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ABSTRACT

If A =D+ E where D is the matrix of diagonal
elements of A , then when A has some multiple or very
close eigenvalues E has certain characteristic properties.
These properties are considered both for hermitian and non-
hermitian A . The properties are important in connexion
with several algorithms for diagonalizing matrices by
similarity transformations.
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1. Introduction:

In a number of algorithms for finding eigenvalues of a matrix
Al,the latter is reduced by an iterative sequence of similarity
transformations to almost diagonal form. When Al has a multiple
eigenvalue this is true of all the transforms (assuming exact com-
putation). We are interested then in the nature of almost diagonal
matrices with multiple eigenvalues. It turns out that such matrices
have special characteristics which are of considerable interest as
regards the convergence of iterative procedures for reducing a
matrix to diagonal form.

2. The Hermitian Case:

We first consider hermitian matrices with multiple eigenvalues.
Let A be hermitian with eigenvalues xl’xl’“"klﬂﬂﬁi’Ar+E’”"hn

the root Kl being precisely of multiplicity r. (A may have other

multiple eigenvalues but this will not affect the argument). Let
% be defined by the relation
n
3% =.min \ki-kl| (2.1)
i =r+l

and let

A=D+E (2.2)
where D is the diagonal of A . Suppose we have

|Ellz = € < ® (where F denoteithe Frobenius
norm (ZzleiJJQ)z (2.3)

so that when € is small A may be regarded as almost diagonal.

By the Wielandt-Hoffman theorem the Ki and a;; may be ordered
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so that

2 2
Z(Kpi-aii) < (2.4)

IA

Let us permute the rows and columns of A similarly so that
the a.q associated with the Kl eigenvalues are the first r.
Without loss of generality we can assume this was true originally

and with appropriate numbering of the remaining n-r eigenvalues

inequality (2) becomes

n
) 2
ﬁ(xi-aii) <€ . (2.5)
We write
F G.] (2.6)
A = 2.6
o' u

where F is an rxr matrix.
If the eigenvalues of H are N;+l,“.,N; then since the
off-diagonal elements of H are a subset of those of E , we have

by the Wielandt-Hoffman theorem [4] with appropriate numbering

of the K{
1 n
2 2
Z ()\,’.-aii) _<_ € . (2'7)
r+l
Hence
NN = N -ayra N
. 1 1 1 11 11 1
< €+E =26 <28 (2.8)
and
/ /
|xi-xl| = |xi-xl+xi-xi|
7
Z ‘ki-)\.ﬂ - \Ki'%‘il
> 36 - 28
=68 (2.9)
3



The matrix H-KlI is therefore non-singular, i.e. it is of rank

% n-r . Now since A has xl as a r-fold root it, too, is of
= rank n-r . We shall show that this means that F is especially
i_ related to G and H . We partition A—KlI in the form
ANT = Tt € (2.10)
= * of HaAI
1
i_ If we premultiply A-KlI by

'L I -G(H-?xll)-l
(2.11)
i_ 6 I
its rank is unaltered and hence the derived matrix
§
! _ _ _ -1.T P
w F xlI G(H xlI) G
(2.12)
T
‘ G H—klI
i
is also of rank n-r . Since H-klI is already of rank n-r
}
e this can be true only if
-1.T
{ F-xlI-G(H-xlI) G =96 (2.13)
L
i.e. F = >\lI+G(H->\lI)'lGT = M I+M (say) (2.14)
L_ Now the elements of G are a subset of those of E and hence
T
HG“E = “G HE < € (2‘]‘5)
- while
: - -1 _H
; (#-0D)7 = R diag (-2)7H R (2.16)
—

where R is unitary. Hence from the unitary invariance of the

i Frobenius norm and from (2.9) and (2.15)
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el < llolly max X -2 )7 6Tl

< €8 (2.17)
We see then that the diagonal elements of F differ from kl
by quantities bounded by 62/6 and its off-diagonal elements
are bounded by €2/6 .

When € < < § this means that the largest off-diagonal
element of A is never found in F , the matrix with the diagonal
elements "associated" with the multiple root Kl , This has
important consequences in connection with the classical Jacobi
method [5,9, 14] for diagonalizing hermitian matrices. At
each stage in the reduction the largest off-diagonal element
in the current matrix is annihilated but theorem shows that after
a certain stage such an off-diagonal element is never 'associated'
with two elements tending to the same multiple root.

