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ABSTRACT

L If A =D +E where D 1s the matrix of diagonal
elements of A , then when A has some multiple or very

g close eigenvalues E has certain characteristic properties.These properties are considered both for hermitian and non-

hermitianA . The properties are important 1n connexion

| with several algorithms for diagonalizing matrices byLo similarity transformations.

—
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5 1. Introduction:

In a number of algorithms for finding eigenvalues of a matrix

— Ay, the latter 1s reduced by an iterative sequence of similarity
transformations to almost diagonal form. When Al has a multiple

eigenvalue this 1s true of all the transforms (assuming exact com-

| - putation). We are interested then in the nature of almost diagonal

: matrices with multiple eigenvalues. It turns out that such matrices

— have special characteristics which are of considerable interest as

| regards the convergence of iterative procedures for reducing a

- matrix to diagonal form.
1 2. TheHermitian Case:

|. We first consider hermitian matrices with multiple eigenvalues.

~- Let A be hermitian with eigenvalues STEERER UNE PUMP PRE EFTN
| the root MN being precisely of multiplicity r. (A may have other

BN multiple eigenvalues but this will not affect the argument). Let

B © be defined by the relation

35 = min InN | (2.1)
¥ i = r41 7
= and let

A=D+E (2.2)

where D 1s the diagonal of A . Suppose we have

5 El = € <0 (where F denoteithe Frobenius
norm (z2]e, | ) (2.3)

so that when € is small A may be regarded as almost diagonal.
—

By the Wielandt-Hoffman theorem the Ns and a,. may be ordered

BN
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1 so that

2 c2
L(hpi-asy) < (2.4)

- Let us permute the rows and columns of A similarly so that

| the aq associated with the MN eigenvalues are the first r.
Without loss of generality we can assume this was true originally

i and with appropriate numbering of the remaining n-r elgenvalues

© inequality (2) becomes
:
- n > 2

A. - SH 2,

2 i a.) < (2.5)
] We write
= F G

A= (2.6)
[

{  :
where F 1s an rxr matrix.

i / /

i If the eigenvalues of H are Nagy ely then since the
off-diagonal elements of H are a subset of those of E , we have

o by the Wielandt-Hoffman theorem [4] with appropriate numbering

| of the NG
n

2 2Le 5, (N.-a,.)" < € (2.7)
i Tiif —-

r+l1

Hence

IN A | = IN.-a, +a, .-\, |
1d i 7ii Tii oi

4

- < € +E = 2€< 28 (2.8)

and

N IN on]= Ina aN on
, i 1 i 1 i 1

/

L LTE EE FUE

> 36 - 26

— = 8 (2.9)
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The matrix H-A 1 1s therefore non-singular, i.e. it 1s of rank

n-r . Now since A has N as a r-fold root it, too, is of

| rank n-r . We shall show that this means that F 1s especially

a related to G and H . We partition A-NT in the form

: FMT G
A-N.TI = (2.10)

= 1 at H-A. I
1

L If we premultiply A-M 1 by

L I (Hn I)
| (2.11)

| 0 I
its rank 1s unaltered and hence the derived matrix

| |
| -1.T
- F-N, I-G(H-M I) G 6 |

(2.12)

Gt H-N, I
| 1
i

is also of rank n-r . Since H-M 1 is already of rank nN-r
|

- this can be true only if

Fh, I-G(H-A T) TG SN: (2.13)
. -1.T

i.e. F = Nn THG(H-A I) G- = MIM (say) (2.14)
L Now the elements of G are a subset of those of E and hence

T

Gly = lll < € (2.15)
- while

. - -1 _H |

| (H-M I) lr diag (XK. -2) LR (2.16)
where R 1s unitary. Hence from the unitary invariance of the

Frobenius norm and from (2.9) and (2.15)

l
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; — / -1 T
Pilly < fell max -2) 7 6g

| 2
| < €7/8 (2.17)

| ~— —

We see then that the diagonal elements of F differ from M

 — by quantities bounded by €/6 and 1ts off-diagonal elements
2

are bounded by €7/8 .
ne

When € < < § this means that the largest off-diagonal

| o element ofA is never foundin F , the matrix with the diagonal

| elements "associated" with the multiple root MN , This has

[| important consequences 1n connection with the classical Jacobi

method [5,9, 14] for diagonalizing hermitian matrices. At

each stage 1n the reduction the largest off-diagonal element

8 - in the current matrix 1s annihilated but theorem shows that after
LL

a certain stage such an off-diagonal element 1s never 'associated'

|. with two elements tending to the same multiple root.

