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[ Let an entire function F(z) of finite
genus have infinitely many zeros which are

y- all positive, and take real values for real
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the coefficients of the power series of FT,
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illustration 1s given for a Bessel function.
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|
Graeffe's Method for Eigenvalues

|
G. Polya

In several problems of mathematical physics the eigenvalues are

L positive and they are the zeros of an entire function of finite genus,
It will be shown in what follows that in such a case a slight modification

of the Graeffe process 1s ideally efficient: For any eigenvalue, it

| - ylelds both a lower and an upper bound at each step, both bounds are
improved by the next step, and these bounds converge to the desired

L eigenvalue with the rapidity well-known 1n the case of polynomials.

{ The remarks underlying this result are actually very simple, I
develop them first in their simplest form in Section 1 and postpone

L the statement of the full result to Section 3.A simple numerical
example, for the inclusion of which I am obliged to Professor George

L Forsythe, is given in Section kL,

[ 1, Sums of Like Powers,
Let 719 oy Tze be a finite or infinite sequence of increasingly

L ordered positive numbers, We set 71 =! so that
L O<7=7127,S7,5 «oo : (1.1)

[ We assume that there are at least two different terms 1n the sequence,
that is, that there exists an £ such that 7 < 7g Thanks to this

L assumption we avoid those (rather uninteresting) cases in which our

[ inequalities degenerate into equations,

L

L



We define

i .
S,= p¥ en (1.2)

| for n=1, 2, 3, . . . . the sum 1s extended over the whole sequence
I and 1s supposed to be convergent for n = 1 (and therefore also for

n>1) if the sequence of the 7, is infinite,

L Obviously
-n

I 1TH < os, (1.3)

L _ -n _-n -n- Sop =z 4» In < vy 2, ° (1.4)

[ By a well-known inequality

1/2n 1/n .
I (s,,)7 F< 5/7 (1.5)

L see 2, p.28, Theorem19, (Underlined numbers like 2 refer to the
bibliography at the end of this paper.)

L By Holder's inequality (see 2,p. 22, Theorem 11)
-n\2/3 ,_-kn\1/3_ 2/3 1/3= < \I so, = (7 )77 (7) ss,

L and so
| « 1/2n o 1/n

L 4n 2n .

[ From (1.3), (1.4), (1.5), and (1.6) we conclude that
1/n 1/2n < 1/2n < 1/n

I L) < =) <7 < =) “(=) (1.7)n 2n hn on

L
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and so

| 1/2 1/k EVR VI 1

Lc 2 < L. CT eee KY <,.ee < kb < = <3 : (1.8)
L 51) \%2 Sy "8 4 2

L It 1s obvious from (1.2) that
1/n . 1/n

t lim =) = lim =) = 7 . (1.9)S S
n — n n — © 2n

L Let us summarize: If we are given the quantities S45 S53 Sj,» Sg 000
L and we wish to compute 7 , we form, at the m-th step, the interval

whose end points are
1/n 1/n

| 1 n m-1.
— , — with n = 2
S S

In 2n

L This interval contains 7 in 1ts interior, 1t contains also the next
interval formed at the (m+1)-st step, and its end points converge

1)
to 7 as m tends to «

2. On entire functions of finite genus.

L | Let F(z) denote an entire function of genus p subject to the
| following restrictions:

L (I) F(z) has infinitely many zeros which are all positive.

L (II F(z) takes real values for real z .
(III) F(0) = 1.

Co 2)
Such a function 1s of the form

[ 1) The symbols Ss 7, 7, are usedin the same meaningin 3, p. 199-201,
L but the process of computation given there 1s different from the

process offered here, and converges more slowly,

L 2) See Ceo 1, especially p.18-23,
>
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CEC| [pyA Sp (2.1)[ k k ro po?k=1 k k

[ vO hh ooS (-1) az
h=0

L where exp(u) stands for e ,
t <O, <a <0 oa 00<@ £0,206 < ’ (2.2)

L -p~-1 -p-1 -p-10 + + + 00 o

| 1 > TT %

L 1s convergent, Q(z) 1s a polynomial with real coefficients of degree
L <p, and Q(0) = 0 . Finally, a; aq ONE .a are real, and 24 = 1