This simple observation removes a difficulty in demonstrating
that the classical Jacobi method is always ultimately quadratically
convergent [6,9, 10, 14]. A similar remark applies to the serial
Jacobi method if a-threshold strategy is used [8]. If at any
stage the element which is annihilated is chosen to be one which
is not small compared with the current norm of off-diagonal
elements then this ensures that from a certain stage

the annihilated element will not be associated with two diagonal

elements tending to the same multiple root.
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3. Pathologically close roots:

In practice when a transformation is made on a matrix having
multiple roots, the transformed matrix merely has very close
roots because of rounding errors. In discussing the convergence
of the Jacobi method the quantity minlki-kj\ is of great
importance and the presence of very close roots would appear to
be serious. We now show that this is not so.

Suppose the roots of A are

PV RETFL N I SRR (3.1)

where
Moo= M€ i=1,...r (3.2)

and the Ei are very small. The first r roots are therefore
pathologically close. Define D and E as in (2.2), but &

by the relation

n
36 = min |xi-x| (3.3)
i=r+l
and assume that
2 l
&l + (zei)2 =€<8 . (3.4)

Now A may be expressed in the form

where D, = diag(hi) and Dl can be separated into D, and
D, where
3
D2 = diag(}\’%o)'-')K’Kr_'_l)".,}\n) (5.6)
]:)3 = diag(El,€2,. . ~:€r;0)-~. 10> (3.7)
6



Hence

A= R(D2+D5)RH = R D, rRE 4 R D3 Rl-s+c (say) (3.8)
The matrix B has M as an r-fold root and to apply the result
of the previous section we require only a bound for the
Frobenius norm of its off-diagonal elements. Since B = A-C
such a bound is given by

Il + llcll, = gl + (D)2 = € <.
The Frobenius norm of the off-diagonal elements of B
'associated' with the multiple root is therefore bounded by
€2/6 and hence that of the corresponding elements of A is
bounded by €°/6 + (zei)% .
Suppose for example a matrix A has the roots

-10 10
)

1-10° 77, 1, 1+10° 2, 3,4

and

[Ellp + 23 10719 < 107 .
The off-diagonal elements of A associated with the close
roots will then have a Frobenius norm bounded by

10710 + o7 19710
and therefore they will-all be far smaller than the largest
off-diagonal element of A . Hence at such a stage in the
classical Jacobi method or the threshold serial Jacobi method
with a matrix having the root distribution above, the current

rotation will not be in a plane associated with the close roots.

In fact with the above example one sweep of the threshold
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serial Jacobi method will reduce the norm of off-diagonal
elements from 107 to 107° .  Provided we do not wish to
reduce the norm below this level the presence of the close
roots has no adverse influence. (In fact it is beneficial
since it ensures that the main weight in the off-diagonal

positions is concentrated on fewer elements).

The above results were known to the author as early as

1963 and were used in [14, 15] to establish the cubic convergence

of the symmetric Q,R algorithm for a matrix having multiple
roots Unfortunately I failed to observe the obvious
consequences of the theorem in connection with Jacobi's
method.

4. Non-hermitian matrices:

The above proofs may give the impression that the result
above is associated specifically with Hermitian matrices. In
fact a closely related result is true for any matrix having

an r-fold root corresponding to linear divisors, We restrict

ourselves to the case when the remaining eigenvalues are distinct

though a slightly weaker result can be proved if some of them
are multiple eigenvalues.
Again let A have the roots xl"”’Kl’kr+l’”"xn

the first r corresponding to linear divisors. Let

A=D + E (D diagonal) (4.1)
n
mid [N, N | = 3 (%.2)
RS
|| ,=€ < ® (4.3)

8
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. provided H-A

Then by Gerschgorin's theorem all eigenvalues of A lie in
discs with centres aii and radii not greater than €. This
implies that there must be at least one ajj in each of the
discs centred on the Ki and of radii € . Since these
discs are disjoint this means in particular that we can
associate an 845 with each of the xi(i = r+l,...,n). If
more than one ajj 1s associated with any such xi we take

the first one occuring on the diagonal. Now permute rows and
columns of A similarly so that these p-r diagonal elements
are in the southeast corner, We can assume that A was in
this form originally.

