FB/7% 766

CS58

RECURS IVE FUNCTIONS OF REGULAR EXPRESS IONS
IN LANGUAGE ANALYS 1S

BY

VINCENT TIXIER

TECHNICAL REPORT NO. 58
MARCH 20, 1967

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Reproduced by the
CLEARINGHOUSE
": Federal Ssc;'nhﬁc & Technical
ormation Springfiekd Va. 22151 /j“ ;
) @

RECURSIVE FUNCTIONS OF REGUIAR EXPRESSIONS

IN IANGUAGE ANALYSIS

by

Vincent Tixier

March 20, 1967

BLANK PAGE

ACKNOWLEDGEMENTS

My thanks go to Professors Friedman, Wirth, Arbib, Gries and
McKeeman for their efforts in reading this paper and for much
helpful advice during preparation of the manuscript. I am particularly

indebted to my main advisor, Professor Joyce Friedman, for giving her

time, science and humor unsparingly; steadily prodding me and exercising

patience beyond all normal expectations. I want also to thank
Professor Michael Arbib for his highly critical and constructive
reading of an earlier draft.

This work was made possible by a scholarship from the
Délégation Générale ¥ la Recherche Scientifique et Technique,

Comité Calculateurs; I am most grateful toward my two corrempondents
to the Comité, Professo:s Carteron and Arsac, and also to
Professor Pélegrin for their constant support and encouragement.

The typing and editing of this paper as a departmental report
was supported by an Air Force contract under the direction of
Professor Friedman.

I want to express my sincere appreciation to Mrs. Phyllis Winkler

for her outstanding typing.
I dedicate this work to my wife.

V. T.

iii

TABLE OF CONTENTS

Section Page
INTRODUCTION 1
1, ~NOTATIONS AND CONVENTIONS ', 8
2. STRINGS' 10
3 gmm.\n EXPRESSIONS . 12
a) Formal Definition and Interpretation 12
b) Axiom System for Regular Expressions 15
c; SRL Systems. Equational Characterization. 18
a Main Property 7
e) Simplifications and Minimization 30
b, AWLXBIS OF REGULAR SETS’ 36
a) The General Problem of Analysis 36
b) Analysis of Regular Sets 41
(1) Top-down Analysis 41
(i1) Bottom-up Analysis 43
5. APPLICATION TO PROGRAMMING IANGUAGES L7
a) Preliminaries 47
b) Regular Structures in Programming Languages 47
¢) RCF Languages. Characterizations. 49
d) Relation to Other Classes of Languages 63
e) Negative Properties of RCF Languages 70
f) Axiomatic of Context-free Grammars 78
g) Cancellation, Regularity and Equality 80
h) Applications of RCF Languages 88
6. EXTENSIONS OF RCF LANGUAGES 91
a) Direction of Extension, Syntax and Semantics 91
b) Boolean Closure of Recursive Classes of
Languages 95
c¢) Conditional Regular Expressions 9
d) Foundations of the Algebra of Conditional
Regular Expressions 101
e) Recursive Functions of Regular Expressions 106
f) Use of Recursive Functions of Regular
Expressinns 108
g) Hints Toward Further Research 110

iv

APPENDIX 1:
APPENDIX 2:
APPENDIX 3:
APPENDIX 4:
APPENDIX 5:

APPENDIX &:

REFERENCES

Axiom System and Rules of Inference for T*
A Context-free Grammar for R

Some Relations Derivable from <RE;R1,R2>
Euler System

Computation of I

Two Conjectures on the Boolean Closure of
Context-free Languages

113
120
121

128

133

137
139

INDEX OF IMPORTANT DEFINITIONS AND NOTATIONS

ambiguity 37 s-grammar 63
analysis 37 s-languege 63
bottom-up analysis 40 s-machine 63
cancellation rule 10 s'-grammar Sk
canonical SRL system S, 3% s'-machine 61
card 9 s8'-2-grammar 58
conditional regular expression 101 terminal symbol 8
dependency graph 9 top-down analysis 4o
equational characterization 19 vocabulary 8
first 11 weak equivalence 100, 101
left derivative 49
metavariable 8 T, T , ® 8
null string 2 2 8
parse 37 I 8
pre-standard form 58 > 8
RCF langusge hg >« | § 9
recursive function of Q 9
regular expressions 106 -, |- 9
refinement rule 10 el 1
regular expression 12 a)i ,d“ 12
regular form system kg R 12
rest B +,&, ", ,* 12
root 19 RE 15
semantic Lo (R1),(Rr2) 16
separability bg 8(x) 18
SRL 18 a=p,a=p 36
standard-form 53 A k9
strong equivalence 100, 101 T(A,B) ko
structural tree 37 8 99
subsystem 31 C{R} 100

INTRCDUCTION

We discuss first the origins of our work, then we describe its
organization in some detail; after that we try to make clear some of
the basic ideas which guided us; eventually we shall cketch the
background of this paper. 1In this introduction we do rot give
references since it will be elsborated upon in the rest of the paper.

Let us examine the origins of this study.

a) One of the central problems of syntax analysis is how to go from
a8 grammar to & recognizer, i.e., from e declarative definition of a
language to an analytic one, from extension to comp-ehension. When
the process can be precisely described, it is possible to specify it
to a computer and devise what is called a compiler compiler or meta-
compiler. The problem is compliicated by the further requirement that
the analyzers generated by a meta-compiler be comparable in speed and
economy to those written by hand, using heuristics.

In this respect, the class of context-free gremmers has appeared
to be an unsatisfactory metalinguistic tool because it is both too
wide and too narrow: wide enough to define extremely baroque sets, so
that its mathematical properties are complex and its handling inefficient;
100 narrow to permit the expression of many important well-formedness
conditions in actual programming langusges. Furthermore, the meta-
syntactical language it offers is somewhat poor; this being a matter
of convenience, rather than power.

Not waiting for the theory to catch up with the needs, programmers

have developed a few highly successful compiler compilers from more or

less precisely defined restrictions of context-free languages.

In the study of these, in particular at a seminar organized by
glnu Scott, we became convinced that Kleene's regular expressions
played a significant role in that field, both because they were used
implicitly and because some constructs causing difficulties could be
desrribed by regular expressions.

At the same seminar we noticed how little is known about the
elementary transformations of context-free grammars which leave a
langusge invariant. This ia important because most parsing algorithms
can work only when the grammar has a given form or given properties.
Unfortunstely, we have been able to show that no complete axiom system
for the equality of context-free grammars can be constructed. This came
as a serious blow to our initial hopes that the field of syntax could be
open to the axiomatic method, as the desire had been expressed by Church
in his Introduction to Mathematical Logic (Section 08). But we may
after all remark that the situation is no more comfortamble in the case
of arithmetic.

Note the following technicality: we often wanted to use substitution
of equals for equals without taking each time all sorts of precautions;
a basic decislion was then to introduce & set union symbol, for which
the + of regular expressions was adopted rather than the I of BNF,
and replace grammars by systems of equations where one equation
A= al+...+an corresponds to the n rules of the grammar having A
on the left side: A —*al,...,A -’ah . This may seem & minor technicality,

but it forced us to revise a number of notions of syntax analysis.

One of the fastest and simplest analysis methods used by compiler(
compilers is the one character look ahead top-down scheme of Schorre's
Meta series; hardly any theoretical results were known about its scope
and power; it makes use of regular expressions, more or less explicitly,
with the result that its notation is very convenient.

A last observation we made was that symbols ior complementation
and intersection are quite convenient to describe regular sets for
circuit design and there is no theoretical reeson why they could not
be used in defining artificial languages.

Let us now give a summary of our paper.

b) After specifying the notations and recalling the basic notions
of the algebra of strings, we start in Section 3 with the study of
regular expressions using all the Boolean connectives. Continuing
Salomaa's and Aanderaa’s work, we give an sxiom system for these
expressions and prove its completeness. This proof is centered around
systems of equations of precisely a form we are interested in; its
by-products are a simple theorem on the eguality of regular expressions
and new constructive proofs of some 0ld theorems on finite state automata.

In Section 4 we study the snalysis problem, in particular for
regular sets and we show that the difficulties encountered in applying
certain analysis methods correspond to a known automaton-theoretic
notion.

Considering now the most natural method for analyzing regular sets,
i.e., by finite state functions, we ask (Section 5) whether they can be

used recursively to analyze without backiracking some context-free

languages. We note that a generalization of Algol 60, Euler, is in the
scope of this extremely fast method as far as its context-free syntax is
concerned. We define the notion of separability of two sets of strings
and, by applying it together with the tools developed in Section 3, we
formalize this approach to syntax analysis and define a class of
context-free languages which we call regular context-free (RCF). We
give alternate characterizations of this class, one of which is automaton-
theoretic, and we relate them to other recently defined classes, the
s-languages and the langusges defined by feor grammars. We study some of the
usual unsolvability and closure questions and some unusual cancellation
properties linked with the notion of separability. In paiticular, we
examine a semi-decision procedure by which we can show that no complete
axiom system for the equality of c0n;éxt-free grammars can exist.
Examining in Section 6 how this model fits programming languages,
we conclude that it is necessary to extend it in a direction going
outside the class of context-free languages. We briefly study the
problems linked to the introduction of symbols for intersection and
complementation in the metasyntactical language; then we introduce
conditional rtular expressions and lay axiomatic foundations for their
algebra; we submit that to use recursive functions of regular expressions,
Just as recursive fegular expressions are used in RCF languages, will
essentially be to do in a formal and well understood fashion what is
already done more or less formally in various ways, in particular when
people confuse syntax and semantics. We conclude by remarking that the
scope of syntactical analysis is presently underestimated and by

indicating some avenues for further studies.

N

In the appendices, we have put some material which we felt was not
in the main stream of our development, although a large proportion of it

is new,

¢) Permeating our work are some basic attitudes toward programming
theory and practice. Let us try to make them clear in order to open

them more readily to discussion.

i) We would rather nowadays see a programming language defined by
its recognizer written in Algol 60 or Lisp than by metasyntactical
constructs from which nobody knows now to get a recognizer; if the
metasyntacticel language is furthermore unreadable, the whole exercise
makes little sense to us. In other words we think that the justifications
for metasyntactical descriptions are not just rigour and formality,
but, as importent, readability and translatability into a recognition
algorithm, In fact, we want to see a metasyntactical description as
specifying both the syntax and the recognizer,.i.e., the component
sets of strings and the relations between their characteristic functions;
so that the declarative definition of the language is analytic at the
same time.

This idea is”as 01d as metasyntacticel definition, but the early
difficultlies with the use of unrestricted context-free grammars have

made it fall largely into oblivion.

ii) A computer being universal, asutomaton-theoretic characterizations
of sets of strings are to be understood as measures of their computationsl

complexity aend not as programming strategies. This has always been

clear to most theoreticians; some programmers have been misled and it has
cost them a high price in loss of efficiency, chiefly when non-deterministic

autoata and backtracking algorithms were involved.

iii) The basic language and notations are a very essential part in

a research field. But naturally it is very hard to choose them because
a priori we do not know where we shall go, gropingly, building and
testing models with them; we must have recourse to our intuition of the
nature of the' fleld. This paramount role of notations and language is
most apparent when one thinks about those many famous combinatorial
problems, sometimes quite puzzling, which have appeared as solvable by
trivial computations when expressed in graph theory. Our intuiticn is
that the terminology of computational linguistics should adopt a number
of well-esteblished graph theoretical notions, that the notion of
derivative of a set of strings with respect to a set of strings provides
a natural link between computational linguistics and automata theory and
ghould likely be made central to the former, that conditional forms are
a natural tool of computer science and should be used systematically

in this discipline.

d) The background of our work is naturally that part of computer
science which deals with the more theoretical aspects of programming
and in particular of compilation. We make use of the basic terminology
and notions of such closely interrelated disciplines as computational
linguistics, automata theory, recursive function theory and symbolic
logic; as we have seen, a large part of this paper is relevant to the

theories of regular sets of strings (or regular events) and of context-

6

free languages. We also use some very elementary terminology of graph
theory and Algol 60.

Last, we may emphasize that this is not merely a theoretical paper
but that constant attention is paid to the practical aspects of

implementation, as can be expected from & work in computer science.

SECTION 1

NOTATIONS AND CONVENTIONS

T The alphabet or vocabulary. A finite set of symbols called

terminal symbols or letters. denoted by a,b,...,al,b

AR

T The free monoid with cancellation generated by T . The
non-commutative operation called concatenation is dencted
*
by Juxteposition. The elements of T , denoted by
a,ﬂ,...,dl,ﬂl,..., are finite strings of letters; the unit,

called null string is denoted by A\ .

»
*
] 0= 2T s the set of all subsets of T . Its elements are

denoted by A,B,...,A,,B ,... ; the empty set is denoted by [/

*
® 1is a Boolean ring with unit T and zero @ .

= The equality sign will be considered as part of the syntax
language and substitution will not ve mentioned as a rule of

inference. In subalgebras of ® we will consider

] systems S of equations, always of the form X, = fi(xl,...,xn)

i=1,...,n , where Xi is a variable.

I I, = {X;]i = 1,...,n} , set of variables of S , called also

metavariables or intermediste symbols (I when S is

understood). The following relations are cefined in Is :

X, > xJ if Xj appears in f, (Read: "depends directly on");

X, >* X

Xi #XJ

card

if...then...else...

for the transitive closure of > (Read: "depends

on"), >* is a relation of order;

- Xi > XJ and XJ > Xi

recursively on"), # is an equivalence relation.

(Read: "depends

The dependency graph of 5 is the finite directed

greph <I_; > >, where the arc (xi,xJ) is oriented
from Xi to Xj if Xi > XJ . S can be represented
as ¢ laheled graph, Gs , Obtained by labeling each
arc (xi,xj) of <I_;>> by f, . We shall speak
of S as of Gs s without making the distinction.

We shall use the basic terminology of graph theory

as defined in Berge [1958/1962].
Set of positive integers and zero.
card(%) where X is a set, denotes its cardinality.

We shall freely make use of conditional expressions
formed with this ternary operator. For a formal

introduction see McCarthy [19631.

The words "set" and "langusge" will be used

indifferently for sets of strings.

"It is provable (in some understood logical system)

that".

"It is true (in some understood interpretation) that".

9

SECTION 2
STRINGS

The properties of Tf are well-known; an axiomatic definition,
closely resembling Peanc's axiom system for integers is given in
Appendix 1.

Two impcrtant rzlations are
(1) the refinement rule: OB = 6 = (4€)[o€ = 5y v €8 = 8]

(11) the left cancellation rule: B =ay =» 8 = 7,

In what follows we shall always assume that strings are uniquely
readable, because we do not want any "coding problem” at this level and
because we are interested in models of situations where this is the case.

In the Linear Lisp fashion (McCarthy [1960)) two unary operations
are deflned in T* :

first(e) yielding the first letter of o« from left to right,

first(A) is undefined.

rest(a) yielding what remains of & when first(@) has been

deleted. rest(\) is undefined. rest(a) = A .

A more formal definition is given in Appendix 1.

first and rest are extended to sets of strings:

first(A) = {a]yed A first(y) = a} ,

rest(A)

{alyed A rest(y) = a} .
The length of a string Q@ , denoted by |a| , is defined by:

e} = if @ =2 then O else 1+ |rest(a)| .

The reverse of a string « , denoted aR , 1s defined by:

R if a- A then A else (rest(a))Rfirst(a) .

The n-fold concatenation of a string with itself, denoted o R

is defined by:
o =if n=0 then A else P .

As shown in Appendix 1:
o8l = |of + |B] P < d™P Maa ()R - gRF

Note that, as proved by McCarthy (unpublished), any computable
function on strings is representable by a system of recursive functions
of conditionai expressions formed with the two operators first and rest.
(The proof is by showing the cquivalence to the Turing machine formalism.
A notational difference is that the equality does not belong to the

syntax but corresponds to a predicate eq[o®,B] .)

1l

SECTIORN 3

REGULAR EXPRESSIONS

a) Formal Definition and Interpretation

The set R of regular expressions is defined as follows (Kleene

(1951]):

(1) fer
ANeR

Any symbol denoting an element of T 1is in R .
(31) if Pe@® and Q € R then

(P)erR, P+QeR, P-QeR
P&QeR P c®
P'eRr

(411) Extremal clause: P ¢ R only if P can be formed by a finite

number of applications of rules (i) and (ii).

® 1is context-free (Appendix 2), thus recursive.

The dot in P * Q 1is customarily omitted.

To interpret regular expressions, the structure of the Boolean
ring 8 1is enriched as follows:

(1) a monoid structure is introduced by

P.Q=1faBllaeP)A(BeQ) .

12

Note that

P =(\}).P=P
P-p=¢g-P=¢
P:(@Q-R)=(P°Q)-R

but we do not have cancellatiom or refinement.

This operation is called concatenation or generalized product. We

define P° by
FP - if n=0 then fA} else P PPl |

(2) To a set P e @ we associate the free monoid generated by

its elements:

P = um(P uPtu... U .

n— o

Note that this notation is coherent with the definition of T*
from T in Section 1.

This operation is called star or closure and sometimes denoted
c2(P) . It can be defined externally by

P = n(XheX)A(P"XcCX)) .
Xe®
Regular =xpressions are interpreted recursively as sets of strings

called regular sets, according to the following mapping:
value: R — @

such that

13

Regular expression R valuegRl

[the empty set

A i}

a,b,... fa},{p),...

(P) value(P)

P+Q value(P) U value(Q)
P&Q value(P) N value(Q)
P’ complement(value(P))
PQ value(P) * value(Q)
P (value(P))*

Conflicts of interpretation are resolved by evaluating + , & , -

’
', and * in that order of increesing priority, parentheses being used

as usual.

Regular expressions denoting a unit set are usually called by the

name of the eleament of that set.

When the symbols & and ' are not used, we talk of restricted

regular expressions.

Equality: PeR , Qe R

P=Q o value(P) = value(Q) .

The problem of recognizing the equality of regular expressions was
first solved in Friedman [1957], and Moore [1956]. To devise insightful
and computationally efficient algorithms for this recognition is one of
the main topics of the theory of regular sets (see McNaugtoa [1965]).

It is not an academic problem:

14

Regular sets are those sets of strings which can be recognized
without memory, or, equivalently, with a bounded amount of memory, i.e.,
by a finite state automaton (Kleene [1951]). Using the black box approach
end the definition of states by the Nerode equivalence relation, a simple
argument (Moore [1956]) shows that any solution to the equality problem
yields a solution to the practically important minimization problem.

A number of important constructs in high-level programming languages

correspond to regular sets, we will discuss this in detail in Section 5.

b) Axiom System for Regular Expressions

Axiom systems have been constructed for restricted regular expressions
by Aenderaa [1965] and Salomaa [1966].
We submit the system of schemata RE , for unrestricted regular

expressions, and 2 rules of inference.

RE.

(b1) |-A+B=B+A (b2) |-A&B=B&A

(63) |=A +B&C = (a+B) & (A+C) (bb) |—A& (B C)=A&B+A&C
(b5) |-A+¢=A (v6) |=A& (1) - A

(b7) |-A+a = (D) (b8) |~A&A' =g

(s1) |- a(BC) = (aB)C

(g2) |-An=A

(g3) |-ag =9
(s2) j-a" - A +m"
(s2) |- 2" = ()"

15

(11) |- A(B&C) = AB & AC
(12) |- (BAC)A = BA & CA
(13) |-rtxa=¢

Rules of inference:

-A&B=¢ , |-A=BA+C

(Rr1) m
|-A=B¢C
(Re) , ——l=xfy
|- xA & yB = ¢

Remarks: (i) Rules (1) to (v8) define a Boolean algebra; in effect they
are the Whitehead system as modified by Huntington (Section 1 in
Huntington [1904]). For a discussion of it and others see Rudeanu [1963].
We shall not specify the derivetion of usual Boolean relations, the
derivations of associativity of + and & and of a few useful relations

are given in Appendix 3.

(11) The notation adopted is ~learly redundant: as proved in Appendix 3

*
AN=¢ , A&B=(A"+B') ; we arc not interested in minimality.

