
PB 17% 7é6

RECURS IVE FUNCTIONS OF REGULAR EXPRESS IONS

| IN LANGUAGE ANALYSIS

BY

VINCENT TIXIER

TECHNICAL REPORT NO, 58

MARCH 20, 1967

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

CLEA ING Hou Sn)
formation Soringiekd Va. 22151 /53 a

RECURSIVE FUNCTIONS OF REGULAR EXPRESSIONS

IN LANGUAGE ANALYSIS

by

Vincent Tixier

March 20, 1967

BLANKPAGE

ACKNOWLEDGEMENTS |

My thanks go to Professors Friedman, Wirth, Arbib, Gries and

McKeeman for their efforts in reading this paper and for much

helpful advice during preparation of the manuscript. I am particularly

indebted to my main advisor, Professor Joyce Friedman, for giving her

time, science and humor unsparingly; steadily prodding me and exercising

= patience beyond all normal expectations. I want also to thank

) Professor Michael Arbib for his highly critical and constructive

reading of an earlier draft.

This work was made possible by a scholarship from the

Délégation Générale 2 la Recherche Scientifique et Technique,

Comité Calculateurs; I am most grateful toward my two correspondents

to the Comité, Professors Carteron and Arsac, and also to

| Professor Pélegrin for their constant support and encourag:ment.

| The typing and editing of this paper as a departmental report

was supported by an Air Force contract under the direction of

Professor Friedman.

I want to express my sincere appreciation to Mrs. Phyllis Winkler

for her outstanding typing.

I dedicate this work to my wife,

V. T.

iii

TABLE OFCONTENTS

Section Page

INTRODUCTION 1

1. ~NOTATIONS AND CONVENTIONS" 8

2. STRINGS: 10

3. REGULAR EXPRESSIONS 12

a) Formal Definition and Interpretation 12
bP) Axiom System for Regular Expressions 15
c¢c) SRL Systems. Equations) Characterization. 18
d) Main Property 7
e) Simplifications and Minimization 30

hb, ANALYSIS OF REGULAR SETS 36
a) The General Problem of Analysis 36
b) Analysis of Regular Sets 41

(1) Top-down Analysis 41
(ii) Bottom-up Analysis 43

5. APPLICATION TO PROGRAMMING LANGUAGES. 7
a) Preliminaries 47
b) Regular Structures in Programming Languages 47
¢) RCF Languages. Characterizations. 49
d) Relation to Other Classes of Languages 63
e) Negative Properties of RCF Languages 70
f) Axiomatic of Context-free Grammars 78
g) Cancellation, Regularity and Equality 80
h) Applications of RCF Languages 88

6. EXTENSIONS OF RCF LANGUAGES _ 91
a) Direction of Extension, Syntax and Semantics gl
b) Boolean Closure of Recursive Classes of

Languages 95

c) Conditional Regular Expressions 99
d) Foundations of the Algebra of Conditional

Regular Expressions 101
e) Recursive Functions of Regular Expressions 106
f) Use of Recursive Functions of Regular

Expressions 108
g) Hints Toward Further Research 110

iv

APPENDIX 1: Axiom System and Rules of Inference for r 113

APPENDIX 2: A Context-free Grammar for R 120

APPENDIX 3: ©Gome Relations Derivable from <RE;R1,R2> 121

APPENDIX 4: Euler System 128

APPENDIX 5: Computation of I 133

APPENDIX 6: Two Conjectures on the Boolean Closure of
Context-free Languages 137

REFERENCES 139

v

INDEX OF IMPORTANT DEFINITIONS AND NOTATIONS

ambiguity 37 s-grammar 63

analysis 37 s-languege 63

bottom-up analysis 40 s-machine 63

cancellation rule 10 s'-grammar 54

canonicel SRL system S, 33 s'-machine 61
card 9 s'-2-grammar 58

conditional regular expression 101 terminal symbol 8

dependency graph 9 top-down analysis 40

equational characterization 19 vocabulary 8

first 11 weak equivalence 100, 101

left derivative 49

metavariable 8 T, T , © 8
null string 28 1 8

parse 37 I 8

pre-standard <form 58 > 8

RCF language hg > § 9

recursive function of Q 9

regular expressions 106 I-, |= 9
refinement rule 10 eal 11

regular expression 12 a 12
regular form system Lg R 12

rest nn + ,&,"',:*,* 12

root 19 RE 15

semantic 40 (R1),(R2) 16

separability bg §(X) 18

SRL 18 a=2p, a - B 26

standard-form 53 8A 49
strong equivalence 100, 101 1{A,B) 49

structural tree 3 8 99

subsystem 31 C{R} 100

vi

INTRCDUCTION

We discuss first the origins of our work, then we describe its

organization in some detail; after that we try to make clear some of

the basic ideas which guided us; eventually we shall Cketch the

background of this paper. In this introduction we do rot give

references since it will be elaborated vpon in the rest of the paper.

Let us examine the origins of this study.

a) One of the central problems of syntax analysis is how to go from

a grammar to a recognizer, i.e., from e declarative definition of a

language to an analytic one, from extension to comp “ehension. When

the process can be precisely described, it is possible to specify it

to a computer and devise what is called a compiler compiler or meta-

compiler. The problem is complicated by the further requirement that

the analyzers generated bya meta-compller be comparable in speed and

economy to those written by hand, using heuristics.

In this respect, the class of context-free grammars has appeared

to be an unsatisfactory metalinguistic tool because it is both too

wide and too narrow: wide enough to define extremely baroque sets, so

that its mathematical properties are complex and its handling inefficient;

too narrow to permit the expression of many important well-formedness

conditions in actual programming languages. Furthermore, the meta-

syntactical language it offers is somewhat poor; this being a matter

of convenience, rather than power.

Not weiting for the theory to catch up with the needs, programmers

have developed a few highly successful compiler compilers from more or

1

less precisely defined restrictions of context-free languages.

In the study of these, in particular at a seminar organized by

Dana Scott, we became convinced that Kleene's regular expressions

| played a significant role in thet field, both because they were used
implicitly and because some constructs causing difficulties could be

desrribed byregular expressions.

At the same seminar we noticed how little is known about the

elementary transformations of context-free grammars which leave a

language invariant. This is important because most parsing algorithms

can work only when the grammar has a given form or given properties.

Unfortunately, we have been able to show that no complete axiom system

for the equality of context-free grammars can be constructed. This came

as a serious blow to our initial hopes that the field of syntax could be

open to the axiomatic method, as the desire had been expressed by Church

in his Introduction to Mathematical Logic (Section 08). But we may

after all remark that the situation is no more comfortable in the case

of arithmetic.

Note the following technicality: we often wanted to use substitution

of equals for equals without taking each time all sorts of precautions;

a basic decision was then to introduce a set union symbol, for which

the + of regular expressions was adopted rather than the of BNF,

and replace grammars by systems of equations where one equation

A = Q tee tA corresponds to the n rules of the grammar having A

on the left side: A BAC TIRRF =a . This may seem a minor technicality,

but it forced us to revise a number of notions of syntax analysis,

. .

One of the fastest and simplest analysis methods used by compiler

compilers is the one character look ahead top-down scheme of Schorre's

Meta series; hardly any theoretical results were known about its scope

and power; it makes use of regular expressions, more or less explicitly,

with the result that its notation is very convenient.

A last observation we made was that symbols ior complementation

and intersection are quite convenient to describe regular sets for

circuit design and there is no theoretical reason why they could not

be used in defining artificial languages.

let us now give a summary of our paper.

b) After specifying the notations and recalling the basic notions

of the algebra of strings, we start in Section 3 with the study of

regular expressions using all the Boolean connectives. Continuing

Salomaa's and Aanderaa's work, we give an axiom system for these

expressions and prove its completeness. This proof is centered around

systems of equations of precisely a form we are interested in; its

by-products are a simple theorem on the equality of regular expressions

and new constructive proofs of some old theorems on finite state automata.

In Section 4 we study the analysis problem, in particular for

regular sets and we show that the difficulties encountered in applying

certain analysis methods correspond to a known automaton-theoretic

notion.

Considering now the most natural method for analyzing regular sets,

i.e., by finite state functions, we ask (Section 5) whether they can be

used recursively to analyze without backtracking some context-free

>

languages. We note that a generalization of Algol 60, Euler, is in the

scope of this extremely fast method as far as its context-free syntax is

concerned. We define the notion of separability of two sets of strings

and, by applying it together with the tools developed in Section 3, we

formalize this approach to syntax analysis and define a class of

context-free languages which we call regular context-free (RCF). We

give alternate characterizations of this class, one of which is automaton-

theoretic, and we relate them to other recently defined classes, the

s-languages and the languages defined by for grammars. We study some of the

usual unsolvablility and closure questions and some unusual cancellation

properties linked with the notion of separability. In particular, we

examine a semi-decision procedure by which we can show that no complete

axiom system for the equality of context-free grammars cen exist.

Examining in Section 6 how this model fits programming languages,

we conclude that it is necessary to extend it in a direction going

outside the class of context-free languages. We briefly study the

problems linked to the introduction of symbols for intersection and

complementation in the metasyntactical language; then we introduce

| conditional To expressions and lay axiomatic foundations for theiralgebra; we submit that to use recursive functions of regular expressions,

just as recursive regular expressions are used in RCF languages, will

essentially be to do in a formal and well understood fashion what is

already done more or less formally in various ways, in particular when

people confuse syntax and semantics. We conclude by remarking that the

scope of syntactical analysis is presently underestimated and by

indicating some avenues for further studies,

| 4 |

In the appendices, we have put some material which we felt was not |

in the main stream of our development, although a large proportion of it

is new,

c¢c) Permeating our work are some basic attitudes toward programming

theory and practice. Let us try to make them clear in order to open

them more readily to discussion. |

i) We would rather nowadays see a programming language defined by

its recognizer written in Algol 60 or Lisp than by metasyntactical

constructs from which nobody knows how to get a recognizer; if the

metasyntacticel language is furthermore unreadable, the whole exercise

makes little sense £0 us. In other words we think that the justifications

for metasyntactical deseriptions are not just rigour and formality,

but, as important, readability and translatability into a recognition

algorithm. In fact, we want to see a metasyntactical description as

specifying both the syntax and the recognizer, .i.e., the component

sets of strings and the relations between their characteristic functions;

so that the declarative definition of the language is analytic at the

same time. |

This idea is as old as metasyntactical definition, but the early

difficulties with the use of unrestricted context-free grammars have

made it fall largely into oblivion.

ii) A computer being universal, automaton-theoretic characterizations

of sets of strings are to be understood as measures of their computationsl

complexity and not as programming strategies. This has always been

2

clear to most theoreticians; some programmers have been misled and it has

cost them a high price in loss of efficiency, chiefly when non-deterministic

aut.onata and backtracking algorithms were involved.

iii) The basic language and notations are a very essential part in

a research field. But naturally it is very hard to choose them because

a priori we do not know where we shall go, gropingly, building and

testing models with them; we must have recourse to our intuition of the

nature of the’ field. This paramount role ¢f notations and language is

most apparent when one thinks about those many famous combinatorial

| problems, sometimes quite puzzling, which have appeared as solvable by

trivial computations when expressed in graph theory. Our intuition is

that the terminology of computational linguistics should adopt a number
of well-esteblished graph theoretical notions, that the notion of

derivative of a set of strings with respect to a set of strings provides

a natural link between computational linguistics and automata theory and

should likely be made central to the former, that conditional forms are

a natural tool of computer science and should be used systematically

in this discipline.

d) The background of our work is naturally that part of computer

science which deals with the more theoretical aspects of programming

and in particular of compilation. We make use of the basic terminology

and notions of such closely interrelated disciplines as computational

linguistics, automata theory, recursive function theory and symbolic

logic; as we have seen, a large part of this paper is relevant to the

theories of regular sets of strings (or regular events) and of context-

6

A

free languages. We also use some very elementary terminology of graph

theory and Algol 60.

Last, we may emphasize that this is not merely a theoretical paper

but that constant attention is paid to the practical aspects of

implementation, as can be expected from a work in computer science.

1

SECTION 1

NOTATIONS AND CONVENTIONS

T The alphabet or vocabulary. A finite set of symbols called

terminal symbols or letters. denoted by 8,bye..,8,,b 5000 .

»*

T The free monoid with cancellation generated by T . The

non-commutative operation called concatenation is denoted

*

by Juxtaposition. The elements of T , denoted by

Beas yy Brreensy are finite Strings of letters; the unit,

called null string is denoted by \ .

* *
8 0 = oT , the set of all subsets of T . Its elements are

denoted by A,B,...,A,B ,... ; the empty set is denoted by P .
*

® is a Boolean ring with unit T and zero § .

= The equality sign will be considered as part of the syntax

language and substitution will not ve mentioned as a rule of

inference. In subalgebras of ® we will consider

S systems S of equations, always of the form x, = £(X peeeX))

i=1,...,n , where X. is a varlable.

I I, = {X;|i =1,...,n} , set of variables of S , called also

metavariables or intermediate symbols (I wnen S is

understood). The following relations are cefined in I, :

X, > Xy if X, appears in f, (Read: "depends directly on");

8

Xx, >* X, for the transitive closure of > (Read: “depends
on"), >* is a relation of order;

r = . tr"X, # Xs Xg >* X, and X, >* X, (Read depends
recursively on"), # is an equivalence relation.

The dependency graph of § is the finite directed

graph <I_; >>, where the arc (XX) is oriented

from X, to X, if X, > Xy . S can be represented

as &¢ labeled graph, Gg , obtained by labeling each

arc (XX) of <I; >> by f, . We shall speak

of S as of Gg » without making the distinction.

We shall use the basic terminology of graph theory

as defined in Berge [1958/1962].

Q Set of positive integers and zero.

card carc{X) where X is a set, denotes its cardinality.

if...then...else... We shall freely make use of conditional expressions

formed with this ternary operator. For a formal

introduction see McCarthy [1963].

The words "set" and "language" will be used

indifferently for sets of strings.

|- "It is provable (in some understood logical system)

that".

|= "It is true (in some understood interpretation) that".

9

SECTION 2 |

STRINGS

The properties of T are well-known; an axiomatic definition,
closely resembling Peano's axiom system for integers is given in

Appendix 1.

Two important relations are |

(1) the refinement rule: aB = »§ = (A€)[o€ = y Vv EB = &]

(11) the left cancellation rule: of =ay = 8 = y .

In what follows we shall always assume that strings are uniquely

readable, because we do not want any "coding problem" at this level and

because we are interested in models of situations where this is the case.

In the Linear Lisp fashion (McCarthy [1960)) two unary operations

are defined in 3

first(a) yielding the first letter of o from left to right,

first(A) is undefined.

rest(a) yielding what remains of @ when first(@) has been

deleted. rest(\) is undefined. rest(a) = \ .

A more formal definition is given in Appendix 1.

first and rest are extended to sets of strings:

first(A) = {a|yeA A first(y) = al , |

rest(A) = {alyecA A rest(y) = a} .

The length of a string a , denoted by |a| , is defined by:

|x} = if a =A then 0 else 1 + |rest(a)| .

10

The reverse of a string « , denoted i , is defined by:

~R CL R
od = if a=) then A else (restia)) first(a) .

The n-fold concatenation of a string with itself, denoted of ’

is defined by:

@ = if n=0 then A else Pla

As shown in Appendix 1: |

+

lB)= |o| + |B] oe® =P Boa (g)R- RR

Note that, as proved by McCarthy (unpublished), any computable

function on strings is representable by a system of recursive functions

of conditional expressions formed with the two operators first and rest.

(The proof is by showing the cquivalence to the Turing machine formalism.

A notational difference is that the equality does not belong to the

syntax but corresponds to a predicate eq{c,Bf) .)

11

SECTION 3

REGULAR EXPRESSIONS

a) Formal Definition and Interpretation

The set R of regular expressions is defined as follows (Kleene

[1951]):

(1) fer

AER

Any symbol denoting an element of T 1s in R .

(11) if Pe¢@ and Q €¢ R then

(P)erR, P+QeR, P-Qef
*

| P&Q eR P eR

P' eR

(111) Extremal clause: P e¢ R only if P can be formed by a finite

number of applications of rules (i) and (ii).

Q@ is context-free (Appendix 2), thus recursive.

The dot in P * Q is customarily omitted.

To interpret regular expressions, the structure of the Boolean

ring 8 is enriched as follows:

(1) a monoid structure is introduced by

P.Q=f{oBllaeP)A(Peq)] .

12

Note that

P+ IAN] =(A\}) -P=P

P-p=gp-P=9p

P+(Q-R)=(P-Q)-R

but we do not have cancellation or refinement.

This operation is called concatenation or generalized product. We

define P° by

FP= 4f n=0 then IA} else P. P01

(2) To a set P ¢ ® we associate the free monoid generated by

its elements:

*

P= 1im(PP UPu...UP")
n-«

*

Note that this notation is coherent with the definition of T

from T in Section 1.

