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ABSTRACT

The method of successive linear interpolation has a
very satisfactory asymptotic rate of convergence but the
behavior in the early steps may lead to divergence. The
reqular falsi has the advantage of being safe but its
asymptotic behavior is unsatisfactory. Two modified
algorithms are described here which overcome these weak-
nesses. Although neither is new, discussions of their
main features do not appear to be readily available in
the literature.
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1. Introduction. One of the simplest methods of locating a zero

of a function of one variable f(z) 1is by successive linear
interpolation. (In general we do not distinguish between inter-
polation and extrapolation except where the content makes it self-
evident that the two are being contrasted). In this method a
succession of approximations Z4 is determined by the relation
z2.4q = (2 f(2, ) -2, 7(2))) / (£(z,_})-£(2)) . (1.1)

If z, does indeed converge to a simple zero, which without any
essential loss of generality we may assume is at z = 0 , then the
ultimate asymptotic behavior is easy to analyse.

A very elementary analysis will suffice for our purposes.
(For a detailed study see A. Ostrowski [ 1]). We assume that
f(z) is of the form Az + Bz2 t+... 1in the neighborhood of z = 0
and accordingly

2 2 2 '
Zr+l= [zr(AZ +Bz +...)-zr 1(Azr+Bzr+...)]/[(A.zr_l+Bzr +...)

rl rl -1
2 B
- + ) ~ re
(Azr Bz +. )] 5 PP 1 @
Hence ultimately
B B _\ (B :
A Zr4l T (A Zr) (K Zr-l) (1.3)

and writing y = log(% Zr) we have

1
giving v, = Phi + Q%g where xlﬁ? = (1 + 52)/2 (1.5)

Accordingly the asymptotic behavior of Z, obeys the relation



fr=

A
~kz/l,>\.

zr+l r 1

1.62 . (1.6)

In this analysis f(z) could, of course, be a complex function
of a complex variable but we shall be interested only in real
zeros of real functions.

In spite of the asymptotic behavior of the convergents, the
above process is not completely satisfactory in practice. Suppose
we start from two values z; and z, such that f(zl)f(ze) <0,
i.e. f(zl) and f(zg) are of opposite signs. Then we would

like to have a method which converges to a zero of f(z) lying

between 2z, and z

1 5 That this may not happen is illustrated

in Figure 1 in which it is assumed f(Z) 3 0 as 2z — + o .

Big.

It is clear that from Zu onwards the convergents lie outside

the interval z., z, and diverge to + o
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Convergence can be restored by ensuring that no extrapolations

are employed. At each stage true interpolation is performed

between the last interpolation point and the most recent previous
point at which f(z) has the opposite sign. This gives the
points mﬁ,ys,.. . in Figure 1. We now have convergence to the
root Dbetween zq and 25 but the convergence rate is merely

linear. In fact, we have ultimately

Yppp ~ ¥y (£(z)) - Az)/2(2)) = wy, (1.7)
and since A and z, are negative and f(zl)- Rz, is positive
O<p<1l (1.8)

However, if f(zl) is large compared with ‘Azll , then u is
close to 1 and convergence is slow. It may well be much slower
than bisection and the latter is simpler and is just as 'safe'.
This modified interpolation process is usually known as the

"regula falsi".

We now describe two algorithms in which successive interpolation

is used in such a way as to give superlinear convergence without
sacrificing safety.

2. Algorithm 1

In Algorithm 1 [ 2] the 'regula falsi' is modified so as to
avoid its most obvious weakness, namely, that ultimately one of
the interpolation points remains fixed while the function value
at the other one steadily diminishes. On the other hand it retains
its main attraction, that of interpolating between function values

of opposite signs. The weakness of the regula falsi may be

I
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described in the following simple terms. Ultimately the function

value at one of the interpolation points is very large compared

with that at the other.

This last comment provides the clue. TIf f(z) and f(zr l)
have opposite signs then there is certainly a zero in the

interval (zr,z ) . If we perform linear interpolation between

r-1

weighted function values krf(zr) and k_ lf(zr l) with

s kr4.> 0 then we still obtain an intermediate point. In

the method of bisection the centre point is taken, so that the

k
r

weighting factors are effectively k =|f(zr_l)| R |f(zr)|.
It happens that there is a much better strategy for choosing the
weighting factors than that employed in bisection or the regula
falsi. It may be described as follows.