(111) None of these rules refers specifically to regular sets, except
the non-written ones: the "zero axioms" which are the formal definition
of regular expressicns. The RE syster. specifies the operators + , & ,
'y, *,and * in © ; note that when defining them in a), we did not
suppose that they were applied to regular sets. We can freely use these

rules to transform systems of equations in @ into other systems having

the sam= solution and of a more desirable form.

16

(1v) At least one rule of inference is needed besides substitution of
equals for equals which we consider here as & syntactic rule (Redko [1964]).

Note that (R1) corresponds to the external definition of star.

(v) (R1) contains a right-recursive rule; the system obtained with a
left-recursive one and corresponding modifications in rules (R2), (g2),
(g3), (s1), and (i3) is equivalent. We shall use right recursion because
it corresponds to left-to-right string synthesis. The results and proofs

can be reformulated in terms of left-recursion.

{(vi) It is interesting to compare RE to the set of formules in McNaughton
and Yamada [1960}, Ghiron [1962] and the axiom systems in Aanderas [1965]
and Salomaa [1966]. All are interested in restricted reguler expressions.
McNaughton and Yameda have all of Salomaa's rules except the ones which
deal with * , although they could derive (s2); they do not have the

rule éf inference (R1) and the Boolean relation A + A = A camnnot be
obtained from what they have. Ghiron introduces rules for #* , including
R1l, which had been introduced independently by Arden [1961]; (sl) and

(s2) are deriveble from his rules. Aanderaa end Salomea's works are

not quite independent and both contain complete systems. Salomaa gives

tvo systems, Fl and F2 H
F. 1is essentially the same as Aanderaa's, but simplified; the rules of

1

inference are Rl and a2 rule of substitution of equals for equals; the

F2 corresponds to a different epproach;

Boolean algebra part is restricted to b rules necessary to define + .
The introduction of & and ' essentially forces a complete set of

Boolean relations, rule (i3) and rule of inference (R2).

17

An earlier paper by Salomaa is discussed in Aandersa's paper.

It contained what wac proved by Aanderaa to be a complete system.

Theorem 3.1: The axiom system RE with rules of inference Rl and R2

is sound with respect to the given interpretation.
All axioms are valid and Rl and R2 preserve validity. I

We now want to prove the completeness of the system., The proof will
follow the lines of Salomaa's proof; its by-products will be as important
and useful as the final result itself., First we consider a particular

type of system of equations in the Kleene algebra

<B;+,&,',. ,*;2RE,R1,R2> .

c) SRL Systems. Equational Characterization.

Definition 3.2: &(X) = A & X .

Note that since value(\ & X) = {A] N value(X) ,
8(X) = if A e value(X) then A else ¢ .

Definition 3.3: (i) An equation is standard right linear (SRL)

when it is of the form A = E xA. + §(X) . Where the A_ 's are
x x
»eT
variables.

(11) A system of equations is SRL when all of its equations are

SRL and it has one equation per variable.
Note that in E xA_, all the x 's in T do occur. (Compare
xe

18

L(Fﬁ) in Chomsky and Miller {1958]). Naturally some Ax 's can be
equel to # .

Note amlsc that in an SRL equation &(X) stands for the value of
8(X) , » or @, and not for the function &(X) . (See exemple

further.)

Definition 3.4: (i) The root A. of a system is a distinguished

1
variable.

(ii) To golve a system is to express Al as an expression in the
algebra of its coefficieants and constent terms, such that the equations

are satisfied.

Definition 3.5: A regular expression R 1is equationally characterized

when there is an SKL system which has a solution equal to R .

Note that the graph of an SRL system can be considered as the
transition graph of a deterministic fin?te state sutomaton and
conversely. (These graphs are introduced and studied in McNaughton
and Yamade [1960] and Brzozowski and McCluskey [19631).

Example: Let T = {0,1} . Consider the regular set R of all
strings in T which contain two consecutive O 's and are not terminated

bya 1:
¥*
R = (T*OOT) & (T*l)'

It can be proved, using technigues we are going to develop in this

varagraph, that R = A where Al is defined by the following SRL

1
system corresponding tc the following graph:

19

- IN
A1'04\2"'1‘“1

Ay = A, + 1A

A, =

3 QA3 + 1Ah + A
Au = 053 + lAh

Here we have as usual labelled the arrows (O or 1 rather than
by the full function 0A2 + 1A1 for instance.
The following lemma is due to Salomas (Lemma 2, page 161) and is

proved by induction, using (R1):

Lemmna 3.6: If

n
I-A = R, + R i=1,...,n0 and
i };1 iyt R
n
- B, = + i=1,...
\ B, j:iRiJBj R, i=1,.44,n Rij some regular
expression

where 6(Rij)=¢ for all (i,Jj) then

-4, =8 i=1,...,n .

Lemma 3.7: Any SRL system has a unique solution,
Proof: Any SRL system has a solution: when an equation is not recursive
one can substitute for the variables the quantities which define them;

20

when an equation is recursive, rule (i3) proves that rule (R1) can be

applied. Note that the result will be a restricted regular expression.
The solution is unique: Let us reduce the general case to a form

where lLemma 3.6 can be applied. We have a system of n equations

A = ZxAix-t-b(Ai} 1= 1,0.0,n .
xeT

In E:xAix we can group the terms corresponding to a given A:j
xeT

intc a term where Aj is factored out: PiJAJ (rvle (il), modified by

de Morgan's law into a rule A(B+C) = AB+AC .); if in the sum of PijAJ
2

terms which we obtain, a variable Ap of the system does not occur,
we 2an add a term ﬁAp (in Appendix 3 we show how by (g5), (b5), and
(R2) #A =9, vy (b5) A+B =4).

We nrv have a system of the form

n
A, = ;:,_."lpijA‘j + 5(4)) 1=1,.0u,n

and 6(Pij) = ¢ by (13) or the Booiean rule A = § , By Lemma 3.6
the solution is unique. -

This proves the lemma. Note that furthermore we can sssert that
if two systems have exactly thelsame form but +the variables having

different nam:s, then not only are the roots equal, but also all the

variables are equal two by two. '

This lemma is a direct proof in the particular case of SRL systems
of a lattice-theoretical fixpoint theorem of Tarski, which can be
applied to context-free grammers as shown by Ginsburg and Rice [1962])

(e simpler but similar proof for context-free grammars is given in

21

Letichevskii [1965)). The constructive proof we can give in this simple

case is not a particular case of treir proof.
Corollary 3.8: (Cancellation of strings)
‘— aA = aB =2 l— A = B .

The proof is by induction on the length of « , since as we have

seen at the end of the proof of lemma 3.7,

-xA=x8=2|-A=38 . .

Lemms 3.9: Every regular expression is equationally characterized.

This is Salomsa's Lemma L, but regular expressions are unrestricted
here. let us briefly recall his proof and complete it for the & and '

operators.
The proof follow:s the recursive definition of regular expressions.

(1) +@#=N where N=) xN by Lemma 3.7, (g3) and (b5).
xeT

|-A=B where B= ZxN+)\
xel

N=) x

xeT

(the above, (b5)).

22

2: xN + aB
xeT
xfa

T
©
n
.
£ 3
ja g
&
H
o
>
]

B= 2 aN +\
xeT

xeT
(the above, (b5))

(1i) Suppose A =and B are eguationally characterized by SRL

systems SA and SB , i.e.,

|—A=Al where Ai= ZxAix+6(Ai) i=1,,..,n.
xeT
A €I .
ix SA
|~ B =B where B, = ngBjx + 8(8,) J=1,...,m.
% € ISB .

*
Let us prove that A+B , A& , A' , AB and A are eguationally

characterized,

(a) A+B is equstionally characterized.

Let the system

Dyp = L Mgy * 8(Dy,) k
xeT

1,0e05n

l = l,-o-,m
be obtained as follows:

|I-a+B= EETx(Alx * le) + 6(A1) + 6(31)

3

((11) modified by de Morgan's law, plus Boolean relations.)

Set D), =A, + B, eand generally D, = A+ B, {or think of Dyy

as representing the symbol "Ak + Bl"); we have here

‘-A+B=Dll

where

=2 = xze:,rxblxlx + 8(D;,)

since

]—x&Ali-x&.B =L&(Al+nl)

1

We may have here a number of D different from D 13 repeat

iJ 1

the process with them as was done for Dll until no new Di j appears,
Note that the method is well adapted to computer implementation,

using an m by n array to keep treck of the appearance of new Dkl 's.

{(v) A& B is eguationally characterized.

The proof is quite similar to the one for A + B ,
A— - &
|-A&B=A &3,

A &B = ZxAlx&yBly+ Loxh % 8(B)+

xeT xeT
yeT

xZeTa(Al) &xB_+8(A) & 8(8))

(by Boolean properties.)
By (R2), (11), {i3) and some Boolean properties:

A &B - x§rx(Alx & B)+8(A &B)

2

if D denctes Ai B

i J

- a § B=D,, where D = ETXD]JLX +8(0)) .

The proof terminates as for A+B ,

Note a simplification: if A, or By=N-= g, °13 =N, it is

not necessary to develop spurious equations having ¢ as solution.

(e) A" is equationally characterized.

Consider the system D, =)ETXDH + 6(01) i=1,...,n obtained
from SA by replacing Ai by Di

by @ if 6(Ai) =X\ and by A if 6(Ai) = @§ . This system S, has

throughout and replacing G(Ai)

a solution D = Dl .

We form A+D and A&D as just described.

A&D 1is equationally characterized by an SRL system in which no
equation contains A as its last term; A+D by an SRL system where
all equations do contuin A\ .

f 1is clearly a solution of the system characterizing A&D and
T* a solution of the system characterizing A+D .

By Lemma 3.7 these solutions are unique.

Thus |- A' = D , since it is provable that in a Boolean algebra
the inverse is unique (see Appendix 3).

Note that |=(A,)' =D, , 1=1,...,n. :)

Constructs quite similar to the one for A' can be found in
Chomsky and Miller [1958) and for A&%B and A' in McNaughton and
Yamada [1960]; these constructs are developed on the corresponding

labeled graphs.

25

(d) AB 1is equationally characterized.
We proceed in the same way by proving that |- AB = D1<1,0,...,(>
where \

D =AB + A =lo|o,
Jk d/ékp 4= Lieeeyn

k = <y kg,ee k> with kg =0 or

and vhere Dl<1,0,... 0> is the solution of an SRL system.

|-AB =48 =Digo,...,>

Let us form AlBl to show that D1<l,0,...,0> is the solution

of an SRL system:
AB = Y xA B +8aNY x5 +8(8)) .
11- &l 178 1x 1
Two cases:
»
-- if G(Al) =@ we see that G(AlBl) = ¢ (definition of & and
(i3)) ana

D1q,0,e..,00 = Jnganl,O,...,CD + 801y 0., ,0)

-- if 6(A1) = A ’

D =¥ + 8(D
1<1,0,...,0> xze:T 1x<1,0, 400y 1X,0es ,O> (

1<1,0,.. o)

where G(DKl,O,...,CD)’G(Bl) , hereby.
As for A+B and A&B we can keep generating D 3k 's until no
new term appears,
In machine implementation it is convenient to represent the
subseript k by e binary number between O and 21,
26

*
(e) A is equationally characterized.

* *
Let k be defined as above. |- A = D, where D, = (z AP)A
k
*
and DO = A by convention.
*
By (s2) or (b5) and (s1) |-D. = X xA A + A , thus

0] xeT 1x'1

- 2, ET"<0,...,1x,o,...,o> (Dy)

since by (sl), (i3), and the Boolean relation M\ = A , B[DO) =N,
And we can proceed forming Dk terms until no new term is

necessary. '

Corollary 3.10: Any unrestricted regular expression is equal to a

restricted one.

Proof: We have seen in the proof of Lemma 3.7 that an SRL system cau
always be solved and that the solution is then expressed by a restricted

regular expression. l

d) Main Property ¢

Let L Dbe the class of SRL systems, what we have done in the
proof of Lemma 3.9 is to associate to 2ach regular expression an
element of I , to each operation in R a corresponding operstion
in Z ; let us denote these operations in L by + , &, ', ° and *,

as are denoted the operations in R they correspond to. let us define

equality in £ by:

Definition 3.11: SA = SB if and only if A= B.

With these conventions, if ¢ is the mapring of R into I

we have defined, then the two following diagrams commute:

(8,8)—(5,,5)) A2y,
J ! Lo
AoB 2 45 68 D 5,8
A™B A
vhere O stands for = , £ ,+ , & , or *+ and ® stands for
or * .,

Let the symbol = den:t: irn. £ the identity of SRL systems up
to renaming of variables.
The interest of I as & representation of regular sets stems

from the following exceptional property:

Theorem 3.12: |=8, = 8, ® |- 8y +8p =5, &5, .
Proof: (i) |=8, = 8; = |-8, +8; =8, &5, .
Hypothesis: §, is A, = Y XA+ 6(4) i=1,...,n
xeT
S. 4s B, =). xB, + 6(B,) j=1,...,m
B J xeT Jx 3
By 3.11:

and Al & Bl :

Form Al-e-Bl

A ¥B) = xze:Tx(Alx +B,)+ 8(A +3B)

A &B - xze:'rx(Ab‘ & B,)+ 64 &5)

28

+Bl=A1&Bl = l: 6(A1+Bl)=5(51&31).

Furthermore, it is not possible that A £ 9 while B = $ since

=4, =38 = |-A +B

1 1
and Cpq = Ap & Bq , the two systems with roots D

* *
& xT = Bl & xT . We see that if Dkl = Ak '

1 and C11 are going

to develop in parsllel, each equeiion having the same § term and all
variebles with equal subscripts corresponding two by two:
1= A =B = \= D.,=C, = |= Dy = Cpy = |=A =3B, for all

Dkl and Ck‘ connected to Dll and Cll .

(11) |-s, +8; =5, &S, = |=5§, =8, since cbviously

[—sA+ngsA&sB = |—sA+sB=sA&s]3 =

— =& = A = = =
[-a+B=a%&B = |-A=-3 = |=5, -5 i
As a corollary we get our end result concerning the completeness

of the axiom system:

Corollary 3.13: The axiom system RE with rules of inference Rl

and R2 is complete.

Proof: |=A=B = |-8 +8,=8, &5, = |-A=B . |

A B

We have
I—A=B
l:A:B“ !—SA+SBESA&SB

Theorem 3.12 calls for some remarks.

L]

(1) The proof is essentially the proof of Theorem 2 in Salomaa's

29

parer. In a sense Salomaa makes a hidden use of & . This becomes
particularly clear as wve compare his proof to the proof of the equational

characterization for + and & .

(ii) The proof is constructive and yields an algorithm to decide the
equality of regular expressions. This algorithm is fest and economical
and well adnpf.ed to the computer handling of large expressions on large
alphabets.

(111) In an actual verification of Syt 8= 5, & Sy it is not
necessary to actually form S, + SB end 8, & SB , it 1s sufficient
to take all pairs of variables Ai and B j which would appear in
these, starting with A, and B, and verify that 6(Ai) = 5(33)
and, although it is not necessary, that we do not have A { = ¢ and
B, e Y

Next we want to study the SRL systems in more detail, apply
Theorem 3.12 to the minimization of finite state automata, consider
the recognition of regular sets and see how ali this can be applied

to context-free languages and higu-ievel programming languages.
e) Simplifications and Minimization

Let us now recall the graph we have associated in Section 1 to

systems of equations such as in particular SRL systems:

y Essentially the same algorithm has been independently studied by
A. Ginzburg; his findings were presented at the September 1966
Asilomar conference on the algebraic theory of machines, languages
and semigroups.

30

Definition 3.14: The substystem SA aszocietea with the variable Ai
i
in & system S, is the system of equations assoclated »ith the

subgraph of root Ai .

Given an SRL system, a few simplifications (reduction of the number

of variambles) can often be easily performed:

(1) connection: A variable not connected to the root may have its

equation discarded.

(i1) = -redundancy: If there are 2 variables A; and AJ such that
SA = SA » one can be eliminated. This is frequent and not always

i J
obvious,.

(ii1) ¢ -redundancy: An SRL system SA where there is no variabie Ai

such that 6(Ai) =N has @ for solution. Let us call it a closed
system. All closed subsystems can be eliminated, replaced by

N = 2: xN and their va.iables are to be replaced by N .
xeT

(iv) T -redundancy: In quite a similar way it is always possible to
*

l’
= -redundant; precisely, they correspond to subsystems where all the

simplify redundant representations of T Tl C T, which are not

variables A, are such that 6(Ai) = A and where the coefficients

i
of N=@ are the same in all the equations.

Example: T = {a,b,c} T, = {a,b]

31

Alnﬂa#mjﬁ'cﬂ‘?h
A2 = nAa + bA1 + N+ A
A3 = lAl + hA3 + cN+ M
N =aN+UN+cN

simplifies into

Al = ‘Al + bAl + cN + A

N=aN + bN + cN

A %-%=ﬁ .

Whenever one of these simplification rules is applied it may
irigger the applicability of any of the four, They are well adapted to
a fast machine implementation. However it is not difficult to find
examples of SRL systems where two variables are equal and which cannot
be simplified with these four simple rules.

It is a classical result of automata theory that among all finite
state automata which accept the same regular set, there is,one and only
one up to isomorphism which has a minimum number of states (Moore [1956],
Theorems 4 and 5) and thus can be taken as a canonical representation
of this set.

We are going to prove this result directly in our formalism and
give an algorithm to obtain this canonical representation.

The idea is that when S, = S, , if we form S5, =S, & SB as

in Lemma 3.9, Sc has necessarily no more variables than the smallest

32

of SA and SB . Thus the closure of this operation among all SRL
systems equal to SA is bound to yleld & minimal one.

Consider two distinct SRL systems SA and SB sueh that SA = SB ;
suppose that they are connacted, that SA has n variables and SB

has m variables.

Form

Consider the process by which, starting with C,, = A_L&B =A =38

the variables in Sc are formed.

(111)(5{3)[1\i =BJ =Ai&EJ =C1J] .

Clearly Sc cannot have more than (if n <m then n else m)
variables, and will have less if there are two C 1j with equal first

i)

We see also that if n =m then Sc has n variables if and

or second subscript, since (VK)[CiJ = ckJ] and (VR)[CIJ =C

only if SA ESB .

We have proven:

Theorem 3.15: Giver a regular set A there iz one and only one SRL
system iﬁ which has A as its solution and which has a minimum
number of variables. This canonizal system is the only system SA in

which no two variables are equal.

This yields an algorithm to obtain §A :
Given a regular expression A we have shown how to get an SRL

system SA and seen how to simplify it in some cases, We have also an

33

algorithm to check the equality of two SRL systems.
We now can take all pairs of subsystems in SA and check them
two by two for equality.

The algorithm can be speeded up in two ways:

(i) Wnhen an equality is recognized, simplification should be done and
we should check for the four elementary simplifications. This may seem
to slow the algorithm since we must then stert all over again, but in

fact drastic simplifications usually occur.

(11) Given S, and I, , consider IA/# » the quotient of I, by the

A
equivalence relation # which we have defined in Section 1.

lemma 3.16: The graph <IA/#;> > has one and only one basis.

Proof:

one: Any finite graph is inductive, any i:ductive graph has a basis.
only one: IA/#/# = IA/# .

Thus, there is no cireuit in <[A/#;> > . Clearly a graph can
have more than one basis only if it contains a circuit.

In fact, QA/#;> > exhibits the upper lattice property. .

We start by putting the subsystems of the basis in canonical form.
Then we eliminate any = -redundancy, move up one step and put in
canonical form the subsystems corresponding to equivalence classes
which have only for descendant classes of the basis, etc....

This algorithm, without the last strategy, has been implemented in

B5500 Algol. It is well adapted to computer handling of regular

34

expressions on a large alphabet. The last refinement may in general be
questionzble because of its computational complication, but it should
be a good strategy for dealing with very large systems separable into

many smeller subsystems.

35

SECTION L
ANALYSIS OF RBGULAR SETS

a) The General Problem of Analysis

Let us describe the problem of analysis briefly and rigorously,
since we are now often going to refer to it.

