition of P are carried out

L by permuting the elements of rr ;
( . procedure resid (vip); real procedure vip;

| comment resid computes those components of the residual vector Ax-d
associated with the equations not in the reference subsystem.

L The sign, magnitude, and associated equation number of the
largest component are saved. vip is a vector inner-product

L | routine. ;
| | ref := -1; |

for j := npl step 1 untilml do

| i = ix[j];
t := vip (k,0,nl,x[k],A[i,k],-d[i]);

| | if abs (t) > ref then begin ref := abs (t);
al := j; s := sign (t);

L end resid;
| ml = mel; nl := n-1; npl := n+l; |

lasteps := 0; preveps := -1;

| :
20 |



eS BEE

i
for i := 0 step 1 until n do r[i] := ix[i] := i;

3 for i := npl step 1 until ml do ix[i] := i;

_ comment The initial reference subsystem is chosen by making a copy of

— the transpose of A bordered with d and carrying out a

| Gaussian reduction upon it with row and column interchanges
—

used to select the largest possible pivot at each stage.;

’ begin

real array TAB[o:n,o:ml];

— for j := O step 1 until ml do

| begin
- -

TAB(n,j] := all; |

1 for i := O step 1 until nl do TAB[i,jl := A[j,i];
end;

{

— for i := 0 step 1 until n do

begin

I.
t = Oy

| for Jj := 1 step 1 until n do
o == PEE as

begin |

t k :=r[jl; |

for £ := 1 step 1 untilml do

) begin

3 | ref := TAB[k,ix[Z]];

| if abs (ref) > t then

‘“. begin s := ref; t := abs (ref); af := j; b := £; end;

| end;

—.

end;

| 21



if © = 0 then begin J := 1; go to singular; end;

_ k := rlall; raf] := r[i]; 2st := r[i] := kj

k= ix[bl; ix[b] := ix[i]; al := ix[i] := k;

— for j := i+l step 1 until ml do

—

t= ix[j];

13 ref := TAB[Zst,2]/s;

| al := rl[k];
— -

TAB[af,2] := TAB[af,2] - TAB[af,al] x ref;

| end; |

— |

b := 0; al := 1;

g comment The following segment of the program performs a column-by-column
Gaussian reduction of the matrix associated with thereference

C equations, forming an upper and a lower triangular matrix into
the array P . (Each diagonal element of the lower triangular

~ matrix is one.) Interchanges of rows take place so that the
~ largest pivot in each column is employed. It is assumed that

| b-1 columns have already been decomposed. If the matrix is

— not of full rank, the exit insufficientrank is taken, and it

is left up to the user to determine if the given overdetermined .
~ system can be solved exactly.;

- | 22



Po |
body:

3 £0 := b; £1 := bt+l; £01 := b-1; | |

$ := ix[20];

trisolv (if i=b then O else b,1,201,0,3j-1,3,k,P[£0,r[k]], |
if r[31=n then a2] else Al£,r[31],Blk,r[311,1,ipr);

| trisolv (£0,1,n,0,£01,j,k,P[£0,r(k]],
. |

- if r[jl=n then a2] else A[£,r[3]],P[k,r[3]],1,ipr);
| ref := 0;

| t := P[20,r[j]]; |

- if ref < abs (t) then begin ref := abs (t); s = t; k := Js end;

~ if ref = O then begin j := 1; go to singular; end;
a if 20 = n thengo to decompbranch[al];
| j :=rl[kl; r(k] := r[£0]; r[20] := j;

_ for j := 21 step 1 untiln do P[£0,r[j]] := P[20,r[j]]/s;

| L201 := £0; £0 := [1; £1 := 21+];

- end;
singular:

—

fori := 0 step1 until n do refset[i]:= ix[i];

. go to failures[Jj];

return: |

- comment Solve for the lambdas.;

. os



trisolv (b,1,n,0,j-1,J,k,sv[k],if r[jl=n then -1 else O;

_ pli, r[31],1,ipr);

trisolv (n,-1,0,j+Ll,n,J,k,lam[k],sv(j],Plk,r(31),P[j,x[il1),ipr);

— comment Compute epsilon for the reference subsystem of equations.

| t := 0; |

for i := O step 1 until n do t := t+abs(lam{i]);

Ho eps := 1/t; |
} comment Each new value of eps must be greater than the previous one.

- If this is not so, the solution may have been "overshot”.;

| if eps < lasteps thengo to ed;
— - |

lasteps := eps;

8 comment Solve for the vector x, the Chebyshev solution of the reference
subsystem of equations.;

— for i := O step 1 until n do xr[i] := sign(lamfi]) Xx eps;

| trisolv (0,1,n,0,i-1,i,j,wljl,xr[i},Pli,r[j)]),P[i,r[i]],ipr);

” trisolv (n,-1,0,i+l,n,i,j,x[r[jl},wli],P[i,r[j]],1,ipr);

3 comment x[n] should be -1 . It can be used to purify eps and the other
| components of x .;

— ref := -x[nl;

: | for i := 0 step 1 until nl do x[i] := x[i]/ref;

= eps := eps/ref;

: comment For each index ix[n+l),..., ix[m-1] compute the residual
| Alix[j),0] x x[o] + ... + A[ix[]j],n-1] x x[n-1] - d[ix[j]] .
. | If the largest of these in magnitude is not greater than eps,

: 20 to itr to refine the vector x, for it may be the Chebyshev

- solution of the full system.; |

N ol



| |

| resid (ipr);

_ if ref < eps then go to itr;
| ovr:

— k := ix[al]; )

| comment The following linear-system solution is computed in order to

B determine which equation is to be dropped from the reference

oo set of equations.;

| trisolv (0,1,n,0,i-1,1,j,wljl,if r[il= nthen d[k]

— else Alk,r[111,P[3,7[1]],1,1pr);
trisolv (n,-1,0,i+l,n,i,j,w(jl,wlil,P[j,r[i]],P[i,r[1]]),ipr);

~ comment s is the sign of the residual with greatest magnitude. Find

the largest of the ratios w[k]/lam[k] x s . If any component

| of lam is zero, the exit =zerolambda is taken.;

» ref := lam[n]; b := n;

if ref = 0 then begin j := 2; go to singular; end;