We consider the coefficients a, as given, the genus p as

1 known, and we want to compute the zeros on . For this purpose we

[ consider the positive integer n , we define

L SEE (2.4)
and we put

{ 2 n-1 = h hf(z) floz) £072) oo. £02) =) (1) a, 2" | (2.5)
h=0 oh

L The coefficients a y can be computed in terms of the coefficients ayJ

[ (are polynomials 1n ay )e This computation is most convenient in the
well-known practical case when n 1s a power of 2 . Yet, for the

[ moment, we need not restrict the integer n to any particular form.

| Provided that
n> p (2.6)

ly



we have the simple expression

co

L n-1 2"
£(2) fez)... 26) = [[ 1-2) (2.7)

[ k=1 k

1 By comparing (2.5) and (2.7) we obtain finally that, for h > 1,
n

1

t 1 te n

[ where the sum 1s extended over all combinations of the subscripts
Lys Ios eee 1p for which

- i, < 1, < 1 < cee an (2,9)

i In words, a 4 1s the h-th elementary symmetric function of the
b

I (-n)-th powers of the zeros we want to compute.
Se Computation of the zeros.

L Let us now connect the considerations of the two foregoing sections.
We form the products C&. &, ... QC, according to (2.9), and we call

[ 1 to 1
them, increasingly ordered, 719705 739 + a . Then

en, h becomes S.9

L a, Amin % becomes 7, = 7;
4 see (2.8) and (2.2), respectively., Hence (1.7) yields

1 1/n 1/2n 1/2n 1/n1 1 “on,h “n,h
— < [7 <a) 0, el. 0 <= < |==

[ n,h | 2n,h *hn,h “on,h
(3.1)



TT ).

L
providedthat n > p , see (2.6). Thus, setting n = oll , we have a

| scheme to compute a, om <Q , and a scheme to compute % follows

[ immediately. In fact, (3.1) yields

oy 2 =)Tea[ n,h 1 2 °°° "h-1

t Then (3.1) ylelds also an upper bound for oy Oy e4 0 & 1 and so a
lower bound for Oy in terms of the ay . An upper bound for @, of

[ ) the same nature 1s found similarly, and these bounds come closer to a
when we pass from n to 2n.

[ The reader may convince himself that the foregoing applies

[ "essentially" also to the case of polynomials although, strictly speaking,
this case was excluded from our reasoning by the (otherwise convenient)

[ assumption that the series (2.3) 1s infinite,
The essential point 1n the foregoing 1s to observe the particular

) advantages the Graeffe process offers when 1t 1s applied to the particular

i class of entire functions here considered. TILet me add that the zeros of
a function of this not uninteresting class can be computed by still

[ other techniques, Thus, 1n Section 1 we considered only those 8, as
given for which n is a power of 2. If we consider s as given for

| all n (or for all n from a certain one onward) we may base our

| computations instead of on (1.7) on the inequalities
1l/n | 1/{n+l Ss

GEE me een n+l n+2 n+l

| see 3. Moreover, the Hankel determinants

)
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| s Sarl ** * Spinel
S S oe oe OO

| n+l n+2 n+h

t considered by Hadamard can be used for computing the first h different
zeros, see kb,

L L. Example,
[ To try out the technique considered numerically, we use the Bessel

function

J also used in 3. Its smallest zero is 7 =1.4U576. We use precisely
[ the same number of terms in the power series for F(z) as in 3:

25 ~ -
I = - + — + -— oo 0 oL (2) =1-2+7 - 32+ 57

[ Then
7 .

~- = - = + == = Ls.

[ F(z)F(-z) = 1 > 5%
and

L F(z)F(iz)F (-2)F(-iz) = 1 Bate,
1 Hence

1,1 2,1 CT 2 2 fh, T LIB
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Then

a

1,1 2,1

1 2 2 1 2 ol, 1/2
— =J2 = 1.41421 PY = (5) = 1.47710 ;

| 2,1 b,1 ’
- L/h 1/4

t — = (22) = 1.44531 .
h,1

L Thus, using more decimals, we get the bounds

| 1 < 1.414213 < 1.445313 < 7 < 1.477098 < 2

1/2 .
For the first zero 27 = 2.404826 of J , we get the corresponding

I bounds
1/2

2 < 2.37841 < 2.404424 < 2y < 2.430719 < 2.82843

Thus our best bounds

L 2.404424 < oy? < 2.430719

| may be compared with the corresponding bounds

| 2.4006 < 27/2 < 2.4121

| from 3. We see that our present lower bound 1s much better, while
the upper bound 1s much worse. (The upper bound in J) results from

§ 7 < 55/5), = 16/11 -— but here we have avoided using Sz .)
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