A production system is a generative algorithm defining a set A
of strings in extension.

It is defined by a finite set T of terminal symbols, by a finite
set I of variables, among which is the symbol A designating A ,
and by & finite set of pairs from (T + I)* x (T + I)* , called production
rules, and which must be interpreted as rules permitting us to write
in sny string the second element of the pair in place of an occurrence of
the first element.

In particular, in a context-free grammar GA the production rules
are from I X (T + I)* and are written X —»a, o ¢ (T + I)* . Cleerly
we can essociate to GA a system SA of equations of the form
X

= fi(xl,...,xn) , i=1,...,n , with A =X where for eny 1,

i 1
fi(xl,...,xn) is a form in the algebra of @ with the operators +
and °* , i.e., a restricted regular form without any * .

Consider the following relation: &« =B with a,8 ¢ (T + I)* 3
it means that P 1is directly derivable from Q by application to «
of one production rule in G, - The closure - of = 1is obviously
a relation of order (derivability), thus = defines an infinite

»*
directed graph <(T + I) ;» > . An interesting subgraph of this

36

graph is the one which contains A and all the paths starting at A
(graph of all strings derivable from A). We can label each arc
(a,) 1in those graphs with the name of the production rule by which
o= f , with some conventional notation for specifying where in
the rule is applied in case there may be ambiguity. (See example.)

Naturally, the set of strings or context-iree language A is |
the set (ald e T AA =0} .

To analyze a string @ 1s to find all the parses of @ , that is
all the paths in <(7T + I)*;= > Jjoining A to @ , each one defining
a derivation from A to Q by GA . In a derivation of & certain
phases may lead to some disjoint parts of @ and usually such phases
are then considered to be independent. Two derivations which differ
only by the order of independent phases are equivalent; a convenient
representation of an equivalence class of derivations of @ 1is a tree,
the well-known structural tree of Q& , in which independent phases are
shown as developing as independent branches; another often used
representation is by one of the elements of the class, a path called
canonical parse which corresponds to a rule of selection in
AT+ 1) >

If more than one structural tree or canonical parse can be associated
to a string @, @ is said ambiguous. A context-free language is
ambiguous when some of its strings are; this notion is relative to the
grammar. A context-free language is inherently ambiguous when it is
ambiguous for all its context-free grammars; this notion is relative

to the class of context-free grammars.
Example: T = {i,(,)} I ={a,B}.

37

GA contains five production rulea:
1. A-1i

2. A - [A]

3 A = AA

b, A-B

5. B - iii

SA containg two equations: A =41 + [A] + AA + B

B = iii

Let us draw a part of <(T + I)*;= > .

[m]—5—o[um] -——1—0[11A]

i
¥, 7

A1, [A]—?—o[M]——+[A1]——1——5 AAi) _J_’[iAi]“L’[iii]

Y.
AA [-A) 1/ /Il
]——'[ALA] L [ai1] [B)
B

\
111 A —2e JA] 2 314)

There are 16 paths from A to [iii] , they correspond to the two

following equivalence classes (represented by their structural trees):

38

™.
«

[¥Y o-——r \H\
=.’/

(iii] is ambiguous.

We see that to analyze a string @ is to solve constructively
a combinatorial problem and thus to extract some information from <& ,
This information is used for instance to direct a computer (interpreter),
to generate some code (compiler) ; sometimes even to alter (at the
same time it is analyzed (macro generation). These actions can be
specified by factorization into elementary steps each of which is
associated to one production rule, so that to a given path corresponds
a succession of elementary steps driven by the analyzer (see for instance »
Wirth and Weber [1965]). This association of analysis and action is
mathematically a valuation; in Riguet (1962) it is shown how it corresponds
to the algebraic notion of diegram defined on a directed graph with
velue in a category.

let us only observe here that the notion of equivalence of two
derivations and the notion of ambiguity of a string are both dependent
upon valuation. For instance, the equivalence of two derivations has

no operational value when valuation alters the strings as they are

39

analyzed; for instance also, the ambiguity of a string is unimportant
if enalysis is merely intended to decide whether the string belongs to
the set A or not, or, more important, if analysis bypasses the ambiguity
because of some systematic convention. We shall give an example of the
latter in Section 54d.

The value of a string is often called its semantic; the valuation
mapping together with the class of values of all strings in a language

being then considered as a model of the language.

Basically, there are two ways of »analyzing a string @ ; we may
start from A and try to reach @ , following the arrows, or start
from @ and try to reach A , going against the direction of the
arrows. The first method is called top-down esnalysis, the second one
bottom-up. Although it is never done, there is no theoretical reason
for not devising analyzérs using a mixture of both.

If we have described the problem of analysis in general terms,
it is because we believe that it is more general than the problem
of compiling or interpreting programming languages. We will come back
to this in Section 6g. Let us recall the following points we have
made: there is a difference between analysis and valuation; the structural
tree of a string @ is not an inherent property of @ , it describes a
successful analysis, showing the relations and subordinations of the

different phases.

Lo

b) Analysis of Regular Sets

(i) Top down analysis.

In the case of regular sets there are various ways to show that top-
down analysis of the strings of a iegular set is simply done by building
a corresponding finite state automaton and feeding strings into it (see
for instance, Brzozowski [1964]). The automaton can always be made
deterministic (Rabin and Scott [1959]), Theorem 11) and analysis proceeds
from ieft to right in a time proportional to the number of sywbols read.

In our formalism: Let T = {le;l = 1,.0.,T} .

Let SA

r

be an SRL system, Ai = zx‘_inJ + G(Ai) i=1l,...,0,
3=1

We associate to each Ai a predicate In1 , such as

Ini(a) = [@eAl, as follows:

Ini(a) = if a = A then 6(Ai) =) else Nexti(first(a),rest(a))

Nexti(x,a) = if x = x, then Inil(ﬂ) else ...

1

veddf x = x then Inir_l(ﬂ) else Inir(ﬂ) .

r-1

Since Ini may appear for instance as some Inij in Nexti »
these predicates appear as recursive. However it is clear that this
recursion is computationally equivalent to an iteration: in the
implementation of procedures corresponding to these predicates it is
not necessary to use a pushdown store because control will only enter
these procedures at their beginnirg.

In practice we will use an n by r array representing the
transition graph; for instance, to the system given as an exeample

following 3.5,

4

AltoAa‘l’lAl

A2=0A5+1A1

A} = OA5 + lAh + A

Ah"OAB"'lAk

¥

corresponds the arrey: i
Al A2 A3 Ah
ol K 5 K
1 A A Ay, A,
A A

We éo from state to state as we read characters one by one.

The minimal SRL system corresponds to the smallest array. The
algorithm can be speeded up by grouping characters into strings
corresponding to clcsed paths, i.e., redefining T.

Because of the speed and simplicity of this algorithm to analyze
regular sets, it would be reasonable to use it systematically for
analyzing regular sﬁructures in programming languages; even if the
general analysis algorithm used does not reduce to this one in the
particular case of regular sets. The fact that it is not recursively
decidable whether ; context-free language is regular (Bar Hillel,
Perles and Shamir [1961], Theorem 6.3) does not cause any difficulty,
one defines a grammar for a language one'has in mind, not the contrary.

Note the role of the end of string marker, A\ , to prevent
ambiguities (see Chomsky and Miller [1958]),

Note alsc that we have here a case of ﬁredictive analys*s in its
simplest form (Kuno and Oettinger [}962]). ! ‘

' ha‘g T

(11) Bottom-up analysis.

Suppose a regular set is defined by an SRL or SIL (standard left
linear) system and we are trying to find the (unique) path corresponding
to the derivation of a string a.

Example: Block structure in Euler.
* *
<block> = begin (<declaration>;) (<statement>;) <statement> end

Because it is desirable to scan a block from left to right in
order to build its declaration table first, we must consider an
associated SLL system, rather than SRL: (elements equal to ¢ not

written).

1. <block> = }32 end

2. B 5 = Bi<statement.>

50 B3 = Bh; + B5 begin

4, Bh = 133 <statement> + Bé <decleration>
5. 35 =

6. B6 = 87; + B5 besiﬂ

Te B7 = B6 <declaration>

corresponding to the graph: (Labelled as traditional)

3

<statement>

By
<declaration>

Be
H <declaration>

B7

Consider the string:

begin <declaration> ; <statement> ; <statement> end

It has only one parse:

<block>
¢ 1
82 end
+2
33 <statement> end
+3
B, ; <statement> end
4
B3 <statment> ; <statement> end
+3
Bb, ; <statement> ; <statement> end
4
136 <declaration> ; <statement> ; <statement> end
6
BS begin <declaration> ; <statement> ; <statement> end
+5

A begin <declaration> ; <statement> ; <statement> end

by

We want to reconstruct that parse as we read the string from left
to right. We start at the left end, B5 must have been applied; now
we have 85 begin ... ; B5 begin appears in € and in 3, there is no
way to know whether we must use 6 or 3 except to look at the .ollowing
symbols; since the next symbol is <declaration> we must apply 6,
not 3. The situation is worse when later we get B3 <statement>..,
or B6 <declaration>... : we have to look two symbols ahead in order
to make a decision since both <declaration™> and <statement> must
be followed by a ;" .

If we were proceeding by trial and error, we see ° . we would
get into blind alleys, none of which would be longer than two analysis

steps.

This important type of difficulty has been intensively studied
for context-free languages (Floyd [1964], Irons [1964], Ross [13€L4],
Wirth and Weber [1965], Knuth [1965]); in the particular case of
regular sets, we recognize the notion of a k-limited automaton
{2-1imited, in the example) {Chomsky [1963), page 336-7). Because
there are finite state automata which are not k-limited for any k
(ibid.) we see that there are SRL systems for which a bottom-up analyzer

will engage into blind alleys of unbounded length.

*
Example: S, = (ac*a + be*b) + mc* + be*
Sl = aS2 + 'bS5
82 = cS2 + aSl + A
33=cg3+bsl+k

L5

In fact, it is clear that in the notion of k-limited automaton,
the finiteness of the automaton does not play any role and that the

notion is generalizable to infinite automata and context-free

languages.
Let us remark that to go into a blind alley and then backtrack is
in practice untolefably time and space «onsuming and must be avoided
when a decision can be made simply by a short look-ahead. Certainly
a disadvantage of the context-free grammer formalism is that it implies
the use of a non-deterministic analyzer, even in simple cases., Look-
ahead Jjust cannot be described in this formalism. This is one reason
why in Section 6 we shall introduce conditionals in a formalism related
to context-free grammars.
Before that we want to apply to context-free languages the results

and the considerations of this last section and of Section 3.

L6

SECTION 5
AFPPLICATION TO PROGRAMMING LANGUAGES
a) Preliminaries

Most programming languages make use of structures conveniently
described by regular expressions, such as the block structure we have
examined in Section 4b; since regular sets are simple to analyze, we
want to take advantage of this.

We will first examine as an example the case of Euler (Wirth and
Weber [1965]), in preference to Algol 60 because Euler has an unambiguous,
simple and systematic syntax. Furthermore Euler is a generalizeation
of Algol 60.

Seeing that Euler can effectively be analyzed by recursion of
finite state functions without backtracking, we will formalize this
approech to language recognition, define a class of sets of strings

which we will call regular context-free (RCF) and study its properties.

b) Regular Structures in Programming Languages

Euler syntax (see Appendix 4) is defined in Wirth and Weber [1965]
by a simple precedence context-free grammar consisting of 120 production
rules in a notation similar to BNF without the vertical stroke for
alternation (Boolean +); were this sign used, it would reduce the
system to some &l rules, 35 after elimination of some redundancies
necessary to insure precedence.

It is clear that we can consider a context-free grammar as a system
of equations in @ homomorphic to a graph (see Section l), the only

L7

operators used are - and + ., * could clearly be used and corresponds
to terminating left or right recursive rules; as we shall see in Lemma 5.k,
non-terminating left or right recursions define variables equal to ¢ .
Such systems have one and only one solution (Ginsburg and Rice [1962],
Letichevskii [1965]).

If in the Euler system we solve left and right recursions by
introducing * and then soclve the system by substitution as much as
this can be done, we eventually obtain no more than two large equations

in one variable, cne equation being recursive:

progrem = f(expr)

expr g{expr)

see Appendix 4 for f and g .

This is not enough to ensure that Euler can be analyzed without
trial and error by a recursive use of the finite state functions f
and g , because it could happen that the analyzer would not know in
some cases when to go up or down one level in recursion rather than to
keep absorbing symbols on the same level, so that it would have to
proceed by trial and error; in terms of programming, we say that it
would backtrack, in terms of automata theory that it would simulate
a non-deterministic automaton.

In the Euler case, wherever expr occurs in f or g , it is
surrounded by two bracketing symbols. These symbols are used only
for bracketing end there is no chcice within the brackets. This clearly
shows that Euler can be deterministically recognlized by two finite-state
automata, one of which can call itself recursively by way of a pushdown&‘

-)
store, on which the place where a recursion must return is saved when

L8

the recursion is entered. Such analyzer is not only extremely fast
but also minimizable.

Since Euler is a generalization of Algol 60 this method seems
promising. In fact the Meta series of compiler compilers (Schorre
[1963], [1964], Schneider and Johnson [1964]) implicitly uses a
variant of it, although in a non-systematic and informal way.

The role of regular structures in programming languages was first
recognized in éul;k [1962] and rediscovered by Carr and Weiland [1966]
in a misleading paper where it was wrongly argued that it is possible
to express with reguler expressions "the Revised Algol 1960 syntax in
completely nonrecursive terms". Neither its problems nor its implica-
tions have been studied.

Note that the role of the operator * is to force us to analyze
iteratively what it is not necessary to analyze recursively; in this
strategy the push-down store is used as little as possible.

What we must do now is to rigourously define the strategy we have
broadly described, characterize the subclass of those deterministic
context-free languages which can be analyzed with it and examine their

properties.

¢) RCF languages. Characterizations.

We need first to introduce some important notionms.

Definition 5.1: The left derivative of A with respect tc B,

ﬂBA is defined by

SA = {a}(3B)[B e B ABa ¢ A} .

kg

OBA is the set of all strings obtained by chopping off a string
in B at the head of a string in A .

Particularly when B is a unit set of one string, this notion is
central to the gedanken experiment oriented theory of automata. The
variables in an SRL system S, are equal to derivatives of A , This
approach is used in Stearns and Hartmanis {1963] and Brzozowski [1964]
for regular sets.

Of interest to us here is the left derivative of a sei with

respect to 1ltself:
QXX={G|(3ﬁ)[B€XABan]} .

Definition 5.2: A predicate 11 on 82 is defined by:

N(A,B) = [first(8,A) N first(B) = 8] .

We shall say that _A is separable in _AB .

This definition corresponds to the difficulty we have mentioned
in Section 5b. Suppose we are analyzing y from left to right, where
y ¢ C = AB, Necessarily (Fo)(3B)[y =oB Aac A APB e B] . The
analyzer for C calls upon the analyzer for A first; when the
analyzer for A comes to the end of @ it should be dismissed and
the analyzer for B called upon, but if there is a string oal €A

where «

1 and £ have an initial non-null segment in common we are

unable to recognize at the end of & whether the analyzer for A
has to be dismissed or not. We see trat if A is separable in AB

this cannct occur.

50

Observe that the operation by which the analyzers for A and B
are called successively to form the enalyzer for C corresponds to the
notion of function of function.

This notion of separability is important and will be often used.
We shall write M(A,B) for M(A,B) = true .

Because [I{(A,B) expresses a property of sets, its value is preserved
when we substitute for A or B expressions to which they are equal.

Let us now define the class of sets we are interested in.

Let S be a system of equations:
X, = fi(xl,...,xn) 13 1,..4,n ’

vwhere fi is a restricted regular expression over T U Is . Consider

the system S' obtained bty developing each f, into its canonical

i
SRL system, introducing new variables BiJ H
X3 =By
B,,= Y.aB,,_ +). XB, , + 8(B,.) im1,...,n
1 gep 1o Xelg 13x i

J = l,...,lni .

Definition 5.3: A set of strings is regular context free (RCF) when

it is the solution of a system S' in regular fomm; i.e., containing

only two types of equations:

=)
(1) B,, a:e:wani"‘ + 6(#13,
(i) B, = XB,, ~with B(X’Bklx) .

51

To say that X 1is separable in Bkl means simply that
(Ya)(¥B)[((B # A) A (@) A (0B e X)) = first(B) £ first(B,)] .

The ldeﬁpacy of this defin’tion to the algorithm we wish to use is
due +o the fact that the process of expansion into S' is a formal
representation of the algorithm.

1 is decidable for context-free languages. Algorithms for its
computation are given end discussed in Appendix 5. Usually, as in the

Puler case, [is obviously true.

lemma 5.4: In sny system corresponding to a context-free grammar, a

variable defined by a non-terminating recursion is equal to ¢ .

Proof: @ 4s a solution of the corresponding subsystem.
The solution is unique. (Ginsburg and Rice (1962], Letichevskii
[19651). |

Example: N = aN + bN + aNb + NN .

Since I is finite, the occurence of variables equal to ¢ ecan
be recognized by mere testing and the system can be simplified by the
rules Af = A = ¢ and A+p = f+A = A .

When one has defined a class of sets of strings, it is often
useful, as a tool to study its properties, to characterize it in terms
of a family of automata each of which recognizes jJust one set of the
class., Here we are clearly going to obtain a subfamily of the one-way
deterministic | :a (push-down store acceptors) (Schitzenberger [1963],

Ginsburg and Greibach [1965]).

52

As we shall see, RCF langusges can be characterized by properties
of systems of equations in more than one way. Depending on the particular
characterization one uses, the class of automata can be defined by various
forms of restrictions, necessarily all equivalent, dbut more ~r Less

natural. We are going to introduce one which we find natural.

Definition 5.5: (Greibach [1965]). A grammar rule is in standard form
when it is of the type X —»-xl...x“ n>0. Agrammar is in standard
form when all of its rules are.

For any context-free set L , L-\ has a standard-form grammar (ibid.):
this result is the formulation for grammars of an sutomaton-theoretic
result: to any pda terminating its computation with an empty pushdown
store, one can associate another one which defines the same set of
strings, under the same condition, and has a finite state control-with
Just one state (Ginsburg [1966], Lemma 2.5.1). Clearly the latter

works on a left-right, top-down, generally non-deterministie, recognition.

Lemma 5.6: In any CF system obtained from a reguler form system by
substitutions of equals for equals, if X and Y are two consecutive
variables in the right part of a production rule, X 1is separable

from XY .

Proof: We have two types of rules

(1) , B,, =) aB,, +8(8,,)
17 S ids ij
(1i) B, = XB,, ~ with n(x,aklx) .

53

In a first substitution there can be a difficulty only when
substituting for X the expression to which X is equal. But because
se‘ga/;-ability is a property oi' sets, not of grammars, it will be preserved.
#e same reasoning is clearly true for other steps of substitution.

/x’[(Note in particular that by definition of . the case A\ ¢ X is no:
excluded.) 1

Definition 5.7: A grammar is an s'-grammar when all of its production
rules are in standard form, X -axl...xdx#l...xn , n>20C ,oreoef

the type X -\ , subject to the conditions that

(1) for eny ordered pair (X, , X,,.) appearing on the right ci a
i J J+1

production rule,]I(.1 is separable in xjx;}ﬂ s l.e., H(XJ,XJ“_) .

(11) no two production rules having the same X have the sam: a .

;

Let us work out an example which we shall generalize afierard.
Consider the following definition of a simplified arithmetic

expression, where the operators are @ and ® and the varentheses

are denoted Tv square dbrackets; A stands for arithmecic expression,

T for term, F for factor, i for identifier (a terminal symbol).

