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ABSTRACT

Let an entire function F(z) of finite
genus have infinitely many zeros which are
all positive, and take real values for real
z . Then it is shown how to give two-sided
bounds for all the zeros of F in terms of
the coefficients of the power series of F,
and of coefficients obtained by Graeffe's
algorithm applied to F . A simple numerical

illustration is given for a Bessel function.
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Graeffe's Method for Eigenvalues

G. Pélya

In several problems of mathematical physics the eigenvalues are
positive and they are the zeros of an entire function of finite genus,
It will be shown in what follows that in such a case a slight modification
of the Graeffe process is ideally efficient: For any eigenvalue, it
yields both a lower and an upper bound at each step, both bounds are
improved by the next step, and these bounds converge to the desired
eigenvalue with the rapidity well-known in the case of polynomials.

The remarks underlying this result are actually very simple, I
develop them first in their simplest form in Section 1 and postpone
the statement of the full result to Section 3, A simple numerical
example, for the inclusion of which I am obliged to Professor George

Forsythe, is given in Section L,

1. Sums of Like Powers,

Let 71, 72, 75,... be a finite or infinite sequence of increasingly

ordered positive numbers, We set 71 = 7 so that

0<7y=171¢< 75 < 12 < eos . (1.1)

We assume that there are at least two different terms in the sequence,

that is, that there exists an £ such that 7 < K Thanks to this
assumption we avoid those (rather uninteresting) cases in which our

inequalities degenerate into equations,
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We define

-n
Sn =7 7k (1.2)

for n=1, 2, 3, . . . . the sum is extended over the whole sequence
and is supposed to be convergent for n = 1 (and therefore also for

n>1) if the sequence of the 7, is infinite,

Obviously
1 < s, (1.3)
- So, = T 7£n 7;n <9 S, (1.4)
By a well-known inequality
()2 < &2/ (1.5)

see 2, p.28, Theorem 19. (Underlined numbers like 2 refer to the
bibliography at the end of this paper.)

By Holder's inequality (see 2, p. 22, Theorem 11)

_ -ny2/3 ( -bny1/3_ 2/3 1/3
Sen _Z (7wk ) (71 ) < S n S'4n
and so
5, l/2n s l/n
E—E < -S—n— (l.6>
hn 2n .

From (1.3), (1.4), (1.5), and (1.6) we conclude that

1/n 1/2n . 1/2n . 1/n
<l_> < (.l_> <7< (—gﬁl-) < —9—> (1.7)
n Son Shin Son
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1/2 1/4 . .
L[] <L) <ii<o<an<l2] <[2] <2 @8
Sl S2 Sll- 88 SLL o)

It is obvious from (1.2) that

l/n s l/n
lim (=] = lim (=) =7 . (1.9)
s s
n — o n n-—ow 2n

Let us summarize: If we are given the quantities S15 Spy Sy Sgy eee
and we wish to compute 7 , we form, at the m-th step, the interval

whose end points are

1/n s 1/n
(j;> . with n = Zm-l

S
n

This interval contains 7 in its interior, it contains also the next
interval formed at the (m+l)-st step, and its end points converge

1)
to 7 as m tends to « .

2. On entire functions of finite genus.

Let F(z) denote an entire function of genus p subject to the
following restrictions:
(I) F(z) has infinitely many zeros which are all positive.
(11 F(z) takes real values for real z .
(ITI) F(0) =1.

Such a function is of the form

1) The symbols Sn’ 7, 7k are used in the same meaning in 3, p. 199-201,
but the process of computation given there is different from the
process offered here, and converges more slowly,

2) See e.g. 1, especially p.18-23.
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F(z) = X2 ] L-Zemp &+ S5+, ..+ 2 (2.1)
k k eof poP
k=1 k k
= h _ h
= E (-1) 8,z
h=0
where exp(u) stands for éj,
0<o <o, <0< ..., (2.2)
LA Sy S
al ae % o0 o
is convergent, Q(z) is a polynomial with real coefficients of degree
<p, and Q(0) = 0 . Finally, ao,al) ag,..a are real, and ao =1-.

We consider the coefficients a, as given, the genus p as

known, and we want to compute the zeros ak . For this purpose we

consider the positive integer n , we define

egﬂl/n = , (2.4)
and we put
2 1 2 h h
£(z) floz) £(07z) oo £@™72) = ) (-1)" a8 . 2" . (2.5)
= n,h
h=0
The coefficients an n can be computed in terms of the coefficients ah
)

(are polynomials in ay, ). This computation is most convenient in the
well-known practical case when n 1is a power of 2 . Yet, for the
moment, we need not restrict the integer n to any particular form.