o This simple observation removes a difficulty in demonstrating

that the classical Jacobi method 1s always ultimately quadratically

convergent [6,9, 10, 14]. A similar remark applies to the serial

BN Jacobi method if a-threshold strategy is used [8].If at any
2

— stage the element which 1s annihilated is chosen to be one which

g 1s not small compared with the current norm of off-diagonal
 —

| elements then this ensures that from a certain stage

| the annihilated element will not be associated with two diagonal
 P_—

| elements tending to the same multiple root.
an

»
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5. Pathologically close roots:

In practice when a transformation 1s made on a matrix having

multiple roots, the transformed matrix merely has very close

L roots because of rounding errors. In discussing the convergence

of the Jacobi method the quantity min|h; <A | is of great
|
Me importance and the presence of very close roots would appear to

be serious. We now show that this is not so.

-

Suppose the roots of A are

§ SSNE PE (3.1)

| where
— Ao= MEE 1 =1,...T (3.2)

| and the <, are very small. The first r roots are therefore
.

pathologically close. Define D andE as 1n (2.2), but 6

; by the relation
> n

36 = min IAA] (3.3)
| i=r+1

and assume that

Bl, + @5) -e<s (5.4)
I. F i |

Now A may be expressed in the form

: H

L A=RD kK, (3.5)

a where D, = diag(r.) and Dy can be separated into D, and|

|-—

D where
5

1 ;

L D, = aiag(MN, eee, MoN sees N) (3.6)
D; " diag(€,,€,, 5€,0,.. @ o> (3.7)

-
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- Hence

a A= R(D,#D,)R = RD, rE 4 Rr D, RIB + C (say) (3.8)
The matrix B has MN as an r-fold root and to apply the result

LC of the previous section we require only a bound for the
Frobenius norm of its off-diagonal elements. Since B = A-C

. such a bound 1s given by
1

3 Elly + ll, = Vell, + (2602 =e <6.
The Frobenius norm of the off-diagonal elements of B

1 'associated' with the multiple root is therefore bounded by
; €°/s and hence that of the corresponding elements of A is

bounded by c/s + (n€%)2 :
Suppose for example a matrix A has the roots

= 1-107%°, 1, 1410710, 2, 3,4

a. and

Ell, + 23 1071 < 107.
*~ The off-diagonal elements of A associated with the close

roots will then have a Frobenius norm bounded by

- 10710 + 03 15710

C and therefore they will-all be far smaller than the largest

off-diagonal element of A . Hence at such a stage in the

“ classical Jacobl method or the threshold serial Jacobi method

with a matrix having the root distribution above, the current

* rotation will not be in a plane associated with the close roots.

o In fact with the above example one sweep of the threshold

T
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“

serial Jacobi method will reduce the norm of off-diagonal

-5 ~-10
elements from 10 to 10 . Provided we do not wish to

“

reduce the norm below this level the presence of the close

. roots has no adverse influence. (In fact it 1s beneficial
since 1t ensures that the main weight in the off-diagonal

— positions 1s concentrated on fewer elements).

The above results were known to the author as early as

—

1963 and were used in[14,15] to establish the cubic convergence

. of the symmetric Q,R algorithm for a matrix having multiple

roots Unfortunately I failed to observe the obvious
}

“ consequences of the theorem in connection with Jacobi's

a method.
—

4. Non-hermitian matrices:

BB The above proofs may give the impression that the result

| above 1s associated specifically with Hermitian matrices. In

— fact a closely related result 1s true for any matrix having

an r-fold root corresponding to linear divisors, We restrict

ourselves to the case when the remaining eigenvalues are distinct

¥ though a slightly weaker result can be proved 1f some of them

are multiple eigenvalues.