A =T + AOT
T = F + T8F
F=1+ [A]

Solving the left recursive equations in this system, which is
equivalent to the usual context-free grammar for arithmetic expressions,

we get: ‘l “

A= T(@T)*

F(oF)"

3
]

i+ {A}

|
L}

A1l veariables but A can be eliminated and we can get A @gs a
function of A , For clarity, let us not do it now; ve eliminate

only T :

A = Fler) (or(ee))"

F=1+{A)

We now expand A into & regular form system: {(quantities equal

to @ not written)

A=A
L A
Ay = FA, where (rule B ="BB +)\ applied twice):
* * *
A, = (8F) (oF(eF))

W

8r(®F) (oF(er)™)" + (or(er)*)"

)

& - oF(@F) (oF (@M ™) + A

=$Ml+®Al+x

50 that we get directly tre minimal SRL system (over T + {F})

A=Al
A1=FA2
A2=&A1+ml+>‘

Substituting now i+[A] for F we get the regular form system:

55

A=Al

Al=u2+[A3
‘2=“l+ml*X
Ry = Ay

n(A,A‘) since tint(Au) = {1} wnile first(ﬂ“.%) = {0,8} .
Now we vant an s'-gremmer; the only eguation to be expanded is

A5 - Mu « By substitution
A, - Al‘h = MzAh + [A3Ak
Note that by Lenmma 5.6
U(A)Ah) =» H(AI’A‘I') = (H(AZ’AR) A “(AB:A“))
and the s'-grammar is:

A =i,
Al - [11\5

Ay~

Ay =04y
Ay A
Ay 2 1AA,

A5 - [ASAh

A, = A,

Note that all these manipulations can be done by a computer which

would easily handle much larger expressions.

5€

Theorem 5.8: Aay RCF set has an s'-grammar; any s'-grammar defines

an RCF set.

Proof: (i) Any RCF set has &n s'-grammar.

Starting with a regular form system, we eliminate all variables
equal to ¢ (Lemma S.4). 1In the resulting sv-iem we want to elimirate
terms of the foorm B = CD , In all such monomials, where the leftmost
symbol is a meta-variable C , we substitute for C the expression
which defines it. By Lemma 5.4 the process terminates. There is a
difficulty only in case in the last substitution 68(C) = A . We obtain
then an equaticn of th - form:

B= L aC, C,...C D +C

...CD+6(E)’ T.C€T .
aceT, n 1

1

¢ a2
For two consecutive variables CiaJ ’ c(i+l)aj , h(ciaj,C(i+l)‘d) ’
by Lemma 5.6.

(c,u) implies thet T, N TJ?-» g i,ij=121,...,p.

The transition from the system thus obtained to an s'-grammar is

immediate.

(i1) Any s'-grammar defines an RCF set.

To a rule X -a.xl...xn associate

- if n>1 the n equations (Yl""’Yn-l , n=1 new symbols):

X = ey, + 5(x)
Yl = XlYe
Yn-l = xn-l n

57

- if n=1 the equstion X = aX, + 8(X)

- if n=0 1tie aquations X = aL + 8(X)

L=\

where 8(X) =\ if a rule X -\ occure in the s'-grammar and

&X) ~ ¢ otherwise.

We cannot have n(xi,Yw) = false in onz of these egqualities,
otherwise we would have for some J , 1< j<n, apair (xj’xjﬂ)
for which n(xd,xy_l) = falsc .

We obtain a regular form system. .

Note that if we were not concerned with separability and regular
form systems, we would have here a simple algebraic proof of the existence
of a standard-form grammar for any context-free set nct containing \
{Grzinach [1965]); the rules X -\ being eliminated 'y the method of
lLomig 4.1 in Bar Hillel, Perles and Shamir [1941), wh:2h amounts +o a
stu.atitution of xl + A for X , where Xl =X -\ is a new, easily
defined, context-free =ci,

We may call a pre-standard-form grammar a grammar which is made of

a standard-form grammar plus, possibl;,, a rule A 9\ , where A is the

root. Any context-free set has such a grammar.

Corollary 5.9: Any RCF language has an s'-grammar in which no rule

has a right part conteining more than two variables (s'-e-gramg).

Proof: We use the construction of Corollary 3.2 in Greidach [1965].

It preserves the properties of s'-grammars.
.

58

let n be the lergth of the longest right part of a rule. We show
that if n >3 , we can construct an equivalent s'-grammar with n
reduced by one.

For each pair of variables A,B ¢ I creatg a new symbol [A,B] .
For each [A,B] scan all the rules A —*aAl...Ap 3 if p < n-2 , create
a rule [A,B] -*aAl...ApB 3 if p = n-1 , create a rule

[A,B] —oaAl...A [An-l’B] ;s if p - a , create a rule

n-2
(A,B] —’aAl...An_5[An_2,An_l][rnB! . If B(A) =\, scan all the rules

B —’bBl...Bq ; if q < n-1 , crzate a rule [A,B] -*bBl...Bq s if g - n,
~y - f -

xrea' e & rule [(A,B] = bB,.. Bn_e[Bn_l,B] . If B(B) = A too, create

a rule [A,B] -\ . Now replace all rules X -*xXl...Xn of the old
grammar by a rule X —’xxl...[xf¢l,xn] ; this connects a number of new
variables [xn_l,xn] to the root, ‘ake the productions which correspond
to them and discard the unnecessary cnes.

It is clear that if the restlting gremmar were not an s'-grammar

the old one could not be one since 'nly substitutions are applied. l

Note that, as we shall see in Section 5d, an s'-grammar or an
s'-2-grammar can be ambigucus, slthough it is possible to derive from
them deterministic parses; their form is particularly convenient to

prove results about RCF ling.ages and to characterize them automaton-

theoretically.

Notation: A one-way deterministic pda M (see for instance, Ginsburg

[1966], Section 2.6) with one final state, is given by

M= (KT,I,0,3,q,(q}) where

59

K 1is the set of states of the finite state control automaton,
K= {qo,...,q,n} .

T is the input alphabet. [al,ae,...ur}

I 1is the finite smet «f pushldown symbols. f{A,B,...}

A o mapping frou K x(T U {e} UA}) X (IU (A)) into X x1I .
(tramsition function)

¢ I (initial pushdown symbol)

% is the initlal state and only final state.

N is defined by rules of ' types:
Lo (qeeX) = (qpYe.Y,) n21 (Read and Expand)

The control in state g, , a €TU {A} current symbol on the
input tape, or . = \ meaning that the input tape is empty, X on
top of the pushdcwn store, or X = A meaning that the pushiown store

is empty; & is rea¢ r, ¢, 1is reached and X repiaced by

L

Yl...Yn vwhere Yr is now or top of the pushdown store.

(qi,e,x) - (qJ,Yl...Yn) n>1 (Expand only)

same &: Iir 1 Sut the cperation does not depend upon the input which is

not read in, .
3. (qi‘.k’x) - (qJ,t) (Read and Erase)
sam2 as 1 but X 1is erased instead of expanded.

L, (qi,c,X) i (QJ,t) ‘ (Erase only)
a combination of 2 and %.

60

Definition 5.10: An s’'-machine is a one-way deterministic pda with

one final state, which satisfies ttr: Jollowing " restrictions:

(1) card(K) < ecard(T) + 1
(11) all Read and Expard rules sre transitions from q_ to q,
— Expand Only 9y T 9 i40
— Read and Erase 9, ~ 9 ifo
— Erase Only - — g 10
{same 1).

Except that a Read and Erase rule where A is read is a

transition from q, to q, -

(111) To each state q; , 1 ¥ 0, is associated one letter s

in T , one-to-one so that

- For each Expand Only rule from siate q there s
& Read and Expand rule where 8y is read-in, the remainier
of those two rules being identical.

- In a Read and Erase rule, the read-in ., corresponds
to the Y which is reached from q » A to q, .

- For each Erase Only rule in 9y there is a Read and
Erase rule vhere a, is read-in, the remainder of those two

rules being identic:zl.

If a pushdown symbol eppears in the left part of a Read and
Erase or Erase Only rule, it appears with every letter in T
in the left part of some rule of type Read and Expand, Expend
Only, Read and Erase, or of type Read and Expand, Expand Only,
or Erase Only, respectively.

61

(iv) It terminates its computation with &n empty pushdown store.

These rules are phrased in such a way that the states qi different
from q_ and only these staetes are used Just to "remember" one character
8, for look-ahead purpose; so that, since the machine can remember only
one letter, it cannot read when in a state 9 i 40+ it just stays
in i and pops out pushdown symbols until it gets one which would be
expanded with a; . It then expands it and returns to q, - Note that
it is forbidden by the iast restriction in (iii) to use the pushdown
store to remember from step to step the last letter read-in.

These rules certa‘nly are complicated; it is not clear how they
could be made simplers; on the other hand the functioning of the machine

is intuitively quite simple.

Theorem 5.11: Any RCF set can be reco::zed by an . -machine and

conversely any s'-machine recognizes an KC¥ :et.

Proof: By Theorem 5.8 we can start from an s'-grammar,

Tc a production
B—aX ...X
1 L n
associate the rules
(qo,ai,B) —*(qo,xn...xl) and

(qi,e,B) —o(qo,xn...xl) .
To a production
B—=A

62

associate for all i such that a; # first(B) , the rules
(qo’ai’B) "’(qise) ’

(qire.vB) = (qi,t)]

and
(qoi)"’B) - (qosﬁ) .

Separebility and the ftet that no two productions with the same B
on the left can have the same &, “n tke right express precisely that
the pda just defined is deterministiec.

If the computation starts in a, with the pushdown store containing
the root § , it will stop in a, with en empty pushdown store and a
completely read-in input string « , if and only if Q belongs to the
language defined by the s'-grammar.

The converse is obtained ty the reverse argument. l

d) XRelation to Other Classes of Languages

We are going to relate RCF languages to two other classes of
languages which heve been recently introduced.
In Korenjak and Hopcroft [1966), one-way deterministic pda are

studied which

(i) must read one input symbol per pushdown symbol erased,
‘1) erd their computation with an empty pushdown store and
(ii1) have a finite state control of just one state: the s-machines.

They define the s-languages. If we define en s-grammar to bu a

63

standard-form grammar in which no two rules X — .xl...xn y n20
having the same X have the same a , any s-grammar defines an s-langusge,
any s-language has an s-grammar,

For such a grammar predictive analysis cannot go into a blind alley;
ancther imnortant property is that no initial segment »f a word deriveble

from a variable can be derived from it too (prefix property); this implies
left and right cancellation.

Lemma 5.12: The class of s-langueges is properly included in the class

of RCF languages.

Proof: - Any s-grammar is an s'-grammar because the prefix property
implies separability.
- The finite set {a,ab] does not have the prefix property, it

18 not an s-language. It is RCF as any regular set is. |

We want to give a more complex example because any regular set with
an end marker is an s-language (ibid.) and one may wonder whether
s'-langusges are but quite a mild generalization of s-languages.

Consider the set S = {lec*cnacnbmﬂln,m ¢ Q) . This is not an
s-language because an s-machine cannot recognize it, since it cannot
save information except on its pushdown store and must read one input
symbol per pushdown sﬁbol popped out.

An s'-2-grammar wnich defines it is

] -9bSlB
S1 —vbSIB
5, = cSEK
82 —»cSQK
Sl — ak
82 = sl

B - bL

Lo\

K=clL

K=\

Note tha* the set S8 , @ an end marker, is not an s-language
either, for the same reason as § .

One must emphasize that this last grammer is ambiguous: the
derivable intermediate string, bbccccaKKKKBB for instance, can yileld
bbecccacebt in 6 ways, according to the K 's which are parsed into A ;
for the corresponding s'-machine, the rule K -\ 1is to be applied only
when the input character read-in does not belong to first(K) . This
cannot be expressed in an s'-grammar; this supplement of information is
in I and in the restrictive rules by which an s'-machine, i.e.,

a deterministic parse, is derived from the s'-grammar,
To make such condition explicit we could use unrestricted rewriting

rules such as: Kb = b .

Let us consider now another class of languages.
The Meta series of compiler compilers (Schorre [1963] [1964],

Schneider and Johnson [1964]) uses restrictions of regular form systems

65

vhich have not been studied or even made precise at this writing;
because, as we have seen in the Euler case, separability is often in
practice trivially recognizable, it may have seemed unnecessary to
give as general a condition as possible for a language to be in the

realm of the method. An attempt is made though in Schorre [1965].

Definition 5.13: (ibid.) A binary grammar is a context-free grammar
in which all the rules have Just two symbols on the right or are of
the form A -\ .

Let us use the notation A,B,... for symbols which are either

upper or lower case.

Definition 5.14%: (ibid.) An fer (first character recognition) grammar

is a binary grammar in which:

(1) if A-IK and A-DE are in it, then
first(BC) & first(DE) = # and 8(BC) & 5(DE) = ¢ .

(11) 4if A - BC 1is a rule, B is separable from EC .

Some properties are given in Schorre [1965], yielding an algorithm
to determine Vhethér a grammar is fer. No further investigation of
these grammars and of the class of languages they define has been
published and the relation of fer grammars to the formalism used in
the Meta series of compiler compilers has not been made clear.

Note that because Il is preserved by substitution, we have in
any derivable string A_lA_2‘A_n , n>1, n(éi'éiﬂ) » 1=1,...,n-1;

80 that the restriction that the grammar be binary is unnecessary.

66

Lemma 5.15: There are no terminating left recursions in an fer

grammar,

Proof: We certainly cannot have a direct terminating left recursion:
if B—BC with B—EF or B—A, then EFC CB or C CB which
is not compatible with respectively first(BC) N first(EF) = @ or
N(B,C) . If a left recursion is not direct, it can be reduced to a

direct one by successive substitutions, without altering separability. .

Note that is is as usual possible to get rid of nonterminating
recursions by eliminating any variable equal to @ . We will suppose

that this has been done.

Theorem 5.16: Any RCF set has an fcr grammar, any fcr grammar defines

an RCF set.

Proof: (i) Since a regular form system is clearly equivalent to a very
restricted fcr grammar any RCF set has an fcr grammar. We want to show

that the restrictions are not effective,

(ii) In an fcr grammar there are rules of 5 types:

1. A-)\
2. A - be
3. A - 1C
L, A - Be
5. A - BC

67

Let us show that there exist an s'-grammar which defines the same
set as any fer gramm:r. And to do that we reduce an fcr grammar to an
8'-grammar without rodi.ying the language, just as we 4id for regular
form svstems. First define an equivalent system of equations:

- Determine all varisbles A such that B8(A) = A .

In the equation of A :

- To each rule A = bc corresponds a term bK , K a new variable,
where K=¢L , L=AX.

- To 2ach rule A =B corresponds a term bC ,

- To each rule A — Bc corresponds a term BK .

- Tc ~ach rule A = BC corresponds a term BC .

We have a system of equations of the form
A=FaB +TcD+8(a) .

In any monomial CK we substitute for the leftmost variable the
expression which defines it: C =) aC, + Y EF + 8(C) .

We do the same operation in any monomial EFD or D we may have
obtained.

We keep doing this as long as we have in the equation of A some
terms which do not begin by a terminal letter.

By Lemma 5.15, the process comes to an end since the number of
variables is finite and we have eliminated non terminating recursions
using Lemma 5.k,

We have not introduced new variables in this calculation and it
is clear that separability is preserved: 0(C,D) A I(E,F) A (EF cc) =

o(F,D) ; thus, the resulting system is equivalent to an s'-grammar

68

because of the condition (A »BC) A (A »DE) = (first(BC) N first(DE) = §)

for fcr grammars. l

The situation of RCF languages among other classes of context-free

languages is depicted by the following graph:

Context-free

d-deteminw

i
i
i

v deterministic (IR[k)) (&)
bounded meta-linear (1)
context-free (2) RCF bounded
l \ context (6)
linear (1) s-languages
sequentially l l
definable (8)
alnimal bracketed (5) simple

linear (1 precedence (7,

one sided linear
(regular)

Inclusion is proper along an arrow. (We shall see in the next section
that the class of RCF languages is properly included in the class of

deterministic languages.) The references are:

1. Chomsky [1963].
2. Ginsburg and Spanier [1964].

3., Hivbard [1966].

69

L, Ginsburg end Greibach [1965], Knuth [1965].
5. Ginsburg and Harrison [1966].

6. Floyd [1964].

7. Floyd [1963], Wirth and Weber [1965].

8. Ginsburg and Rice [1962].

We are now going to study the properties of RCF languages and, to

begin with, we shall delimit the field by some negative results.

e) Negative Properties of RCF Languages

Theorem 5.16: It is undecidable whether a context-free language is RCF.

Proof: Following the method of the proof of Theorem 6.1 in Bar-Hillel,
Perles and Shamir [1961], we construct a class of context-free languages
by which we map the set of solutions to the Post correspondence problem
(Post [1946]) onto an RCF language, o , and the nor-solution onto
non RCF context-free languages.

Given n € & , two finite sets A = {C!l,...,an] » B=1B,,..,8),
@ symbol ® # T end a finite set S = {bl,...,bn} » by £ T (Vi)

consider the three following langusges, functions of A, B and n.

Ly = b, .. b a’i‘ a’j ®B, ...B. 0

1 o o 1 1 g
L, = (e ala e (T+S)*}

vee h:| lp,q € Q}
1l

L3=L1&L2.

I'l and L2 are contexte-free and more precisely minimal linear

(Chomsky [1963]), their complements, L and L) are contest-free

70

too (more precisely linear and unambignous). {Chomsky and Schiitzenberger
[1963]), Theorem 3, page 141.)

If there is no solution to Post correspondence problem for A , B
and N , 1’..5 = @ ; otherwise L} is not context-free (Bar-Hillel et al.).

Consider its complement L} = L]'_ + Lé .

L}' is context-free as the union of two context-free langusges (ibid.).
When L, =$, L - 1" ard is RCF. When L #$, Li camot be
RCF because then it would be deterministic as any RCF language is and
its complement 1, would be deterministic too (Schiitzenberger [19631,
Ginsburg and Greibach [1965]) thus, a fortiori, context-free.

Since the Post correspondence problem is unsolvable for card(T) > 2

there is no slgorithm to decide whether a set Lg » & function of A ,

B and n is RCF; this implies the theorem. [|

Corollary 5.17: It is undecidable whether u context-free langusge is

equal to a given RCF language.
*
Proof: Since it is undecidable whether Li =T . '

Theorem 5.18: It is undecidable whether the intersection of two RCF

languages is empty.

Proof: The proof is very similar to the proof of Theorem 18 in Rabin
and Scott [1959) or Theorem 5 in Landweber [1964].
Given as before ne R , A= {al,...,an} , B= {ﬁl,...,Bn] ,

§=f{b,eeb), b £ (¥i)

71

Let I‘l -'biLiAi I.2 -O‘m;‘I.ZA:J
Ll-ﬂ. La-o).
Ai_'ai 1=1,...,n Ad—ﬁad J =1,.eayn

These are two s'-grammars, as it is easily verified.
Their intersection is empty if and only if the Post correspondence

problem for this particular A , B and n has no solution. This

proves the theorem. .
Corollary 5.19: It is undecidable whether the intersection of two RCF

languages 1s RCF or not, regular or not.

Proof: § is an RCF language and a regular set, and it is decidable,
as we have seen, whether an RCF language (more generally any context-free

language) is empty. Thus Theorem 5.18 implies the corollary. .

This leads one naturally to ask whether the class of RCF languages

is closed under intersection.

Lemma 5.20: The class of RCF langueges is not closed under intersection,

union, concetenation or closure,

Proof: Consider the following RCF languages defined by regular form

systems. (Quantities equal to # not written.)

T2

L1=AC thAB

A=2aB+ A A=gh ¢\

B=ABl B=bBl+K

Bl=bL Bl:BC

L=\ = cL

C=cC+A L=X

L, = {a%% |n e @ "ol n € 0
., = fa ¢ |n e 9} L2={¢bc nef

L &L, = {a™"c"|n € 9} is not context free (Bar-dillel, Ferles

and Shamir [1961], Scheinberg [1960]) a fortiori not RCF,
L + L, = {a®fn,p,q e @A (p=nVvp=q)

is inherently ambiguous (Parikh [1961]), thus it cannot be RCF since
RCF languages have grammars ylelding deterministic parses, as we have
seen in Sections 5b and c.

Let I‘} = clLl + L2 ’ 1.3 is RCF, a regular form system defining

it is immediately obtained from those defining L1 and L2 .