= ref := w[n]/ref x s

_ t := lam[j]; |
; | if t=0 then begin j := 2; go to singular; end;

- t i= wl[jl/t x s;

1 if t > ref then begin b := j; ref := t; end;

_ comment Form a new reference subsystem by exchanging the ix[af]-th

and ix[b]-th equations.;

- ix[al] := ix[bl; ix[b] := k; al :=1; goto body;
ed: oo
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comment Restore the previous reference subsystem.;

u eps := lasteps; al := 2;

| j i= ix[ad]; ix[af] := ix[b]; ix[b] := J; go tobody;

— itr: | |

| lasteps := 0; cnt := 0;

comment Iteratively refine the vector x;

L ilp:
cnt := cnt + 1; if cnt > 10 then go to insufficientrank;

— cnorm := snorm := 0;

for t := O step 1 until n do
— -

begin

|

4g k := ix[i];

t := abs (x[i]);

— if snorm< t then snorm := t;

rv[i] := -ip2 (j,0,n,x[j], if j=n then d[k] else Alk,j}, -xr[il);

end; |

8 trisolv (0,1,n,0,i-1,i,j,rv[jlev(il,Pli,r[j)],P[i,r[i]],ip2);

~ trisolv (n,-1,0,i+l,n,i,j,wlr(3)),rv[il],P[i,r[3]],1,ip2);

- for i := O step 1 until n do

| begin |
L

. s := w[il;
|

L x[1i] := x[i] + s;

s := abs (s);

L if cnorm< s then cnorm := s;

end; |
L

if cnorm/snorm> eta then go to ilp;
)

|
-
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5 |

1

comment eta is to be preset with a small positive multiple of the largest

~ positive single-precision machine number having the property
oo that 1+w= l-w= 1 1in single-precision arithmetic. The small

~ multiple will depend upon the peculiarities of the machine's

| rounding process and will have to be empirically determined.;

ref := -x[n] |

NN for i := 0 step 1 until nl do x[i] := x[i]/ref;

| ) eps := eps/ref;

- comment Determine whether a Chebyshev solution has been found. If any

residual is greater in magnitude than eps while eps is smaller
he -.

than a value produced from an earlier refinement, give up, print

1 a warning, and return the best x computed thus far.
resid (ip2); |

- if ref < eps then finished i= true
else if eps > preveps then finished:= false

- else begin comment Print out "DOUBTFUL SOLUTION"; |
3 £0 to skip; end;
| preveps := eps; refset[n] := ix[n];

. for i i= O step 1 until nl do

-

: refset[i] := ix[i]; |

i hii] := x[i];
£nd;

C if— finishedthen go to ovr;
skip:

” epz := preveps;

: end Chebyshev;
| 27



| 9. Sample Runs |

3 The output reproduced in the appendix was produced by four programs
implementing the exchange method. At each exchange step the reference

|
set, value of ¢, values for the. x., and the non-reference residuals

- i

| ~ were listed followed by the equations to be switched in the next exchange.

_ Upon termination,a count of exchanges and solution refinements (where
| applicable) was printed along with the computation time required |
jl

(print time excluded). The computed Chebyshev solution for the full

i a system was then printed followed by the final reference set and a list
of all residuals.

_ A common data system, Ax = d, was given to the four programs.

i The matrix A consisted of the 17 X 9 Hilbert matrix segment

1,3 i+3+1 2 bs 3 J 2

i The right-hand vector dd had components

| d; = i (i=0,..., 16) .

Output A was produced by a version of the program given in

| section 8 using double-precision arithmetic.
: Output B was produced by a program using the techniques out-

L lined in section 4. This program, however, based its computation on

| the matrix
| -1

| | B=| Al A;1 n+l

L 1 n+l |

i | 28



g rather than on the matrix C . This permits the initial

i z + 0(n°)

g operations for the calculation of -the Ny to be saved, for the last

i column of B satisfies
| n+l

| Z omits" 0
| .
- n+l

| | - Lz %k,n1%=

Now, however, |

. n+l
| | e = 1/ Lz Ly |

L

: must be computed separately at each exchange. Note that, on the sample

L data, this program has failed to recognize the terminal reference set,

I giving the wrong answer. |
The suggestion has been made that the exchange method be imple-

i ’ mented using Jordan elimination techniques, but that a section of code
be provided to clean up the solution once it has been attained. Output

L C was produced by such a program. Clean-ups were carried out in double-

I | precision. Since this program, just as program B, failed to recognize
the final reference set at the first encounter, the clean-up section

. | was called upon twice for the given data set - once to put the program |
back on the right track, and once for the final solution refinement.

By good fortune the final reference set was recognized the second time

| around. ’
29
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Output D was produced by a B5500 Burroughs Extended Algol version

_ of the procedure given in section 8.

|

L .~
10. Double-Exchange Algorithm

.- Instead of introducing one vector into the reference set, we con-

3 sider the problem of introducing two vectors simultaneously. (What

follows can easily be generalized to the problem of introducing several

8 ; vectors simultaneously.)

| Without loss of generality, we assume that SERERY A form a
|
- reference set. Let SERREE Mtl be such that

i
bl

| k=1 EK |

8 under the normalization

_ gr A = -1

| & Me
.

| Then
L

) n+l

k=1

3 and 1f x is the Chebyshev solution for this reference subsystem,
| sgn), ) = sgn(r, (x)) for k=l,..., n+l .

| .
-
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For ease of notation we write

B, = sgn(r, (x))A, for all i

m= = 3 + .

|

L
Thus | |

-

| T 7 |. TB =0 and e = 1/ | T .
_ k=1 Lk k=1 k

L We assume that | |

L |r (x)] > |r (x)] > e |
| ab %
|
a

| for some EL > n+l . Since Biseees B 1 have rank n, there
- exist |

| ya 2) (2— | ut gee y 1) and Hq gee ey 2)
|

| ;
-

| so that

O |

| bl (5)| B = uw.“ ’'B_ for j=l, 2 .

L A = k k

L The ut) will be unique if we also demand that |
| |

- (5)
a, = y dat’ for j=l, 2 .