At each stage interpolation is performed between two points

z, and z_ . such that f(zr)f(zr_l) < 0 and z_ is the last

point to be determined. If is being used for the sth

z
r-1
successive time then we choose as our weighting factors

k=1 (s=1) , k=2, where p = (s-1)(s-2) (s > 1)

r r
k. ='1 (2.1)
The weighted interpolation point is taken to be 241 7 and
Z., (new) is taken to be zr(old) or z_  , , the choice being made
so that f(zr+l) and f(zr(new)) have opposite signs.

For simplicity of notation we shall take the zero between

zl and Z, to be at z = 0 . We assume that f(z) can be



r—

r- r— r— 1

r

-

r—

- Hence f(z

. 2
represented in the form Az+Bz +... in the neighborhood of
z = 0 and there is no essential loss of generality in assuming
A>0, B>0 . We now show that a uniform pattern of behavior

ultimately emerges. Let us assume that z., <0 andzr+l >0

are being used for the first time as interpolation points and that
both are small. The next three steps are then as follows. (See
Figure 2).

STEP 1. Z 4o

is determined by a true linear interpolation and
hence from (1.2).

B

Zra2 T A Pr+l Pr (2.2)

z is negative and f(zr+2) is negative. The next interpolation

r+2

is therefore between zr+l and Zygp .

STEP 2. Again the weighting factors are unity, we have a true

linear interpolation and (1.2) gives

2
B B
r+3 A r+2 ‘re1 T A (2.3)
Again Zr+5 and f(zr+5) are negative and hence the next
interpolation 1is between Zr+5 and Zo41
STEP 3. Z41 is now being used for the third time in succession.

r+5) is used with a weight factor of 2. The weighted

interpolation gives

ZI“HJ- = [Zr+5f(zr+l) - Zr+12f(zr+5)]/[f(zr+l) - 2f(zr+5)]

2
_3 2 2 _ B 2
= 32 22 (Rey o ¥Bz b )72z (a2 2 Zyyy e )
2
2 B 2
Az,q ¥ Bzr+l_2(AK2 Zrzr+l+"')
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= -22 z5 z = i§2 22 z = -2 (2.4)
A “r+l°r A” “r+l°r r+3 . )
Az
r

We see that z ) is now positive, (and hence f(zr+h))’ so that

the next interpolation is between Zotl and =z and the

r+3
weighting factors are unity. Notice that Z 4l and Zr+3 are

equal and opposite in value at this stage, neglecting higher order

terms. The next three steps are similar and

2 2
_B 2 - _ B 5
Zps6 = AC Zraly Zre3 A Zr+3 (2.5)
2 2
. _B 2 - _5B 3
o A2 Zytly Zr+5 - A2 Zr+5 (2.6)

This shows that from now on we always have groups of three steps

at a time such that

2
z = -z - B 2
r+3k © TCr+3k+l T A° Zr+%k-2 Zr+zk-3 =
B 3
A~ “r+3k-3 (2.7)
1

and the order of convergence is 33 = l.4th . At the end of each

group of three steps is a much better approx-

(23 2z /2

imation than either =z

r+3k ot

Prazesl .

The modified algorithm therefore ultimately has superlinear
convergence though of a lower order than successive linear inter-
polation. The provision of a stopping criterion is also more sat-
isfactory with the modified procedure than with successive linear
interpolation or the regular falsi. With either of the latter one

is virtually forced to discriminate on the difference between
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successive interpolates. That this is unsatisfactory becomes

obvious if we consider the function
5 . 1
f(z) = z(z-1)" , with z) =~ 15 , 2, = 0.99 (2.8)
We have
_1¢3\5_ - 0.01)° =
f(zl) _2,(2) =3.8 , £(z,) = 0.99 x ( )

10

0.99 x 10° (2.9)
Here 23 is so close to Z, that on a ten-decimal digit
computer, for example, the computed z_ =2z, . Even if we use

3 2

an adequate precision a vast number of steps are needed before the
limit is approached.

With Algorithm 1 we work with the distance between the two
ordinates used for interpolation (f(z) always has opposite signs
at these points) and the distance between these points tends to
ZEro.

The use of progressively increasing weighting factors is of
no importance as far as the asymptotic behavior is concerned but
may play a vital role initially. In the above example zq will
be used repeatedly because f(zl) is so large compared with f(zg).
When it 1is being used for the sth successive time interpolation is

1 (s-1) (s-2)

performed between 22 f(zs+l) and f(zl) and this

enables us to get away from 2y comparatively rapidly.