As in the symmetric case ArklI is of yank n-r and

partitioning A-h.I in the form

1
F-—?\.lI G
Ayt - X Hon, T ()
M
we have
NI - - T =
F N G(H >\lI) K =6 (k.5)

lI is non-singular. Now

—}\. = | -~ =
H-M T = diag(ay, xl)+L D

where L is the matrix of off-diagonal elements of H.

+L (say) (%.6)

(These elements are a subset of those of E ). Since
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lags b= Tagg |
> P\i-J\ll' \ aii—ki‘

>36 - € (i = r+l,...,n)

> 26
Dl is non-singular and
-1
H—hll =D, [T +D 1L] .
Now
-1 -1
oz, < 37, 1Tl
< max |agn |7 IR
mex |a..-
pIE RSO ®
< €/26< 2
and hence

DY < 7, /@ - )

< L
26 / 3

=1
§

Equation (4.5) therefore gives

F= AT+ G (HMI) 7K = AT (say)

1
where e, < lloll, 11 (8= 1) 7H| Nl

< €/

(4.7)

(4.8)

(&.9)

(4 .10)

(% .11)

This now shows that there was in fact only one %j' associated

with each of the Ki(i= r+l,...,n) and the remaining r diagonal

2.
elements are all in a disc of radius €°/8 centred on Al.

Again off-diagonal elements 'associated' with the multiple eigen-

10
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value are bounded by €7/% and are therefore well below the
level of the largest off-diagonal elements when € < <% .
The result is at first sight surprising since the

condition of the eigenvalue problem of A seems not to be

involved. Indeed a result may be proved which is only marginally
weaker even when A is defective (though not as far as kl is
concerned) . In this respect it is the hypothesis “EH°° <€

which is deceptive. If B has an ill-conditioned eigenvalue
problem then in order to derive a similarity transformation
X-lB X = A such that A is almost diagonal with HEHF less
than a prescribed quantity we shall, in general, have to work
to higher precision if B is ill-conditioned than if it is
well-conditioned. In the hermitian case the hypothesis does

not have this deceptive feature.

5. Pathologically close roots in non-hermitian case:

The deceptive nature of the result becomes apparent as soon
as we consider the effect of very close roots, Assume now
that A is non-defective and let X be a matrix having as
its columns n independent eigenvectors of A . Then we have
A =X diag(%.i)X-l (5 ,1)
Using a similar notation to that in paragraph 3 we have in
the case of r very close roots

-1
A=X DEX

+XD3X_1 =B+ C (5.2)
where B now has an r-fold root, In the hermitian case X

but now all we can say is

is unitary and.HCHF = HDBHF '

11



llell < fixll findl e (5.3)

and we see that the condition number K of X with respect to
inversion is inevitably involved. It is clear that it is the
minimum value of HXH\K-lH for all permissible X that is
relevant [ 1]. It should be emphasized though, that the possession
of a multiple root or of a set of very close roots does not imply
that HXH HX-lH is necessarily large. Provided the close roots
are well-conditioned the fact that the eigenvector problem is
ill-conditioned is irrelevant.

6. Iterative refinement of an eigensystem:

The above results have important consequences in connection
with procedures for the refinement of a computed eigensystem of
a matrix [11, 12, 143. In such procedures one starts with a
computed set of eigenvalues and eigenvectors By and X, o
Let X be the matrix having columns X, and define R and

S by the relation

AX - X diag(ui) =R (6.1)

,x'le - dia.g(pi) _xR=s . (6.2)

L

If the system were exact both R and S would be null. In
practice neither R nor S can be computed exactly with the
given X because of rounding errors but with well-designed

procedures 8 is determined with a low relative error. Hence

we have

— — r

-1 . -
X AX = dlag(p.i) + S + (S-q9) (6.3)

r—

12
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and if the computed system is accurate § is small, and with
good procedures for calculating R and X-lR a bound is
obtained for ||s-8|| which is small compared with ||§]| (note
S is computed explicitly but a bound for the norm only is
determined for S-S ). The matrix sum on the right of (6.3) 1is
therefore an almost diagonal matrix which is exactly similar
to A . Now when A has a multiple root corresponding to a
linear divisor our result shows that provided S is small