: J k=l |

51



8 | |

We wish to find rows Ag Ag (BB, €{l,..., ntl}) to exchange with
1 "2

— | A A in order to form a reference set with a greater reference
1 72

8 deviation ¢' . Associated with this will be a reference subsystem
Chebyshev solution x' . Demanding suitable agreement between the signs |

— of r, (x) and r, (x'), we may use the characterization theorem of

,! section 2 to determine 8, and B,, . Viz., we ask for numbers Yq |
—

and Yo such that

| n+l
(1) (2)

‘ Y.B + vB + 3 (ry = yam = Yous )B. = 0
4 1 ay 2 apy 21 i 171 271 i

| with

_ t =wy,.>0 for j=l,2
a Yy 2 J=Lo |

_
— (1) (2) |

for i=l,..., n+l

.

: and for two indices B.sBs | |

| rt = pn! = Q '
iN B,

Lo The normalizations of the ui) have been chosen so that

_ | n+l 1

| - i=1 “1 |
32



| We wish to choose Y12Yo under the above constraints so as to maximize

Lo e' - This is equivalent to determining the minimum of

- ¥ i |: TAT TL ToT]
=i IS I

lL |

A n+l n+l ( n+l1) (2)L = 2 Tt v1 - JIT SERN DE JH || z | oe} k 2 j=1 J /

| Since

T

k=1 k |

-

is fixed, and (as can easily be shown) |

Lo

TO)
| e; =) be" = 1>0 (j=1, 2),

Lo we wish to determine Y12Yo > 0 so that

a. .

Y161 T Yoo

| is maximized subject to
j

| (1) (2)
. + = . eo ,

-

Lo

| 53 :
|
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This is a standard linear programming problem. Note that the single- |

a exchange algorithm can be expressed as the above problem with the addi-

tional constraint

5

~ Thus the g' of the double exchange can be no less than the ¢' given

by the single. exchange of section 3. Note further that conditions 1

and 2 of section 5 do not appear in the development of the double-

— exchange.

Computation can be simplified by considering the dual to the above |

linear programming problem. We introduce the surplus variables

i Z +0? Z +3 and minimize |

— bl TZ.

i=1

subject to
— |

: z, > 0 for all i,
— i- |

ntl
- : 1

: 2 iy 2, © Zpee T E72
k=1

and

| Mb Z - Zz + = e .
a “oh k k n+3 2

30,



|

L

If either surplus variable is nonzero in the solution, then B,
1

— and B, cannot simultaneously be introduced into the reference set.
2

i The correct single-exchange, however, 1s then readily obtainable from
-

the dual problem solution. |
5

L In section 16 are presented some timing results from a program

a implementing this algorithm. Comparing these results with those from

-

the single-exchange implementations of sections 13-15, we see

| : that the extra effort involved is not paid for by a net reduction in
—

~ time. Also we have observed that in practice rather less than half

Lo of the exchange steps carried out permit the simultaneous switching

| of two reference equations. oo

| ll. Computational Comparisons of Variations for the Exchange

! In the procedure given in section 8, the non-reference equation
“

chosen to enter the reference system at each exchange was the oR,

lL | whose residual satisfied

| ) max
— = .(2) x, (x) i¢[reference set |x; (x)]

| indices

| | According to the theory, however, the exchange method will converge so
long as the reference deviation after each exchange exceeds the refer-

| ence deviation before. And for this to be true, it is sufficient only
that oo satisfy REMC] > |e] (conditions 1 and 2 given section

| 3 being assumed always to hold). |

L
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1 Alternate versions of the procedure presented in section 8 were

_ prepared for Stanford's B5500 wherein the few statements determining

| o according to (a) were changed for statements implementing other

selection rules. The unaltered procedure and the alternates, together

with an implementation of the double-exchange method described in
a |

section 10, were run on random systems of equations of several sizes. |
3

i Averages of times required and number of exchanges made are given. Note

| . that the procedure of section 8 gave the most favorable times. |
12. The Data |

L Data for the comparison runs was generated by a procedure written |
| in Burroughs Extended Algol. The procedure produced a matrix

| 1=0y 000, m-1A= I| 855) eo,..., na

and a vector

d = [q, ] 1=05e0., m~1 |
.

each of whose elements had the form € XT, where E was a pseudo-

random variable distributed approximately uniformly in the interval

[o; +1], as computed by the mixed congruential method

= 0So

| 11 27 |= (277 - + 2Ey = 3)g, + 211527139 mod 2

for n>1 ,

36 :



{ |
|

and 1 was chosen pseudo-randomly from among the numbers

Every decision rule was applied to ten system, each of m equations

in n unknowns, where
Lo |

a (myn)e{ (10,4), (20,4), (30,4), (40,4), (20,9), (30,9), (40,9), (30,19) } .

. | |
— 15. Selection of the Equation with Largest Residual Magnitude

Lo The procedure given in section 8 produced the following statistics

— (uw = mean; o = standard deviation): |
5 |

| Time Required (Seconds)

m\2 ky 9 19
10 u=0. 677 |

| | 0=0.110
“.

20 u=1.079 |u=L.0L3

Lo 0=0.142 | 0=0.850 |

30 u=l.246 |p=5.947 |p=28.620

= | 0=0.236 | 0=1.170 |o=6.802

LO u=L.558 |p=T7.265
ug |

0=0.266 [o=1.7LO | |

| |
|
-

: ;

]
-
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Number of Exchanges

- m\_n |
L 9 19

10 u=3.401

o=1.56

a |
-

20 u=>.90| y=9.10

ig 0=1.81| 0=3.05 |

- 30 u=5.90 | p=13.40 | u=16.80
-

| 0=2.21| o=3.6k g=5.21
: |

— -.

| 40 u=6.70 | p=1k.60

L | |

14. Selection of the First Suitable Equation Found

= The first variant program examined each non-reference equation in |

| turn until one was found whose residual magnitude exceeded the reference
-

deviation. That equation was selectedfor introduction into the ref-
{

ig erence system. Statistics for this variant follow.

|

L :

— .