Again let A have the roots RARE USEC EERE FTN

the first r corresponding to linear divisors. Let

— :
A=0D + E (D diagonal) (4.1)
n

mid [A oA | = 30 (4.2)
i=r+l J

IE] =€ < © (4.3)

8
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“ Then by Gerschgorin's theorem all eigenvalues of A lie in

; discs with centres a. and radii not greater than €. This

= implies that there must be at least one 8s 5 in each of the
L discs centred on the A and of radii € . Since these

discs are disjoint this means in particular that we can

- assoclate an 2 4 with each of the ne = r+l,...,n). If
| more than one 343 is associated with any such . we take
- the first one occuring on the diagonal. Now permute rows and

L columns of A similarly so that these n-r diagonal elements
are 1n the southeast corner, We can assume that A was in

C this form originally.

| As in the symmetric case AAT is of rank n-r and

= partitioning A-h, 1 in the form
_ FA I G

hE K Hon. I (hb)
| | 1

we have

LC FMT - G(H-AI)T'K = 6 (k.5)
_ provided H-M I 1s non-singular. Now

— H-M T= diag(ay;~M +L = D +L (say) (4.6)
where L 1s the matrix of off-diagonal elements of H.

“.

(These elements are a subset of those of E ). gipce

Lo

b

he 9

!
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L

= lags = lagAh-M |

| > Pyle
)-

>3%6 - € (i = r+l,...,n)

| > 28 (4.7)
 —-.

Dy 1s non-singular and

. H-M.I = D, [I + DL] . (4.8)
L A 4

Now

- -1 -1
Ip, "Ill, < lpg [Ell

L < mex la,2M 17 IH,
< €/as < 3 (4.9)

he and hence

-1 -1 -1

1 HEMI), < Ip, / (= lip 72)
<2
28/ 3

In

= 1 (4 .10)
d

L
Equation (4.5) therefore gives

F=MNI+G (HAN 1) 1k = MN. I+M (say)
— 1 1 . 1

where Ill,< lel, 1 (=>1) 7 ikl,

— < €°/ 5 (4 11)

This now shows that there was in fact only one ay assoclated
-

with each of the No (i= r+l1,...,n) and the remaining r diagonal

C elements are all in a disc of radius e*/s centred on No
Again off-diagonal elements 'associated' with the multiple eigen-

|—

—
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value are bounded by €/% and are therefore well below the
-

) level of the largest off-diagonal elements when € < <0

L The result 1s at first sight surprising since the

condition of the eigenvalue problem of A seems not to be

= involved. Indeed a result may be proved which 1s only marginally

L weaker even when A 1s defective (though not as far as N 1s
concerned). In this respect 1t 1s the hypothesis Ell, < €

i
“ which 1s deceptive. If B has an i1ll-conditioned eigenvalue

problem then in order to derive a similarity transformation

— -1
X BX = A such that A 1s almost diagonal with Ell less

L than a prescribed quantity we shall, in general, have to work
to higher precision if B 1s 1ll-conditioned than if it 1is

“ well-conditioned. In the hermitian case the hypothesis does

( not have this deceptive feature.

~ 5. Pathologically close roots in non-hermitian case:

The deceptive nature of the result becomes apparent as soon
he

as we consider the effect of very close roots, Assume now
f

L that A 1s non-defective and let X be a matrix having as

( its columns n independent eigenvectors of A . Then we have

L A =X aiag(h, x" (5.1)
: Using a similar notation to that in paragraph 3 we have 1n
-

the case of r very close roots

-1 -1lL A= XDX +X DX =B + C (5.2)
: where B now has an r—-fold root, In the hermitian case X
)

— is unitary and ell = lies , but now all we can say is

-

11
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L

L
| lel < fil timyl tH (5.3)
| and we see that the condition number K of X with respect to

| inversion 1s 1nevitably involved. It 1s clear that it 1s the
minimum value of I] |x| for all permissible X that 1s

| relevant [ 1]. It should be emphasized though, that the possession
| of a multiple root or of a set of very close roots does not imply

| that |x|] x) 1s necessarily large. Provided the close roots

| are well-conditioned the fact that the eigenvector problem is
ill-conditioned 1s irrelevant.

t 0. Iterative refinement of an eigensystem:
| The above results have important consequences 1n connection

L with procedures for the refinement of a computed eigensystem of

| a matrix [11l, 12, 143. In such procedures one starts with a
computed set of eigenvalues and eigenvectors Ms and Xx. :

L Let X be the matrix having columns Xx. and define R and
S by the relation

L AX - X diag(u,) = R (6.1)
¢ x ax - diag(p,) = xR = S . (6.2)
L If the system were exact both R and S would be null. In

practice neither R nor S can be computed exactly with the

given X because of rounding errors but with well-designed

| procedures 8 1s determined with a low relative error. Hence
we have

L XxTax — diag(n,) +S + (S-q) (6.3)
L

12
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L

L
and if the computed system is accurate § is small, and with

L good procedures for calculating R and xR a bound is
obtained for ||s-5|| which is small compared with ||S]| (note