Let Lh =d+x, Ll+ is finite thus RCF.
| Ly-Ly = adL, + d(r.1 + La) + (1.l + L2) is clesrly inherently
ambiguous, thus cannot be RCF.

»* E
Let Lg = {aa"v"a |n € 0} + {a*bnan\n €0} . L. is not deterministic

5

(Ginsburg and Greibach [1965), page 33) thus not RCF, while L \

clearly is. .

As we shall see next, the language {b%(a” + ¢®)|n € &} 1is

another example of a non RCF set which is the union of two RCF gets.

(&)

We leave unresolved the question of closure under complementation.
As one could expect from the role of a left to right parse in the

definition of RCF languages:
Lemma 5.21: The class oi RCF languages is not closed under reversal.
Proof: L, = {(a™ + ¢")"|n € 8] 1is RCF:

I,]-:‘B'.'CB'.'X
B= LlBl
Bl-'bL

L=A

is a regular form system which defines it.

Li = {b™(a” + c")|n € 2} is not RCF because it cannot be recognized
by an s'-machine.

The machine cannot predict whether it will meet a string of a 's
or c¢ 's when counting the b 's; so that when counting the a 's or
¢ 's, it must remember somehow either what the first non- b letter
was or what the last read-in letter is. It cannot use its finite

state part to do this and if it used the pushdown store it would have

to destroy that informeation before it couid use it. I

Note that L = [b%(a" + ¢™)|n € A} 1s cbviously a deterministic
language so that the inclusion of RCF languages intc deterministic
languages is proper.

gsm-mappings {(Ginsburg and Rose [1963]) are often useful in

proving results about context-free languages.

T4

Lemma 5.22: The class of RCF languages is not closed under gsm-mapping.

Proof: The set L, = {a® dR|® £ T} 1is RCF as generated by the
s'-grammar

Ll = aLlAa

Aa-'aL

for all a €T

Ll-»GL

L-h

The set L, = {ouR} is not RCF because it is not deterministiec.
L2 is obtaired from Ll by the gsm-mapping which erases ® and

meps all other symbols onto themselves. I

This implies that the class of RCF languages is not closed under
sequential transduction, of which gsm-mappings are the deterministic
case.

This impiies also that the class of RCF languages is not closed
under substitution of an RCF set for a given letter or substring; here
substitution of (A} for {®) . A more interesting example is the
following highly patholegical non-deterministic context-free langusge:
{a™a"ba"aPbaPa"|m,n,p € Q) due to R. McNaughton. It cen be obtained
from (amcdamlm €) by obvious substitutions. It cannot be parsed by
the classical methods from Jleft to right, right to left nor even both ends
inward snd it is unambiguous.

Another negative property comes up naturally, as we shall see in
Section 5g, in the study of the application of RCF languages to Algol 60;

as the preceding lemma, it disallows the application to RCF languages

75

of techniques frequently useful %o prove results on context-free

languages such as precisely the machine mapping theorem (Ginsburg
and Rose [1963]).

lemma 5.23: The class of RCF languages is not closed under intersection

with a regular set.

Proof: Let L

L = (a4 ["5)™|n €)

1, = (sl + (M0

1.5

L2 is regular.

1.5 is RCF as defined by the following s-grammar:

L, + (I"a)™ + (M1%:)n € O)

Lj-'ac
Iy e

C=—a
C=-YbY
Lj—»[LuBC
B =]
Lh-'[LhB
I'h-"

Ll = 1.5 & L2 .
I‘l is not RCF because it cannot be recognized by an s'-machine:

there is no way by which the machine could save the information that

the bracketed character is for instance an "a" for matching against

76

the terminal character, tecause it cannot save it in its finite state
controller and if it puts it on the puthdown store it will have to

erase it to verify the bracket matching. l

Ncte that the class of deterministic languages is closed under
intersection with a regular set. (Ginsburg und Greibach [1965],
Theorem 3.1.)

The positive results ve are going to give in Section 5g are

unclassical, let us give here a classical ocne:

Lemma 5.24: The class of RCF languages is closed under the operation

of derivation with raspect tc a string.

Proof: It is enough to show that it is closed under derivation with
respect to a letter.

let S be the root, "a" the given letter.

Consider the rules having S as a left part; among them erase
those the right part of which does not begin by "a" and erase all
the rules connected only to erased rules.

If no rule remain, DaA =@ . If one rule with S on the left

remains, it is of the form
s .-’aBl...Bn

We replace it by the rules obtained by erasing a and substituting

for B1 any expression cCl...Cp where we had B1 -*cCl...Cp in

the old grammar:

S -*cCl...CpBe...Bn .

77

We simplify any possible occurence of two identical production
rules.
We still have an s8'-grammar since substitution preserves separa-

bility. l

Noting that G e X o b(Da(x)) = \ , Wwe see that the proof of
this Lemma is exactly patterned after the recognition by an s'-machine,
as can be understood best if one thinks of the definition of an automaton

by Nerode equivalence classes.
f) Axiomatic of Context-free Grammars

We are now in a position to prove that no complete axiom system
for the equality of context-free gremmars can exist.

The idea behind the proof is simple: context-free languages are
recursive; T* is enumerable; thus given two context-free grammars
Gl and 62 defining the sets Ll and L2 , we can enumerate the
strings in T* one by one, verifying each time whether they do or do
not belong to both Ll and L2 . We stop at the first string which
belongs to one and not to the other one. Thus we have & trivial
semi-decision procedure £ for the inequality of context-free grammars.
Cn the other hand there is no decision procedure for the equality of
context-free grammars (Bar-Hillel, et al. Theorem 6.3); at best there
could be a semi-decision procedure £' . But then £ and £' taken
together would form a decision procedure for the equality of context-
free grammars; thus £' cannot exist; this implies that no complete

axior system for the equality of context-free grammars can exist either.

78

We see that to make this proof formal we must exhibit an zalgebra
in which § can be described; in other words an algebra with & complete
axiom system for the inequality of context-free grammars. This is Just
what we have been doing so far.

Recall that after having proved that any RCF set has an s'-grammar
(Theorem 5.8) we noted that with minor modifications, the proof could
be turned into a constructive algebraic proof of the existence of a
pre-cstandard-form grammar for any context-free languasge; this being
done using only relations in <RE,R1,R2> and substitutions of equals

for equals.

Let us write
(a1) sa(X) = rest(aT* & X)
(a2) sa(x) = if & =N then X else sm_st(a)(x)
n n
(a3) rest(z ai‘{i) = Z ¥, .
i=1 i=1

Since the inclusion symbol does not belong to our algzbra we
replace @ ¢ X by 8(8,(X)) = .
Recall that in <RE,R1,R2> we have the rules

(13) N& XA =0

X

(R2) xA & yB =

with the Boolean relations

(v6) A& (T)=A

(v5) A+@=a .

79

We see now that with these rules and with (d1), (d2), ana (a3),
we can forma .ize the process dezeribed in the proof of Lemma 5.24
to the point where it defines algebraically an algorithm to verify
whether 5(oa(x)) = A and we see that we can do this for any pre-
standard~-form grammar.

Thus <RE,R1,R2> together with (dl), (d2), and (d3) form a

complete axiom system for the inequality of context-free grammars.

Although, as we have Just proven, nc complete axiom system for
the equality of context-free grammars can exist, it is reasonable to
look for incomplete but practically sufficient ones. Let us consider

the following relations:
n n
(ak) first(ZlaiYi) = z a,
i= i=1

{(a5) X c first(X)rest(X) for any X £ XN .

We believe that <RE,R1,R2> together with (al), (42), (a3), (a4),

and (d5) are such a system.

We would like to acknowledge the help of J. Friedman in establishing

the non-existence of a complete axiom system,

g) Cancellation, Regularity and Equality

The results which follow shed much light on the algebraic nature

of separability. The first corollary is a generalization of Lemma 12

in Korenjak and Hopcroft [1966].

8o

Theorem 5.25:

AX =BXAX#PFANMAX) = ACB .

Proof: We show that A Z BAAX = BX AX # § ATI(A,X) cannot hold
true.
Let Et be a shortest (possibly null) string in X . Suppose there

is at least one @ e A , @ £ B ; we can write

@eA = of e AX » Of ¢ X = (refinement rule and string cancellation)
(3,,8)Mo =88 AL £ NAB cBAEL cX]

BleB = BlﬁeBX > ﬂ];GAX =

(as ~a2Zore) (za:_,gz)[sl =t NG e ANEEC x] .

Thus we have Q = algegl s With @ ¢ A and (:l e A while
EfeX and 88 eX, & A2,
This is not compatible with M(A,X) : &, is an initial :ubstring

of X (or if E,=n, 8 is); C!1§2 an initial substring <f A

1

(6, if &, =1)and @ a string in A . |

1
Corollary 5.26: (right cancellation).

AX = BXAX # @ ALI(AX) ATI(B,X) = A=B .
The proof is immediate.

Theorem 5.27:

XA=XBAX£@ATNX,A) = ACB .

~

81

Proof: : show that AZBAXA =XBAX # @ AN(X,A) cannot hold

true as befcre, except that this case is simpler.
Iet ¢ Dbe n shortest non null string in X .
let TehA . afgB.

e XA » X e XI. » (refinement rule and string cancellation)

(28,6)0 = 8B AL FXAB €BALL eX] .

Thus we have !lﬁl €A and l&l € X with & ¢ X , which implies
I(X,A) = false . l

Corollary 5.28: (left cancellation)
XA=XBAXFPANXA) ADX,B) » A=B .
The proof is immediate.

Corollary 5.29: The equation A = XB (resp. A = BX) subject to

n(x,B) (resp. MN(B,X)) cannot have more than one solution.

The prcof is immediate.

An obvious particular case of 5.28 is often used in the form
OA =0B =» A =B , which we have derived in Corollary 3.8.

The following corollary of Corollary 5.26 is a generalization of
what Korenjak and Hopcroft call a type B replacement.

Suppose that from two systems of equations having the same solution
we have a derivable equality xl...xm = Yl...'[n y myn >2 , where
Y. ,...,Y, are all different from ¢ and such that H<Yi’Yi+1) ,
82

i =1j...yn-1 . Let @ be some non-null string in X a is

1°
certainly an initial substring of a string derivable from Yl“‘Yp :

(014 = OZaYk...Yn for some set Za and some k> 1,

20 . Oxm

Corollary 5.30: With the above hypothesis and notations,

xl...xm =Y ...Yn - XE...Xm = ZGYR"'Yn k>1

X2y = Y eelYy o .

Proof: (i) = part.

xl...xm = Yl...Yn 2 X ...Xm = OZaYk...Yn = X

2 Xm =2.Y ...Yn

oree otk

first equality.

IX‘?. . .xm = Zayk- > Yn

v
RIS SR SN

= Xl...Xm = XlZaYk...Yn = Yl...Y::...Yn i

(corollary 5.24) X Zy = YooY,

second equality.
(ii) <= part.

X.ooX =2.Y ...Y
27 m KT Y X L X = XZY ... =

172 m 1k n
X2y = ¥

TTS

LIS I TRTTS I S . |

In the particular case where X = Yl"‘Yn is derivable from

l‘..xm

two s'-2-grammars, we can write Z, = Z,...Z j<lal#¥l and

J »

Zl""’zj variables of the second s'-2-grammar; given an equivalnece of

8

this type, we can always reduce it to a system of two equivalences where

the left part contains at most a certain number of variables which

depends upon the minimal length of the strings in xl .
We now consider equality and regularity questions.

Theorem 5.31: A connected s'-2-grammar in which no variable is equal

to @ defines an s-language if and only if it reduces to an s-grammar

in standari-2-form by elimination of all variebles equal to A .

Proof: The only formal difference between s'-2-grammars and s-grammars
in standard-z-form is in the occurence of rules A - A in the former.
Consider an s-language Al and an RCF language Dl given by two

connected systems of equations corresponding to such grammars:

A,= Y 8B, C J=1,.00,m
d acT Je’de

where possibly Bja or C.ja =\ or &
D, = Y &, F. +8(D,) 1= 1,0ee,n

aeT

same remark as abcve.

We want to show that Al = 13l » (Vi)[S(Di) =gV Di =\

A_ =D =6(Al)=6(Dl) g . It is true for i =1.

¥* *
Al =D = (va)[aT &Al = 87T & Dl] >

(va)(B CJA=E F,]

Ja ia ia

(“)[5(333%5) = a(sda)s(cda; = B(EiaFia) = S(Eia)ﬁ(Fia)] =

b(Di) =@ for all D, implied here unless some B =\,

Jacda
in which case we must have the corresponding EiaFil =XN.

By substituting in the same way for all BJ. and !ia the
2ypressions which define them we introduce new equalities, new variables,
and get 6(Di) = @ wunless D; = A, for new values of 1 .

Suppose that a variable Dq is not reached in this process.

Because we suppose the grammar connected and because an s'-grammar
cannot be ambiguous, (YVy)(Fa)(3B)[y € Dq 2 0B ¢ D1] and Dq has %o
be used in the derivation of aoyP .

At step n of the substitution process we have outlined, all
strings of length smaller than n and all initial segments of length
n of longer strings in Dl will have been produced.

Thus at step n = |oy] , D, Will have been reached, unless

Dq = ¢ ; contrarily to the hypothesis. I

Clorollary 5.32: It is decidable whether an FCF set is an s-language.

Proof: By Theorem 5.8, Corollery 5.9, Theorem 5.16, we know how to

construct an s'-Z-grammar for an RCF set defined in another way. I

Corollary 5.33: The equality prcblem tetween RCF sets and s-languages

is solvable.

Proof: Since Korenjak and Hoperoft [1966] have shown the equality
problem for s-languages to be solvable and since we have just seen that,
given an RCF set, it can be decided whether it is an s-langusge and
at the same time an s-grammar can be constructed for it, if it ectually

is one. '
85

Corollary 5.34: The equality problem between RCF sets and regular

sets is solvable.

Proof: Given an RCF set A , the set A@ with @ a symbolnot in T,
is RCF. (Tag @ to the first rules of an s'-grammar.) This is the
corresponding set with end-marker @ ,

Given & regular set R, R® is reguler on T U {@ and it can

be proved that it is always an s-language (ibid. Lemma 4).
A@=R @ A=R o
The corcllary follows by Corollary $S.31. . I

Note that this result yields another proef of Corollary 5.17
since it is undecidable whether a context-free language is a regular

set (Bar-Hillel, Perles &nd Shamir [1961]).

Corollary 5.35: An s'-grammar in which no variable is equal to i
and only one to A , defines 2 regular set if and only if it is non

self-embedding.

Proof: (i) If an s'-grammar defines a regular set R , the s'-grammar
obiained by tegging to the rules of the root a new variable A =@ ,
end marker, defines R@ . By Corollary 5.3 it can be reduced to an
s'-2-grammar without alteration of self-embedding. By Theorem 5.31

the eliminetion of all variables equal to A\ reduces it to an
s-grammar in standard-2-form which defines the regular set RE@ .

By Corollary 2.1 in Korenjak and Hopcroft this s-grammar cannot be

self-embedding. This implies that the original one cannot either.

86

{ii) Any non self-embedding context-free grammar defines a regular

set (Chomsky [195%a, bl). l

Note that Corollary 5.35 implies that we can eliminate all
variables in an s'-grsmmar defining & regulsr set and effectively
compute & regular expression representing that set. This is
okviously true also of regular form systems since we go from them
to s'-grammars by chains of substitutiens.

Note also theat this corcllary yields a direct proof of Theorem 5.16,
since it is undecidable whether a context-free language is regular.

We have not been able to solve the equality nor the contairment
problems for s'-languages, nor to show that they are not solvable. At
this writing, the class of RCF languages is the most general class of
languages for which such solvebility results as Corollaries 5.%2, 3,
and 5 have been obtained. Theorem 5.1 of Ginsburg and Greitach [1965]
implies Corollary 5.34 but the proof of 5.34 is constructive and
quite simple.

It is interesting to note that the sonlution to the equality
problem of s-languages reduces precisely to the Salomaa's algorithm
which we have derived from Theorem 3.12 for the equality problem of
regular sets. Because of Lemma 5.17 though, it seems that the same
approach which yields the simple formulation of Thecrem 3.12 could
not be used for s-languages without difficulties.

As for RCF languages, corollaries 5,26, 28, and 29 show us that
in practical cases the equality of two RCF languages will be verifiable

on the minimal regular form systems which define them.

87

h) Application of RCF Languages

We have four characterizations of RCF languages, as set<

(1) reczognizable by regular expression téchniques used

recursively, (i.e., definable by a regular form system),

(11) having an s'-grammar,
(111) vecognizable by an s'-machine,
(iv) having an fcr grammar.

The two first definitions correspond to two analysis techniques
which in most cases are radically different; these differences illustrate
a trade-off between speed and space, in the form of a trade-off between
the use of the finite-state control of a PDA and the use of its pushdown
store: the first one of these techniques makes as Little use of the
pushdown store as possible and is extremely fast, the other one, which
corresponds to an automaton-theoretic characterization, uses as small
a finite state control as possible and uses the pushdowrn store constantly.
For an actual implementation, the first one is faster and corresponds
to & more convenieat notation., This is an exampie of the fact that
automaton-theoretic charscterizations of sets of strings must be
understood as models of their computational complexity and not as

programming strategies, even when the automaton is deterministic.

We have seen that a generalization of Algol 60 is within the scope
of the method; is Algol 60 an RCF language?
There is an Algol 60 context-free construct which bars it from

being RCF: <conditional expression> .

88

The intermediary strings containing sny number n of matching
parentheses:

... then (® <bcolean expression>)" else <boolean expression>...
or

...then (" <arithmetic expression>)" else <arithmetic expression>...
are well formed; dbut

.+ Then (n<boolean expression>)n else <arithmetic expression>...
and

.+.3hen ("<arithmetic expression>)n else <boolean expression>...
are not.

As we have seen in the proof of Lemme 5.23%, <conditional z:xpression>
cannot be an RCF set, although it is the intersection of an RCF set and
a regular set.

This seems to be the sole difficulty as far as the formal syntacticel
definition of Algol 60 is concerned. Otherwise RCF languages seem to
be an insufficient model of Algol 60 for the same reasons that context-
free languages are insufficient too.

If we cannot give & more precise answer to the question, it is in
part because the definition of Algol 60 is not fully formalized, even
as far as its context-free grammar in BNF (Naur [1965]) is concerned,
and also because this grammar is ambiguous, sometimes deliberately.

e.g.: (2.6.1 in Naur (1963])

<proper string> ::= <any sequence of basic symbols not
containing ¢ or *>|<empty>
<open string> ::= <proper string>|‘<open string>'|
<open string> <open string>

89

<siring> ::= ‘<open string>’

This definition of <string> is ambiguous (not deliberately) and
the variable <any sequence ...> 1s defined only by the English meaning
of its name (somevwhat ambiguous itself), which is naturally intended to
denote the regular set (®+')' .

In this case the difficulties are easily lifted; for discussions
of the intricacies and the ambiguities, deliberate or not, of the
definition of Algol 60, see Knuth and Merner [1961], Knuth [1965 a, b
page 624]), Medema [1965].

We are going to study the ways by which we can enrich the formalism
of RCF sets.

90

SECTION 6
EXTENSIONS OF RCF LANGUAGES

a) Direction of Extension, Syntex and Semantics

It may seem natural to try to augment the class of RCF languages
within the class of context-free languages; for instance we could
consider the class of intersections of RCF languages and regular sets;
this broader class would zorresspond to an extension of s'-machines
with a larger finit~ state control where only certain states could
interact with the pushdown; we might also want to study left-right
too-down deterministic analysis with more than one charecter look-ahead
and in effect we might tryv to parallel for left-right top-down analysis
Knuth's work for bottom-up enalysis.

Although such research topics would certainly be ¢f high theoretical
interest and seem quite feasible, we want to leave them as proposals and
we want to argue that in practice other avenues for extension must be
sought. OQur argument will apply as well, mutatis mutsndis, in the cace
of bottom-up analysis, to simple precedence languages as opposed to
higher order precedence languages or ILR(k) languages.

If one wants to use an RCF language analyzer to r2cognize the
<conditional expressicn> of Algol 60, all one should :do is to set a
flag when going through the first <boolean expression> or
<arithmetic expression> and refer to it on encounter of the second one.