-
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Time Requireg (seconds)
. m\ n

i; ~~ 9 19

c=0.261

20 u=1.420 |,=7.367 || 0=0.638 |g=2.788
| . 30 W=2.122 |=11.303 u=63.785 | oo] : 0=0.974 |5=2.699 0=30. ko}

Lo u=2- 181 |u=14. 250 | |Co

Number of Exchanges
|
|

m\ n |4 9 19

20 k=15.10 | y=22. 60

0=9. 69 0=10. 83

30 k=20.50 | u=36. Lo u=48. 60

o=13.32 0=10.43 | g=06.04 | |
ho w=21.80 | u=47.60

0=8. 83% o=21. 30

59



. | 1

15. Selection So As to Give the Greatest Reference Deviation Increase

| Given any non-reference row A for which |r _(x)] > el, solve

T T

| Py, = A .

| Then, if B is such that |

| sgn(e) sgn(r, (x) ug |

Lv ’
. is maximal, A, must replace A, in the reference set. The newL :

A's can be computed as follows: |

| hg = Ag/ bg
Hi

B

| ) Then |
Ag Aa

18] :1 |L | el = LBL rol + - LBL) pep

L where

| n+l
— !

| k=3 Il

i i=1

| 40 |



: |
4

LL
| Using these results, a variantof the procedure given in section 8

| a was prepared in which the non-reference equation selected to enter the

reference system at each exchange was that one which would give the
] .

— greatest value to le] . |

Time Required (seconds) |

m\n lL 9 19

L 10 u=0.821

| 0=0. 187

20 u=1l.315 | u=5.900

30 n=1.528 u=9.798 u=42. 481

: g=0.313 | g=2.423 | g=7.921 |

|

. o=0. 465 og=3.825

we |

o |

|

|
-

9
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TT ee dis
Sa
nL

: Number of Exchanges |

oT BNE 9 19
10 | u=3.50

o=1.3%6

i - 50 | p=3.90 |u=10.40 [4=16.20

| o=1.04 [0=2.20 |[g=3.0%
40 | u=5.10 [u=13.ko - |

| o=1.70 [g=3.23

16. Double-Exchange Algorithm

| |

- Time Required (seconds) |

ANG 4 9 19 |
| ) 10 L=0.900 |

o=0.147

: 20 w=1.258 [u=k.557

0=0.215 |0=0.836

30) u=l.4L2 J,u=6.487 u=36.650 |
| 0=0.271 [0=0.951 |g=8.179

| bo | p=l.912 |u=9.413 |
0=0.677 |o=1.507

oo Lo |



* |

. Numberof Exchange Cycles
{

L

20 u=3.90 [ u=5.60

| o=1.38 o=1.80

8 ) 30 u=3.60 | u=8.10 | p=1k.7 | |

i 0=1.36 | 0=1.70 | o=k.67
LO n=>.10 u=1l2. 4

L o=3.2l | =2.36 |

*

| (An exchange cycle consisted of the simultaneous switching of two
equations, where possible. Otherwise it consisted of a standard single-

i . exchange. ) |
|
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2 #akaw HILBERT DATA wawwn A
1 17 EQUATIONS IN 9 UNKNOWNS

EXCHANGE ALGORITHM IN DOUBLE=PRECISION

_ REFERENCE SET: |

0 2 1 1 5 16 3 8 4 9
1165566,11074,00287,19989,630 =3 3 FPS
3,97047,60096,43108,06759,278 3 a X[ 0)

~ «2,70355,98109,22439,41451,330 5 = X[ 1)
4,55974,74511,68592,81444,738 6 5 X{ 2]

i ~3,26294,80229,02832,31393,356 7 = Xt 3)
1,20427,47950,72163,13981,298 8 = X[ 4) |

| ©2,48030500464,27790,08801,458 8 x=X{ 5)
- 2487782,84818,63886,24654,618 8 = X{ 6)| "1.75788553710,63890,56612,908 8 = Xp 7)

4439490,84805,13472,43622,04@ 7 = Xr 8]
| | "24377601,12267,27838,37828,09f «3 = RESIDUALL 10)

| 1,07571,35978,74505,82246,038 =3 = RESIDUALL 67
1.00245,84291,63795,29485,838 “2 = RESIDUALL 12)
1195676,92968,81866,18250,258 =2 = RESIDUALL 13)

| 2448292,91781,18352,397945140 =2 = RESIDUALL 14): 1,98447,14020,05852,369572668 =2 = RESIDUALL 15)
3046169,10322,94211,82277»,29@ =3 = RESIDUALL 7) |

| EXCHANGE EQUATION 11 WITH EQUATION 14 |
REFERENCE SET:

0 2 14 | 5 16 3 8 4 ¢o |
3429205,02104,33056,37236,2668 =3 a EPS
5.40554573215,77523,85646,178 13 = Xt 0)

*"3.59146,43813,84385,18429,928 5 = X{ 1]
2,93749,90812,11901,92471,068 6 = X[ 2]

"4417859,65144,44931,34071,220 7 = Xp 3)
1,52049,75097,12577,52825,278 8 = Xr 4)

~»3.,09350,90379,71150,66375,698 8 = Xr 5)
3¢55123,22422,42775,98985,698 8 = X{ 6)

"2,14895,91603,99356,68537,188 8 = X[ 7) |
5,32811,40323,12399,58580,08@ 7 = XI 8) ’

®1.,04956,72051,91559,43804,888 =2 = RESIDUALL 103
~2.27328,65222,76318,77735,800 =4 a RESIDUALL 63
«1,08864,60005,98963,99208,988 ~2 3 RESIDUALL 12]
=3,91191,80148,65456,42774,210 =3 a RESIDUALL 13}

| =1,34090,31468,42742,36611,820 =2 = RESIDUALL 11)
5051335,12173,87940,65038,29# =3 = RESIDUALL 15)
4.64657,18263,68794,95518,65@ =3 = RESIDUALL 7)

EXCHANGE EQUATION 9 WITH EQUATION ti

REFERENCE SET; |

0 2 14 { 5 16 3 8 a 11
| 5:30006,47585,98979,14408,708 “3 x EPS |

0427879,92051,09165,06026,788 3 = X[ - 0)



— «4,09612536199,45232,02513,460 5S = X{ 1]

6,67733,07627,41189,48351,348 6 = Xt 2]
wl ,6U87T06,7643R,19307,65657,3408 7 = X{ 3]
1.67565,40534,98819,77968,6968- 8 = Xt 4)

o «3,38355,28056,64260,96258,720 8 = X[{ 5)
3,85958,25436,98084,77619,298 8 = Xt 6] | |