This operation is called star or closure and sometimes denoted

+ c2(P) . It can be defined externally by

*

P= nXihex)A(P*xcx)) .
Xe®

Regular 2xpressions are interpreted recursively as sets of strings

called regular sets, according to the following mapping:

value: R + @

such that

13

Regular expression R value(R)

4 the empty set

A aA}

a,b,... fa}, fb},...

(P) value(P)

P+@Q value(P) U value(Q)

P&Q value(P) N value(Q)

P' complement(value(P))

PQ value(P) « value(Q)

P (value(P))

Conflicts of interpretation are resolved by evaluating + , & , « |

'*, and * in that order of increasing priority, parentheses being used

as usual.

Regular expressions denoting a unit set are usually called by the

neme of the elament of that set.

When the symbols & and ' are not used, we talk of restricted

regular expressions.

Equality: PefR , Qe ®

P=Q eo wvalue(P) = value(Q) .

The problem of recognizing the equality of regular expressions was

first solved in Friedman [1957], and Moore [1956]. To devise insightful

and computationally efficient algorithms for thls recognition 1s one of

the main topice of the theory of regular sets (see McNaugtoa [1965]).

It is not an academic problem:

1k

Regular sets are those sets of strings which can be recognized

without memory, or, equivalently, with a bounded amount of memory, i.e.,

by a finite state automaton (Kleene [1951]). Using the black box approach

and the definition of states by the Nerode equivalence relation, a simple

argument (Moore [1956]) shows that any solution to the equality problem

yields a solution to the practically important minimization problem.

A number of important constructs in high-level programming languages

correspond to regular sets, we will discuss this in detail in Section 5.

b) Axiom System for Regular Expressions

Axiom systems have been constructed for restricted regular expressions

by Aanderaa [1965] and Salomaa [1966].

We submit the system of schemata RE , for unrestricted regular

expressions, and 2 rules of inference. :

RE.

(bl) |-A +B=B+A (v2) |-A&B=B&A

(b3) |—-A +B &C = (A+B) & (A+C) (bd) |—A& (BHC) =A&B+A&C
' ¥*

(b5) |~A +g =A (v6) [=A &(T) =A
*

(67) |= A +A" = (T) (b8) |-A&A'=¢

(g1) |- a(BC)= (aB)C

(g2) |-An =A

(3) |-ap=¢

¥ *

(s1) {=~ A «= AN + AA
»* %

15

(i1) |~ A(B&C) = AB & AC

(12) |- (B&C)A = BA & CA

(13) |-r aA =¢

Rules of inference:

-_ & = -— = +(R1) | A B) : - A = BA C
I-A =BC

(R2) , —=xf¥
|— xA & yB = ¢

Remarks: (i) Rules (bl) to (b8) define a Boolean algebra; in effect they

are the Whitehead system as modified by Huntington (Section 1 in

Huntington [1904]). For a discussion of it and others see Rudeamu [1963].

We shall not specify the derivation of usual Boolean relations, the

derivations of associativity of + and & and of a few useful relations

are given inAppendix 3.

(11) The notation adopted is ~learly redundant: as proved in Appendix 3
3%

A=¢ , A&B=(A"4+B') ; we arc not interested in minimality.

(111) None of these rules refers specifically to regular sets, except

the non-written ones: the "zero axioms" which are the formal definition

of regular expressions. The RE syster. specifies the operators + , & ,

', + ,and * in © ; note that when defining them in a), we did not

suppose that they were applied to regular sets. We can freely use these

rules to transform systems of equations in © into other systems having

the sam= solution and of a more desirable form. :

16

(iv) At least one rule of inference is needed besides substitution of

equals for equals which we consider here as a syntactic rule (Redko [1964]).

Note that (Rl) corresponds to the external definition of star.

(v) (Rl) contains a right-recursive rule; the system obtained with a

left-recursive one and corresponding modifications in rules (R2), (g2),

(g3), (51), and (i?) is equivelent. We shall use right recursion because

it corresponds to left-to-right string synthesis. The results and proofs

can be reformulated in terms of left-recursion.

| (vi) It is interesting to compare RE to the set of formulas in McNaughton
and Yamada [1960}, Ghiron [1962] and the axiom systems in Aanderaes [1965]

and Salomaa [1966]. All are interested in restricted regular expressions.

McNaughton and Yameda have all of Salomaa's rules except the ones which

deal with * , although they could derive (s2); they do not have the

| rule of inference (Rl) and the Boolean relation A + A = A cannot be

] obtained from what they have, Ghiron introduces rules for * , including

Rl, which had been introduced independently by Arden [1961]; (el) and

(s2) are derivable from his rules. Aanderas and Salomsa's works are

| not quite independent and both contain complete systems. Salomaa gives

tvo systems, F, and F, 3 F, corresponds to a different epproach;

Fy is essentially the same as Aanderaa's, but simplified; the rules of

: inference are Rl and a rule of substitution of equals for equals; the

Boolean algebra part is restricted to LI rules necessary to define + ,

The introduction of & and ' essentially forces a complete set of

Boolean relations, rule (i3) and rule of inference (R2).

17

An earlier paper bySalomaa is discussed in Aanderaa's paper.

It contained what wae proved byAanderaa to be a complete system.

Theorem 3.1: The axiom system RE with rules of inference Rl and R2

is sound with respect to the given interpretation.

All axioms are valid and Rl and R2 preserve validity. I

| We now want to prove the completeness of the system. The proof will

follow the lines of Salomaa's proof; its by-products will be as important

and useful as the final result itself. First we consider a particular

type of system of equations in the Kleene algebra

<@;+,%,',-,*;RE,R1,R2> .

c) SRL Systems. Equational Characterization.

Definition 3.2: &(X) = AN & X .

Note that since value(\ & X) = {A] N value(X) ,

8(X) = if A e value(X) then A else § .

Definition 3.3: (i) An equation is standard right linear (SRL)

when it is of the form A =) xA + 8(X) . Where the A_ 's arex x
eT

| variables.

(11) A system of equations is SRL when all of its equations are

| SRL and it has one equation per variable.

Note that in) xA_ , all the x 's in T do occur. (Compare
Xe

18

L(Fy;) in Chomsky and Miller {[1958]). Naturally some Ax 's can be

equal to @ .

Note also that in an SRL equation &(X) stands for the value of

5(X) , » or @ , and not for the function &(X) . (See exemple

further.)

Definition 3.4: (i) The root A, of a system is a distinguished
variable.

(ii) To solve a system is to express A, as an expression ln the

algebra of its coefficients and constant terms, such that the equations

are satisfied.

Definition 3.5: A regular expression R is equationally characterized

when there is an SKL system which has a solution equal to R.

Note that the graph of an SRL system can be considered as the

transition graph of a deterministic finfte state automaton and

conversely. (These graphs are introduced and studied in McNaughton

and Yesmada [1960] and Brzozowski and McCluskey [19631).

Example: Let T = {0,1} . Consider the regular set R of all

strings in T which contain two consecutive O 's and are not terminated

by a 1:

* _* *

R=(roor)& (T1) .

It can be proved, using technigues we are going to develop in this

naragraph, that R = A where A is defined by the following SRL

system corresponding tc the following graph:

19

1

= IN — WA
A) = OA, + 1A, 1

0
= +

A, OA, 1A, . 1
2

A. = + 1A, + A

5 = 0; +14, ;
- A

A, = OA, + 1A, 0) , OUT
1 0

A

1 |

Here we have as usual labelled the arrows C or 1 rather than

by the full function GA, + 1A, for instance.

The following lemma is due to Saliomas (Lemma 2, page 161) and is

proved by induction, using (Rl): |

lemma 3.6: If

n

n

|= B, = PUTS + R, i1=1,.e44n Ri 3 some regular
expression

where 8(Ry 4) =@ for all (i,j) then

\- A, = B, i = l,c00,0 .

Lemma 3.7: Any SRL system has a unique solution.

Proof: Any SRL system has a solution: when an equation is not recursive

one can substitute for the variables the quantities which define them;

20

when an equation is recursive, rule (i3) proves that rule (Rl) can be

applied. Note that the result will be a restricted regular expression.

The solution is unique: Let us reduce the general case to a form

where lemma 3.6 can be applied. We have a system of n equetions

A, = xh, + 8(A) f= 1,00.,0 .
xeT

In Lx, we can group the terms corresponding to a given A,
xeT

into a term where Ay is factored out: Pishy (rvle (il), modified by

de Morgan's aw into a rule A(B+C) = AB+AC .); if in the sum of Pihs
terms which we obtain, a variable A, of the system does not occur,
we ~an add a term ha (in Appendix 3 we show how by (g3), (b5), and

(R2) gA = 9, by (v5) Ad =A).
We nr+ have a system of the form

n |

A, = LP A, + 5(4,) 1 =1,.00yn
J=1

and 5(Pyy) = @ by (i3) or the Booiean rule Af = § . By Lemma 3.6
the solution is unique. |

This proves the lemma. Note that furthermore we can &ssert that

if two systems have exactly the same form but the variables having

different nan:s, then not only are the roots equal, but also all the

variables are equal two by two. }

This lemma is a direct proof in the particular case of SRL systems

of a lattice-theoretical fixpoint theorem of Tarski, which can be

applied to context-free grammers as shown byGinsburg and Rice [1962]

(a simpler but similar proof for context-free grammars is given in

21

Letichevskii [1965]). The constructive proof we can give in this simple

case is not a particular case of their proof.

Corollary 3.8: (Cancellation of strings)

oA =0B= |-A=B

The proof is by induction on the length of O , since as we have

seen at the end of the proof of lemma 3.7,

l-xA=xB=|-A=38 }
[|

Lemma 3.9: Every regular expression is equationally characterized.

This is Salomsa's Lemma 4, but regular expressions are unrestricted

here. Let us briefly recall his proof and complete it for the & and

operators.

The proof follows the recursive definition of regular expressions.

(1) @#=N where N= Y xN by Lemma 3.7, (g3) and (b5).
xeT

{— A = B where B=) xN +A
xel |

N=) xN
xeT

(the above, (b5)). SR

22

|-a =A where A=) XN + aB
xeT

xta

B=) xN +X
xeT

N=) xN
xeT

(the above, (b5))

(ii) Suppose A and B are eguationally characterized by SRL

systems Sp and Sq , 1.e.,

xeT

A, eI .

ix Sp i

|- B= BR where B, =)) XB, + 8(8,) J=1,...,n.
xeT

Bix € 's_ .
*

Let us prove that A+B , A&B , A' , AB and A are equationally

characterized,

(a) A+B is equationally characterized.

Let the system

xeT |
£ = lyseeym

be obtained as follows:

|-a+B=) x(a, +B) + 8(A)) + 8(B))
xeT

3 |

((11) modified by de Morgan's law, plus Boolean relations.)

Set Dy, =A +B and generally D,, = A +B, (or think of Dy,

as representing the symbol "A + B,"); we have here

|- A + B= Dy4

where

I=Dyy = Lab, + 6(0))
xeT

since |

|-r»&A +X&B =r& (A; +B)

| We may have here a number of D, 5 different from Diy 3 repeat

the process with them as was done for D.; until no new Dy 5 appears.
Note that the method is well adapted to computer implementation,

using en mw dy n array to keep track of the appearance of new Dy, 's.

(v) A&B is eguationally characterized.

The proof is quite similar to the one for A +B ,

- = &|-A&B=A &B

= %A&B Lxh, &yB + Y xh, 5% 8(B) +
xeT xeT

yeT

Y 6(a)& xB, + (a) & (8)
xeT

(by Boolean properties.)

By (R2), (il), (13) and some Boolean properties:

A&B = 2 xh %B _) +8 &B)X€

2h

if Dy 4 denotes Ag & By

\-A&B- D,, where D), = y xD;1 * 8(p,,) .
i xeT

The proof terminates as for A+B ,

Note a simplification: if Ay or B, =N=¢§¢ ’ 23 = N, it is
not necessary to develop spurious equations having § as solution.

(¢) A' is equationally characterized,

Consider the system D, = LD, + 8(0,) i=1,...,n obtained
from 8, byreplacing A, by D; throughout and replacing 8(A,)

by @ if 8(A,) =X and by A if 8(a,) = @§ . This system S, has

a solution D = Dy .

We form A+D and A&D as just described.

A&D is equationally characterized by an SRL system in which no

equation contains A as its last term; A+D by an SRL system where

all equations do contuin A .)

@ is clearly a solution of the system characterizing A&D and

T° a solution of the system characterizing A+D .

By Lemma 3.7 these solutions are unique.

Thus |= A' = D , since it is provable that in a Boolean algebra

the inverse is unique (see Appendix 3). | |

Note that |=(A,)' =D, , 1=1,...,n. Co)
Constructs quite similar to the one for A' can be found in

Chomsky and Miller [1958] and for A&B and A' in McNaughton and

Yamada [1960]; these constructs are developed on the corresponding

labeled graphs.

(da) AB is equationally characterized.

We proceed in the same way by proving that |- AB = D141,0,...,0
where \

D.. = AB, + A = lyase,

Jk J L P I= Leeees
k = <lt)sKgeee,k> with ky=0 or J.

and vhere Dia,o,...,® is the solution of an SRL system.

|= AB = AB, = D1q,0,...,0)

Let us form A.B, to show that P1qa,0,...,0 is the solution
of an SRL system:

AB = 2 xA B +68(A NYxB _ +8(8)) .
11 xT x 1 1 xeT 1x 1

Two cases:

¥

-- if 8(A)) =f we see that 8(AB,) = @¢ (definition of & and
(i3)) ana

Y1q,0,...,00 = L 211,0,...,0> +8014 0,...,0)

-- if 8(A,) = A |}

where 8(D.1,0,...,0)= 8B) , hereby.
As for A+B and A&B we can keep generating Djk 's until no

new term appears,

In machine implementation it is convenient to represent the

subscript k by e binary number between O and 21,

26

*

(e) A is equationally characterized.
* *

Let k be defined as above. |—A = D, where D = (Y AA
* pek

and Do = A by convention. |
*

By (s2) or (b5) and (sl) |-D. = XL xA._&. + A , thus0 1x1
xeT

-D. = xD + 8(D

since by (sl), (i3), and the Boolean relation A&\ = A , §(p,) = NN.

And we can proceed forming D, terms until no new term is

necessary. | |

Corollary 5.10: Any unrestricted regular expression is equal to a

restricted one.

Proof: We have seen in the proof of Lemma 3.7 that an SRL system cau

always be solved and that the solution is then expressed by a restricted

regular expression. |

d) Main Property ¢

Let X be the class of SRL systems, what we have done in the

proof of Lemma 3.9 is to associate to each regular expression an

element of I , to each operation in R a corresponding operation

in I ; let us denote these operations in £ by + ,& , ' , * and *,

as are denoted the operations in R they correspond to. let us define

equality in Z by:

Definition 3.11: Sy = Sg if and only if A = B.

ev

With these conventions, if ® is the mapping of R into Z

we have defined, then the two following diagram: commute:

(A,8)—(s,,S,,) 1 2, Sy
AB —24 5ReH m2,Ra

where © stands for = , # , + , & , or * and ® stands for

or * ,

let the symbol = de~.t: ir. £ the identity of SRL systems up

to renaming of variables.

| The interest of ZX as & representation of regular sets stems

from the following exceptional property:

Theorem 3.12: |= Sy, =5;, ® |- 8, + 8g = 5, & Sg

Proof: (i) [=8, =8; = |- S, +S; 8, &5 .

. 8 = =Hypothesis: Sa is Ag)) XA, + 6(4,) i=1,.0.yn
xeT

S. is B, = 2 xB, + §(B,) j=1,...,m .
B d xeT Jx J

By 3.11:

Form A+B, and A, & B, :

| A*B = Lx(A +B)+8(A +B)
xeT

& = &A&B)) x(A, &B)+ 68a &B)
xeT

28

= = ES = & = + = & .|-A,=B, = |-A +B =A &B = |=08(A +B))=28(A &B)

Furthermore, it is not possible that A. £@ while B= @ since
* »

|=A =B = |= A) & xT =B,& xT . We see thatif D , = A+B,
= & i

and Coq As By y the two systems with roots D4 and C11 are going
tc develop in parsllel, each equa.ion having the same § term and all

variables with equal subscripts corresponding two by two:

=A, =8 = |=D,=C, =» |=D,=0¢, = |=A =B, forall

Dy, and Crs connected to Dis and C11 .

(11) |-s, + 8p = 8, 4 8, = |= S, = $3 since obviously

|-8, +8; =5, & 5; =) |= 8, +8;=5, &5; =»
— — & — = = =

|-A+B=-A2%&B = |-A=-B =» |=5, =5g 1
As a corollary we get our end result concerning the completeness

of the axiom system:

Corollary 3.13: The axiom system RE with rules of inference Rl

and R2 is complete.