In the same way it i3 easy to recognize such a set as

{bn(an + Cn)|n e f}} . Farthermore, nothing can prevent a programmer

91

from using Lere a counter or two. In this vein, the non context-free
set (a™"e"|n € O) is trivial to recognize.
As we use flags and counters we can as well use lists or tables.

In effect, this is precisely what has to be done to check some
constraints of programming languages which just cannot be expressed
in a coniext-free grammar:
e.g.: - that an identifier is declared and just once in a block.

- that use end decleration agree (identifier types, array

dimensions and bounds).
- that a label occurs only once in a block.
- thet a go to statement refers to a label which occurs in its

scope.

Becguse such a practice is simple and etficient there i: no reason
why it should be used only for non context-free constraints. 1In the
case of RCF languages we believe that to try to extend the formalism
within the class of context-free languages is not worth the extra
effort, complication and corresponding loss in parsing sveed, because
these few features of programming langusges which are context-free
and not RCF can be analyzed by using the methods we have just mentioned
and because most of the non-RCF features of programming languages are
not context-free anyway.

So far we have carefully talked imprecisely about non context-free
features or constraints; let us state now that these features are for
us to be called syntactic and not semantic, contrary to what seems to

be the spreading usage. This is not a point of negligible importance

92

because it is intimately connected with the way one thinks about the
definition of artific .al languages:

The tendency has been lately to call semantic whatever peculiarity
of a programming language could rot be described in the phrase structure
system part of its definition. The belief that context-free languages
offer a close moiel of the syntax of programming langueges is not
foreign to this. This tendency is enccuraged by the observation that
the verification of a non context-free syntactical constraint, such
as existence of the label mentioned in a go to statement, is
conveniently described in the same way as is described the action
coupled with the analysis ol that statement, such as code generation.
Both are specified by associating one-to-one the :roduction rules of
the grammar and some procedures, which must be executed when the
corresponding rule is applied. In the computing community the confusion
has gone to the point where people would talk about the semantic of a
language for the semantic of a compiler or conversely; true, they are
related, since & compiler must be a semantic preserving operator, but
not identical, as is quite clear when one notes that comgilers do have
bugs. OSemantics can be precisely stated, for instance as proposed by
Riguet [1962].

Note that this improper usage we are discussing puts the people
who adopt it in an untenable position if they change formalism to
describe the same langusge~: what is for them semantic in the weaker
formalism can be syntsctic in the stronger one.

A programming language is not an object independent of its

definition, or rather it should not be: it does not have existence

B

and we do not know it by anything else. If the formalism adopted for

this definition is not subtle enough to describe it with all the

desired fineness, a set of computable conditions on strings is necessarily
added and described in some other metasyntactical languege. In the case
of Algol 60, BNF was insufficient and conditions were described in

English in order to refine the BNF definition; these conditions were

put under the heading '"semantics”, together with some broad descriptions
of the action of an interpreter. This certainly was misleading.

One must distinguish between the relations among symbols defining
the well-formedness of a string of the language and between the actions
this strirg may induce when analyzed. The latter is ultimately a
mapping of the language into some domain, the former belongs to the
definition of a set. Because there are formalisms in which all
constraints defining any recursive set can a priori be expressed,
namely, Post's formal systems, a Turing-machine programming language,
McCarthy's recursive functions of conditional expressions, that
distinction is quite meaningful. Furthermore, it is coherent with the
mathematical usage as fixed in the simple case of predicate calculus:
well-formedness is not a semantic matter, as definitively discussed
in the introduction of Church [1956], Section 09.

What appears, when we use flags, counters or tables in the course
of analysis, is precisely computable conditions on strings, necessary
to refine a formel definition mede in a too weak metasyntactical language.

We want to formalize this approach; beforehand we will study another
avenue for extension which is very general too, but has never been used

or mentioned, we believe, in spite of its simplieity.

o

b) Boolean Closure of Recursive Classes of Languages

Lemma 6.1: The Boolean closure of a class of recursive languages is a

class of recursive languages.

Proof: The proof is straightfcrward. Let us use the original definition
of recursivity as in Post [1944]; although Post is writing ebout sets

of integers, his work is relevant here: we could either arithmetize

the problem, as is often done, or use Davis's reformulatioa of it for
strings and restriet thic formulation to recursivity rather than

A-recursivity by taking A = @ . (Davis [1958], Chapter &4).

(1) A set is recursive if and only if both it and its complement
are recucsively enumerable, (Post [1944], page 290); thus if a

set is recursive, its complement is recursive.

(ii) 1f two sets are recursively enumerable, so is their union

by the very definition of recursive enumerability.

(iii) The complement of the union is equal to the intersection of

the complements.

This corresponds to the following intuitively obvious fact:
suppose we have a recognition program, for our general purpose computers,
vwhich can recognize any language of a class of sets; for instance
suppose we have a general analyzer for the class of all context-free
languages such as the Harvard analyzer (Kuno and Oettinger [1963]);
then we can easily build with it a recognition program for the Booleen

closure of this class, since:

dcA&B @ (aeA)A(aeB)
aecA+B » (aecA)V (aeB)

QecA' @ afA .

Note that the Boclean closure of context-free languages is a
larger class in @ than the class of context-free langueges; as proved
by Kuroda [1964) it is included in the class of deterministic context-
sensitive languages (sets recognizable by a deterministic Timear bounded
automatonj. In fact, the classical example of & useful context-sensitive
language which is not context-free is the intersection of two RCF sets:

(so-called "respectively construct") cf. proof of Lemma 5.20
{(a™"c"|n € 9) = {a"0"cPln.p ¢ 0} & {a"b%Yr,q € Q) .

This calls for a few remarks which form Appendix 6.

In practice, this means that if someone finds it natural to define
a language as the intersection of context-free sets, or complement of
some context-free set, or any Boolean function, such as A-B= A & B' ,
he should not refrain from doing so. As long as the sets, which he
takes the complement or the intersection of, are independently defined,
there is no difficulty. In fsct we shall see in Section €g that pecple
actually do so, implicitly; this alone would Justify the explicit
introduction of & and '.

However it is important ths% there are no two variables Xi and
XJ in the system such that X, # xJ while one is defined from the

other one by use of & or ', In such a case it can happen that the

system has nc solution.

As remarked by M. Arbib who noted this difficulty, the situation
is analogous to the one in which we obtain unstable circuits by
assembling well-behaved components without timing constraints.

It is an interesting open problem to know when such systems have
a solution; it is a generalization of the already difficult problem of
knowing when a system of equations in a Boolean algetra of sets has a
solution.

The main shortcoming of the use ¢«f + or & in the safe case,
is a loss of speed, since the recognizer must be applied twice on the
same string; on the other hand these applications are independent and
can be made in parallel.

Another problem with the use of & and ' is in defining the
structure of the analyzed string. This difficulty is removed if we
consider that the structural tree of a string, as defined usually, does
not reflect an inherent property of the string but rather describes
the course >f analysis, independert analysis phases being described by
parallel branches in the tree. (cf. Section ba.)

When the application of a ruie 2 - BCD corresponds usually to 3

nodes in the structural tree:

We associate to it 5 nodes in which the operators involved, here

two concatenations, do appear. Let us adopt the convention that BCD

97

1s read from left to right, so that BCD is understood as B(CD)

rather than (BC)D :

b'/ \o
VAN
c D

In the same way if a rule A - B « C is used, the substructure:
A
&
B C
will appear in the development of the sentence trze structure.

e.g.: To A - (BC) & (EF)' corresponds

R4 > &—

N
AN

98

¢) Conditicnal Regular Expressions

The methods we are going to use have been introduced in McCarthy

(19631.
Let 31,}32,...,_‘% be a set of variables taking values in
{true,false} when defined.

Their algebra £ 1is defined in a slightly different manner than

a Boolean algebra is. We introduce a ternary operator:

if b, then Db, else 33
with the following valuation rule
b if b, then b, else 25
true value (32)
false value (D,
false (b)
undefined undefined

Such operators as A, V , ~ are redefined by

b, Ab,=1f b, then Db, else false
b, Vb, =1f b, then true else b,

~b, = if b, then false else <irue

2 2 =2===

so that A and VvV are no longer commutative since “or instance we
can have D) Ab, = false and Db, AL, undefined. This corresponds
to & left to right evaluation scheme.

The family of all functions built with this ternary operator is

studied in McCarthy [1963), & complete set of relations o manipulate

9

them is given and two canonical forms are derived in Section 7.

Note that we have two types of equivalence, weak and strong,

_131 = EQ » gl = 32 » according to whether _b_l and _132 are equal
only when both defined or furthermore have the same domain of

definition.

Definition 6.2: C{R} , class of functions computable in terms of R ,

is defined recursively from R by

(1) Ec¢R = EecCR])

(i1) if E e¢C{R} , E,eC(R)] and b, is a variable in B, then
1 2 2
(E,) € c(]) E, + E, ¢ C(R) EI e C(R)
E, &E, ¢ c{r} E] < c(R)

El . E2 e C(R}

if b, then E, else E, cC{R) .

(iii) Extremal clause: E ¢ C{R)} only if E can be formed by a

finite number of applications of ruies (i) and (ii).

The interpretation of expressionsof C{R} is defined in the obvious

way to be coherent with the interpretation of R (3a);

value (if b

, ‘then A else B)= if b. then

-1

value(A) else value(B) .

Let us adopt the convention that "if" and "else" have the

lowest priority above parentheses in evaluation, so that for instance:

100

(A+if b, then B else C+D)=(A+ (if b, then B else (C+D)))

1 1
* , _*
if b, then B else C = if b) then B else (C)
— . {‘ . -
if 31 then 22 else C=D » if b, ‘then pe else C = Dy

"if" and "then" , "then" and '"else" , are usci as brackets.

We call these expressions conditional regular expressions and

denote them by upper case letters since they take values in © .

When they do not contain & or ' we call them restricted.

Note that while a regular expression designates a set, a conditional
one varies over different sets according tc the values taken by the b,
variables in them; precisely, it varies over the set of vertices of a
hypercube of regular sets.

There are two types of equaiities in CIR} , strong ones and weak
ones, as in B , according to whether the domains of definition of two
expressions coincide or not. We write El =5 E2 or E1 =y E2 .

At this point it is clear that we can recognize the equalities
of conditional regular expressions, derive canonical forms for them

and get a complete set of axioms for their algebra. Let us do it

briefly, before considering systems of equations in C{R} .

d) Foundations of the Algebra of Conditional Regular Expressions

We seek a complete set of axioms for the algebra
<@;+,%,',*,*,if-then-else> . The following 12 rules are clearly valid

according to the valuation mapping we have just defined:

(1) (if by then A else A)= A

(2) (if true then A else B) =g A

101

(3)
(&)

(5)

(6)

(7)

and to do a few simplifications.

(1f

(1t

(if

(if

(if

false then A else B) =, B

2, then

if b, then A

b. then

b. then

(1f »

o’

W

then

if
else if

(if

1

A else

if b

92 else b

then

J

\LU‘ I\l)d

else if

22 then A
32 then C
92 then

if

else if

else B

else C)=_ (if b, then A

then B else C)=_ (if b

then A else B) =

then A else B

then A else B)

else B

else D) =g

b, ‘then A else C

b, then B else D)

1

else C)

then A

else C)

These first 7 rules permit us to handle the nesting of if-then-else's

We now need 5 rules to permit us to

handle the nesting of an if-then-else within the scope of a + , &,

1
2

- ,or *,

To avoid repeating the same long rule 3 times, let © denote a

binary operator; consider the folowing predicate, function of O :

102

Distrib(®) = [((if b, then A else B) ® (if b, then C else D)) =

1 =2
(if b, Ab, then AGC else
if ~ El A By then BOC else
if by A~Db, then AGD else BOD)]

(8) Distrib(+)
(9) Distrib(&)
(10) Distrib(-)

(11) (if b, then A else B)'=_if b, then A' else B'

»* * *
(12) (if b, then A else B) =, if Db, then A" else B

To these 12 basic rules we want to add another one, which must be
considered as syntactic since we consider here that the equality is part

of the syntax language.

1

(if b, then A= C else B= C) .

(13) (if b, then A else B)=_C -

Our 12 first rules come from McCarthy [1963], Section 7, somewhat
indirectly. McCarthy studies B ; this is the reason why we do not
have any rule corresponding to his rule 4: if b, then true else
false = b, ; but in fact he is killing two birds with one stone and
defining rules which are valid, mutatis mutandis, for classes of functions
computable in terms of any base algebra, This is quite clear in the
notation of his rules and in his remark that the relation of functions
to conditional forms is given by a distributive law, which we write

hezre:

103

f(xl,...,xi_l s if b, then g else h, X, . ,c..,X,) =g
if b, then f(xl,...,xi-l,g,xi+l,...,xn)

else f(xl,...,xi_l,h,xi+l,...,xn)

where g and h are some expressions possibly conditionel.

Our relations (1) to (7) come from his relations (1) to (8),
with (4) omitted, and our relations (8) to (12) from this last one.

By using rules (8) to (12) we can put any conditional regular
expression in a strongly equivalent form with the property that no
if-then-else 1is within the scope of another operator; we can, loosely
speaking, move all the + , & , * , ' and * 's within the
if-then-else 's.

McCarthy's developments are applicable to any such constructs and
our reader is now referred to McCarthy [1963], Section 7, to see how,
by application of rules (1) to (7), we can now get two canonical forms,
a weakly and a strongly equivalent one: Essentially this amounts to
the classical disjunctive normal form of Boolean algebra; the expression
is represented as the disjunction of the values it takes on the vertices
of the hypercube where it varies. When strong equivalence is concerned
some precautions must be taken, due to the non-commutativity.

Because these values are defined by regular expressions, and because
we can recognize the equality of regular expressions, this solves the
weak and strong equality problems of conditional regular expressiouz,

We have proved the following theorem:

Theorem 6.3: Rules (1) to (12) for conditional regular expressions,

together with system <RE,R1,R2> for regular expressions, form a

104

complete axiom system for conditional regular expressions.

We cannot directly use <RE,R1,R2> for conditional regular
expressions without putting resztrictions on the nature of the conditions:
for instance Rl is no longer valid; suppose B = if Rl then D else F ,

we cannot write

l=2&B=¢,]=aA=BA+C

|=2 = B'C

because one could devise a Bl equal to true if B belongs to a
monomial terminated by A and to false otherwise.

In the same way we cannot always write

A* =N+ A+ Ae + ...+ AnA*

where A 1is a conditional regular expression, the condition could
be on whether A has an exponent odd of even or is starred.
This difficulty corresponds to the fact that within an expression
a condition b can refer to the form or the cortext of the expression.
Note that it is natural to associate to a conditional regular
expression the regular expression which is the sum of the values it
takes for all possible values of the conditionsls and also to associate
the regular expression which is the intersection of these values. We
may call them respectively the envelope and the center., We will not

use these notions here.

105

e) Recursive Functions of Regular Expressions

In C(R} , as we did in R , we consider systems S of recursive

equations of the form

X, = fi(xl,...,xn) i=1,...yn

fi a conditional regular expression over T+I ,

i.e., & recursive function cf regular expressions.

Here also we first focus our attention on restricted fi 's.

As we have just seen any fi can equivalently be written as

if gl then 8, else if ge then g, else ... gp

vwhere gl,...,gp are restricted regular expressicns over T+I .

Replacing each fi by its envelope we can associate to a set
defined in that way its envelope which is a context-free language.

Related systems have already been used with different notations
by some authors.

In Chomsky [1965] the use of "features" is advocated to solve
certain vexing problems in the description of natural lengueges, or
rather of the native speaker behaviour, by transformational grammars:
To each terminal symbol is attached an array of Boolean variables which
specify binary features of that symbol or of its syntactical usage;
for instance "boy" is a name, designating something human and animate,
"to laugh" can have such things for subject; just as for instance in
Slagle's DEDUCOM (Slagle [1965]) to each object is attached its

property list. The base grammar derivations are to be made dependent

106

upon these features, so that sentences such as “"The harvest was clever
to agree" can be avoided, bty not letting any ncun be the subject of any
verb in the base grammar. The resulting system is essentially a
conditional production system. It seems that this method permits

a considerable simplification of the transformational rules by putting
much of the burden on this conditional base grammar.

In Gilbert [1966]) a class of languages called "analytic languages"
is defined as given by a context-free grammar coupled with a "scan
function". The latter is a function whirh computes at each step of a
bottom-up analysis which productions of the grammar are applicable.

In other terms we have & conditional context-free grammar with rules

of the form:
if applicable then A — BC else undefined.

The link between conditional context-free systems used for top-down
and bottom-up analysis is in relation (13).

It is quite obvious that if we allow the Boglean varisbles to be
equal to any recursive predicate, any recursive set L of strings can

be defined by & system of two conditional regular expressions:

*
S = if given string ¢ L then T else undefined.

¥*
T = YaT +1 .
aet

This amounts to defining a language by its analyzer written in

whatever formal language is used to specify b = given string ¢ L .

107

Since we are concerned with computers, the ability to define any
recursive set is jJust what we need.

We see also that, as is the case for regular sets, the Boolean
closure of this class is identicel to the class itself (Lemma 6.1);
nonetheless if it is more natural to define a set with & and ',
there is no reason not to do it.

It is very likely a difficult, maybe unsolvable, problem to
determine when such systems have a solution. This does not detract
from the usefulness of the formalism: it is not decidable whether an
Algol 60 program will halt and any recursive set can be defined by =a
transformational grammar too, this does not bar Algol 60 from being &

useful tool and transformational analysis a promising one.

f) Use of Recursive Functions of Regular Expressions

We suggest defining the syntax of languages by way of systems of
recursive functions of regular expressions as follows:

First a number of arrays, auxilliary varisbles, counters, list
structures, ad 1ibitum, are declared.

These quantities can be manipulated as they can be in Algol 60
or Lisp.

The manipulation on these quantities are coupled to the execution
of the recognizer steps; that is, they are defined by procedures, each
one of which is associated to an equation of the regular form system,
Just like semantic procedures are.

The conditions are conditions upon the state of these quantities.

108

The role of these manipulations of 1lis:s, flags or arrays coupled
with the analyzer steps is in fact to gather information in advance of
the time it may be called for in a conditional. For instance, when we
parse declarations in Algol 60 we build an identifier taeble, =0 that
later on, when we parse & procedure call, we will know whether an
actual parameter is an identifier as an array identifier or as & switch
identifier (this is a point where the Alzol 60 syntex is deliberately
ambiguous); we can now formalize this. But note that even if an identifier
table was not built, we could write a la2ngthy Bovlean functicn, say in
Lisp, which would examine the program and report whether the considered
identifier has been declared as a switch or as an array. This is why
we do not want to be formal or even precise about the form of these
procedures coupled to the recogniz2r steps. They just represent a
practical way of implementing Boolean functions by forseeing the
questions which may be asked.

As for the conditions themselves, we see them as insuring the
determinicity of analysis.

We suggest applying this method starting from an RCF or a simple
precedence language embedded into the set to be defined; in other
words to enhance well-behaved, fast analysis techniques.

It is true that this formalism is no more powerful than unrestricted
rewriting systems and even perhaps context-sensitive cnes, but we submit
that it is incomperably more convenient just as Algo. 60 is more
convenient than Turing mechine programming s/hen it comes +o numerical
analysis problems. In this respect, we beliave that a number of the

problens of language definition have been self-inflicted. Because we

109

are entering the era of compiler compilers and querry systems there is

a need for such a formalism.

g) Hints Toward Further Research

Let us hint toward further research and first let us remark that
most often the possidlilities of syntactical analysis are at present
underexploited and its nature misunderstood. It is nearly always
conslidered only as describing the recognition of well formed sentences
in non-redundent precisely specified languages.

In Wirth [1966] it is shown how a syntactical analyzer can recover
from errors and keep analyzing in certain ceses by deliberately using
production rules corresponding to not well formed sentences., This
promising idea calls for some reflections on the nature of syntactical
analysis: what an actual compiler analyzes is always T* as partitioned
into a language L plus its complement L' . The handling of L' can
be done by classical methods.