-2,32292,40280,66317,48340,808 8 = X[{ 7)
= 5.73258,79224,06205,97422,59@ 7 = Xr 8)
| ~2.61547,83860,89942,208762,97@ =3 = RESIDUALL 10)

Po -4,40861,93560,47416,28225,1508 =3 = RESIDUALL 6)
a. «4,10282,78390,15665,83395,498 «3 = RESIDUALL 12) |

| 6.41483,09155,73710,43478,4908 =4 = RESIDUALL 13)

|  2,4B599,9657%,45978,62499,508 «3 = RESIDUALL 9)
5.20435,98784,031755,26575,970 =3 = RESIDUALL 15)

~ 2,53687,03218,72219,94661,28P =3 3 RESIDUALL 7)

TERMINATION

-

NUMBER OF EXCHANGES MADE WAS 2 |
TIME IN SECONDS = 5448

Lo |

SOLUTION VECTORS?

6.,27879,92051,09165,06026278@ 3 = X{ 0)
“4 ,09612,36190,45232,02513,468 SS = Xt 1)

= 6,67733,07627,41189,48351,34@ 6 = Xf 2)
| «lf ,64T7T06s76438,19307,65657,348 7 = X{ 3)
| 1,67565,40534,98819,77968,690¢ 8 = X[ 4)
- =3,38355,28056,64260,96258,720 8 = Xt 8S)

3,8595852543659898U,7761922900 8 a X[ 6)
“2,32292,40280,66317,48340,808 8 = X[ 7)

_ 5,73258,79224,06205,97422,598 7 = Xr 8)



REFERENCE SET: | oo

| Cc 2 14 t+ 5 16 3 8 4 11 |
(a

RESIDUALS: |

5,30006,47585,99232,20639,300 =3 = RESIDUALL 03
»5.30006,47585,98899,13948,568.=3 = RESIDUALTL 1}

= 5,300065,47585,99232,20639,308 =3 = RESIDUALL 2)
| “5,300065,47585,9B677,00488,07® =3 = RESIDUALL 3) |

5.30006,47585,99232,20639,308 =3 = RESIDUALL 4) oo
“ ©5,30006,47585,99176,69524,17@ «3 = RESIDUALL 5)

-4,40861,93560,47416,28225,15@ =3 = RESIDUALL 6)

2,53687,03218,72219,94661,28@ =3 = RESIDUALL 7) | |
Lo 5430006,47585,98954,65063,68@8 =3 = RESIDUALL 8) | | |

| 2,48599,96575,45978,62499,508 =3 = RESIDUALL 9} |
“2,61547,83860,89942,20876,97@ =3 = RESIDUALL 10)

| 7 =5,30006,47585,99232,206392308 =3 = RESIDUALL 11) |
—- “4,10282,78390,15665,83395,408 «3 = RESIDUALL 12)

| 6,41483,00155,73710,43478,490 =4 = RESIDUALL 13) |
5,30006,47585,98899,13948,568 =3 a RESIDUALL 14)
5.20435,98784,03175,26575,97@8 =»3 = RESIDUALL 15)

»5,30006,47585,99287,71754,42@ =3 = RESIDUALL 16)

i -

Lo |
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i whrkk HILBERT DATA #*xwiw B |
| 17 EQUATIONS IN 9 UNKNOWNS | |

1 TABLEAU=JORDAN ALGORITHM oo |

COMPUTATION:

B CL
REFERENCE SET: |

0 2 11 1 5 16 3 8 4 9 |
L | EPS = 1,655523068338~03 oo |

X{ 0) = 3,9675457975084+03 |

| X[ 1) = =2,7018670547864+05 | |3 Xt 2) = 4,5572960226704+06 | |

= X{ 3] = =3,261422535888+07 |
XL 4) = 1,203779412998408

| - XL 5) = =2,47939286B8420408
i X{ 6) = 2,876883848610+08 | oo

X{ 7) = =1,7573632482704+08 |
i XC 8) = 4,393718637020+07 . : |

[ RESIDUALL 10) = =2,593994140638=03 | | |
RESIDUALL 6) = 1.129150390638=03
RESIDUALL 12) = 1,001358032239=02 |

| RESIDUALL 13] = 1,957321166998=02 | |
RESIDUALL 14) = 2.,4875640869108=02
RESIDUALL 15) = 1.98707580566P=02

| RESIDUALL 7] = 3.5005214B438@=03 | |L EXCHANGE EQUATION 14 WITH EQUATION 11

| REFERENCE SET:
0 2 14 1 5 16 3 8 4 9.