Proof: |=A=B = I-85, +8, =85, &5, =» |[-A=B |

We have

|- A =8B

|=A=3 =» |- 8, +5; =8, &5;

Theorem 3.12 calls for some remarks,

¥

(1) The proof is essentially the proof of Theorem 2 in Salomaa's

29

paper. In a sense Salomaa makes a hidden use of & . This becomes

particularly clear as we compare his proof to the proof of the equational

characterization for + and & ,

(i1) The proof is constructive and yields an algorithm to decide the

equality of regular expressions. This algorithm is fast and economical

and well adapted to the computer handling of large expressions on large

(111) In an actual verification of Sy + Sg = Sy & Sa it is not

necessary to actually form 5, + Sg and 8, & Sp , it is sufficient

to take all pairs of variables Ag and B, which would appear in

these, starting with A, and B, and verify that &(A,) = 5(3,)
and, elthough it is not necessary, that we do not have A, = ¢ and

B, fp ry
Next we want to study the SRL systems in more detail, apply

Theorem 3.12 to the minimization of finite state automata, consider

the recognition of regular sets and see how ali this can be applied

to context-free languages and higu-ievel programming languages.

e) Simplifications and Minimization

Let us now recall the graph we have associated in Section 1 to

systems of equations such as in particular SRL systems:

Ypssentially the same algorithm has been independently studied by
A. Ginzburg; his findings were presented at the September 1966
Asilomar conference on the algebraic theory of machines, languages
and semigroups.

30

Definition 3.14: The substystem a, aszocistea with the variable Ay
in a system Sy is the system of equations associated ~ith the

subgraph of root Ay .

Given an SRL system, a few simplifications (reduction of the number

of variables) can often be easily performed:

(1) connection: A variable not connected to the root may have its

equation discarded.

(ii) = -redundancy: If there are 2 variables A; and A, such that

Sp = Sp ; one can be eliminated. This is frequent and not always

obvious.

(iii) ¢@ -redundancy: An SRL system S, where there is no variabis A,

such that §(A,) = \ has § for solution. Let us call it a closed

system. All closed subsystems can be eliminated, replaced by

N = y xN and their va.'iables are to be replaced by N .
xeT

(iv) T -redundancy: In quite a similar way it is always possible to

simplify redundant representations of T ’ T, CT , which are not
= -redundant; precisely, they correspond to subsystems where all the

variables A, are such that 8(A,) = A and where the coefficients
of N=¢@ are the same in all the equations.

Example: T = {a,b,c} T, = {a,Db]

21

= + +

Ay aA, + bh, eN + A

Ay = ah, + ba, + cN+ AM
N=aN + UN + cN

simplifies into

A = aA, + bA, + cN +A

N=aN + bN + cN

as

*

Ay =Ay=A;=T .

Whenever one of these simplification rules is applied it may

trigger the applicability of any of the four, They are well adapted to

a fast machine implementation. However it is not difficult to find

examples of SRL systems where two variables are equal and which cannot

be simplified with these four simple rules,

It is a classical result of automata theory that among all finite

state automata which accept the same regular set, there is one and only

one up to isomorphism which has a minimum number of states (Moore [1956],

Theorems I and 5) and thus can be taken as a canonical representation

of this set.

We are going to prove this result directly in our formalism and

give an algorithm to obtain this canonical representation.

= = &
The idea is that when Sp Sa y if we form Sa Sy 53 as

in Lemma 3.9, Sc has necessarily no more variables than the smallest

32

of Sp and Sg . Thus the closure of this operation among all SRL

systems equal to Sp is bound to yield a minimal one.

Consider two distinct SRL systems Sp and Sp such that Sy = Sg ;

suppose that they are connected, that Sp has n varlables and Sa

has m variables.

Form

Consider the process bywhich, starting with C,, = A & B = A, =3B,

the variables in Sa are formed.

= = & =

(vi)(@J)[A, B, Ag B, Cyl .

Clearly S, cannot have more than (if n<m then n elce m)

variables, and will have less if there are two Cig with equal first

or second subscript, since (Vi)[Cy 5 = Cy 4] and (Vi)c, = Csi! .
We see also that if n =m then Se has n variables if and

only if S, = Sp .

We have proven:

Theorem 3.15: Givera regular set A there is one and only one SRL

system Sy which has A as its solution and which has a minimum

number of variables. This canoni:al system is the only system Sp in

which no two variables are equal.

This yields an algorithm to obtain S, :

Given a regular expression A we have shown how to get an SRL

system Sp and seen how to simplify it in some ceases, We have also an

33

algorithm to check the equality of two SRL systems.

- We now can take all pairs of subsystems in S, and check them

two by two for equality.

The algorithm can be speeded up in two ways:

(1) When an equality is recognized, simplification should be done and

we should check for the four elementary simplifications. This may seem

to slow the algorithm since we must then stert all over again, but in

fact drastic simplifications usually occur.

(11) Given S, and I, , consider I,/# , the quotient of I, by the

equivalence relation # which we have defined in Section 1.

lemma 3.16: The graph <T,/#;> > has one and only one basis.

Proof:

one: Any finite graph is inductive, any i:iductive graph has a basis.

only one: L/#/# = I,/# .

Thus, there is no circuit in <1,/#;> > . Clearly a graph can
have more than one basis only if it contains a circuit.

In fact, <I,/#;>> exhibits the upper lattice property. }

We start by putting the subsystems of the basis in canonical form.

Then we eliminate any = -redundancy, move up one step and put in

canonical form the subsystems corresponding to equivalence classes

which have only for descendant classes of the basis, etec....

This algorithm, without the last strategy, has been implemented in

B5500 Algol. It is well adapted to computer handling of regular

3

expressions on a large alphabet. The last refinement may in general be

questionzble because of its computational complication, but it should

be a good strategy for dealing with very large systems separable into

many smeller subsystems.

35

SECTION 4

ANALYSIS OF REGULAR SETS

a) The General Problem of Analysis

Let us describe the problem of analysis briefly and rigorously,

since we are now often going to refer to it.

A production system is a generative algorithm defining a set A

of strings in extension.

It is defined by a finite set T of terminal symbols, by a finite

set I of variables, among which is the symbol A designating A ,

and by a finite set of pairs from (T + 1)" x (T + 1)” , called production

rules, and which must be interpreted as rules permitting us to write

in sny string the second element of the pair in place of an occurrence of

the first element.

In particular, in a context-free grammar Gy the production rules

are from I x (T + ol and are written X =a, a ¢ (T + I) . Clearly

we can associate to Gy a system Sp of equations of the form

X; = £,(X 50005X) y 1=1,...,n, with A =X where for any 1,

£,(X gee erX) is a form in the algebra of © with the operators +
and °* , i.e., a restricted regular form without any * ,

Consider the following relation: CO =p with a,8 ¢ (T + 1)” H

it means that PB is directly derivable from Q by application to «

of one production rule in G, - The closure - of = is obviously
a relation of order (derivebility), thus = defines an infinite

directed graph <(T + 1)" se > . An interesting subgraph of this

36

graph is the one which contains A and all the paths starting at A

(graph of all strings derivable from A). We can label each arc

(a,B) in those graphs with the name of the production rule by which

a= , with some conventional notation for specifying where in «©

the rule is applied in case there may be ambiguity. (See example.)

Naturally, the set of strings or context-Iree language A is |

the set f{a]a e T° AA = a} .

To analyze a string a 1s to find all the parses of & , that is

all the paths in <(T + 1)" > joining A to @ , each one defining

a derivation from A to Q@ by G, . In a derivation of a certain

phases may lead to some disjoint parts of & and usually such phases

are then considered to be independent. Two derivations which differ

only by the order of independent phases are equivalent; a convenient

representation of an equivalence class of derivations of Q 1s a tree,

the well-known structural tree of Q , in which independent phases are

shown as developing as independent branches; another often used

representation is by one of the elements of the class, a path called

canonical parse which corresponds to a rule of selection in

«(T+ 1) gm >

If more than one structural tree or canonical parse can be associated

to a string @ , a is said ambiguous. A context-free language is

ambiguous when some of its strings are; this notion is relative to the

grammar, A context-free language is inherently ambiguous when it is

ambiguous for all its context-free grammars; this notion is relative

| to the class of context-free grammars.

Example: T = {i,[,])} 1 = {A,B}.

bX

Gy contains five production rules:

1. A—-1

2, A [A]

3, A = AA

L, A-B

De B - iii

8S, contains two equations: A =i + [A] + AA + B
B = 1ii

Let us draw a part of <(T + I) so >.

1 [1A] —2—»[1a0) —2—#[11A]

2 V J NN] ON
AL [A] ——» (AA) —2—» [AL}—— [AA1) —L— [5a4)L [141]

NN (A-] 1 /
AA [-A) / 1 1(AAA) ZL rasa] ~L1a[aii] [8B]
B

EN 2114 JA ——+ J[A] —2—= [1]

There are 16 paths from A to [iii] , they correspond to the two

following equivalence classes (represented by their structural trees):

38

| IN
[/] (aN)\ EY

J \ | i
i i i i

[iii] is ambiguous.

We see that to msnalyze a string & is to solve constructively

a combinatorial problem and thus to extract some information from @ ,

This information is used for instance to direct a computer (interpreter),

to generate some code (compiler), sometimes even to alter « at the

same time it is analyzed (macro generation). These actions can be

specified by factorization into elementary steps each of which is

associated to one production rule, so that to a given path corresponds

a succession of elementary steps driven by the analyzer (see for instance,

Wirth and Weber [1965]). This association of analysis and action is

mathematically a valuation; in Riguet [1962] it is shown how it corresponds

to the algebraic notion of diagram defined on a directed graph with

value in a category.

Let us only observe here that the notion of equivalence of two

derivations and the notion of ambiguity of a string are both dependent

upon valuation. For instance, the equivalence of two derivations has

no operational value when valuation alters the strings as they are

39

analyzed; for instance also, the ambiguity of a string is unimportant

if enalysis is merely intended to decide whether the string belongs to]

the set A or not, or, more important, if analysis bypasses the ambiguity

because of some systematic convention. We shall give an example of the

latter in Section 54d.

The value of a string is often called its semantic; the valuation

mapping together with the class of values of all strings in a language

being then considered as a model of the language.

Basically, there are two ways of analyzing a string a ; we may

start from A and try to reach « , following the arrows, or start

from & and try to reach A , going against the direction of the

arrows. The first method is called top-down analysis, the second one

bottom-up. Although it is never done, there is no theoretical reason

for not devising analyzers using a mixture of both.

If we have described the problem of analysis in general terms,

it is because we believe that it is more general than the problem

of compiling or interpreting programming languages. We will come back

to this in Section 6g. Let us recall the following points we have

made: there is a difference between analysis and valuatlon; the structural

tree of a string @ is not an inherent property of « , it describes a

successful analysis, showing the relations and subordinations of the

different phases.

Lo

b) Analysis of Regular Sets

(i) Top down analysis.

In the case of regular sets there are various ways to show that top-

down analysis of the strings of a iegular set is simply done by building

a corresponding finite state automaton and feeding strings into it (see

for instance, Brzozowski [1964]). The automaton can always be made

deterministic (Rabin and Scott [1959], Theorem 11) and analysis proceeds

from ieft to right in a time proportional to the number of symbols read.

In our formalism: Let T = {x13 = 1ye0e,T}
r

Let Sp be an SRL system, Ag = PRSSE + 8(A,) i= 1,000.0,
We associate to each A, a predicate In, , such as

In, (a) = [a ¢ A, , as follows:

In, (a) = if Q = A then 5(4,) =) else Next, (first(a),rest(a))

Next, (x,B) = if x = x, then In, (B) else ...

ceoif x =x__ then In, _,(B) else In, (PB) .

Since In, may appear for instance as some In, , in Next, ’
these predicates appear as recursive. However it 1s clear that this

recursion is computationally equivalent to an iteration: in the |

implementation of procedures corresponding to these predicates it is

not necessary to use a pushdown store because control will only enter

these procedures at their beginning.

In practice we will use an n by r array representing the

transition graph; for instance, to the system given as an example

following 3.5,

41

Ay = OA, + 1A,

A, = OA, + 1A,

Ay = CA; + 1A, + A

| A, = 0A, + 1A, |

\!
corresponds the array: j

A, A, A, A,

oh A 4A

1 | AL A A A
A A

. Ve 20 from state to state as we read characters one by one,

| The minimal SRL system corresponds to the smallest array. The

algorithm can be speeded up by grouping characters into strings

corresponding to closed paths, i.e., redefining T.

Because of the speed and simplicity of this algorithm to analyze

regular sets, it would be reasonable to use it systematically for

analyzing regular structures in programming languages; even if the

general analysis algorithm used does not reduce to this one in the

particular case of regular sets. The fact that it is not recursively

decidable whether . context-free language is regular (Bar Hillel,

Perles and Shamir [1961], Theorem 6.3) does not cause any difficulty,

one defines a grammar for a language one has in mind, not the contrary.

Note the role of the end of string marker, A , to prevent

ambiguities (see Chomsky and Miller [1958]).

Note also that we have here a case of predictive soairefs in its
simplest form (Kuno and Oettinger [1962]). L : 1

(11) Bottom-up analysis.

Suppose a regular set is defined by an SRL or SLL (standard left

linear) system and we are trying to find the (unique) path corresponding

to the derivation of a string «a.

Example: Block structure in Euler.

* *

<block> = begin (<declaration>;) (<statement>;) <statement> end

Because it is desirable to scan a block from left to right in

order to build its declaration table first, we must consider an

associated SLL system, rather than SRL: (elements equal to @# not

written).

1, <block> = B, end

2. B, = B,<statement>

k, By, = By <statement> + Bg <declaration>
. B =5 5 A

6. Be = B.s + Bg begin |
Te B, = Be <declaration>

corresponding to the graph: (Labelled as traditional)

43

<block> end Bo <statement> 3

begin 3 <statement>

B

| PLEA B
ouT begin Ly

<declaration>

Pe

| | } <declaration>

Consider the string:

begin <declaration> ; <statement> ; <statement> end

It has only one parse:

<block>

+ 1

B, end
$2

B, <statement> end
+3

B, ; <statement> end
$b

B, <statment> ; <statement> end |
+3

B, ; <statement> ; <statement> end
$ 4

Bg <declaration> ; <statement> ; <statement> end
6

B begin <declaration> ; <statement> ; <statement> end
tl 5

A begin <declaration> ; <statement> ; <statement> end

bi

We want to reconstruct that parse as we read the string from left

to right. We start at the left end, B. must have been applied; now

we have Bg begin ... ; B; begin appears in 6 and in 3, there is no
way to know whether we must use 6 or 3 except to look at the ollowing

symbols; since the next symbol is <declaration> we must apply 6,

not 3. The situation is worse when later we get By <statement>...

or Bg <declaration>... : we have to look two symbols ahead in order

to make a decision since both <declaraticn> and <statement> must

be followed by a “;% .

If we were proceedingby trial and error, we see ° . we would

get into blind alleys, none of which would be longer than two analysis

steps.

This important type of difficultyhas been intensively studied

for context-free languages (Floyd [1964], Irons [1964], Ross [16h],

Wirth and Weber [1965], Knuth [1965]); in the particular case of

regular sets, we recognize the notion of a k-limited automaton

(2-1imited, in the example) (Chomsky [1963], page 336-7). Because

there are finite state automata which are not k-limited for any k

(ivid.) we see that there are SRL systems for which a bottom-up analyzer

will engage into blind alleys of unbounded length.

Example: Sq = (ac*a + be*b) + ac* + be*

5S; = aS, + bs,

S, = 5, + a5, +A

8; = ci, + bs, + A

hS

iQ
a

A

S

| IN —» OUT

2A

c |

3

| In fact, it is clear that in the notion of k-limited automaton,

the finiteness of the automaton does not play any role and that the

notion is generalizable to infinite automata and context-free

languages. -

Let us remark that to go into a blind alley and then backtrack is

in practice untolerably time and space «onsuming and must be avoided

when a decision cen be made simply by a short look-ahead. Certainly

a disadvantage of the context-free grammar formalism is that it implies

the use of a non-deterministic analyzer, even in simple cases. Look-

ahead Just cannot be described in this formalism. This is one reason

why in Section 6 we shall introduce conditionals in a formalism related

to context-free grammars.

Before that we want to apply to context-free languages the results

and the considerations of this last section and of Section 3.

L6

SECTION 5

APPLICATION TO PROGRAMMING LANGUAGES

a) Preliminaries

Most programming languages make use of structures conveniently

described by regular expressions, such as the block structure we have

examined in Section 4b; since regular sets are simple to analyze, we

want to take advantage of this.

We will first examine as an example the case of Euler (Wirth and

Weber [1965]), in preference to Algol 60 because Euler has an unambiguous,

simple and systematic syntax. Furthermore Euler is a generalization

of Algol 60.

Seeing that Euler can effectively be analyzed byrecursion of

finite state functions without backtracking, we will formalize this

approach to language recognition, define a class of sets of strings

which we will call regular context-free (RCF) and study its properties.

b) Regular Structures in Programming Languages

Euler syntax (see Appendix 4) is defined in Wirth and Weber [1965]

by a simple precedence context-free grammar consisting of 120 production

rules in a notation similar to BNF without the vertical stroke for

alternation (Boolean +); were this sign used, it would reduce the

system to some 4i rules, 35 after elimination of some redundancies

necessary to insure precedence.