(and hence $-§ is very small), the off-diagonal elements of
S associated with the multiple roots will be far smaller than
the largest off-diagonal elements of S . When none of the
roots of A is ill-conditioned we shall find typically that

if |E-||w = € then the bound for [|s-§ ||, will be approximately
2-t€ (with a t-digit mantissa binary computer), The diagonal
elements of diag(pﬂ.l + § associated with the multiple roots
will differ by quantities of the order of €2 and the
associated off-diagonal elements will be of order €2 . Hence

after suitable permutations of rows and columns the right hand

side-of (6.3) will have the form

r{[ 2 a
. € € —
Diagonal + L iVI T (8-8) (6.4
&N €IP
and the bound for H§-S || will usually be of order at least as
small as € Premultiplication of the first r rows by k €

and the first r columns by 1/k € then modifies the second

13
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matrix to the form

€1, K €2 N
(6.5)
N € p

==

and because of this Gerschgorin's theorem gives just as fine
bounds for multiple roots as for well-separated roots.
Forgetting rounding errors for the moment it is interesting
to consider what can be achieved with an approximate matrix X
of eigenvectors which can be expressed in the form
X =X (I+€E) (6.6)
where |E.||al =1 and X is a matrix of exact normalized eigen-

vectors. We have

T iax (1+€E) "Xt Ax(T+€E)

1

( T-€E+e°E"- --) aieg(h,)( T+€E)

]

diag(ki)+€F+ terms in € etc. (6.7)

where

'>‘-.e..+>".e.. (608)
J id 113

fij
We see that the elements fj' is zero whenever Xi = G..
Hence the off-diagonal elements associated with multiple eigen-
values are of order 62

Notice that when A has eigenvalues which, while not being
truly coincident, have separations which are appreciably smaller
than € , (6.8) shows that the associated off-diagonal elements
are again appreciably smaller than € and a simple application of

Gerschgorin's theorem using diagonal similarity transformations

gives bounds for the relevant eigenvalues which are of the order

14
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2 .
of € or of the separations, whichever is the larger, The weakest
bounds arise when the separations are themselves of order € . The
bounds are then of order € and cannot be improved merely by

diagonal similarity transformations.

When the procedure for refining an eigensystem is used
iteratively then provided the system is not too ill-conditioned the
final eigensystem is "correct to working accuracy." Generally we
can assume that the final computed system of vectors satisfies a
relation of the form.

X = x+E where |f|_ < n.27" |klly  (6.8)
Hence we have

—.—l -

X Ax—~=(x'l-x'l -1

-1--) (T UE)  (6.9)
= diag(r,)-X"E aiag(h,) + diag(h )X 'E+...
Equation (6.9) shows the real limitation on the attainable accuracy
with computation of a prescribed precision. The off-diagonal
elements of X X are certainly bounded by 2n 2_tnXH HX—l“mmax|K.|
o i
ignoring the quadratic and higher order terms in E. Writing
2n 27 [ Jhe | max | | = (6.10)

- the bounds attainable for the eigenvalues using Gerschgorin's
theorem and diagonal transformations can be expressed in the follow-
ing form. Let the eigenvalues be divided into three groups. The
first group consists of multiple eigenvalues; the second group
consists of eigenvalues with a minimum separation which is less

than B and the third group consists of the remainder. For an

eigenvalue in the first group having a minimum separation of 51

15
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from all other eigenvalues the bound is of the order of 3%61 .
For a member of the second group having operations of up to s
with its close neighbours and a minimum separation of order 62
from all others the bound is of the order of s+62/62 . For a
member of the third group having a minimum separation from all

other eigenvalues of &, the bound is of the order of 52/55

3
In general unless ”XHWHX-le is quite large the bounds are all
appreciably Dbetter than 2-tmax|)E| except when & is of the
order of magnitude of B .

This result has been amply confirmed in practise, multiple

eigenvalues being found, in general, to the same high precision

as well-separated eigenvalues,

16
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