L S is computed explicitly but a bound for the norm only is
determined for S-8 ). The matrix sum on the right of (6.3) 1s

| therefore an almost diagonal matrix which is exactly similar

. to A . Now when A has a multiple root corresponding to a
linear divisor our result shows that provided S is small

| (and hence S-S is very small), the off-diagonal elements of

1 S associated with the multiple roots will be far smaller than
the largest off-diagonal elements of S . When none of the

L roots of A 1s 1ll-conditioned we shall find typically that
if ISI = € then the bound for lls-s I. will be approximately

\ >be (with a t-digit mantissa binary computer), The diagonal

1 elements of diag(u,) + § associated with the multiple rootswill differ by quantities of the order of e and the

L associated off-diagonal elements will be of order = . Hence
after suitable permutations of rows and columns the right hand

f

L side-of (6.3) will have the form

Diagonal + i¥ cq (8-8) (6.4L € N °F
| and the bound for 15-8 | will usually be of order at least as

L small as ce Premultiplication of the first r rows by k €
( and the first r columns by 1/k &€ then modifies the second
C

L
15
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matrix to the form

E k € :| (6.5)
B 1 N € P
— k

= and because of this Gerschgorin's theorem gives just as fine

Be bounds for multiple roots as for well-separated roots.

Forgetting rounding errors for the moment it 1s interesting
-

to consider what can be achieved with an approximate matrix X

of eigenvectors which can be expressed in the form

X =X (I +€ E) (6.6)

“ where Ell = 1 and X 1s a matrix of exact normalized eigen-
| vectors. We have
—-—

Tax = (1+€E)"Xx lax(I+€E)

9 = ( I-€B+€°E"- --) diag(h,)( T+€E)
= diag(h, )+EF+ terms in © etc. (6.7)

— A Fo hehe (6.8)

iN We see that the elements £5 is zero whenever No " A .
Hence the off-diagonal elements associated with multiple eigen-

- values are of order €“
Notice that when A has eigenvalues which, while not being

Re truly coincident, have separations which are appreciably smaller

y than € , (6.8) shows that the associated off-diagonal elements

= are again appreciably smaller than € and a simple application of
- Gerschgorin's theorem using diagonal similarity transformations

gives bounds for the relevant eigenvalues which are of the order

ha 14
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« of c“ or of the separations, whichever is the larger, The weakest

bounds arise when the separations are themselves of order € . The

- bounds are then of order € and cannot be improved merely by

. diagonal similarity transformations.
When the procedure for refining an eigensystem 1s used

L iteratively then provided the system 1s not too 1ill-conditioned the

. final eigensystem 1s "correct to working accuracy." Generally we
can assume that the final computed system of vectors satisfies a

3g relation of the form.
X = x+E where |f|_< n.27% [ky (6.8)

L Hence we have
] TUX = (hxTET)ax(Ti) (6.9)

~— = diag(h,)-XE diag(, ) + diag(h, )X E+...

3 Equation (6.9) shows the real limitation on the attainable accuracy
with computation ofa prescribed precision. The off-diagonal

L elements of X IX are certainly bounded by 2n Il x mex |x, |oo i

ignoring the quadratic and higher order terms in E. Writing

- 2n 277 [| Jo max |r, | = 8 (6.10)

. - the bounds attainable for the eigenvalues using Gerschgorin's
theorem and diagonal transformations can be expressed in the follow-

1 ing form. Let the eigenvalues be divided into three groups. The
first group consists of multiple eigenvalues; the second group

L consists of eigenvalues with a minimum separation which 1s less

| than B and the third group consists of the remainder. For an
eigenvalue in the first group having a minimum separation of °

¢

L

i



from all other eigenvalues the bound 1s of the order of 5°,
- For a member of the second group having operations of up to s

{

with its close neighbours and a minimum separation of order 8,

C from all others the bound is of the order of s+8°/8,, For a
member of the third group having a minimum separation from all

2

— other eigenvalues of S2 the bound 1s of the order of Bg [65

1 In general unless xx is quite large the bounds are all
appreciably better than 2 "max | | except when 6 is of the

L order of magnitude of PB .
This result has been amply confirmed in practise, multiple

- elgenvalues being found, in general, to the same high precision

as well-separated eigenvalues,

—

-

|.

|

f
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