It is clear that we can consider a context-free grammar as a system

of equations in @ homomorphic to a graph (see Section 1), the only

L7

operators used are + and +, * could clearly be used and corresponds

to terminating left or right recursive rules; as we shall see in Lemma 5.4,

non-terminating left or right recursions define variables equal to § .

Such systems have one and only one solution (Ginsburg and Rice [1962],

Letichevskii [1965]).

If in the Euler system we solve left and right recursions by

introducing * and then solve the system by substitution as much as

this can be done, we eventually obtain no more than two large equations

in one variable, cne equation being recursive:

program = f(expr)

expr = g{expr)
see Appendix 4 for f and g .

This is not enough to ensure that Euler can be analyzed without |

trial and error by a recursive use of the finite state functions ff

and g , because it could happen that the analyzer would not know in

some cases when to go up or down one level in recursion rather than to

keep absorbing symbols on the same level, so that it would have to

proceed by trial and error; in terms of programming, we say that it

would backtrack, in terms of automata theory that it would simulate

a non-deterministic automaton.

In the Euler case, wherever expr occurs in f or g , it is

surrounded by two bracketing symbols. These symbols are used only

for bracketing and there is no chcice within the brackets. This clearly

shows that Euler can be determinlistically recognized by two finite-state

automata, one of which can call itself recursively by way of a pusham, |
store, on which the place where a recursion mist return is saved when ih

- 48

the recursion is entered. Such analyzer is not only extremely fast

but also minimizable.

Since Euler is a generalization of Algol 60 this method seems

promising. In fact the Meta series of compiler compilers (Schorre

[1963], [1964], Schneider and Johnson [1964]}) implicitly uses a

variant of it, although in a non-systematic and informal way.

The role of regular structures in programming languages was first

recognized in Suik [1962] and rediscovered by Carr and Weiland [1966]

in a misleading paper where it was wrongly argued that it is possible

to express with regular expressions "the Revised Algol 1960 syntax in

completely nonrecursive terms". Neither its problems nor its implica-

tions have been studied.

Note that the role of the operator * {is to force us to analyze

iteratively what it is not necessary to analyze recursively; in this

strategy the push-down store is used as little as possible.

What we must do now is to rigourously define the strategywe have

broadly described, characterize the subclass of those deterministic

context-free languages which can be analyzed with it and examine their

properties.

¢) RCF languages, Characterizations.

We need first to introduce some important notions.

Definition 5.1: The left derivative of A with respect to B,

8A is defined by

2A = {e}(3B)[B ¢ B A Bx e¢ A]}

49

$A is the set of all strings obtained by chopping off a string

in B at the head of a string in A .

Particularlywhen B is a unit set of one string, this notion is

central to the gedanken experiment oriented theory of automata. The

variables in an SRL system Sp are equal to derivatives of A . This

approach is used in Stearns and Hartmanis {196%] and Brzozowski [1964]

for regular sets,

Of interest to us here is the left derivative of a set with

respect to itself:

8X = {a|(3)[B e X AB eX]}

Definition 5.2: A predicate 1 on 8° is defined by:

(A,B) = [first(8,4) Nn first(B) = ¢1 .

We shall say that Ais separablein AB ,

This definition corresponds to the difficultywe have mentioned

in Section 5b. Suppose we are analyzing oy from left to right, where

y ¢ C = AB, Necessarily (Fa)(IB)[y =aB Aa cA AP eB] . The

analyzer for C calls upon the analyzer for A first; when the

analyzer for A comes to the end of & it should be dismissed and

the analyzer for B called upon, but if there is a string aa, € A

where a, and f have an initial non-null segment in common we are

unable to recognize at the end of & whether the analyzer for A

has to be dismissed or not. We see tat if A is separable in AB

this cannot occur.

50

Observe that the operationby which the analyzers for A and B

are called successively to form the analyzer for C corresponds to the

notion of function of function.

This notion of separability is important and will be often used.

We shall write [(A,B) for I(A,B) = true .

Because N(A,B) expresses a property of sets, its value is preserved

when we substitute for A or B expressions to which they are equal.

Let us now define the class of sets we are interested in.

Let S be a system of equations:

where f, is a restricted regular expression over T U Is . Consider

the system S' obtained ty developing each fs into its canonical

SRL system, introducing new variables B, 3 :

X; = Bi

= aeT ja Xelg 13x 13
= 1 mJ Jreo ey 1 LJ

Definition 5.3: A set of strings is regular context free (RCF) when

it is the solution of a system S' in regular fom; i.e., containing

only two types of equations:

(1) B,, = Y eB + 8(B,
iJ acT ija | iJ

(ii) By, = XB,, with o(x,B,,.) .

51

To say that X is separable in B., means simply that

(Ya)(Ve)[((B # A) A (2 eX) A (0B eX)) = first(B) # first(B,,)] .

The sdaquacy of this defin'tion to the algorithm we wish to use is

due +o the fact that the process of expansion into S' is a formal

representation of the algorithm.

I is decidable for context-free languages. Algorithms for its

computation ere given and discussed in Appendix 5. Usually, as in the

Euler case, [I is obviously %rue.

Lemma 5.4: In any system corresp.niing to a context-free grammar, a

variable defined by a non-ierminating recursion is equal to @ .

Proof: @ is a solution of the corresponding subsystem,

The solution is unique. (Ginsburg and Rice [1962], Letichevskii

(19651). A

Example: N = aN + bN + aNb + NN .

Since I is finite, the occurence of variables equal to ¢ can

be recognized by mere testing and the system can be simplified by the

rules Af = fA = ¢ and A+P = +A = A.

When one has defined a class of sets of strings, it is often

useful, as a tool to study its properties, to characterize it in terms

of a family of automata each of which recognizes Just one set of the |

class, Here we are clearly going to obtain a subfamily of the one-way

deterministic | ia (push-down store acceptors) (Schiutzenberger [1963],

Ginsburg and Greibach [1965]). : N Ce

52 |

As we shall see, RCF languages can be characterized by properties

of systems of equations in more than one way. Depending on the particular

characterization one uses, the class of automata can be defined by various

forms of restrictions, necessarily all equivalent, but more ~r ess

natural. We are going to introduce one which we find natural.

Definition 5.5: (Greibach [1965]). A grammar rule is in standard form

when it is of the type X — 0X eed n>0. A grammar is in standard
form when all of 1ts rules are.

For any context-free set IL , L-A has a standsrd-form grammar (ibid.):

this result is the formulation for grammars of an automaton-theoretic

result: to any pda terminating its computation with an empty pushdown

store, one can associate another one which defines the same set of -

strings, under the same condition, and has a finite state control-with

just one state (Ginsburg [1966], Lemma 2.5.1). Clearly the latter

works on a left-right, top-down, generally non-deterministic, recognition.

Lemma 5.6: In any CF system obtained from a regular form system by

substitutions of equals for equals, if X and Y are two consecutive

variables in the right part of a production rule, X 1s separable

from XY .

Proof: We have two types of rules

(i) | B,,= 2 aB,, + 8(B,,)
1] acT ija iJ

(ii) B., = XB, ~ with n(x,s,,) .

22

In a first substitution there can be a difficulty only when

substituting for X the expression to which X is equal. But because

sepdrability is a property of sets, not of grammars, it will be preserved.
/

The same reasoning is clearly true for other steps of substitution.
(Note in particular that by definition of T the case \ ¢ X is no=*

’

excluded.) _

Definition 5.7: A grammar is an s'-grammar when all of its production

rules are in standard form, X SeXy. XK qe Xp y n>C , orcf
the type X —)\ , subject to the conditions that

(1) for eny ordered pair (X0 X3 v1) appearing on the right ci a
production rule, X, is separable in X Xp , i.e., NX 4X gy) .

} (11) no two production rules having the same X have the sam: a .
’

Let us work out an example which we shall generalize after-ard.

| Consider the following definition of a simplified arithmetic

expression, where the operators are © and @ and {he varentheses

are denoted Tv square brackets; A stands for arithmecic expression,

T for term, F for factor, i for identifier (a f{erminal symbol).

T = F + I8F

F=1i+ [A]

Solving the left recursive equations in this system, which is

equivalent to the usual context-free grammar for arithmetic expressions,

we get: ol
RE

54

*

A = T{eT)

* .

T = F(®F)

All variables but A can be eliminated and we can get A as a

function of A , For clarity, let us not do it now; we eliminate

only T

* x _#* |
A = F(eF) (oF(aF)) |

F=14+ (A)

We now expand A into a regular form system: {quantities equal

to @ not written)

A= A |
* f _¥

Al = FA, where (rule B =BB + \ applied twice):
#* * *

A, = (8F) (OF(@F))
* *, * JER

= 8F(8F) (eF(@F)) + (oF(eF))

= 8A, + or(eF) (or (@r))" + A
= Hh + oi + A

so that we get directly tre minimal SRL system (over T + {F}])

A = A

A, = FA,

A, = ®A, + @A, + A

Substituting now i+[A] for F we get the regular form system:

A =A

1 As a Ay
_ ¢— @

A, = iA, + (A, NJ \
A, =QA + OA +A IN OUT

, Ay = RA, ?
hy = A,

B(AA,) since rirst(A,) = {]} while first(A A) = {0,0} .
Now we vant an s'-gremmer; the only equation to be expanded is

Ay = My « By substitution

A, = AA, - AA, + (AA,

Note that by Lemma 5.6

MAA) =» (A ,A,) -» (n(A_,A,) A (A;,4)))

and the s'-grammar is: |

A, = 1A,

Ay - (A, |

A, “en,

Ay = OR

A, —\

A, = AA,

Ay => [AA

A, = JA, |

Note that all these manipulations can be done by a computer which

would easily handle much larger expressions.

5€

Theorem 5.8: Aay RCF set has an s'-grammar; any s'-grammar defines :

an RCF set.

Proof: (i) Any RCF set has &n s'-grammar, :

Starting with a regular form system, we =2liminate all variables

equal to ¢ (Lemma S.4). In the resulting sv-..em we want to eliminate

terms of the form B = CD , In all such monomials, where the leftmost

symbol is a meta-variable CC , we substitute for C the expression

"which defines it. By Lemma 5.4 the process terminates. There is a

difficulty only in case in the last substitution 8(C) = A . We obtain

then an equation of ti. form:

B= J aC,C,...C D+ C,...CD + 8B) TST .
acl,

o Wb 1 oT

For two consecutive variables Cia R C(1+1)ay , Cy g42C(541)a3’ ’
by Lemma 5.6.

a(c,u) implies thet T, N Tye @ i,j =1,.e.,p .
The transition from the system thus obtained to an s'-grammar is

immediate,

(ii) Any s'-grammar defines an RCF set.

To a rule X = aX .. X associate

- if n>1 the n equations (Y,50000Y, 5 , n=1 new symbols):

X = aY, + 5(X)

f= XY

Thal = 0-11

57

- if n=1 the equstion X = aX, + 5(X) |

- if n= 0 tue equations X = aL + B5(X)

| L= A

where B(X) =A if a rule X —+\ occurs in the s'-grammar and

&'X) ~ ¢ otherwise.

We cannot have nx,,y, .) = false in on2? of these equalities,

otherwise we would have for some J, 1 < j<n, a pair (XgX 447)

for which m(Xy X00) = false .
We obtain a regular form system. |

Note that if we were not concerned with separability and regular

form systems, we would have here a simple algebraic proof of the existence

of a standard-form grammar for any context-free set nct containing A

{Gr:zinach [1965]); the rules X — \ being eliminated 'y the method of

loma 4.1 in Bar Hillel, Perles and Shamir [1941], wh: zh amounts to a

st.atitution of X, + A for X , where xy =X - A is a new, easily

defined, context-free sci,

We may call a pre-standard-form grammar a grammar which is made of

a standard-form grammar plus, possibl., a rule A =) , where A is the

root. Any context-free set has such a grammar.

Corollary 5.9: Any RCF language has an s'-grammar in which no rule

has a right part containing more than two variables (s'-2-grsmmar).

Proof: We use the construction of Corollary 3.2 in Greidach [1965].

It preserves the properties of s'-grammars.
|

58

Let n be the lergth of the longest right part of a rule. We show

that if n > 3% , we can construct an equivalent s'-grammar with n

reduced by one.

For each pair of variables A,B ¢ I create a new symbol [A,B] .

For each [A,B] scan all the rules A — ah. Al ; if p < n-2 , create

a rule [A,B] =a... A EF s if p = n-1 , create a rule

(A,B] —ah....A [A,B] s if p - a , create a rule

[A,B] — CORRE LISP INES | Ee: . If 8(A) = \ , scan all the rules

B ~bB)...B ; if q < n-1 , create a rule [A,B] = bB,...B, s if g- n,
~~ - [-—rea e a rule [A,B] = bB,.. BIB _.,B] . If B(B) = A too, create

a rule [A,B] »A . Now replace all rules X = xX,...X of the old

grammar by a rule X nl TTT] C SERPS 9 ; this connects a number of new

variables [x _1.X] to the root, ‘ake the productions which correspond

to them and discard the unnecessary cnes. |

It is clear that if the resvlting grammar were not an s'-grammar

the old one could not he one since nly substitutions are applied. }

Note that, as we shall see in Section 5d, an s'-grammar or an

s'=Z-grammar can be ambigucus, although it is possible to derive from

them deterministic parses; their form is particularly convenient to

prove results about RCF lung.ages and to characterize them automaton-

theoretically.

Notation: A one-way deterministic pda M (see for instance, Ginsburg

[1966], Section 2.6) with one final state, is given by

M= (X,T,1,0,3,q,,fq_}) where

09

K 1s the set of states of the finite state control automaton,

K = {gse-+s2} -

T is the input alphabet. (a),8,,.. 00]

I is the finite set «f pushdown symbols. {A,B,,...}

ron *
N e mapping from K X(TU fe} U /A}) x (TU {A}) into XxI .

(transition function) |

$8 ¢ I (initial pushdown symbol)

Q is the initlal state and only final state.

N is defined by rules of 4 types:

1. (q,8,,X) - (a 0¥7e0.Y,) n>1 (Read and Expand)

The control in state gq, , a ¢ TU [A} current symbol on the

input tape, or a = A meaning that the input tape is empty, X on

top of the nushdcwn store, >r X = A meaning that the pushiown store

is empty; a is rea¢ vr, ¢, 1s reached and X replaced by

YyeeoX where x is row or top of the pushdown store.

Cy (q,€,X) - (qgp¥yeee¥)) n>1 (Expand only)

same &: Ir 1 Hut the cperation does not depend upon the input which is

not read in.

3. (q,,8,,X) — (a ¢) (Read and Erase)

sam2 as 1 but X is erased instead of expanded.

L, (q,,¢,X) = (gy,e) ‘ (Erase only)

a combination of 2 and 3.

60

Definition 5.10: An 8'-machine is a one-way deterministic pda with
one final state, which satisfies tl: Jollowing " restrictions:

(1) card(K) < ecard(T) + 1 .

(11) all Read and Expand rules are transitions from q, to q,

— Expand Only —_—4 = eq i40

— Read and Erase —_—_— q, — q i#0

— Erase Only Imeenese— © PEE 1£0
{same 1).

Except that a Read and Erase rule where A is read is a

transition from a, to q, -

(111) To each state q, , 1# 0, is associated one letter ».

in T , one-to-one so that

- For each Expand Only rule from siate a there is

a Read and Expand rule where 8; is read-in, the remainder

of those two rules being identical.

= In a Read and Erase rule, the read-in ., corresponds

to the y which is reached from q, > A to q, -

- For each Erase Only rule in qy there is a Read and

Erase rule where ay is read-in, the remainder of those two

rules being identic:zl.

If a pushdown symbol sppears ln the left part of a Read and

Erase or Erase Only rule, it appears with every letter in T

in the left part of some rule of type Read and Expand, Expand

Only, Read and Erase, or of type Read and Expand, Expand Only,

or Erase Only, respectively.

61

(iv) It terminates its computation with &n empty pushdown store.

These rules are phrased in such a way that the states qy different

from q_ end only these states are used just to "remember" one character

a, ror look-ahead purpose; so that, since the machine can remember only

one letter, it cannct read when in a state gq, , i £ 0: it just stays

| in Qy and pops out pushdown symbols until it gets one which would be

expanded with a; . It then expands it and returns to q, - Note that

it is forbidden by the iast restriction in (iii) to use the pushdown

store to remember from step to step the last letter read-in.

These rules cer*a’nly are complicated; it is not clear how they

could be made simpler; on the other hand the functioning of the machine

is intuitively quite simple.

Theorem 5.11: Any RCF set can be recoi.: zed vy an . -machine and

conversely any s'-machine recognizes an KC¥ :et.

Proof: By Theorem 5.3 we can start from an s'-grammar.