Provided that

n>p (2.6)



we have the simple expression

o]

n
- £(z) floz) ... 2 tz) = [ a- én— ) (2.7)
k=1 X
L/

By comparing (2.5) and (2.7) we obtain finally that, for h > 1,

1
nn =) G o ... 0 (2.8)
1

2 h
where the sum is extended over all combinations of the subscripts

il’ ig”"ih for which

- i <i. <i,<,..<1i . (2,9)

In words, & 1 is the h-th elementary symmetric function of the
)

(-n)-th powers of the zeros we want to compute.

3. Computation of the zeros.

Let us now connect the considerations of the two foregoing sections,

We form the products &. &, ... C, according to (2.9), and we call
1ote h
them, increasingly ordered, V19705 739 4 oo e Then

a becomes s_,
n,h n

a becomes 71 = 7;

l a2 wrrw ah

see (2.8) and (2,2), respectively., Hence (1.7) yields

1/n 1/2n 1/2n 1/n
1 1 8o ,h ®n,h
2 < 5 < ozl oz2 ah < | ——2= < | ==
n,h 2n,h ®4n,h %on,h
(3.1)

c— c— -seeerooo0o0cco o e reermmmrT
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provided that n > p , see (2.6). Thus, setting n = 2m—l , we have a

scheme to compute al a S ah » and a scheme to compute ah follows

immediately. In fact, (3.1) yields

l/n 1

ah > - a. o Q ¢
%1,k 172 0 Yy

Then (3.1) yields also an upper bound for dl a2°'° ah 1 and so a
lower bound for ah in terms of the ak . An upper bound for ah of

the same nature is found similarly, and these bounds come closer to ah
when we pass from n to 2n.

The reader may convince himself that the foregoing applies
"essentially" also to the case of polynomials although, strictly speaking,
this case was excluded from our reasoning by the (otherwise convenient)
assumption that the series (2.3) is infinite,

The essential point in the foregoing is to observe the particular
advantages the Graeffe process offers when it is applied to the particular
class of entire functions here considered. Let me add that the zeros of
a function of this not uninteresting class can be computed by still
other techniques, Thus, in Section 1 we considered only those s, as
given for which n is a power of 2 . If we consider s, as given for

all n (or for all n from a certain one onward) we may base our

computations instead of on (1.7) on the inequalities

<y< < ; (3.2)
Sn Sh+1 Spe2 Spl

(l )l/n [ \L/(n+1) S 41 s,

see 3. Moreover, the Hankel determinants
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S S L] oo S
n+l n+2 n+h
Sn+h—1 sn+h coe Sn+2h—2

considered by Hadamard can be used for computing the first h different

zeros, see L.

4.  Example,
To try out the technique considered numerically, we use the Bessel

function
F(z) = g (2/z) ,

also used in 3. Its smallest zero is 7 =1.4L4576. We use precisely

the same number of terms in the power series for F(z) as in 3:

22 Z3 le.
F(Z)’—‘J_—Z'*'-I:~—5 +-5'7-6'-...
Then
22 ZLl.
F(z)F(-2z) = 1 - = + 53 - oeo
and
F(z)F(iz)F (-2)F (-iz) = 1 - -% I
Hence
11



Then
1 = 1 f_];L]; = 2 .
%1,1 %21
1 12 %1 /2 o /2
- =/e ke ;o (22) = (&) L1470
2,1 ' b1 °
2 1.44531 .

ah,l 11

1/4 1/4
(1 - &)

Thus, using more decimals, we get the bounds

1< 1.414213 < 1.445313 < 7 < 1.477098 < 2 .

1/2 .

For the first zero 27 = 2.404826 of JO , we get the corresponding

bounds

2 < 2.37841 < 2.408424 < 2042 < 2.430719 < 2.82843 .

Thus our best bounds
2.400424 < 272 < 2430719

may be compared with the corresponding bounds
2.1006 < 272 < 24121

from 3. We see that our present lower bound is much better, while
the upper bound is much worse. (The upper bound in 3 results from

7 < 85/Sh = 16/11 -- but here we have avoided using 85 .)
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