EPS = 3,283101470788=03

| XE 0] = 5,394102722120403 | |
XC 1) = =3,5845346909884+05

XE 21 = 5,926966466300+06 | |

| X{ 3] = =4,171726764028407 |
“ XE 4) = 1,518164465350408

X{ 5) = =3,08905188982@+08 |
XE 61 = 3,5464022345504+08

| XU 71 = =2,1461B87334578+08
XI 8) = 5,321569977128+07
"RESIDUALL 10) = =1,046752020608=02 |

| RESIDUALL 6) = 2.136230468758=04 |RESIDUALL 12) = =1,065063476568=02 |
RESIDUALL 13) = =3,570556640636=03

| | RESIDUALL 11) = =1.3122558590388=02 |RESIDUALL 15) = 5.706787109406=03 |

RESIDUALL 7) = 4.8522949218R6=03 |

| EXCHANGE EQUATION 11 WITH EQUATION ©
REFERENCE SET: J |

. 0 2 14 1 5 16 3 8 4 1 |

L N



|

- EPS = 5,274902555220=~03
Xt 0) = 6,259571972106403 |

: X{ 1) = =4,0846680787284+05

L Xf 2) = 6,660130004700406  ~ |
XE 3] = =4,635957755R604+07 |
XC 4) = 1,67191156159@+08

; X{ 5) = =3,376452397540408
— XU 6) = 3,8519343337764+08 |

Xt 7) = =2,318558082038+08 | |

3 X{ 8) = 5,722328674500407 | |
RESIDUALL 10) = =2,471923828138=03 | |

| RESIDUALL 6) = =4,02832031250R=03 |
: RESIDUALL 12) = *4.150390625000=03

g © RESJIDUALL 13) = 8,544921875000=04
RESIDUALL 9) = 2.,71606445313R=03 |

| RESIDUALL 15) = 5,401611328136=03 |

L RESIDUALL 71 = 2,868652343756=03 |EXCHANGE EQUATION 15 WITH EQUATION 14 | |

L REFERENCE SET: oo | |
0 2 15 1 5 16 3 8 4 11

EPS = 5,286956166460=03 |
| X{ 0) = 6,266837272300403 |
Ne X{ 1) = "4,0890308496564+05 |

| Xt 2) = 6,6667390450004+06 | |
| X{ 3) = =4,640263B866400+07
“ XL 4) = 1,6733740649784+08

XL S51 = =3,379248217188+08

X{ 6) = 3,8549668542304+08 |

. X{ 7) = =2,320300230048+08
XL BY = 5,726446347108+07 | |

RESIDUALL 10) = =2,716064453138~03
: RESIDUALL 6) = =4,42504882813@0«03 |

— RESIDUALL 12) = =4,089355468750=03 |
RESIDUALL 13) = 4,577636718750=04 |
RESIDUALL 9) = 24380371093750=03

— RESIDUALL 14) = 5,249023437508=03
‘RESIDUALL 71 = 2,807617187508=03 |

{

L TERMINATION |

NUMBER OF EXCHANGES WAS 3 | | |

L

|

tL
j

L |

| 50
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“ |

| TIME IN SECONDS = 2.18
SOLUTION VECTOR? |

X{ 0) = 6,266837272300+03

- X{ 13 = ~4,0890308496504+05 -
X{ 21 = 6,6667390450004+06

X{ 3] = =4,640263866u0604+07
| XT 4] = 1.67337406497@+08

— X{ 5) = =3,379248217180+08

| X[{ 6) = 3.,8549668%423@408
i X{ 7) = =2,32030023004@4+08 |

-— X{ 8) = S8,726446347108+07 |

(_ — ; |

i

2

51 |
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REFERENCE SET: | |
2 C 2 15 1 5 16 3 8 4 11 |

RESIDUALS oo oo |
RL 0) = 5,030549329630«03 | |

- RL 1) = =5,422996449086=03 |
| RL 2) = 5,2138194808508=03 | oo |
| RL 3) = =5,371528525158=03 | |
- RL 41 = 5,212558797788=03 | |

RE 5) = =5,204128506530=03 |

) RL 6) = “4,351757061360=03 oo oo1 RE 71 = 2,577717493358-03
RL 8] = 5,295551415858=03 oo |

RC 91 = 2,449700321218=03 |
| RE 10] = =2,676972399328=03 oo _

RL 11) = =5,355667924330~03 | | |
RE 12) = =4,13586084108@03 oo| RU 13) = 6,373025890408=04 oo | |

| RE 14) = 5,322239438788=03 | | |
RU 15)= 5,242799588250=03 | oo

i RE 16) = =5,260471501400=03 oo oo |

| | : i

52



A MD V0 DDD XXX XX XM pe M BO XD DVD IDA XXXXXXXXKXXM pe oO ~~ »
m™ XMM MMMMrAryry eos ryey my ry ovyery OU m XM MaaaMmMmMmM ry yyy ry eve 0 m -) p pr *
I | ONL n;m Ow!» On wn n OWLnVL DLL, w ™ 4 9 3) ~ *
™ LC tt = ot et +t = a m J 4 4 4 4 tt 4 mm I | »

Q 2X pr O00 COO 0 0D NIONITWNVUOH OX0 »» {JDO CTI IDINOONEE WN ONO 0 ™ mM »
faa] ZC CC CCC Cvs va ed ada daa m 2 CC CCC TC a va tava td vd ta ta ™m — > =
2 D> > PP >> Pr > >> Prd OO > >>> PrP pr > Cc CC XI
OO mrerr ocr ra a 8 8 hk 0 nw Lg ok I UN Sa Sunt SN Nau A NE | TN TN | J 1 NN {ON FINE [NN FO | 0 rd | > —
a) | FY YY TY re . Mm CNTY YY TY TY . Mm — a wf

%] mm | | 3 | NR A | t i 1 - ON J = —t Be

™ CC NAN WN) Oe a » =» ¢ 8 » » » WW iy CNN EWNODe « 06 5 a oo » » WN ™ oe ol = x
— Prod ed bd Ld dL Ld Wc OU ON de —4 Dr ed ld td LS Wd TY ND ENON CW ~4 > w —4

—_— we —f NED NN DOD es — SUIT N NDI ODN) > ee =
& -~ Nu dH H—-, >PDPODDDONE Es — HH HH HH WONDDWr NN ww — w

= Ts & tO DOWN >» DWI Vall § V— 2X ONO OO rr a|

® eo © & ss ® ss WVWNDE NL ONN = & eo 3 8 3 + DNV ENDO NW oc
_- OI NWNO + ONWWOOOROO ON DD = —_ NO OO NT Ee WN NO we x 0 *

NOON DNDN NN Dw Ow = 1 NC NNN CW DODTNNDDEODDO0NN a | »

— ONS DNS DE TET TTR DW a DNS ND NNTREDD®| Re DW = PN »*
Nn 4 NAD ONE + + + 4+ + + + + oi) =I >= DOE + Ete Jt =

XT Oe DOLE 0000 DOOD DO O00 I DOr DWr COD OCOD = .

. DDE WRN ND - CWO 0D — ; X dy

Nd Fo CC DO DW UNO on CDOs OW WwW >
: > PDP DPD DYDD > TT er ® REE gy]

—-t ¢ 3 §8 3 8 0 ) 4 2 vr 1 § ® 1 % CC

al ZZ ww Zz Ww I.
3

: |on

-- 0
© a wh

. 0 @® oo

&  — : $~

pu } }

—- O 0

g



| - Coto Te mmm 7 oT

EPS = 5,274902555220=03 |
| X{ 0) = 6,25957197210@+03
— XU 11 = =4,08466R07872F+05 N

XI 2) = 6,660130004700+406 | | oo

) X{ 3) = =4,635957755866+407
- XC 4) = 1,67191156159P+08

X[ 5) = =3,37645239754R4+08 | | | |

. Xt 61 = 3,8519343337768+08 |
Xt 71 = =2,318558082030+08.