Tc a production

B—=8.X ...X
p n

associate the rules

(q,,2,,B) = (gq,X ...X,) and

To a production

B=

62

associate for all i such that a; £ first(B) , the rules

(q,,a,,B) - (q,,€) ’

(q,,€,B) = (q,,¢) ’

and

(q_,»,B) = (q,€) .

Separebility and the fiuct that no two productions with the same BE

on the left can have the same a, “n tke right express precisely that

the pda just defined is deterministic.

If the computation starts in q, with the pushdown store containing

the root S , it will stop in qa, with an empty pushdown store and a

completely read-in input string « , if and only if Q belongs to the

language defined by the s'-grammar.

The converse is obtained ty the reverse argument. |

d) Relation to Other Classes ofLanguages oo

We are going to relate RCF languages to two other classes of

languages which have been recently introduced.

In Korenjak and Hopereoft [1966], one-way deterministic pda are

studied which

(i) must read one input symbol per pushdown symbol erased,

Ti1) er.d their computation with an empty pushdown store and

(iii) have a finite state control of just one state: the s-machines.

They define the s-languages. If we define en s-grammar to bu a

63

standard-form grammar in which no two rules X = aX)... X y n>0

having the same X have the same a , any s-grammar defines an s-language,

any s-language has an s-grammar,

For such a grammar predictive analysis cannot go into a blind alley;

another imnortant property is that no initial segment »~f a word derivable

from a variable can be derived from it too (prefix property); this implies

left and right cancellation.

Lewma 5.12: The class of s-langueges is properly included in the class

of RCF languages.

Proof: - Any s-grammar is an s'-grammar because the prefix property

implies separability.

- The finite set {a,ab}] does not have the prefix property, it

is not an s-language. It is RCF as any regular set is. }

We want to give a more complex example because any regular set with

an end marker is an s-language (ibid.) and one may wonder whether

s'-languages are but quite a mild generalization of s-languages.

Consider the set §S = Le" Pac™™ n,m Q} . This is not an

s=language because an s-machine cannot recognize it, since it cannot

save information except on its pushdown store and must read one input

symbol per pushdown symbol popped out.

An s'-2-grammar wnich defines it is

6L

S = bS,B

Sy - bs, B

Sy - cS, K

S, - cS K

5 — aL

5, = aL

B = bL

L=A

K = cL

K—=)\

Note tha* the set S8 , @ an end marker, is not ean s-language

either, for the same reason as §S ,

One must emphasize that this last grammer is ambiguous: the

derivable intermediate string, bbccccaKKKKBB for instance, can yleld

bbecccacebk in 6 ways, according to the K 's which are parsed into A ;

for the corresponding s'-machine, the rule K A is to be applied only

when the input character read-in does not belong to first(K) . This

cannot be expressed in an s'-grammar; this supplement of information is

in II and in the restrictive rules by which an s'-machine, i.e.,

a deterministic parse, is derived from the s'-grammar, |

| To make such condition explicit we could use unrestricted rewriting

rules such as: Kb -b ,

Let us consider now another class of languages.

The Meta series of compiler compilers (Schorre [1963] [1964],

Schneider and Johnson [1964]) uses restrictions of regular form systems

65

vhich have not been studied or even made precise at this writing;

because, as we have seen in the Euler case, separability is often in

practice trivially recognizable, it may have seemed unnecessary to

give as general a condition as possible for a language to be in the

realm of the method. An attempt is made though in Schorre [1965].

Definition 5.13: (ibid.) A binary grammar is a context-free grammar

in which all the rules have just two symbols on the right or are of

the form A =).

Let us use the notation A,B,... for symbols which are either

upper or lower case.

Definition 5.14: (ibid.) An for (first character recognition) grammar

is a binary grammar in which:

(1) if AE aA ADE are in it, then

first(BC) & first(DE) = # and &(BC) & 5(DE) = ¢ .

(ii) if A -3BC is a rule, B is separable from EC .

Some properties are given in Schorre [1965], yielding an algorithm

to determine whether a grammar is fer, No further investigation of

these grammars and of the class of languages they define has been

published and the relation of fer grammars to the formalism used in

the Meta series of compiler compilers has not been made clear.

Note that because [1 is preserved by substitution, we have in

any derivable string Aha. -Ay , n>1, MAA, ,,) y, 1=1,...,n=1
80 that the restriction that the grammar be binary is unnecessary.

66

Lemma 5.15: There are no terminating left recursions in an fcr

grammar.

Proof: We certainly cannot have a direct terminating left recursion:

* *

if B—BC with B—=EF or B—=\, then EFC €B or C CB which

is not compatible with respectively first(BC)N first(EF) = ¢ or

N(B,C) . If a left recursion is not direct, it can be reduced to a

direct one by successive substitutions, without altering separability. }

Note that is is as usual possible to get rid of nonterminating

recursions by eliminating any variable equal to $. We will suppose

that this has been done,

Theorem 5.16: Any RCF set has an fer grammar, any fcr grammar defines

an RCF set.

| Proof: (i) Since a regular form system is clearly equivalent to a very

restricted fcr grammar any RCF set has an fcr grammar. We want to show

: that the restrictions are not effective,

(ii) In an fcr grammar there are rules of 5 types:

| 1. A=-AN

2 A =be

3 A - bl

4. A —-Be

5e A >BC

67

Let us show that there exist an s'-grammar which defines the same

set as any fer grammzr. And to do that we reduce an fcr grammar to an

8'-grammar without rodi. ying the language, just as we did for regular

form svstems. First define an equivalent system of equations:

- Determine all variables A such that B8(A) = A.

In the equation of A :

= To each rule A — bec corresponds a term bK , K a new variable,

where K=¢L, L=X.

- To zach rule A = BC corresponds a term UC .

- To each rule A -—> Bc corresponds a term BK .

- Tc ~ach rule A = BC corresponds a term BC .

We have a system of equations of the form

A=F aB + 20D + 8(4) .

In any monomial CK we substitute for the leftmost variable the

expression which defines it: C = aC_ + Y EF + 8(c) .
We do the same operation in any monomial EFD or D we may have

obtained.

We keep doing this as long as we have in the equation of A some

terms which do not begin by a terminal letter.

By Lemma 5.15, the process comes to an end since the number of

variables is finite and we have eliminated non terminating recursions

using Lemma 5.4,

We have not introduced new variables in this calculation and it

is clear that separability is preserved: 0(C,D) A NI(E,F) A (EF CC) =

I(F,D) ; thus, the resulting system is equivalent to an s'-grammar

68

because of the condition (A = BC) A (A DE)=» (first(BC) N first(DE) = §)

for fer grammars. |

The situation of RCF languages among other classes of context-free

languages is depicted by the following graph:

Context-free

d-determinigtic (3)

v deterministic (IR[Xk])) (4)

bounded meta-linear (1) TT,
context-free (2) RCF bounded

NL context (6)
linear (1) s-languages

sequentially | |definable (8)

minimal bracketed (5) simple
linear (1 precedence (7,

one sided linear

(regular)

Inclusion is proper along an arrow. (We shall see in the next section

that the class of RCF languages is properly included in the class of

deterministic languages.) The references are:

1. Chomsky [1963].

2. Ginsburg and Spanier [1964].

3, Hibbard [1966].

69

L. Ginsburg and Greibach [1965], Knuth [1965].

5. Ginsburg and Harrison [1966].

6. Floyd [1964].

T. Floyd [1963], Wirth and Weber [1965].

8. Ginsburg and Rice [1962].

We are now going to study the properties of RCF languages and, to

begin with, we shall delimit the field by some negative results.

e) Negative Properties of RCFLanguages

Theorem 5.16: It is undecidable whether a context-free language is RCF,

Proof: Following the method of the proof of Theorem 6.1 in Bar-Hillel,

Perles and Shamir [1961], we construct a class of context-free languages

by which we map the set of solutions to the Post correspondence problem

*

(Post [1946]) onto an RCF language, T , and the nor -solution onto

non RCF context-free languages.

Given n e¢ 8 , two finite sets A = {a),...,a} , B= (B1yeee)B ,

a symbol @ fT and a finite set S = (b,,.0050) » by £T (Vi);
consider the three following languages, functions of A, B and nn.

1 P P 1 1 q “q 1

L, = (&"® alae (145)")

Ly = L & Ly .

L and L, are context-free and more precisely minimal linear

(Chomsky [1963]), their complements, L, and L) are context-free

70

too (more precisely linear ani unambiguous). {Chomsky and Schiitzenberger

[1963], Theorem 3, page 141.)

If there is no solution to Post correspondence problem for A , B

and N, IL, = @ ; otherwise L, is not context-free (Bar-Hillel et al. l.
1 _ |] tf

Consider its complement Ly = Li + L; .

L, is context-free as the union of two context-free languages (ibid.).
*

When Ly =¢, Ly = T and is RCF. When Lo, #% , LI cannot be
RCF because then it would be deterministic as any RCF language is and

its complement L, would be deterministic too (Schiitzenberger [19631],
Ginsburg and Greibach [1965]) thus, a fortiori, context-free.

Since the Post correspondence problem is unsolvable for card(T) > 2

there is no slgorithm to decide whether a set Ly » 8 function of A ,

B and n is RCF; this implies the theorem. i

Corollary 5.17: It is undecidable whether u context-free language is

equal to a given RCF language.

*

Proof: Since it is undecidable whether Ly =T . |

Theorem 5.18: It is undecidable whether the intersection of two RCF

languages is empty.

Proof: The proof is very similar to the proof of Theorem 18 in Rabin

ard Scott [1959] or Theorem 5 in Landweber [1964].

Given as before nel , A = {ag,...,a } , B= Blse-esB) ,

71

Let L, - b,L.A, L, — b,LA,

L, “A L, - A

Ay ma, 1 = lyeeeyn Aya J = 1l,.e0,0

These are two s'-grammars, as it is easily verified.

Their intersection is empty if and only if the Post correspondence

problem for this particulary A, B and n has no solution. This

proves the theorem. }

Corollary 5.19: It is undecidable whether the intersection of two RCF

languages 1s RCF or not, regular or not.

Proof: @ is an RCF language and a regular set, and it is decidable,

as we have seen, whether an RCF language (more generally any context-free

language) is empty. Thus Theorem 5.18 implies the corollary. §

This leads one naturally to ask whether the class of RCF languages

ie closed under intersection.

Lemma 5.20: The class of RCF languages is not closed under intersection,

union, concatenation or closure.

Proof: Consider the following RCF languages defined by regular form

systems. (Quantities equal to @ not written.)

T2

Ly = AC L, = AB
A=2aB+\ A=3ghA

B = AB, B = BB, +A

By = dL B, = BC

L =A C = cL

C=c¢cC +A L=2X

n_* * nn

L, = {abc |ne8) L,= {abc nef)

L &L,= {a""c¢"|n € 8} is not context free (Bar-Hillel, Ferles
and Shamir [1961], Scheinberg [1960]) a fortiori not RCF,

L +L, = {ab’eln,p,qe@A(p=nvp-=q)

is inherently ambiguous (Parikh [1961]), thus it cannot be RCF since

RCF languages have grammars ylelding deterministic parses, as we have

seen in Sections 5b and c.

Let Ly = dL, + L, ’ Ly is RCF, a regular form system defining

: | it is immediately obtained from those defining Ly and L, .

Let Ly =d +x, L), is finite thua RCF.

| | Ly Ly = ddL, + a(L, + L,) + (L, + L,) is clearly inherently
ambiguous, thus cannot be RCF.

»* * *

let Lg = {da"v"a |n e 2} + {a b"a"|n ¢ 0} . IL; 1s not deterministic

(Ginsburg and Greibach [1965], page 33) thus not RCF, while Lg
clearly is. |

As we shall see next, the language {b°(a" + e®) In e 8) is

another example of a non RCF set which is the union of two RCF gets.

| 3

We leave unresolved the question of closure under complementation.

As one could expect from the role of a left to right parse in the

definition of RCF languages:

Lemma 5.21: The class oi RCF languages is not closed under reversal,

Proof: L, = {(a" + "1" |n e 8} is RCF:

L, = QB + cB + A

B= LB,

B, = dL

L=A

is a regular form system which defines it.

LY = {b™(a" + c")|n € 2} is not RCF because it cannot be recognized
by an s'-machine.

The machine cannot predict whether it will meet a string of a 's

or c¢ 's when counting the b 's; so that when counting the a 's or

¢c 's, it must remember somehow either what the first non- b letter

was or what the last read-in letter is. It cannot use its finite

state part to do this and if it used the pushdown store it would have

to destroy that information before it could use it. |

R n,n n . .

Note that L, = {b'(a +c)in ef} is obviously a deterministic
language so that the inclusion of RCF languages intc deterministic

languages is proper.

gsm-mappings (Ginsburg and Rose [1965]) are often useful in

proving results about context-free languages.

Th

Lemma 5.22: The class of RCF languages is not closed under gsm-mapping.

| Proof: The set Ly = {a® Fie £ T} is RCF as generated by the
| s'-grammar

“1 ~ ah for all a eT
Ag ~ al,

L, - GL
L =x

The set L, = {a} is not RCF because it is not deterministic.

L, is obtained from L by the gsm-mapping which erases ® and

meps all otner symbols onto themselves, |

This implies that the class of RCF languages is not closed under

sequential transduction, of which gsm-mappings are the deterministic

case.

This impiies also that the class of RCF languages is not closed

under substitution of an RCF set for a given letter or substring; here

substitution of {A} for {® . A more interesting example is the

following highly pathological non-deterministic context-free language:

(a™a baaPbaPa"|m,n,p € GO) due to R. McNaughton. It can be obtained

from {a"cda" |m € 1) by obvious substitutions. It cannot be parsed by

the classical methods from left to right, right to left nor even both ends

inward snd it is unambiguous.

Another negative property comes up naturally, as we shall see in

Section 5g, in the study of the application of RCF languages to Algol 60;

as the preceding lemma, it disallows the application to RCF languages

75

of techniques frequently useful “o prove results on context-free

languages such as precisely the machine mapping theorem (Ginsburg

and Rose [1963]).

lemma 5.25: The class of RCF languages is not closed under intersection

with a regular set.

Proof: Let L, = (["al®+ ["b]"p|n ¢ 0)
* * _*

Ly=[ala+[D]o

L, = L, + (Pa) + [("01%1a e 0)

L, is regular.

Ly is RCF as defined by tne following s-grammar:

L, = aC

I 5
C—a

C—-b

L, — [L,BC
B=]

L, = [LB

Ly, - a

L, -b

L, = L, & L, .

L, is not RCF because it cannot be recognized by an s'-machine:

there is no way by which the machine could save the information that

the bracketed character is for instance an "a" for matching against

76

| the terminal character, tecause it cannot save it in its finite state

controller and if it puts it on the pushdown store it will have to

erase it to verify the bracket matching. i]

Ncte that the class of deterministic languages 1s closed under

intersection with a regular set. (Ginsburg und Greibach [1965],

Theorem 3.1.)

The positive results ve are going to give in Section 5g are

| unclassical, let us give here a classical cne:

| Lemma 5.24: The class of RCF languages is closed under the operation

of derivation with raspect tc a string.

Proof: It is enough to show that it is closed under derivation with

respect to a letter.

et S§ be the root, "a" the given letter.

Consider the rules having S as a left part; among them erase

those the right part of which does not begin by "a" and erase all

the rules connected only to erased rules.

If no rule remain, DA = @ . If one rule with S§ on the left
remains, it is of the form

We replace it by the rules obtained by erasing a and substituting

a & B - ad»for By any expression Cy C where we had By cC,y 2 in
the ¢ld grammar:

17

We simplify any possible occurence of two identical production

rules.

We still have an s'-grammar since substitution preserves separa-

bility. i

Noting that x e¢ X » 8(D,(X)) = A , we see that the proof of

this lemma is exactly patterned after the recognition by an s'-machine,

as can be understood best if one thinks of the definition of an automaton

byNerode equivalence classes.

f) Axiomatic of Context-free Grammars

We are now in a position to prove that no complete axiom system

for the equality of context-free gremmars can exist.

The idea behind the proof is simple: context-free languages are

recursive; T is enumerable; thus given two context-free grammars

G, and Gy defining the sets L, and L, , we can enumerate the

strings in T one by one, verifying each time whether they do or do

not belong to both Ly and L, . We stop at the first string which

belongs to one and not to the other one. Thus we have a trivial

semi-decision procedure f for the inequality of context-free grammars.

Cn the other hand there is no decision procedure for the equality of

context-free grammars (Bar-Hillel, et al. Theorem 6.3); at best there

could be a semi-decision procedure £' . But then £ and £' taken

together would form a decision procedure for the equality of context-

free grammars; thus £' cannot exist; this implies that no complete

axlor system for the equality of context-free grammars can exist either.

78

We see that to make this proof formalwe must exhibit an algebra

in which § can be described; in other words an algebra with a complete

axiom system for the inequality of context-free grammars. This is Just

what we have been doing so far.