In a multi-pass compiler, the first pass is usually devoted to a
finite state trarsduction of the terminal symbols, plus a construction
of the identifier tables by blocks, through a declaration scan. We have
never seen this process explained but informally. It caen and éhould
be understood as directed by the syntactical analysis of a language L1
in which the given language L 1is embedded, a language which would
have the same block and declaration structure as L has, but would
admit any string where 1L has simple statements. So that Ll could
effectively be describedfto a compiler compiler and analyzed by the

same algorithm by which L is analyzed in subsequent passes., This is

110

not orly for clarity's sake; systematic methods are invariably more
efficient. In the particular case of a language organized as Euler
is, we see that this first pass analysis can be accomplished by just
one finite state automaton calling itself recursively at each block
entry. On the other hend, subsequent passes should not have to
analyze the declarations or check the block structure. Wha* is done
is to represent L as the intersection Ll & L2 of two languages
where L. 1is obtained by replacing in L the declarations by any

2

strings. L 1is accepted when L, and 1L,

In the field of "natural language" intersction with comnuters, we

are consecutively accepted.

have either ad hoc specialized systems which perform remsikably well,
such as Weizenbaum's Eliza (Weizenbaum [19F€]), Colby's on line belief
system analyzer (Colby [1966}), Abelson and Caroll's simulator
(Abelson and Caroil [1965]), or on the other hend general and theoreti-
cally grounded systems, fairly rigid and hardly field usable, such as
the Mitre system (Zwicky, Friedman, Hall and Walker [1965]). All of the
ad hoc programs do not care much about grammatical correctness and do
not extract all the possidle information of a sentence. We believe
that this is necessary to natural language handling and can be
formalized by the methods of syntax description we have outlined.

Last, some recent papers have shown how the theory or the techniques
of syntax analysis can be applied in such apparently unrelated fields
as number theory (Schiitzenberger [1966]) and combinatorial problems
of geometry (Gross [1960]); there may be other elements in diverse

disciplines where such elegant generalizations can be made, in return

111

we might expect from thew: some more insights into the mathematical
nature of syntax analysis, posgibly in the form of a theory of the
constructive sclutions of combinatorial problems; the first steps in

that direction are perhaps to be found in Riguet [:962].

112

APPENDIX 1

*
Axiom Syctem and Rules of Interence for T

(|- is understzos.)

The following systen is obtained by minor modifications of an
axiom system for the expressions of predicate calculus in prefixed
form, published in Tarski [1956], VIII, Section 2, page 173. It was

communicated to vs by D. Scott.

(0) reT

(2) 2&=2B
3) A=a

(3) a(py) = (aB)y

(5) A EAITA*CA
A=T

Note the resemblance to the Peanc's axioms for natural numbers. Note
also that (5) is a particular case of Rl, first rule of inference

for RE .

Axioms for first and rest are: {after McCarthy [1963]).
(&) first(ad) = a
(7 rast(aq) - «

113

(8) a=3if Q=) then A else first(ad)rest(a) .

It is possible to take first and rest as primitive, define
concatenation of strings from concatenation of a letter to a string,

taken as primitive, by:
(9) 0P = if =) then B else first{a)(rest(ax)B)

and replace (5) by the recursion induction principle (McCarthy [19631],
page 58, 59) in which case (3) and (4) are no longer needed.

Then we need as in Section 6d the McCarthy's rules to manipulate
the nesting of if-then-else's and 3 rules expressing the distributivity
of if-then-else over first, rest and equality (see Section 6d, or
McCarthy [1963] page 55 and 58).

We have chosen this last approach, since we have defined in
Section 2 |af , o' and & by recursive conditional expressions.
Let us first give some examples of the first one, after what we shall
derive some relations by the second approach. In particular, we shall

prove (3) and (U4), thus showing the equivalence of the two approaches.

(1)

a\ =«
Proof: let A ={alm=a} , A :A by (3), TAcCA by (4), thus

* 1
A=T by (s:c

Associativity: @(By) = (aB)y

Proof: Let A = {ala(py) = (B)ry} , N eA by (3), TACA by (4),

whence A= ™ by (5).

114

Left cancellation: OB =Qy = B =7
Proof: Let A={alag=ay = =17}, heh by(3), TACA vy (4)

*
and (2), wvhence A =T by (5).

Refinement: 0P = 76 = (HE)[of =7 or ¢&B = 6]

Proof: Let A = {alop = y8 = (3E)[0t

y or &8 =06] for any
*
B,7,6 ¢ T}, AeA by (3), with £=7; TACA by {2), vhence

A=T by (5).

(ii) (The methodology and 12, 14, and 13 below are in McCarthy [19631)

(10) first(oB) = if @ =\ then first(B) else first(
rest(0B) = if a =) then rest(B) esle rest{(a)p.
Proof:
first(op) = first(if @ =)\ then B else first(a)(rest(a)s)) by (9)

if o=\ then first(B) else first(Q) by (6)

and by distributivity of if-then-else over functions.

Same proof for rest(oB) .

(3) A= a by (9).

(11) WP=1\ = Q

]
™
It
>

Proof:

n
>
13
-
[
R
1

A then B else first(a)(rest(a)B)) =

= if =) then B =1 else first(a)(rest(a)d) = A

= if Q=) then B =1\ else false by (1)
2 A=sANAB=2A.

115

(12) o =a

Proof: O\

if a =) then A else first(a)(rest(a)r)

if a=\ then A else first(od)(rest(on))
by (10). This has the form of (8). Whence O\ = O .

(u) (aB)y = 4f &P = A then 7 else first(aB)(rest(aB)y)

= if false then 7y else a(B7)

= a(py) .

(13) Associativity:

a(By) = 4f a =\ then By else first(a)(rest(a)(sy))
(oB)y = (if a=) then B else firsi(a)(rest(a)B))y
= if a =) then By else (first{a)(rest(a)s))y
=if Q=) then By else first(a)((rest(a)s)y)
by (4).

n

Whence @(By) = (0B); as they both satisfy equations of the form

Q(aB,y).= if a =)\ then By else first(a)(Q(rest(a),B,y))

(14) Left cancellation.

oB =0y = (if @ =1 then B else first(a)(rest(a)p)) =
(if @ =2 then y else first(@)(rest(a)y))

w if Q=) then B- 5 else first(a)(rect(a)p) =
first(a)(rest(a)y)

= if =1 then B = y else rest(@)p = rest(a)y

116

by (2), of the form

P(a,B,7) = if @ =) then true else P(rest(a),B,7)
vwhence B =7 .
(15) Refinement.

g =, ® (if @a=2 then B else first(&)(rest(@)B)) = 76
® if O =) then = 76 else firsi(a)(rest{a)B) = 78

= if =) then ay =7 else 76 = first()(rest(a)B)

= if @ =\ then (HE)[0f = 7] else
if y =\ then OB =& else first(a)(rast(a)B) =
first(y)(rest(y)8)
= if a =% then (7&)[aE = y) else if » = A then (FE)[&B = &)
else first(a)(rest(a)s) = first(y)(rest(y)s)
= if @ =\ then (7YE)[0f = y] else if 7 = A then (7E)[&B = 6]
else rest(@)B = rest(r)6 by (2).

Of the form:
P(¢,B,7,6) = if Q= AV y = A then true else P(rest(a),B,rest(y),8)

whence OB = 76 (Ge)[at = 7 v EB = 8] .

')

(16) (o)} = gRF
Proof:

(op)R

(if Q=) then B else first(a)(rest(a)s))}

if @ =\ then B° else (first(a)(rest(a)s))}

117

= if Q=)\ then ER else if first(a)(rest(a)B) = A then
A else rest(first(a)(rest(a)ﬂ))Rt‘irat(first(a)(rest(a)s))

= if & =\ then BR else (rest(a)B)Rfirst(a)

while

ﬂ&!ﬁ= 5R(1f Q=) then)\ else rest(a)Rfirst(a))
= if Q=) then B else sR(rest(a)Rfirst(a))

= if & =)\ then ﬁR else (BRrest(a)R)first(a)
both equations of the form
£(a,B) = if Q= A then B' else f(rest(a),8)first(a)
whence (tﬁ)R = BRhB .

(171) o aa
Proof: dRR

(if a=2 then A else x‘es'c,(O.')Rfi.rsi'.(a))R

if ¢ =\ then \ else (rest(a)Rfirst(a))R

if @ =X then \ else first(d)rest(a)RR .

On the other hand

a=if @ =) then A else first(a)rest(a)

whence dRR =Q,

(18) Right cencellaticn, BA = y& = B = ¥y
by (16), (17), and (14).

128

For the remaining relations we need the following definition,

for n,p ¢ 1.
n+p=if n=0 then p else n + p'

n' successor of n, p predecessor of p . (See McCarthy [1963].)

fedl

if @ =) then O else 1+ |rest(a)| =

if @=)\ then 0O else |rest(a)|' .

(19) loBl = lal + |g|

Proof:
|oBl = |if @~ A then B else first(a)(rest(a)s)|
=if |al = 0 then |B| else |first(a)(rest(x)s)l
=if la| = 0 then |B| else |rest(a)Bl|' .

It is possible to prove (ibid.) that n”~ + p' = (n~ + p)*

whence logl = la} + |B! since Irest(a)| = |al” vy definition.

(20) P = oF*P

Proof:
d'aP = (4f n =0 then A else a’“la)ap
=if n=0 then o else o ooP
=4if n=0 then A else an'ap‘

whence anap = an+p o

119

APPENDIX 2
A Context-free Grammar for R

We give a context-free grammar for R in BNF; the symbol
stands for the metalinguistic + ; we take T = {a,b,c,d} for

instance:

/R ::= gl
alvlelal
(»)]
R+ R|R & R|R - R
R |R*

Note that this grammar, which follows exactly the formal
definition of ® , is ambiguous. This corresponds to the necessity

of priority rules for interpretation.

120

APPENDIX 3

Some Relations Derivable from <RE,R1,R2>

(i) Boolean relations: (Huntington [1904]) except 6th and Tth).

(bl) to (b8) are globally invariant under an exchange of +
*
and & , (7) and @ . Each derivable relation has its dual

obtained by this permutation.

-- There isno X #¢ such |-A + X =A for all A . Otherwise
*
we would have |-X + @ = X =@ . Dually the maximal element (T)

of the lattice @ 1is unique.

A aas@mHEM =M e M

A+a)e @A+ (MH=a+a e -a+a -

thus [-A + (1)" = (1)" ond quarly |4 &g=¢.

-- Absorption Law.
[+ (A&B)=8&(T) +A&B-A& ((T)°+B)-=

A& (B+(T))=a& (M) =a
taus |-A + (A & B) = A and dually |-A & (A +B) =A .

-- The inverse is unique. Suppose A hes two inverses A! and A! .

1 2
*
' _ L. - =
I-aAz_(T) Eal- (A +A)EAL=AEAL+AEAL -
' v 1] = 1
¢+A1&A2-A1&A+A1&Aé Al & (A +A)
*
- ? =2
= A& (T) =A) .

121

== (De Morgan's law)
|A +B= (A" &B')

Proof: first|=A + (A' +C) = (T)* and dually [-A% (A'&C) =g

since -
|4 + (A' +C) = (T) & (A + (A" +0)) =
A rAYE (A (A +C))=A+ (A& (A +C)) =
Asa = (D)
then :
]=(A +B)+ (A* 8B') = ((A+B)+A')& ((A+B) +B') =
(1) & (1)) = (D"
and ‘
(A +B)& (A' &B') = (A(A' &B')) + (B(A' & B')) =
g+d=9¢
whence
l-A + B = (A' & 3')"
and dually
j-A &B = (A" + B')*
- = ()"

Proof: |4+ (1) = (1) ena |g& (D) -¢.

- |~(a")r =4
Proof':

I-A = A +¢___ (Al &¢|)v = (A’ & (T)*). = (Av)l

122

-- Assocliativity.

Ilet (A+B)+C=X and A+ {(B+C)=Y,

(AI&EI)&C|=XI . t ‘

v .
We have |—Y+A’=Y+B'=Y+C'=(T),

Proof: |-Y +A'=A'+ (A + (B+)= ().

-t +B = (1) & (3 +Y) = (B' +B) & (B' + Y) =
B'"+ (B&Y)=B"+(B& (A +(B+C))-=
B'"+(B&A+ (BE&(B+C)))=

13'4-(13l!eA4—B)=B'+L==('1‘)‘t

similarly for Y + "' |

Dually [=X' & A=X'&B=X'&C=§

Now
[~ + X' = Y+ ((A" &B") & C') =
((Y+a) & (x+B) & (Y+c) = (D & (M) & (D)
[x' &y =x'(A+(B+C)) =
(X" &a) + (X &B)) + (X' &C) = (B+ @) +¢=4¢
hence

X =Y eand |-A+(B+C)=(A+B)sC

Dually [-A& (B&C)=A& (B&C) .,

123

=(m.

(i1) Other relations (first 3 in Aanderas [1965}, Salomaa [1966]).

- |ga=¢.
Proof:
g8 = ¢ = [Higa) = da
- |Pa)+ P = [Ba=0P=0 .

-- |~¢' = % by (sl) and above.

- |-M=aA
Proof:
[“A=A+@=A~0a=gA=pfA+A =
|4 = g"A = 2

*

-~ = =
Proof:

A =+ =g .

e Ao +a a4 LA™ ()

by (s1) and the principle of complete induction for integers.

* *
-- |-A" = (A - 1) where, as usual, A - B=A & B',
Pg’of: i
B 3
if l“’

in all cases.

I-ﬂ*_(A&x'+A&k)*=(A-l)*

124

A+ A= A+ (LA &N +AE A)A*

iy

* *
A+ (A -2)A +4A

i

* * *
in 8ll cases since |-A =A + A&
»* * * * »
Whence |=& = (A = A)A + A since |- =\ +A4 by (s1),
whence, by Rl

I—A* - (A _ k)*A* - A*A* ,

- A &A=2 = |-aa"-a" .

Proof:
A &A= = [-A &A= A& (A+ A" +2)
whence
)
| & A" = 2
whence
Y A N Y

o €3
|-aa* = A+ A)Y A+ a oA+ (&)t + (A & A"
= |—AA* = (A& \')*(A + (A& \)AA*) = 2"+ A*(A & x)AA*
. * *
if |-A &L : " we obtain |-AA = A A

if [-A&x=) we obtairn

125

“)

4
¥4

.‘ ’, " t

f * <l- * * * * ® * * % * *
A =AA+AMA =AA+AM =AA+AA =AA+A
‘ * » * *
{ wheppe |-AA" = A =AA+A .

On the other hand |-A & A = X = |[-A ="A #+ X whence

A" = a* (A s 8) = A" + A"A =A™ + 2"
|-4% = A" + A" .

‘ » |-A =AM
j=a"A = A" + A"

* #* «
since |-A = AA we obtain theé~desired relation.

- *
e |=A =aA

Proof:
B A RN PR VW Y PA OB S PRy
S BTN S Y W S A
put
A &a" =2 A" +a) =2 = [-a

vhence

k2 d *

[-A" = A .

-- Note on rule Rl.
In

|6(B) = #,| A -BA+ C
|- = B'C

we do need |=8(B) =¢ .

126

e.g.: l-ﬁ* = M" + A since |-B = AB and
|-a* A= A vy (s1).

‘&mia would imply l-A* =\ if we had not |=8(B) = # in Rl.
(Generally, we could derive |-A =L or |-A =@ for any A, just
as one can derive that any number is equal to any number by division

L

by zero.)
; * .
Note that we have shown that [-A = (A.- 1) .

127

APPENDIX L

!u;Ler System

\
Euler %n defined by the following conext-free grammar (Wirth

and Weber {1964]) in which Euler parentheses are denoted { end } ,

+ by © amfi A

confusions: |

O N W D

i
vardecl \-'gg i

labdecl *M |

var? -5 var- [expr]

var '-' var-

logval - false

digit =9

integer- — integer- digit
real’ - integer'-.integer'
number - real’

number - resl’' lO'.' integer'
number 10 = integer’
listhead » listhead expr ,
list’ — listhead expr)
prochead = prochead fordecl;
procdef — prochead expr °
primary = var list'
primary = number

primary - reference

38:
Lo:
Lo:
Lk

128

standing for identifier, by 1 , in order to aveoid

fordecl = formal 1

var- ~i

var- - var- .

logval — true

digit -0

integer- - digit

integer' = integer-

real’ — integer'

number — real’ 10 irteger’
number - 10 integer'

reference — Gvar

listhead = (

list’ - listhead)
prochead —*
primary = var
primary - logval
primary - o
primary — list'

biis

Lg:
51:
551
551
57:
59:
61:
63:
653
67:

79:

primary
primary
pr imary
primary
primary
primary
primary,
primary
primary
primary
factor-
term-
term-
term-
sum-
sum-
sum-
choice-
choice-
relation
relation
relation
relation
negation
conj-

conjJ

= tail primary
-0

> in

= isn var
~isl var
- isy var

— isu var

» length var

-+ real primary

- 1list primary

= factor- ! primary

- factor

- term- / factor
— term- mod factor
= term

- - term

- sum- - term

- sum

— choice- max sum
= choice

— cheice # cholce
- choice < choice
~* choice > choice
— - relation

= conjhead conjJ

- conj-

pr imary
primary
primary
primary
primery
primary
primary
primary
primary
factor-
factor
term-
term-
term
sum-
sum=

sum
choice-
choice
relation
relation
relation
negation
conJhead
conj-

disjhead

- procdef

- { expr]

= isb var

~+ isr var

- is1i ver

- isp var

—> abs primary

= integer primary
= logical primary
= primary

- factor-

- term- X factor

= term- %+ factor

- term-

-0 term

- sum- O term

- sume

= choice- min sum
= choice-

—» choice = choice
= choice < choice
- choice > choice
- relation

-* negation A

- negation

- conj V

109:
111:

119:

dis)
catena

truspart

expr-

expr-
expr=
expr

stat-

labdef

blokhead —* blokhead vardecl;

- disjhead disj
- cetena & primary
~» expr else

=» block

—* vVar - expr-
-> 2{2 expre-
- expre

- expr

-4

blokbody = blokhead

block

100:
102:
10k

106:
108:
110:
112:
114
116:

118:

= blokbody stat end 120:

dis) - conJ

catena — dis]

ifclause — if expr then

expr- = ifclause truepart
expr-

expr- - goto primary

expr- = catena

stat- = labdef stat-

stat - stat-

blokhead ~* begin y

blokhead — blokhead labdecl;

blokbody - blokbody stet ;

program

- 4 block 4

In order to make the system of equations obtained by regular expressions

manipulation techniques more readable, we do not fully eliminate all the

variables which can be eliminated; i.e., all but expr , but leave it

in the form:

program = fl(‘block)
block = fa(expr)
expr = 1y
catena =

negation = f; (sum)

sum = fé(primry)

primary

f7(expr)

130

fl‘(negation ,primary)

f_(expr,primary,block,catena)

—2 o
f‘1
progran ——=——— block —————
f
3

expr is common to all circuits.

f, corresponds to rule 120

1
fa ll9-110, l, 3
t‘j 109-101, 7-b
fu,fs,fs 100-6k
f7 63-4, 2
program = 1 block 1
block = begin ((new i + label i);)“(i:)*expr(;(i:)'expr)* end

. * *
expr = (out + if expr then expr else + i([expr] + +) =)
(goto primary + block + catena)

catena

({negation A)*neg-tion V)'(negation A)'negltion(& primry)*
negation = (- + A)sum((max + m_in)sum)*
A+ (>+>4<e<ads =)m((&+‘&)m)’)
sum = (A + - + O)primary(t priury).
((mod + + + / + ®)primary(t primary)"’)"
((- + ©)prinary(! primary)’
((mod + + + / + ®)primary(t primary)’))"
131

primary = (tail + list + logical + real + integer + length + sbs)"
((isu + isp + isy + is1i + isl + isr + isn + isb)
i([expr] +)" +
in + [expr] + Q + ¢ + ‘(formal 1;) expr® +
((expr,)*expr] +® i([expr] + -)* +
(04 s + 90+ 4ur +9)
A+ 0+l + 9O+l +9))
(x + l0(). $20 0+ eee + N0+ .o +9)) +
1w+ =)0+ ou + 97 (0 + ..o +9) +

1([expr] + <)*(r + ((expr;) expr)) + true + false .