= X[{ 81 = 5,722328674500407 |
RESIDUALL 10) = =2,47192382813@8=-03 |

| RESIDUALL 6) = =4,028320312506=03 | |
— RESIDUALL 12) = =4,150390625006=03 | |

RESIDUALL 13) = R.544921875008=04 | | |

5 RESIDUALL 9) = 2.,71606445313@=03 oo
re. RESINDUALL 15] = 5,401611328136=03 |

RESIDUALL 7] = 2.B6B652343758=03 | |

: EXCHANGE EQUATION 15 WITH EQUATION 14 | | |

| REFERENCE SET: |
| 0 2 15 1 . 5 16 3 8 4 11 |
— FPS = 5,286956166460=03 |

| X{ 0) = 6,266837272306+03

| X{ 1) = =4,08903084965+05

Lo X{U 21 = 6,6667390450004+06 |
X{ 3) = =4,640256386640604+07 |
X[ 4) = 1.,673374064972@+08 |

XI 5) = =3,37924R821718@+08

— X{ 6) = 3,854964#85423¢+08
| X{ 7) = =2,320300230040+08 |
| XI 8)= 5,72644634710R+07 | |
— RESIDUALL 10) = =2,716064453138=03 |

RESINDUALL 6] = =4,42504882813@8=03

RESIDUALL 12) = =4,089355468758=03 |

C RESIDUALL 13) = 4,577636718750~04 |
RESIDUALL 9] = 2,38037109375@8=03
RESIDUALL 14) = 5.249023437508~03 |

g RESIDUALL 7] = 2,807617187500=03
| DOUBLE=PRECISION IMPROVEMENT |

_ . REFERENCE SET: | |
_ 0 2 15 1 5 16 3 8 4 11

5.278U4,60693,62039,811635150 *3 = EPS

L 6.26576» 18467,B0047,90481»13 3 = X{ 0)
=4,08829,48047,36084,00166541® 5 = Xr 1]
6,66547,14708,78323,27085,9708 6 = Xt 2]

i =4,63934,08832,7R590,99856,310 7 = X{ 3)1.67302,98250,58417,63321,99@ 8 = Xr 4) |
»3,37853,62341523599,23544,000 8 = X[{ 5)

| 3,85414+1335R3,25437,640N06,68@ 8 = X[ - 6)

| «2.62825,04150,30675513559,69@ =3 = RESIDUALL 10)
{

- Sh |



i |

} -4,37417,88682,24776,195465,13® =3 = RESINUALL 61 | )

[ “li,04298,63795,48512,16842,230 =3 = RESIDUALL 12) |4 7.29110,39988,26042,87569,16% =4 = RESIDUALL 13)
2. U45568,04766,19148,67774,15@ =3 = RESINUALL 9]

| 5¢39490,96191,16761,14581,839 =3 = RESIDUALL 14) | | |

|  2.54498,84901,42729,98658,72@ =3 = RESIDUALL 7) | | |
EXCHANGING EQUATINN 15 WITH EQUATION 14 | |

| IMPROVEMENT COMPLETE = SOLUTIONNOT YET ATTAINED RE |

| REFERENCE SET: |16 0 2 8 1 6 11 3 14 5

FPS = 5,335006772156=03 BE :
XC 0) = 6,271517680108+03 |

| Xt 11 = =4,09134927009684+05 | | |
Xt 2) = 6,660674302908406 |
Xt 31 = =4,6418811147068+07 | oo

| XL 41 = 1,67384270496R+08 oo
X{ 5) = =3,380017444550+08 | | |
X{ 61 = 3,855686242240+08 oo

| X{ 73 = =2,3206573830184+08 |x{ 81 = 5,727176281400+407 | |
RESIDUALL 10) = =2.,99072265625@=03 |

RESIDUALL 6) = =4.,516601562508=03 | _

| RESIDUALL 12) = =4.425048828136=03
RESIDUALL 13) = 4,272460937500=04 .
RESIDUALL 9) = 2.,197265625008=03 |

| RESIDUALL 15) = 5,035400390638~03
RESIDUALL 7] = 2.197265625008~03 | | | |

| DOUBLE=PRECISION IMPROVEMENT | |
REFERENCE SET: | |

16 0 2 8 1 4 11 3 14 5

| : 5¢30006,47585,99124,11354,728 =3 = EPS | |
6,27879,92051,09148,09028,688 3 = Xr 0) | | |

=4,09612,36199,45217,874R0,488 5 = Xr 1] | |

| © 6,67733,07627,41163,91494,088 6 = Xr 2) Co“4 ,64706,76438,19289,03505,146 7 = Xt 3) |

1:67565,40534,98812,94935,71# 8 = X[ 4)

| =3,38355,28056,64247,14797,90@0 8 = X[ 5) | |3,85958,25036,98969,13231,21®8 8 = X[ 6) |
-2,32292,40280,66308,185464288 8 = Xt 7)
5.73258,79224,06183,38542,498 7 = X[ 8)

| “«2,61547,83860,00108,74222,34@ =3 = RESIDUALL 10} |
=4,408615,93560,46417,08152,938 =3 = RESIDUALL 61

-4,10282,78390,15554,81165,240 =3 = RESIDUALL 12)

| 6,41083,00155,76485,99234,650@ «4 = RESINDUALL 13)2,U48599,96575,45023,113R4,380 «3 = RESIDUALTL 91] ’
5.20435,98784,03230,77601,008 =3 = RESIDUALL 15)

| 2.53687,03218,72775,05812,51® =3 = RESIDUALL 7) |
TERMINATIGN So | | |

| NUMBER OF EXCHANGES WAS 3 | |NUMBER OF SOLUTION REFINEMENTS WAS 2 | | |

| | 55 |



| | |

_ .