Recall that after having proved that any RCF set has an s'-grammar

(Theorem 5.8) we noted that with minor modifications, the proof could

be turned into a constructive algebraic proof of the existence of a

pre-standard-form grammar for any context-free language; this being

Jone using only relations in <RE,R1,R2> and substitutions of equals

for equals.

Let us write

(d1) §,(X) = rest(al” & X)

| (a2) 8,(X) = if a =A then X else Bes rst(a)(X)
n n

| (a3) rest(} a;Y,) = LY :
Since the inclusion symbol does not belong to our algebra we

] replace a ¢ X by §(8,(x)) = AN.

) Recall that in <RE,Rl1,RZ2> we have the rules

- (13) AE XA =¢

| (R2) NO
with the Boolean relations

(v6) A&(T) =A

(b5) A+@=A :

79

We see now that with these rules and with (41), (42), and (43),

we can forma ize the process dezoribed in the proof of Lemma 5.24%

to the point where it defines algebraically an algorithm to verify

whether 5(8,(X)) = A and we see that we can do this for any pre- |

standard-form grammar.

Thus <RE,R1,RZ> together with (dl), (d2), and (43) form a

complete axiom system for the inequality of context-free grammars.

Although, as we have just proven, nc complete axiom system for

the equality of context-free grammars can exist, it is reasonable to

look for incomplete but practically sufficient ones. Let us consider

the following relations:

n n

(ak) first(Lets) = y a,i= i=1

(a5) X © first(X)rest(X) for any X £ AN .

We believe that <RE,R1,R2> together with (d1), (42), (a3), (ak),

and (d5) are such a system.

We would like to acknowledge the help of J. Friedman in establishing

the non-existence of a complete axiom system,

g) Cancellation, Regularity and Equality

| The results which follow shed much light on “he algebraic nature

of separability. The first coroilary is a generalization of Lemmas 12

in Korenjak and Hopcroft [1966].

80

Theorem 5,25:

AX=BXAX#PANKAX) = ACB .

Proof: We show that AZ BA AX = BX AX # § ATI(A,X) cannot hold

true.

Let & be a shortest (possibly null) string in X . Suppose there

is at least one @ e A, Qf B ; we can write

eA = fF ¢c AX » Of ¢ BX = (refinement rule and string cancellation)

(3,8 Ma = pk AE FNAB c BALE eX]

B, ¢B = B.§ e BX = Bit © AX =
batt 34 = -(as “2Zore) (30,8008, ab ra eANEE c Xx].

Thus we have Q = att, » With @ ¢ A and « ¢ A while

Ef eX and tt e X , J

This is not compatible with M(A,X) : ¢, is an initial substring

of X (or if £, =\, 8, is); at, gn initial substring <f A

(8, if &,=))and @ a string in A . |

Corollary 5.26: (right cancellation).

AX = BX AX ZB ATAX)ATI(B,X) = A=B

The proof is immediate.

Theorem 5,27:

XA=XBAX£@ANX,A) = ACB .

81

Proof: : show that AZ BAXA =XB AX # @ AT(X,A) cannot hold

true as befcre, except that this case is simpler.

Iet & De mr shortest non null string in X .

Let eA. 4 f£B.

fx ¢ XA = tx ¢ XI. =» (refinement rule and string cancellation)

= A(TW,6 Ma =88 AB FAAB ec BALE eX]

Thus we have £8, ¢c A and LE, € X with & ¢ X , which implies

N(X,A) = false . |

Corollary 5.28: (left cancellation)

XA=XBAXF#PG ANXA)AD(X,B) =» A=B .

The proof is immediate.

Corollary 5.29: The equation A = XB (resp. A = BX) subject to

0(x,B) (resp. IN(B,X)) cannot have more than one solution.

The proof is immediate.

An obvious particular case of 5.28 is often used in the form

QA = 0B =» A =B , which we have derived in Corollary 3.8.

The following corollary of Corollary 5.26 is a generalization of

what Korenjak and Hopcroft call a type B replacement.

Suppose that from two systems of equations having the same solution

Wwe have a derivable equality Xymee Xp = Yieeod, y myn > 2 , where

Yye..,Y, are all different from ¢ and such thet a(y,,Y,,,) ,
82

i= 1ly.eayn-1. Let @ be some non-null string in Xy . is

certainly an initial substring of a string derivable from Yi...¥, :
" = JR k > .pee X ZY pa for some set Zoy and some 1

Corollary 5.30: With the above hypothesis and notations,

= = sow >

| %1% = yee Yien

Proof: (i) = part.

first equality.

) GRD =2.Y ...Yfx. mo Ek XX =XZY .eaY = YeuY XYVL 1 m 1 dk n 1 “ n
. X ceoX = Y. aue¥
\ m 1 n

(corollary 5.24) XZ = Yo...Y,

second equality.

(ii) <= part.

X I 4 = Z Y ces!

em Km YXX =XZY...Y =
X.2 = Y y 1 2 m 1 dk n

XieoeX = Yyeoo¥y qT eee¥ - |

In the particular case where X ooo Xy = Tieea¥y is derivable from

two s'-2-grammars, we can write Zry = Lyeeely y J < lala and

Cyreeerdy variables of the second s'-2-grammar; given an equivalnece of

83

this type, we can always reduce it to a aystem of two equivalences where

the left part contains at most a certain number of variables which

depends upon the minimal length of the strings in Xy .

We now consider equality and regularity questions.

Theorem 5.31: A connected s'-2-grammar in which no variable is equal

to @ defines an s-language if and only if it reduces to an s-grammar

in standari-2-formby elimination of all variables equal to A .

Proof: The only formal difference between s'-2-grammars and s-grammars

in standard-z-form is in the occurence of rules A + A in the former,

Consider an s-language A, and an RCF language Dy given by two

connected systems of equations corresponding to such grammars:

A, = J aB, C J = 1yeee,m
; acT ja" Ja

where possibly Bya OF Clq =X or ¢

D, = y aE,F. + 8(D,) i= 1,0ee,n
aeT

same remark as abcve.

We want to show that A) =D = (71)(8(D,) =¢v D, = Al

Aj =D = o(A,) = 8(D)) = § . It is true for i =1.

A (Ya)[aT & A, = a7 & D_]1 = Dy =» a)LaT 1 = al D, =

(Va)[By,Cy, = EF.1 =
/ _ / ve _

\Ya)[5(B,,C,,) = B(By,)8{C = 8(E, Fy.) = S5(E;)8(F, _)] =

84

8(D,) =f for all D, implied here unless some B1aCa =\,

in which case we must have the corresponding E,uFia = AN.

By substituting in the same way for all Bsa and E a the
aypressions which define them we introduce new equalities, new variables,

and get 8(D,) = @ unless Dy = MA , for new values of 1.

Suppose that a variable Pq is not reached in this process.
Because we suppose the grammar connected and because an s'-grammar

cannot be ambiguous, (Vy)(Fa)(AB)[y ¢ Dy 2 oP « D,] and Dy has %o
be used in the derivation of op .

At step n of the substitution process we have outlined, all

strings of length smaller than n and all initial segments of length

n of longer strings in Dy will have been produced.

Thus at step n = |r| ’ D, will have been reached, unless

D = § ; contrarily to the hypothesis. | |

Corollary 5.52: It is decidable whether an FCF set is an s-language.

Proof: By Theorem 5.8, Corollary 5.9, Theorem 5.16, we know how to

sonstruct an s'-2-grammar for an RCF set defined in another way. 3

Corollary 5.23%: The equality problem tetween RCF sets and s-langueges

is solvable.

Proof: Since Korenjak and Hoperoft [1966] have shown the equality

problem for s-languasges to be solvable and since we have just seen that,

given an RCF set, it can be decided whether it is an s-~language and

at the same time an s-grammar can be constructed for it, if it actually

is one. i
85

Corollary 5.34: The equality problem between RCF sets and regular

sets is solvable.

Proof: Given an RCF set A , the set A@ with @ a symbol not in T ,

is RCF. (Teg @ tc the first rules of an s'-grammar.) This is the

corresponding set with end-marker @& ,

Given a regular set R, R® is regular on T U {@} and it can

be proved that it is always an s-language (ibid. Lemma 4).

AG = R@ « A =R .

The corcllary follows by Corcllary $5.31. : B

Note that this result yields another proof of Corollary 5.17

since it is undecidable whether a context-free language is a regular

set {Bar-Hillel, Perles snd Shamir [1561j).

Corollary 5.35: An s'-grammar in which no variable is equal to

and only one to A , defines #2 regular set if and only if it is non

self-embedding.

Proof: (i) If an s'-grammar defines a regular set R , the s'-grammar

obtained by tagging to the rules of the root a new variable A = @ ,

end marker, defines R@ . By Corollary 5.9 it can be reduced to an

s'-2-grammar without alteration of self-embedding. By Theorem 5.31

the elimination of all variables equal to A reduces it to an

s-grammar in standard-2-form which defines the regular set R@ ,

By Corollary 2.1 in Korenjak and Hopcroft this s-grammar cannot be

self-embedding. This imp_ ies that the original one cannot either.

86

(ii) Any non self-embedding context-free grammar defines a regular

set (Chomsky [195%a, bl). §

Note that Corollary 5.35 implies that we can eliminate all

variables in an ;'-grammar defining & regular set and effectively

compute a regular expression representing that set. This is

otviously true also of regular form systems since we go from them

to s'-grammars by chains of substitutiens.

Note also that this corcllary yields a direct proof of Theorem 5.16,

since it is undecidable whether a context-free language is regular.

We have not been able to solve the equality nor the contairment

problems for s'-languages, nor to show that they are not solvable. At

this writing, the class of RCF languages is the most general class of

languages for which such solvebility results as Corollaries 5.3%2, 3,

and 5 have been obtained. Theorem 5.1 of Ginsburg and Greitach [1965]

implies Corollary 5.34 but the proof of 5.34 is constructive and

quite simple.

It is interesting to note that the solution to the equality

problem of s-languages reduces precisely to the Salomaa's algorithm

which we have derived from Theorem 3.12 for the equality problem of

regular sets, Because of Lemma 5.17 though, it seems that the same

approach which yields the simple formulation of Theorem 3.12 could

not be used for s-languages without difficulties.

As for RCF languages, corollaries 5.26, 28, and 29 show us that

in practical cases the equality of two RCF languages will be verifiable

on the minimal regular form systems which define them.

87

h) Application of RCFLanguages

We have four characterizations of RCF languages, as setc

(1) recognizable by regular expression techniques used

recursively, (i.e., definable by a regular form system),

(11) having an s'-grammar, | |

(111) secognizable by an s'-machine,

(iv) having an fcr grammar.

The two first definitions correspond to two analysis techniques

which in most cases are radically different; these differences illustrate

a trade-off between speed and space, in the form of a trade-off between

the use of the finite-state control of a PDA and the use of its pushdown

store: the first one of these techniques makes as Little use of the

pushdown store as possible and is extremely fast, the other one, which

corresponds to an automaton-theoretic characterization, uses as small

a finite state control as possible and uses the pushdown store constantly.

For an actual implementation, the first one is faster and corresponds

to a more convenient notation. This is an example of the fact that

automaton-theoretic charecterizations of sets of strings must be

understood as models of their computational complexity and not as

programming strategies, even when the automaton is deterministic.

We have seen that a generalization of Algol 60 is within the scope

of the method; is Algol 60 an RCF language?

There is an Algol 60 context-free construct which bars it from

being RCF: <conditional expression>.

88

The intermediary strings containing any number n of matching

parentheses:

...then(" <bcolean expression>)"else <boolean expression>...

or

...then (" <arithmetic expression>)" else <arithmetic expression>...

are well formed; but

. +» Then ("<boolean expression>)" else <arithmetic expression>...

and

...zhen ("<arithmetic expression>)” else <boolean expression>...

are not.

As we have seen in the proof of Lemma 5.2%, <conditional 2xpression>

cannot be an RCF set, although it is the intersection of an RCF set and

a regular set,

This seems to be the sole difficulty as far as the formal syntacticel

definition of Algol 60 is concerned. Otherwise RCF languages seem to

be an insufficient model of Algol 60 for the same reasons that context-

free languages are insufficient too.

If we cannot give & more precise answer to the question, it is in

part because the definition of Algol 60 is not fully formalized, even

as far as its context-free grammar in BNF (Naur [1965]) is concerned,

and also because this grammar is ambiguous, sometimes deliberately.

e.g.: (2.6.1 in Naur [1963])

<proper string> ::= <any sequence cf basic symbols not

containing ¢ or >| <empty>

<open string> ::= <proper string>| “<open string>'|

<open string> <open string>

89

<string> ::= ‘<open string>’

This definition of <string> is ambiguous (not deliberately) and

the variable <any sequence ...> is defined only by the English meaning

of its name (somewhat ambiguous itself), which is naturally intended to

denote the regular set (®+')' ,

In this case the difficulties are easily lifted; for discussions

of the intricacies and the ambiguities, deliberate or not, of the

definition of Algol 60, see Knuth and Merner [1961], Knuth [1965 a, b

page 624], Medema [1965].

We are going to study the ways by which we can enrich the formalism

of KCF sets.

90

SECTION 6

EXTENSIONS OF RCF LANGUAGES

a) Directionof Extension, Syntex and Semantics

It may seem natural to try to augment the class of RCF languages

within the class of context-free languages; for instance we could

consider the class of intersections of RCF languages and regular sets;

this broader class would corr=spond to an extension of s'-mechines

with a larger finit~ state con*trol where only certain states could

interact with the pushdown; we might also want to study left-right

too-down deterministic analysis with more than one charecter look-ahead

and in effect we might trv to parallel for left-right top-down analysis

Knuth's work for bottom-up enalysis.

Although such research topics would certainly be of high theoretical

interest and seem quite feasible, we want to leave them as proposals and

we want to argue that in practice other avenues for extension must be

sought. Our argument will apply as well, mutatis mutendis, in the cutee

of bottom-up analysis, to simple precedence languages as opposed to

higher order precedence languages or IR(k) languages.

If one wants to use an RCF language analyzer to ra2cognize the

<conditional expressicn> of Algol 60, all one should do is to set a

flag when going through the first <boolean expression> or

<arithmetic expression> and refer to it on encounter of the second one.

In the same way it i3 easy to recognize such a set as

(p™(a" + cn e Q} . PFarthermore, nothing can prevent a programmer

91

from using Lere a counter or two. In this vein, the non context-free

set (a"b""|n € QO) is trivial to recognize.

As we .se flags and counters we can as well use lists or tables.

In effect, this is precisely what has to be done to check some

constraints of programming languages which just cannot be expressed

in a context-free grammar:

e.g. - that an identifier is declared and Just once in a block.

- that use end declaration agree (identifier types, array

dimensions and bounds).

- that a label occurs only once in a block.

- thet a go to statement refers to a label which occurs in its

scope.

Because such a practice is simple and etficient there ic no reason

why it should be used only for non context-free constraints. In the

case of RCF languages we believe that to try to extend the formalism

within the class of context-free languages is not worth the extra

effort, complication and corresponding loss in parsing speed, because

these few features of programming languages which are context-free

and not RCF can be analyzed by using the methods we have Just mentioned

and because most of the non-RCF features of programming languages are

not context-free anyway.

So far we have carefully talked imprecisely about non context-free

features or constraints; let us state now that these features are for

us to be called syntactic and not semantic, contrary to what seems to

be the spreading usage. This is not a point of negligible importance

92

because it is intimately connected with the way one thinks about the

definition of artific.al languages:

The tendency has been lately to call semantic whatever peculiarity

of a programming languaze could rot be described in the phrase structure

system part of its definition. The belief that context-free languages

of fer a close moiel of the syntax of programming languages is not

foreign to this. This tendency is enccuraged by the observation that

the verification of a non context-free syntactical constraint, such

us existence of the label mentioned in a go to statement, is

conveniently described in the same way as is described the action

coupled with the analysis or that statement, such as code generation.

Both are specified by associating one-to-one the :roduction rules of

the grammar and some procedures, which must be executed when the

corresponding rule is applied. In the computing community the confusion

has gone to the point where people would talk about the semantic of a

language for the semantic of a compiler or conversely; true, they are

related, since a compiler must be a semantic preserving operator, but

not identical, as is quite clear when one notes that compilers do have

bugs. Semantics can be precisely stated, for instance as proposed by

Riguet [1962]. |

Note that this improper usage we are discussing puts the people

who adopt it in an untenable position if they change formalism to

describe the same language: what is for them semantic in the weaker

formalism can be syntactic in the stronger one.

A programming language is not an object independent of its

definition, or rather it should not be: it does not have existence

PB

and we do not know it by anything else. If the formalism adopted for

this definition is not subtle enough to describe it with all the

desired fineness, a set of computable conditions on strings is necessarily

added and described in some other metasyntactical languege. In the case

of Algol 60, BNF was insufficient and conditions were described in

English in order to refine the BNF definition; these conditions were

put under the heading "semantics”, together with some broad descriptions

of the action of an interpreter. This certainly was misleading.