3. Algorithm 2.

Algorithm 1 [ 2] avoids interpolation between points giving
function values of the same sign but in doing this it sacrifices

some of the speed ultimately attainable. 1In Algorithm 2 [ 3 ] the
8
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asymptotic behavior is always that of successive linear inter-
polation but it avoids both interpolation and extrapolation when

they give unsatisfactory results.
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At the beginning of the rth step three points 8. br and c,
are involved. The points b and ¢, are such that f(br) and
f(cr) are of opposite signs and |f(br)| < |f(°r)| . Interpolation
is always performed between a. and br though the function may

well have the same signs and hence give an extrapolated result.

Initially two points bl and ¢, are given such that
f(bl)f(cl) < 0 and these points are named so that |f(bl)] <
\f(cl)l 5y we also take cl =ay - The rth step is as follows
apart from ‘@ minor addition which is described later.

(1) Determine a point ir by interpolating between a, and br
(ii) Determine a point m, the mid-point of br and S

We 'accept' ir if it is between br and m otherwise we regard

r r— r- r— r— r—

the interpolated point as unreliable and 'accept' m, instead.

This is a 'reasonable' decision because f(br)f(cr) < 0 and

r—

|f(br)| < |f(cr)| . Hence the zero is between b and ¢, and
L if f(x) 1is reasonably behaved from the point of view of
} interpolation we would expect the zero to be nearer br than to
- c. - We then take as provisional new values
L a4 = br , br+l = ir or mr (whichever is 'accepted'),
( r+1 = °r (3.1)
L If b, end c . satisfy the conditions \f(br+l)| < |f(cr+l)|

r—
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and f(br+l)f(cr+l) < 0 we can proceed immediately to the next
step. Otherwise the provisional values are adjusted.

First if sign f(cr+l) = sign f(br+l) then we take instead
c.. = b, and this ensures that sign f(cr+l) sign f(br+l) <0

because of the conditions established before the rth step. We

now have to make sure that |f(br+l)| < lf(cr+l) | (with current
values of br+l and cr+l of course). If this is not so, we
can 1interchange br+l and Crii and a4 1S taken to be the
same as the new Ctl The right conditions now hold for the

beginning of step (r+l).

The essential device here is that whenever the interpolated
or extrapolated value violates a simple 'common sense' criterion
the method of bisection is used and the latter is always safe.
Ultimately if £(z) is well behaved near the zero interpolation
or extrapolation is always used at every step.

The stopping criterion is based on the distance between br
and Cr and these points straddle a zero at every step. The use
of this criterion necessitates an additional feature which is
of fundamental importance. -Suppose we have reached the situation
illustrated in Figure 3. It is clear that from this point
onward the bi approach the zero monotonically from above, the
interpolated points will always be accepted, the provisional
points will always satisfy the required criteria and c; = ¢, for

all subsequent stages. Hence |bi—ci| will not tend to zero!

10
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This is easily overcome as follows. Suppose the stopping criterion
is |b,-c.| < tol . Then if |i -b_| < tol the i_is replaced

i 71 s s s
by iS+(cs-bs)tol. This ensures that when the process has converged

a bS+l is obtained which is beyond the zero. As soon as this

happens f(cs+l) = f(cr) is no longer of opposite sign from

f(bs+l) and c is switched in the normal way, immediately

s+l

giving a bs+l and c straddling the root and with a separation

s+l
less than the tolerance.

This simple stratagem also avoids the difficulty associated

with the example (2.8). Here b2 and.a2 may well be equal to

. working accuracy but the modification by tol deals with this

problem. Incidentally that example is dealt with more efficiently
by Algorithm 2 than Algorithm 1 in the initial stages as is
illustrated in Figure 4. The interpolation between b2 and 2,

is rejected and b, becomes the mid-point of b2c2 . The next

3

interpolation is also rejected in favor of bisection and at this

stage the neighborhood of the zero has been reached.

11
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4. General Comments. Of the two algorithms the second would appear

to be the superior in general, though there may be situations in
which the first would be superior. It is possible' that modifications
of the basic idea used in Algorithm 1 might be even more successful.
Both algorithms have been used extensively at N.P.L. particularly

in connection with determining the zeros of Aﬂ4£n where An

and Bn are real band-symmetric matrices of order n and %1 is
positive definite. Here one has the further advantage that the
determinants of Ar-hBr (n =1,..., n) form a Sturm sequence

and this can be used to locate roots initially. One can work with
the zeros of det(An-th) directly or with the zeros of

det(An—an)/det(An_l—KB The latter function has the advantage

n-l)

of possessing only simple zeros but has the disadvantages that when

A \B possesses some eigenvalues which are very close to

n-1 n-1
those of An-XnB these are concealed by the division and it also
has poles. Hence the Sturm sequence location may have to be used

very extensively with this function.
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