TIME IN SECONDS = 7.22 |

- SOLUTION VECTOR:
| Xt 01 = 6,278799205100403 |

X{ 1) = =4,09612361005@405- N
= XU 21 = 6,677330762800406 oo |
| XU 3) = =4,647067643820407 | . B
| X{ 4) = 1,675654053500408 |
- X{U 5) = =3,38355280567@4+08 oo

XU 6) = 3,8595B25436964+08

y XU 7) = =2,32292402B8060408 : oo
— XC 8) = 5,732587922400407 | |

| Co |

— } | | |

|

| | oo
| | |

| |

.

— .

{ \
| |

— .

| | |
C |
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1 wxwnd HILBERT DATA wwwis | D
17 EQUATIONS IN 9 UNKNOWNS

- GOLUB=~BARTELS PROCEDURE

| COMPUTATION: | | |

= REFERENCE SET:

| C 2 11 1 5 16 3 8 4 9 |
EPS = 1,638740968008~03

_ | X{ 0) = 3,95476513672€0+03

XI 1] = =2,6942718847784+05

1} | X{ 2) = 4,545869589840+06
o XU 3] = =3,254013444530407 |

XIU 4) = 1,201271788230+08

XC 5) = =2,474611566230+08
| X{ 6) = 2,871708030230+08 -
= X{ 7) = =1,7543943920204+08
| X{ 8] = 4,386710147656+07

| RESIDUALL 10) = =2,6550202968868~03
- RESIDUALL 6) = 1.129150390636=03

RESIDUALL 121 = 1,007461547858=02 |
RESIDUALL 13) = 1.,968765258798«02 | |

Lo RESIDUALL 14) = 2,496337890636=02
~ RESIDUALIL 15) = 1.9950866699268=02

: RESIDUALL 7) = 3,63150179688€=03
EXCHANGING EQUATION 11 WITH EQUATION 14

| REFERENCE SET:
0 2 14 1 5 16 3 8 4 9 |

— EPS = 3,279427677390=03

X{ 0] = 5,39426611328€+03 |
XI 1) = =3,584942485358+05

L XL 2] = 5,927948390600+06
XL 3] = =4,1725583041004+07

X{ 4) = 1,51850098514@+08
: X[ 5) = =3,08978286177@+08

— X{ 6) = 3,5472769504604+08

| X[ 71 = =2,146730846900+08
X{ 81 = 5,32293995821€+07

— - RESIDUALL 10) = =1,0467%29296098=02

" RESIDUALL 6] = =6,103515625008=05 |
| RESIDUALL 12) = =1,0B8947753906@=02
Lo RESIDUAL[ 13) = =3,875732421880=03

RESIDUALL 11) = =1.324462890636~02

RESIDUALL 15) = 5,706787109408=03

RESIDUALL 7) = 04,943847656258=03

EXCHANGING EQUATION 9 WITH EQUATION 11

REFERENCE SET: |
- 0 2 14 1 5 16 3 8 4 11

EPS = 5,3091375772208=03

: X{ 0) = 6,2763730469008+403
9g X{ 1) = =4,0047182958904+05 ,

| 58
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j XU 2) = 6,6752813066004+06 |
— XE 3) = =4,645779785748+07 |

X{ 4) = 1,675231013130+08

| X{ 5) = =3,382768370598+08
L XC 6] = 3.,85875499209€+08 ° |

X[L 7) = =2,322460488976+08

| X{ 8] = 5,731517357208+07 |
RESIDUALL 10) = =2.5939941406368~03 |

= RESIDUALL 6] = =4.394531250008=03 |
| RESIDUALL 12) = =4,150390625000=03 |
| RESIDUALL 13) = 6,408691406300=04
- RESIDUALL 9) = 2.532958984380=03 | | |

RESIDUALL 15) = 5,03540039063€=03

| . RESIDUALL 7) = 2.2888183593868=03

= ~ ITERATIVE IMPROVEMENT |

8 REFINED VALUES:
| EPS = 5,30006475859€~03 |

XL 0) = 6,278799205100+403

| | X[+ 1) = =4,090612361995@+05
. Xt 2] = 6,6773307628004+06

X{ 3] = =4,647067643820+07

X{ 4) = 1,675654053500408
X[ 5] = =3,383552805670+08
X{ 61 = 3,859582543690+08 |
X[ 71 = =2,322924028060+08

1 XL 8) = 5,732587922400+07RESIDUALL 10) = =2,6761179878868=03
RESIDUALL- 6) = =4,489137234698=03 |

RESIDUALCL 12] = =4,15681161849@=03
8 RESIDUALL 13) = 5,903068449808=04

RESIDUALL 9) = 2.421374252128=03 |

RESIDUALL 15) = 5,158003969800=03
g } RESIDUALL 7) = 2.462456009668=03

TERMINATION |

L NUMBER OF EXCHANGES MADE WAS 2
- NUMBER OF SOLUTION REFINEMENTSWAS 1
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b

L TIME IN SECONDS = 3,10

a SOLUTION VECTOR! |
X{ 0) = 6,278799205100+03

CE XC 1) = =4,096123619950405 | |
Xt 2) = 6,677330762800+06 |

| X{ 3) = =4,647067643820407 |
LC X{ 4) = 1,675654053500+08 |

X{ 5]= =3,383552805676+08

; Xt 6) = 3,859582543690+08 SE
oN XC 7) = =2,322924028066+08 | |
~ Xt 8) = 5,732587922400+07 |

| : | | |
— |

- -

L | | |

|
-

_
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. B

REFERENCE SETS |
~— C 2 14 | 5 16 3 8 4 11

| RESIDUALS: Co.
- RL 0) = 5,1406816671468=03

RE 1) = =5,436941064096=03 |
RL 2) = 5,180061174486=03

u RE 3) = =5,406933076996=03 | |
RL 4) = 5,2037205247268~03
RL 5) =z =~5,38778342253@=03 | | |

ig RL 6) = =4,489137234690=03
| RL 7) = 2.462456009668=03 |

| RL 8] = 5,230890727308=03

1 - RL 9) = 2,421374252126=03RL 10] = =2,67611798788@=03
"RC 11) = =5,357182752656=03 |

| RIL 12) = =4,15681161849@8=03 -| | RC 13) = 5,.,903068440800=04
RL 14] = 5,25141799559@=03 | |

RL 15) = 5,158003969806=03 |

i RC 16) = =5,344336148220=03 |

i 61 |