One must distinguish between the relations among symbols defining

the well-formedness of a string of the language and between the actions

this stricg may induce when analyzed. The latter is ultimately a

mapping of the language into some domain, the former belongs to the

definition of a set. Because there are formalisms in which all

constraints defining any recursive set can a priori be expressed,

namely, Post's formal systems, a Turing-machine programming language,

McCarthy's recursive functions of conditional expressions, that

distinction is quite meaningful. Furthermore, it is coherent with the

mathematical usage as fixed in the simple case of predicate caleulus:

well-formedness is not a semantic matter, as definitively discussed

in the introduction of Church [1956], Section 09.

What appears, when we use flags, counters or tables in the course

of analysis, is precisely computable conditions on strings, necessary

to refine a formal definition made in a too weak metasyntactical language.

We want to formalize this approach; veforehand we will study another

avenue for extension which is very general too, but has never been used |

or mentioned, we believe, in spite of its simplicity.

ol

b) Boolean Closure ofRecursive Classesof Languages

Lemma 6.1: The Boolean closure of a class of recursive languages is a

class of recursive languages.

Proof: Tne proof is straightfcrward. Let us use the original definition

of recursivity as in Post [1944]; although Post is writing ebout sets

of integers, his work is relevaut here: we could either arithmetize

the problem, as is often done, or use Davis's reformulation of it for

strings and restrict thic formulation to recursivity rather than

A-recursivity by taking A = @ . (Davis [1958], Chapter 4).

(1) A set is recursive if and only if both it and its complement

are recursively enumerable, (Post [1944], page 290); thus if a

set is recursive, its complement is recursive.

(ii) 1f two sets are recursively enumerable, so is their union

by the very definition of recursive enumerability.

(iii) The complement of the union is equal to the intersection of

the complements.

This corresponds to the following intuitively obvious fact:

suppose we have a recognition program, for our general purpose computers,

which can recognize any language of a class of sets; for instance

suppose we have a general analyzer for the class of all context-free

languages such as the Harvard analyzer (Kuno and Oettinger [1963]);

then we can easily build with it a recognition program for the Boolegn

closure of this class, since:

95

cA &B ® (@deA)A{(ax eB)

acA+B eo (aecA)vV (aeB)

XecA' @ fA .

Note that the Boolean closure of context-free languages is a

larger class in @ than the class of context-free langueges; as proved

by Kuroda [1964] it is included in the class of deterministic context-

sensitive languages (sets recognizable by a deterministic 1inear bounded

automaton). In fact, the classical example of& useful context-sensitive

language which is not context-free is the intersection of two RCF sets:

(so-called "respectively construct") cf. proof of Lemma 5.20

{a™"c"|n e 1) = {a"0"cPin.p e 0) & (av%%r,q € 0) .

This calls for a few remarks which form Appendix 6.

In practice, this means that if someone finds it natural to define

a language as the intersection of context-free sets, or complement of

some context-free set, or any Boolean function, such as A-B= A & B' ,

he should not refrain from doing so. As long as the sets, which he

takes the complement or the intersection of, are independently defined,

there 1s no difficulty. In fact we shall see in Section €g that pecple

| actually do so, implicitly; this alone would Justify the explicit
introduction of & and ',

However it is important they there are no two variables Xy and

X3 in the system such that X, # X3 while one is defined from the
other one by use of & or ' , In such a case it can happen that the

system has no solution.

e.g.: 3 =8"',

%

As remarked by M. Arbidb who noted this difficulty, the situation |

is analogous to the one in which we obtain unstable circuits by |

assembling well-behaved components without timing constraints. N
It is an interesting open problem to know when such systems have

a solution; it is a generalization of the already difficult problem of

knowing when a system of equations in a Boolean algebra of sets has a

solution.

The main shortcoming of the use «f + or & in the safe case,

is a loss of speed, since the recognizer must be applied twice on the

same string; on the other hand these applications are independent and

can be made in parallel.

Another problem with the use of & and ' is in defining the

strm.cture of the analyzed string. This difficulty is removed if we

consider that the structural tree of a string, as defined usually, does

not reflect an inherent property of the string but rather describes

the course of analysis, independert analysis phases being described by

parallel branches in the tree. (cf. Section La.) |

When the application of a ruie A — BCD corresponds usually to 3

nodes in the structural tree:

|
A

/I\B D

We associate to it 5 nodes in which the operators involved, here

two concatenations, do appear. Let us adopt the convention thet BCD

a7

is read from left to right, so that BCD is understood as B(CD)

rather then (BC)D :

A

/

[8 “a,
ON

C D

In the same way if a rule A -B « C is used, the substructure:

A

&

B C

will appear in the development of the sentence tree structure.

e.g.: To A -= (BC) & (EF)' corresponds

A

&

AW

J \, /\
E F

98

¢) Conditicnal Regular Expressions

The methods we are going to use have been introduced in McCarthy

[1963].

Let b,sbysee- 1-3 be a set of variables taking values in

{true,false} when defined.

Their algebra ££ is defined in a slightly different manner than

a Boolean algebra is. We introduce a ternary operator:

if b, then b, else bs

with the following valuation rule

by if b, then b, else b,

true value (b,)
false value (bfalse (25)

undefined undefined

Such operators as A, V , ~ are redefined by

b, Ab, =1f Db, then b, else false

b, Vb, =1f b, then true else Db,

~ by = if b, then false else <irue

so that A and Vv are no longer commutative since “or instance we

can have Db, Ab, = false and Db, ADL, undefined. This corresponds

to & left to right evaluation scheme.

The family of all functions built with this ternary operator is

studied in McCarthy [1963], 8 complete set of relations Lo manipulate

9

them is given and two canonical forms are derived in Section 7.

Note that we have two types of equivalence, weak and strong,

b, =, 2» 1B =, b,, according to whether Db, and Db, are equal

only when both defined or furthermore have the same domain of

definition.

Definition 6.2: C{R)} , class of functions computable in terms of R ,

is defined recursively from ®R by

(1) Ec¢f®R = EecCR]

(ii) if E, ec C(R} , E, e C(R) and b, is a variable in 8, then

: *

(E)) e cq) BE, +B, ¢ Cir} E, ¢ CR}
&]E, & E, e c(R] E; « C(R]

| E, * BE, € C{R})

if b, then E, else E, cC{R) .

(iii) Extremal clause: E ¢ C{R} only if E can be formed by a

finite number of applications of rules (i) and (ii).

The interpretation of expressions of C{R} is defined in the obvious

way to be coherent with the interpretation of R (3a);

value (if Db, then A else B) = if b then

value(A) else value(B) .

Let us adopt the convention that "if" and "else" have the

lowest priority above parentheses in evaluation, so that for instance:

100

(A + if b, then B else C+ D) = (A+ (if b, then B else (c+D)))
¥* , *

if b, then B else C = if Db, then B else (C)
= i (C= 9)

if b, then Db, else C=D ® if b, then b, else (C= 3)

“if" and "then" , "then" and "else" , are uscd as brackets.

We call these expressions conditional regular expressions and

denote them by upper case letters since they take values in © .

When they do not contain & or ' we call them restricted.

Note that while a regular expression designates a set, a conditional

one varies over different sets according tc the values taken by the b,

variables in them; precisely, it varies over the set of vertices of a

| hypercube of regular sets.

There are two types of equalities in C{R) , strong ones and wesk

ones, as in # , according to whether the domains of definition of two

expressions coincide or not. We write Ey =q E, or E, ~u E, .

At this point it is clear that we can recognize the equalities

of conditional regular expressions, derive canonical forms for them

and get a complete set of axioms for their algebra. Let us do it

briefly, before considering systems of equations in C{R} .

d) Foundations of the Algebra ofConditional Regular Expressions

We seek a complete set of axioms for the algebra

<O;+,&%,',,*¥,if-then-else> . The following 12 rules are clearly valid

according to the valuation mapping we have just defined:

(1) (if by then A else A) =_A

(2) (if true then A else B) =4 A

101

(3) (if false then A else B) =, B

(4) (if Db, then

if b, then A else B

else C)=_ (if b, then A
else C)

(5) (if Db, then A else

if b, then B else C)=_ (if b, then A

else C)

(6) (if b, then b, else by then A else B) =

(if Db, then

if b, then A else B

else if b, then A else B)
=

(7) (if b, then

if b, then A else B

else if b, then C else D) =

(if b, then

if b, ‘then A else C

else if b, then B else D)

These first 7 rules permit us to handle the nesting of if-then-else's

and to do a few simplifications. We now need 5 rules to permit us to

handle the nesting of an if-then-else within the scope of a + , & ,

"4 "sor *,

To avoid repeating the same long rule 3 times, let © denote a

binary operator; consider the folowing predicate, function of O :

102

Distrib(®) = [((if b, then A else B) © (if b, then C else D)) =

(if b, Ab, then AGC else

if ~ by A b, then BOC else

if by A~b, then AGD else BOD)]

(8) Distrib(+)

(9) Distrib(&)

(10) Distrib(-)

(11) (if b, then A else B)'=_if Db, then A' else B'
* * *

(12) (if b, then A else B) =, if Db, then A else B

To these 12 basic rules we want to add another one, which must be

considered as syntactic since we consider here that the equality is part

of the syntax language. |

(13) (if b, then A else B)=_¢C -

(ifb, then A=C else B= C) .
-1 Ww Ww

Our 12 first rules come from McCarthy [1963], Section 7, somewhat

indirectly. McCarthy studies #2 ; this is the reason why we do not

have any rule corresponding to his rule L: if b, then true else

false = b, 3; but in fact he is killing two birds with one stone and

defining rules which are valid, mutatis mutandis, for classes of functions

computable in terms of any base algebra, This is quite clear in the

notation of his rules and in his remark that the relation of functions

to conditional forms is given by a distributive law, which we write

here:

105

B(x peeesxy 4 » if b, then g else h, xX;,ec0,X) =

if Db, then £(X eee sXy_128r% 1000 0sX,)

| else F(X 5000 sXy_1ohoX 1seeesX)

where g and h are some expressions possibly conditional.

Our relations (1) to (7) come from his relations (1) to (8),

with (4) omitted, and our relations (8) to (12) from this last one.

By using rules (8) to (12) we can put any conditional regular

expression in a strongly equivalent form with the property that no

if-then-else is within the scope of another operator; we can, loosely

speaking, move all the + , & , +» , ' and * 's within the

if-then-else 's.

McCarthy's developments are applicable to any such constructs and

our reader is now referred to McCarthy [1963], Section 7, to see how,

by application of rules (1) to (7), we can now get two canonical forms,

a Weakly and a strongly equivalent one: Essentially this amounts to

the classical disjunctive normal form of Boolean algebra; the expression

is represented as the disjunction of the values it takes on the vertices

of the hypercube where it varies. When strong equivalence is concerned

some precautions must be taken, due to the non-commutativity.

Because these values are defined by regular expressions, and because

we can recognize the equality of regular expressions, this solves the

weak and strong equality problems of conditional regular expressionc:.

We have proved the following theorem:

Theorem 6.3: Rules (1) to (12) for conditional regular expressions,

together with system <RE,R1,R2> for regular expressions, form a

104

complete axiom system for conditional regular expressions.

We cannot directly use <RE,R1,R2> for conditional regular

expressions without putting restrictions on the nature of the conditions:

for instance Rl is no longer valid; suppose B = if 5, then D else F ,

we cannot write

*

|=a=8¢C

because one could devise a Db, equal to true if B belongs to a

monomial terminated by A and to false otherwise.

In the same way we cannot always write

* *

LR

where A is a conditional regular expression, the condition could

be on whether A has an exponent odd of even or is starred.

This difficulty corresponds to the fact that within an expression

a condition b cen refer to the form or the cortext of the expression.

Note that it is natural to associate to a conditional regular

expression the regular expression which is the sum of the values it

takes for all possible values of the conditionsls and also to associate

the regular expression which is the intersection of these values. We

may call them respectively the envelope and the center. We will not

use these notions here.

105

e) Recursive Functions of Regular Expressions

In C(R} , as we did in R , we consider systems S of recursive

equations of the form |

£, a conditional regular expression over T+I ,

i.e., a recursive function ¢f regular expressions,

Here also we first focus our attention on restricted fs 's.

As we have Just seen any fy can equivalentlybe written as

if b, then 8, else if b, then €, else +... &,

where Byreee 8 are restricted regular expressicns over T+I .

Replacing each fe by its envelope we can associate to a set

defined in that way its envelope which is a context-free language.

Related systems have already been used with different notations

by some authors.

In Chomsky [1965] the use of "features" is advocated to solve

certain vexing problems in the description of natural languages, or

rather of the native speaker behaviour, by transformational grammars:

To each terminal symbol is attached an array of Boolean variables which

specify binary features of that symbol or of its syntactical usage;

for instance "boy" is a name, designating something human and animate,

“to laugh" can have such things for subject; just as for instance in

Slagle's DEDUCOM (Slagle [1965]) to each object is attached its

property list. The base grammar derivations are to be made dependent

106

upon these features, so that sentences such as "The harvest was clever

to agree" can be avoided, by not letting any ncun be the subject of any

verb in the base grammar. The resulting system is essentially a

conditional production system. It seems that this method permits

a considerable simplification of the transformational rules byputting

| much of the burden on this conditional hase grammar.

In Gilbert [1966] a class of languages called "analytic languages"

is defined as given by a context-free grammar coupled with a "scan

function”. The latter is a function which computes at each step of a

bottom-up analysis which productions of the grammar are applicable.

In other terms we have a conditional context-free grammar with rules

of the form:

if applicable then A - BC else undefined.

The link between conditional context-free systems used for top-down

and bottom-up analysis is in relation (13).

It is quite obvious that if we allow the Boolean variables to be

equal to any recursive predicate, any recursive set IL of strings can

| be defined by a system of two conditional regular expressions:

| S = if given string ¢ L then T else undefined.

T = Yar+1 .
aeT

This amounts tc defining a language by its analyzer written in

whatever formal language is used to specify b = given string ¢ L .

107

Since we are concerned with computers, the ability to define any

recursive set is just what we need.

We see also that, as is the case for regular sets, the Boolean

closure of this class is identicel to the class itself (Lemma 6.1);

nonetheless if it is more natural to define a set with & and ' ,

there is no reason not to do it.

It is very likely a difficult, maybe unsolvable, problem to

determine when such systems have a solution. This does not detract

from the usefulness of the formalism: it is not decidable whether an

Algol €0 program will halt and any recursive set can be defined by =a

transformational grammar too, this does not bar Algol 60 from being a

useful tool and transformational analysis a promising one,

f) Use of Recursive Functions ofRegular Expressions

We suggest defining the syntax of languages by way of systems of

recursive functions of regular expressions as follows:

First a number of arrays, auxilliary variables, counters, list

structures, ad libitum, are declared. |

These quantities can be manipulated as they can be in Algol 60

or Lisp.

The manipulation on these quantities are coupled to the execution

of the recognizer steps; that is, they are defined by procedures, each

one of which is associated to an equation of the regular form system,

Just like semantic procedures are.

The conditions are conditions upon the state of these quantities.

108

The role of these manipulations of 1is.s, flags or arrays coupled

with the analyzer steps is in fact to gather information in advance of

the time it may be called for in a conditional. For instance, when we

| parse declarations in Algol 60 we build an identifier table, co that

later on, when we parse a procedure call, we will know whether an

actual parameter is an identifier as an array identifier or as e switch

identifier (this is a point where the Algol 60 syntax is deliberately

ambiguous); we can now formalize this. But note that even if an identifier

table was not built, we could write a I2ngthy Bocvlean function, say in

Lisp, which would examine the program and report whether the considered

identifier has been declared as a switch or as an array. This is why

we do not want to be formal or even precise about the form of these

procedures coupled to the recogniz2r steps. They just represent a

-. practical way of implementing Boolean functions by forseeing the

questions which may be asked.

As for the conditions themselves, we see them as insuring the

determinicity of analysis.

We suggest applying this method starting from an RCF or a simple

precedence language embedded into the set to be defined; in other

words to enhance well-behaved, fast analysis techniques.

It is true that this formalism is no more powerful than unrestricted

rewriting systems and even perhaps context-senzitive cnes, but we submit

that it is incompearably more convenient just as Algo. 60 is more

convenient than Turing machine programming s/hen it comes +.0 numerical

analysis problems. In this respect, we beli:ve that a number of the

problens of language definition have been self-inflicted. Because we

| 109

are entering the era of compller compilers and querry systems there is

a need for such a formalism.

g) Hints Toward Further Research

Let us hint toward further research and first let us remark that

most often the possibilities of syntactical analysis are at present

underexploited and its nature misunderstood. Tt is nearly always

considered only as describing the recognition of well formed sentences

in non-redundant precisely specified languages.

In Wirth {1966] it is shown how a syntactical analyzer can recover

from errors and keep analyzing in certain ceses by deliberately using

production rules corresponding to not well formed sentences, This

promising idea calls for some reflections on the nature of syntactical

analysis: what an actual compiler analyzes is always T as partitioned

into a language IL plus its complement L' . The handling of L' can

be done byclassical methods.