We have here, in less than one page the context-free syntax of a
systematic generalization of Algol 60. At the same time this syntax
specifies a hivh speed analyzer for the language.

If such expressions are not essy to handle for a human being,
they are well adapted to machines.

Note that by not completely eliminating the variables which can
be eliminated, one can reduce the total size of the tables; for
instance, i. would be unwise to eliminate primary in sum while primary
is repeated 8 times in sum. In the same way the construct
(0+ ... + 9)*(0 + ... +9) occurs b times in primary, it should be
replaced by a variable, unless somebody is interested only in speed
since naturally the introduction of spurious variables results in more
pushdown manipulations and a speed loss. On the other hand, introducing
extra variables can result in considerable space savings when the
corresponding extra sutomata use but a small fraction of the alphabet.

132

APPENDIX &

Computation of T

By Definition 5.2:
n(xl,xz) = [first(ﬂxlxl) N first(x,) = 4 .

There are well-known techniques fcr the computation of first(Xe)
when XE is context-free.
We are going to give an algorithm to compute first(ﬂx Xl) . An
1

example is given at the enl of this Appendix.

(i) For regular form systems.
Let us set ft(X) = first(gX) .
Consider the subsystem of X .
The equation of X has two possible forms:

Y 8B+ 8(x)

a) X X
acfirst(X)

) X=YZ

By definition, we see that, respectively:

a) £t(X) = 6(X) first(X) + ¥ f£t(B)
acfirst(X) 8
b) ft(X) = 6(¥)-8(2) first(X) + ££(2) + 6(2)-£t(Y) .

So that to compute ft(X) we need compute the ft(B.) terms

or f+(Z) and possibly ft(Y) .

133

Note that &(A) , where A 1is a context-free set, is easy to
compute.

We do the same manipulation on ft(B‘) or rt(z) anda f£t(Y)
and we expand ft(X) in that way.

I is finite. When in expanding ft(P) we meet ft(P) we
naturally do not start computing it recursively, it would amount to
write A=B +A+A +A+ ... ; instead, we just leave it in the
expression, so that we will end up with something of the form:

£6(X) = ¥ first(a) + ¥ £e(z) I,I

cI1T .
1 -—
Il I2

2

This implies Q. first(A) c £t(X) .
i
1

Let us show that ft(X)c r first(A) .
I
1

No verisble Z in the). ft(Z) term depends upon a variable

I

not in I, + 12 » by hypothesis.

1
If I, = # no verlable contains A , this implies X = @ ; the
initial system should be simplified; let us suppose then that I, £d.

Suppose (Eb)[b € ££(X) A b £ Y first(A)] .

L

b necessarily occurs in a type a) rule, these are the only rules

containing letters:
(v)[B = gaBa + W8, + 8(B)]
a#fb

and

134

beft(X) = X>*BASB=XA = BelI, =

b € first(B) €) first(A) a contradiction.
I
1

Thus ft(X) € Lfirst(A) so that f£t(X) = Ffirst(A) .
L 1
In graph terms what we do is very simple: We consider all the
nodes which are exit points (xi such that G(Xi) = A), the labels
of the vertices going from these nodes yield the elements of ft(xl) ’

unless they correspond to an equation of type b, in which case a little

more work is required.

(ii) for s'-grammars.
The same algorithm, with obvious variations will work for s'-grammars

or we can reduce an s'-grammar to a regular form system as follows:
-- reduce to an s'-2-grammar (Corollary 5.9).

-- toarule X —9axlx2 ssociate a term ax3 » X3 a8 new symbol,
in the equation of X , and add the equation x3 = xlx2 . Take
§(X) = A in the equation of X if and only if X — A occurs in the

s'-2-grammar.

(iii) for fer grammars.
An algorithm is discussed in Schorre [1965]. It works on the same
principle that the one in (i), which we could clearly adapt to

fer grammars too, but is somewhat more complicated.

Example.
Let us take the regular form system which we use as an example

for Theorem 5.8:

' A
AL Ay
Als M2+[A5 [. i]}'
A2 = Qﬁl + Gﬁl + N\ IN A' ® A ouT
1 2
A} = AlAh ..[]I'
Ay, = A,
ft(Al) = ft(Aa) + ft(AB) expanding ft(AQ)
=®+0+ ft(Al) + ft(AE) expanding ft(AB)

2 +0+ ft(Al) + ft(Au) + 6(Ah)ft(A1) + 6(A1)6(Ah)first(Al)

@ +0+ ft(Al) + ft(AQ) all the ft terms have been met.

®+0

as we have Just proved, and as is obvious from an examination of the

graph.

136

APPENDIX 6

Two Conjectures on the Boolean Closure of Context-free Languages

(i) Ambiguity and inherent ambiguity.

Since a set belonging to the Boolean closure of context-free
languages is deterministic context-sensitive, it has a non-ambiguous
context-sensitive grammar (see in Kuroda [1964] the one-to-one
correspondence between a linear bcunded automaton computation and a
context-sensitive grammar derivatien).

This is true even of such a context-free language as:
(a"0"cP|n,p € Q1+ {a% T |q,r € 0)

which is inherently ambiguous for any string of the non-context-free
intersection of its two components {Parikh [1961])). This fact evokes

the Boolean equaiity
A+B=A&B' +B

which shows how the set qsuld be defined without overlapping,
providing an intuitive but possibly wrong explanation for the
existence of a non-asmbiguous context-sensitive grammar defining it.

This yields another question: 1Is every inherently ambiguous
language the union of two context-free languages such that their
intersection is not context-free?

There are very few inherently embiguous languasges known (see
Ginsburg and Ullian [1966], Hibbard and Ullian [1966]) and it is the

case for all of them.

137

et P be the context-free set of all palindromes without central
murker. (Even palindromes.)

We conjecture that the context-free sets P~T* and P-P are
inherently ambiguous. Unfortunately the Parikh and Ginsburg techniques
are r:ol applicadle here. We have been able to obtain only partial
results for PT* by studying the ways in which an even palindrome can

be embedded into another one.

(11) Characterization.

Another interesting research topic is to try to characterize the
Boolean . closure of context-free languages by a property similar to
the important Bar-Hillel, Perles and Shamir theorem 4,1: A is

context-free and infinite =
(50,B,7,6,e)[0B78e ¢ A = 088" ¢ A, ¥n ¢ Q)

This theorem is a non-commutative restriction of the Parikh
mapping theorem; the results of Ginsburg and Spanier [1964], [1966],
on the Boolean closure of semi-linear sets make it a reasonable
conjecture that a similar commutative mapping theorem can be obtained
for the Boolean closure of context-free languages.
On the other hand a number of results on this claess can be
gathered from results on context-free lsngueges, such as the undecidability
of the emptiness problem (see Theorem 5.18). A family of endomorphisms

of this class has also been studied by Schutzenberger [1964].

138

REFERENCES

Aenderaa, S. [1965]. "On the algebra of regular expressions”. Harvard
University. Mimeograph.

Abelson, R. P. and Carrol, J. D. [1965]. '"Computer simulation of
individual belief systems." American Behavioral Scientist.

Vol. VIII. No. 9. p. 24-30.

Arden, D. N. [1961]. '"Delayed logic and finite state machines."
Proceedings of the second annual symposium on switching theory
and logical design. (AIEE). p. 133-151.

Bar-Hillel, Y,, Perles, M. and Shamir, E. [1961]. "On formsl properties
of simple phrase structure grammars.” Zeltschrift flir Phonetik,
Sprachwissenschaft und Kommunikationsforschung.. Vol. 14. p. 143-172.
Also as Chapter 9 in Bar-Hillel, Y. [1964]. "Langusge and
Information", p. 116-150, Addison-Wesley, Reading.

Berge, C. [1958], "La théorie des graphes et ses applications.”

(in French:) Dunod, Paris. (English translation: '"The theory
of graphs and its applications", Wiley (1962), New York.)

Braffort, P. and Hirschberg, D, (Eds.) [1963]). "Computer programming
and formal systems.” (ftudies in logic and the foundationa of
mathematics.) Nortn-Holland Publishing Company, Amsterdam.

Brzozowski, J. A. [1964]. "Derivatives of regular expressions." Journal
of the ACM. Vol. 11. p. u481-L9L.

Brzozowski, J. A. and McCluskey, E. J. Jr, [1963]. "Signal flow graph
techniques for sequential circuit states dlagrams." IRE Trans.
on EC. Vol. 12. p. 67-76.

139

Carr, John W, III, Weiland, J. 11966]. "A non-recursive method of syntax
specification.” Com. of the AQM. Vol. 9. p. 267-269.

Chomsky, N. [1959a]. "On certai\h formal properties of grammars."”
Information and Control. Vél. 2. p. i57-167.

Chomsky, N. [1959b]. "A note on ‘phrase structure grammars." Information
and Control. Vol. 2. p. 393;[-595. ’

Chomsky, N. [1963]). "Formal properties of grammars.” in Handbook of
mathematical psychology. Vol."\v_ 2, Chapter 12. p. 325-418.

Luce, Bush and Galanter (Eds.)." J. Wiley, New York.

Chomsky, N. [1965]. "Aspects of the theory of syntax.” The M.I.T.
Press, Boston.

Chomsky, N. and Miller, G. [1958]. "pinite state languages." Information
and Control. Vol. 1. p. 91-112.

Chomsky, N. and Schiitzenberger, M. P. [1963]. "The algebraic theory of
context-free lméuages." in Braffort &nd Hirschberg (Eds.) [1963].
p. 118-161.

Church, A. [1956]. "Introduction to Mathematical Logic." Vol. I,
Princeton University Press. Princeton.

Colby, K. M. [1965]. '"Computer simulation of change in personal belief
systems." Paper delivered in Sectiqn Le, the Psychiatric Sciences,
General System Research, AAAS Berkeley Meeting, December 29, 1965.

éulik, K. [1962). "Formal structure of Algol and simplification of its
description.” in Symbolic languages in data processing. p. 75-82.

Gordon and Breach, New York.

Davis, M. [1958]. "Computability and unsolvability." McGraw-Hill,

New York.

140

Floyd, R. W. [1963]). "Syntactic analysis and operator precedence.”
Journal of the ACM. Vol. 10. p. 316-333.

Floyd, R. W. [1964]). "Bounded context syntactic analysis." Comm. of
the ACM. Vol. 7. p. 62-65.

Friedman, J. [1957]. "Some results in Church's restricted recursive
arithmetic.” Journal of symbolic logic. Vol. 22. WNo. 4. p. 337-342,

Ghiron, H. [1962]. "Rules to manipulate regular expressions of finite
automata.” IRE Trans. on EC. Vol. 11. p. 5T4-575.

Gilbert, P. [1966]. "On the syntax of algorithmic languages.” Journal
of the ACM. Vol. 13. p. 90-107.

Ginsburg, S. [1966]. "The mathematical theory of context-free lenguages."
McGraw-Hill, New York.

Ginsburg, S. and Greibach S. [1965]. '"Deterministic context-free
languages." SDC report T™M-738/014/00. May 7, 1965. Also, in
Information and Control. Vol. 8. (1966). p. 620-648.

Ginsburg, S. and Harrison, M. A. [1966]. 'Bracketed context-free
languages." SDC report TM-738/025/00. Jan. k4, 1966.

Ginsburg, S. and Rice, H. G. [1962]. "Two families of languages
related to Algol." Journal of the ACM. Vol. 9. p. 350-371.

Ginsburg, S. and Rose, G. F. [1963]. '"Operations which preserve
definability in languages." Journal of the ACM. Vol. 10. p. 175-195.

Ginsburg, S. and Spanier, E. H. [1964]. "Bounded Algol-like languages."
Transactions of the American Math. Soc. Vol. 113. p. 333-368.

Ginsburg, S. and Spanier, E. H. [1966]. "Semigroups, Presburger

formulas end languages." Pacific Journal of Mathematics. Vol. 16.

p. 285-296.

141

Ginsburg, S. and Ullian, J. [1966]. “Ambiguity in context-free languages."
Journal of the ACM. Vol. 13, p. 62-89.

Greibach, S. A. [1965]. "A new normal form theorem for context-free
phrase-structure grammars.” Journal of the ACM. Vol. 12. p. 42-52.

Gross, M. [1966]). "Applications géométriques des langages formels,"

(in French.) ICC Bulletin. Vol. 5. No. 3. p. 141-167.

Hibbard, T. N. [1966]. "Scen limited automata and context limited
grammars." To appear.

Hibbard, T. N. and Ullian, J. [1966]. "The independence of inherent
ambiguity from complementedness among context-free languages.”
Journal of the ACM. Vol. 13. p. 588-593.

Huntington, E. V. [1904]. "Sets of independent postulates for the
algebra of logic." Trans. Amer. Math. Soc. Vol. 5. p. 288-309.

Irons, E. T. [1964]). ""Structural connections" in formal languages.”
Comm. of the ACM. Vol. 7. p. 67-71.

Kleene, S. C. (1951]. T"Representation of events in nerve nets and finite
automata." RAND research memorandum RM-70% (12/15/1951) and in
Shannon, C. E. and McCarthy, J. (Eds.) [1956). p. 3-41.

Knuth, D. E. [1965a]. "A 1list of the remaining trouble spots in
Algol 60." ABl19.3.7 Algol Bulletin No. 19. p. 29-38.

Knuth, D. E. [1965b]. "On the translation of lenguages from left to
right.” Information and Controcl. Vol. 8. p. 607-639,

Knuth, D. E. and Merner, J. N. [1961]). "Algol 60 Confidential."

Comm. of the ACM, V»al, 4, p. 268-272.

1.2

Korenjak, A. J. and Hopcroft, J. E. [1966}. "Simple deterministic
languages.” Technical report No, 51, August 1966, Princeton
University. Also in the proceedings of the 7th annual symposium
on switching and automasta theory. (IEEE). p. 36-U6,

Kuno, S. and Oettinger, A. G. [1962]. "Multiple-path syntactic
analyzer.” In Information Processing 62 (IFIP congress).

p. 306-311. Popplewell (Ed.), North-Holland, Amsterdam.

Kuroda, S.-Y. [196L]). "Classes of languages and linear bounded
automata.”" Information and Control. Vol. 7. p. 207-223.

Landweber, P, S. [1964]. "Decision problems of phrase structure
grammars.” IEEE Trans. on EC. Vol. 13. p. 354-362,

Letichevskii, A. A, [1965]. "The representation of context-free
languages in automata with a push-down type store.” Cybernetics
(Kibernetika). Vol. 1. No. 2. p. 81-86, The Farsday Press,

New York.

Medema, P. [1965]. "Another trouble spot in Algol 60." AB 20.3.7.
Algol Bulletin. No. 20. p. 47-8,

McCarthy, J. [1960). "Recursive functions of symbolic expressions and
their computation by machine. Part I." Comm. of the ACM, Vol. 3.
p. 184-195,

McCarthy, J. [1963]. "A basis for a methematical theory of computation."
in Braffort. P. and Hirschberg D. (Eds.), [1963]., p. 33-70.

McNaughton, R. [1965]. "Techniques for manipulating regular expressions."
M.I.T. Project M.A.C, Machine structure group memo No. 10.

McNaughton, R, and Yamada, N. [196C). "Regular expressions and state
graph for automata." IRE Trans. on EC. Vol. 9. p. 39-L7.

143

Mvora:.' E. F. [1956]. "Gedenken-experiments on sequential machines."
in 8hannon and McCarthy (Eds.) [1956). p. 129-153.

Neur, P. (Ed.) [1963]. "Revised report on the algorithmic language
AIGOL 60." Comm. of the ACM, Vol, 6. p. 1-17.

Parikh, R. J. {1961]. "i.mgucge generating devices." Quarterly progress
report No. 60. Research Laboratory of Electronics, M.I.T.
January 1961, p. 199-212. Reprinted with minor editorial revisions
under the title: "On context-free languages." Journai of the ACM.
Vol. 13. p. 570-581.

Post, E. [1944). "Recursively enumerable sets of positive integers and
their decision problems" Bulletin of the American Math. Soc.
Vol. 5@. p. 284-316.

Poszt, E. [1946]. "A variant of a recursively unsolvable problem."”
Bulletin of the American Math. Scc. Vol. 52. p. 264-268.
Rabin, O, and Scott, D. [1959). '"Finite automata and their decision
problems." IEM Journal of Res. and Dev.. Vol. 3. p. 114-125,
Redko, V, N, [1964]. "On defining relations for the algebra of events."
(in Russian.) Ukrain. Mat. Z.. Vol. 16, p. 120-126.

Riguet, J. [1962). "Programmation et théories des catégories.”
(in French.) in Symbolic languages in data processing. p. 83-98,
Gordon and Breach, New York.

Ross, D. T. [1964]. "On context and ambiguity in parsing." Comm. of
the ACM, Vol. 7. p. 131.133,

Rudeanu, S. [1963). "Axiomele laticior si algebrelor Boolene."

(4in Rumaniean.) Edition of the Rumenian Popular Republic Academy,

1hb

Salomaa, A. [1966]. "Two complete axiom systems for the algebra of
reguler events." Journal of the ACM. Vol. 13. p. 158-169.

Scheinberg, S. [1960]. "Note on the Boolean properties of context-free
languages." Information and Control. Vol. 3. p. 372-375.

Schneider, F. W. and Johnson, G. D. [1964]. ™"Meta-3, a syntax directed
compiler writing c;mpiler to generate efficient code." Proceedings
of the 19th national conference of the ACM. D1.5.

Schorre, D. V. [1963]. "A syntax-directed Smalgol for the 1401."

1965 ACM National Conference.

Schorre, D. V. {1964], "Meta II. A syntax oriented compiler writing
language.” 1964 ACM National Conference. Dl1.3.

Schorre, D. V. [1965]. "A necessary and sufficient condition for a
context-free grammar to be unambiguous.” SDC report SP-2153,

Schiitzenberger, M. P, [1963]. "Context-free languages and push-down
automata." Information and Control. Vol. 6. p. 246-26k,

Schlitzenberger, M. P. [1964). "Classification of Chomsky languages.”
in T. B. Steel (Ed.) {1966]. p. 100-102.

.Schiitzenberger, M. P. [1966]. "Some remarks on acceptable sets of
numbers." Paper presented at the August 1966 conference on the
algebraic th:ory of machines, languages and semigroups.

Shannon, C. E. and McCarthy, J. (Eds.) [1956]. "Automata studies.”
Princeton Uﬁiversity Press. Princeton.

Slagle, J. R. [1965]. "Experiments with a deductive question answering
program.” Comm. of the ACM. Vol. 8. p. 792-798.

Stearns, R. E. and Hartmanis, J. [1963). "Regularity preserving
modifications of regular expressions."” Information and Control.

Vol. 6. p. 55-69.
145

Steel, T. B. (Ed.) [1966]. "Formal language description languages for
computer programming.” North-Holland (1966). (Proceedings of
the Baden IFIP conference of September 1964,)

anéki, A, [1956]. '"logic, semantics, metamathematics." Clarendon
Press, Oxford.

Weizenbaum, J. [1966). "“ELIZA - A computer program for the study of
natural language communication between man and machine.” Comm,
of the ACM. Vol. 9. p. 36-L5,

Warth, N. and Weber, H. [1965]. "Euler, a generalization of Algol and

its formal definition." Report CS20, Stanford University,

/A‘Bl,',i_l 27, 1965, and Comm. of the AOM. Vol. 9. p. 13-25 and 89-99.

*;;;th, N. [1966]. "A programming language for the 360 computers.”
Report (S53, Stanford University, December 20, 1966.

Zwicky, A. M., Friedman, J., Hall, B. C., Walker, D. E. [1965]. "The
Mitre syntactic analysis procedure for transformational grammars."
Proceedings of the Fall Joint Computer Conference 1965. p. 317-326.

Spartan Books, Baltimore.

146