In a multi-pass compiler, the first pass is usually devoted to a

finite state trarsduction of the ‘terminal symbols, plus a construction

of the identifier tables by blocks, through a declaration scan. We have

never seen this process explained but informally. It cen and should

be understood as directed by the syntactical analysis of a language L

in which the given language IL is embedded, a language which would |

have the same block and declaration structure as IL has, but would

admit any string where 1L has simple statements. So that Ly could

effectively be described. to a compiler compiler and analyzed by the
same algorithm bywhich L is analyzed in subsequent passes. This is

| 110

not orly for clarity's sake; systematic methods are invariably more

efficient. In the particular case of a language organized as Euler

is, we see that this first pass analysis can be accomplished by just

one finite state automaton calling itself recursively at each block

entry. On the other hend, subsequent passes should not have to

analyze the declarations or check the block structure. What is done

is to represent L as the intersection L, & L, of two languages

where L, is obtained by replacing in L the declarations by any

strings. L 1s accepted when L and L, are consecutively accepted.

In the field of "natural language” intersction with computers, we

have either ad hoc specialized systems which perform rems:kably well,

such as Weizenbaum's Eliza (Weizenbaum [19f€]), Colby's on line belief

system analyzer (Colby [1966]), Abelson and Caroll's simulator

(Abelson and Caroll [1965]), or on the other hend general and theoreti-

cally grounded systems, fairly rigid and hardly field usable, such as

the Mitre system (Zwicky, Friedman, Hall and Walker {1965]). All of the

ad hoc programs do not care much about grammatical correctness and do

not extract all the possible information of a sentence. We believe

that this is necessary to natural language handling and can be

formalized by the methods of syntax description we have outlined.

Last, some recent papers have shown how the theory or the techniques

of syntax analysis can be applied in such apparently unrelated fields

as number theory (Schiitzenberger [1966]) and combinatorial problems

of geometry (Gross [196(3]); there may be other elements in diverse

disciplines where such elegant generalizations can be made, in return

111

we might expect from them: some more insights into the mathematical

nature of syntax analysis, possibly in the form of a theory of the

constructive sclutions of combinatorial problems; the first steps in

that direction are perhaps to be found in Riguet [:962].

112

APPENDIX 1

¥*

Axiom System and Rules of Inference for T

(|- is understzol.)

The following system is obtained by minor modifications of an

axiom system for the expressions of predicate calculus in prefixed

: form, published in Tarski [1956], VIII, Section 2, page 173. It was

| communizated to vs by D. Scott.

*

(0) AeT
*

TCT
* *

@ecT;Ppel
*

oP eT

(1) A #£ aC

al = bf

| (3) AN = CQ

(4) a(By) = (aB)y

AeA TACA

A=T

Note the resemblance to the Peanc's axioms for natural numbers. Note

also that (5) is a particular case of Rl, first rule of inference

for RE .

Axioms for first and rest sre: {after McCarthy [1963]).

(6) first(aa) = a

(7) rast(aq) - «

C113

(8) Q=3if =) then A else first(a)rest(a) .

It is possible to take first and rest as primitive, define

concatenation of strings from concatenation of a letter to a string,

taken as primitive, by:

(9) Op = if =) then P else first{a)(rest(x)p)

and replace (5) by the recursion induction principle (McCarthy [1963],

page 58, 59) in which case (3) and (4) are no longer needed.

Then we need as in Section 6d the McCarthy's rules to manipulate

the nesting of if-then-else's and 3 rules expressing the distributivity

of if-then-else over first, rest and equality (see Section 6d, or

McCarthy [1963] page 55 and 58).

We have chosen this last approach, since we have defined in

Section 2 laf ’ od’ and a by recursive conditional expressions.

Let us first give some examples of the first one, after whut we shall

derive some relations by the second approach. In particular, we shall

prove (3) and (4), thus showing the equivalence of the two approaches.

(1)

ay =a

Proof: Let A ={alm =a}, A :4 by (3), TAcA by (4), thus
* 1

Associativity: (By) = (aB)~

Proof: Let A = {a|a(By) = (aB)r} , AeA by (3), TACA by (4),
*

whence A = ™ by (5).

114

Left cancellation: GB =Qy = Pp =7

Proof: Let A=1(ajap=0ay = B=17}, AeA by (3), TACA by (4)
»

and (2), whence A=T by (5).

Refinement: apf = 76 = (HE)[at = ry or ¢&B = 6)

Proof: Let A = {alop = »6 = (dE)[aE = » or EB = 8] for any
*

B,7,6 eT}, AeA by (3), with £= 7; TACA by (2), whence
*

A=T vy (5).

(ii) (The methodolegy and 12, 14, and 13 below are in McCarthy [19631)

(10) first(op)= if a = N then first(B) else first(

rest(0B) = if =) then rest(B) esle rest(alg.

Proof: :

first(OP) = first(if G = A then B else first(a)(rest(a)s)) by (9)

= if a= \ then first(B) else first(Qa) by (6)

and by distributivity of if-then-else over functions.

Same proof for rest(oB) .

(3) a@=a by (9).

(11) PB =A =2 =p =).

Proof: |

OB =\ = (if a=) then B else first(d)(rest(a)s)) = 2

= if =) then B =A else first(a)(rest(a)8) =

= if =) then B=) else false by (1)

2 A=AAB=1\.

115

(12) a, = «a

Proof: O\= if a =) then \ else first(a)(rest(a)r)

= if ad =) then \ else irst(od)(rest(on))

by (10). This has the form of (8). Whence OA =O,

(4) (aB)y= if aB =A then 7 else first(aB)(rest(aB)y)

= if false then 7 else a(By)

= a(By) .

(13) Associativity:

a(By)= if a =X then Py else first(a)(rest(a)(py))

(aB)y= (if a=) then B else firsi(a)(rest(a)B))y

= if a =) then By else (rfirst{a)(rest(a)p))y

= if @ =) then By else first(a)((rest(ax)s)y)

by (4). |

Whence a(By) = (0B8)y as they both satisfy equations of the form

Q(a,B,7).= if a =) then By else first(a)(Q(rest(a),p,y))

(14) Left cancellation.

og =0y = (if a=) then PB else first(a)(rest(a)p)) =

(if a= thea y else first(Q)(rest(a)y))

= if a= 3 then B = y else first(a)(rect(a)p) =

first(a@)(rest(a)y)

=» if a-= A then B = ¥ else rest(Q@)p = rest(a)y

116

by (2), of the form

P(a,B,7) = if ® = A then true else P(rest(x),B,7)

whence p= 7 .

(15) Refinement.

of =, ® (if a=) then PB else first(d)(rest(@)B)) = 76

® if =) then B= 7§ else firsi(a)(rest{a)p) = 78

=» if Q=) then ay = 7 else 75 = first(a)(rest(x)B)

= if a=) then (4E)[0t = 7] else

if y=) then OB =6 else first{a)(rest(a)B) =

first(y)(rest(y)8)

= if a=) then (7t)at = 7] else if 7 = A then (F&)[EB = &)

else first(a)(rest(a)p) = first(y)(rest(y)s)

=> if a=) then (YE)[af = y] else if y = A then (7E)[EB = &]

else rest(a)B = rest(r)6 by (2).

Of the form:

P(Q,B,7,8) = if G@= AV y=), then true else P(rest(a),B,rest(y),6)

whence OB = 76 = (%E)[at = y Vv EB = &6] .

(16) (a8)} = BRP

Proof:

(og)} = (if a =X then PB else first(a)(rest(a)p))t

= if a= A then BY else (first(o)(rest(a)s))}

117 y '

« if Q =)\ then gk else if first{(a)(rest(a)B) = A then

A else rest(first(Q)(rest(a)p)) rirst(first(a)(rest(a)s))

= if a= then gh else (rest(a))lrirst(a)

while

RR = 8R(if a =)\ then)\ else rest(a)Peirst(a))

= if Q = A then gh else (resto) eirst(a))

= if Q =)\ then gh else (BRrest(a))rirst(a)

both equations of the form

f(a,8) = if a = XA then gt else f(rest(a),8)first(a)

whence (og)R = aR .

(17) =a

Proof: FR (if a= then \ else rest(@) rirst(a))F

= if OC =) then \ else (rest(a)Rfirst(a))F

= if a=A then \ else first(a)rest(a) .

On the other hand

a =3if a=) then A else first(d)rest(a)

whence of K = QQ,

(18) Right cancellaticn, BX= YX = B= vy

by (16), (17), and (14).

128

For the remaining relations we need the following definition,

for n,p € Ql.

n+p=if n=0 then p else n + p'

n' successor of n, p predecessor of p . (See McCarthy [19631].)

je] = if a= then 0 else 1+ |rest(a)| =

if d=) then O else |rest(a)|' .

(19) lol = lal + ||

Proof:

log! = |if @~ A then PB else first(a)(rest(a)s)|

= if (al = 0 then |B| else |first(a)(rest(a)s)|

= if lal = 0 then |B| else |rest(a)sl' .

It is possible to prove (ibid.) that n~ + p' = (n~ + p)'

whence log! = la} + |B! since Irest(a)| = lal” vy definition.

(20) oof = ofTP

Proof:

olaf = (if n=0 then \ else A la)af

=if n=0 then oP else OF aof
« ’

=if n=0 then oP else od af

whence oof = ote .

119

APPENDIX 2

A Context-free Grammar for R

We give a context-free grammar for ® in BNF; the symbol

stands for the metalinguistic + ; we take T = {a,b,c,d} for

instance:

R ::= gal

alblelal

(R)]

R+ RR &R|R+ R|

RR"

Note that this grammar, which follows exactly the formal

definition of ® , is ambiguous. This corresponds to the necessity

of priority rules for interpretation.

120

APPENDIX3%

Some Relations Derivable from <RE,R1,R2>

(i) Boolean relations: (Huntington [1904] except 6th and 7th).

(bl) to (b8) are globally invariant under an exchange of +
¥*

and & , (7) and ¢ . Each derivable relation has its dual

obtained by this permutation.

—- There is no X#¢ such |-A +X =A for all A. Otherwise
¥*

we would have |—X + @ = X = § . Dually the maximal element (T)

of the lattice ® is unique.

* * * * *

—~ Arr) = A+ (T))&(T) =(T) & (A+ (T)) =
* *

(A+A)&(A+ (T))=A+A &(T) =A+A= (1)

* ¥*

thus |-A+ (T) = (T) and dually |-A&@=¢.

-— Absorption Law.

3*

A + (A&B) =A&(T) +A&B=A&((T)+B) =

A& (B+ (T))=A&(T) =A

taus |-A + (A&B) =A and dually |-A & (A +B) =A,

-- The inverse is unique. Suppose A hes two inverses Al and Aj .

rt _ * | | & L | t rtI-A, = (7) AL: (A +43) AL=A&AL +A BAL =
+ ' & J— !' & t 1 _ Al 1) Al & AL =A) A+ A&A) A) & (A +A)

*

= A? co AY
=A& (1) =A!

| 121

-= (De Morgan's law)

I + B= (a & B')

Proof: first|=A + (A' + ¢C) = (T) and dually |-A % (A' & c) = é
since oo

|= + (A' + C) = (7) & (A + (A' + 0) =

CAA) E (A+ (AT +C))=A+(A&E (A +C))=

AeA = (1)

then

l~(A+ B) + (A*8B')= ((A +B) +A')& ((A+B)+B')=

(1)& (7) = ()"
and .

|~(A +B) & (A' &B') = (A(A' &B')) + (B(A' & B')) =

B+6-=9

whence

|-A + B= (A' & B')" |

and dually

| |-A&B = (A' +B") .

ir = ()"

Proof: | + (1) = (1)" ena |B& (1) =.

-— |—(A')" = A

Proof:

A =A+g= (a 8g) = (a &(T)) = (A) .

122

-= Assocliativity.

let (A+B)+C=X and A+ (B+C)=Y.

(A' &B')&C'=X" i

| .

We have [-y +A'=Y+B =Y+C'=(T).

Proof: |-Y +A =A" + (A+ (B+)) = (r)” . :

|-t + B' = (1) & (3' + ¥) = (B' + B) & (B* + Y) =

B' + (B&Y)=3"+(B&(A+ (B+C))=

B'+ (B&A + (B&(B+C)))=

B' + (B&A +B) =B' +B = (1)

similarly for Y + "' |

Dually [-X' &A=X'&B=X'&C=¢ .

Now

I<Y + X' = Y + ((A" &B') &C') =

((L+A)& (Y+B)) & (Y+C) = ((T) &(D)) &(T) = (1) .

|-X' &Y=X'(A+ (B+C)) =

((X* &A) + (X' &B)) + (X' &C)=(f+P)+P =2¢p

hence

|X =Y and [A+ (B+C)=(A+B)+C.

Dually [-A& (B&C)=A&(B&C) .

| 123

(ii) Other relations (first 3 in Aanderas [1965], Salomaa [1966]).

Proof: |

|-¢¢= ¢ =» |[-B(dA)= da
»

» |G@A)+P= =» |-Ma=-9p4=9¢ .

-- |-4" = A by (sl) and above.

Proof:

|= = g"A=2a

*

= |= =

Proof:

* #* *

A =(A+@) =¢ =n .

by (sl) and the principle of complete induction for integers.

-- lA" = (a - 2) where, as usual, A - B= A & B' ,

| pif: JLi Af * * *
| CoA (A&A +A&EL) = (A -2)

in all cases.

124

* *)

-- |-A" = AA

Proof’:

3 »

AT =A +A =a (AEA +A EA
- »% 9%

%* ¥* »*
in all cases since |-A =A +a

»* * * * » "
Whence |-o = (A - A)A + A since |[-A =A +A by (sl),

whence, by Rl

=a"= (a - A)"= a"a"

e |-A&A= = |[-an™ = A" .

Proof: |

; » »*

A&A =r = [A&A =A & (A+ AA +)

whence

|}

|-A & AA” =

whner.ce

l-aa" = 2 + AAT =A,

* +

-—- |-AA =AA,

eon £8

»* ¥* * *
aa" =A+A)=A +a cA + (A&A + (ak)AA"

¥* *

a aa" = (AEA) (A + (a & A") = ATA + 2%(a 8 aM"

if |-A&L:" we obtain |-AA= AA

if |[-A& x=) we obtain

125

{

’) Ey * * * » » * = »* * *% %* *
i, FH =AA+ADMA =AA+AM =AA+AA =AA+A

| * » %* * \
| wheppe |-AA =A =A A +A |

On the other hand |-A & A =A = |[-A =A +A whence

* *

AA =A"(L+a)=A" +A"A=a"A +2"

I-A" = A"A + A” . ow
» |-A = AA

|-A"A = A%A + A"

* * «

since A" = AA" we obtain the-~desired relation.

| + »

—e {=A = A

Proof: |
»

IR oS Tl NCD TRON Sl SPR TA CONE §VR

la" _ a" i SY iN Att } NS
» 'y .

but

|-A & A" = A & A" + A) =A = |-a*a™" = a"

~ whence

|-A" = AY,

-=- Note on rule Rl.

In

|-6(B) = g,]A = BA + C
la = 8c

we do need |=4(B) =¢ . |

126

* *

2.g8.: [=A = M + A since |-B=)AB and
* *

4" + x= 4 vy (s1).

‘his would imply |-A" = A if we had not |=5(B) = # 4in Rl.

(Generally, we could derive |-A = or |-A=@ for any A , just

as one can derive that any number is equal to any number by division

by zero.) .

¥ » ud »
; Note that we have shown that [=A = (A.- 2) .

127

APPENDIX L

Euler us defined by the following context-free grammar (Wirth |
and Weber [1964]) in which Euler parentheses are denoted §{ and 1} , |

+ by © J A standing for identifier, by 1 , in order to avoid
confusions: |
1: vardecl \ nev i 2: fordecl + formal i
X: labdecl bo Lebel i 4: var- ~-1i
5: vars “b var- [expr] é: var- - var- .

T: var = var- 8: logval — true
9: logval — false 10: digit — 0

19: digit - 9 20: integer- -— digit

2l: integer- — integer- digit 22: integer' — integer-

23: real’ — integer'.integer' 24: real’ — integer’

25: number — real’ 26: number ~ real’, integer’

27: number reel’ ,~ integer' 28: number ~ 10 integer’

29: number 10 - integer’ 30: reference — ®var
31: 1listhead ‘= listhead expr , 32: 1listhead = (|

3%: list’ — listhead expr) Zh: list’ — listhead) |

35: prochead — prochead fordecl; 36: prochead — * N

37: procdef — prochead expr * 38: primary = var

39: primary = var list' 40: primary = logval

41: primary = number 42: primary o-oo

43: primary — reference Li: primary — list’

128

Li: primary - tail primary bé: primary = procdef

L7: primary =-0 43: primary —{ expr |]

Lg: primary = in | 50: primary = isb var

51: primary = isn var 52: primary -* isr var

53: primary —isl var 24: primery <> isli var

55: primary —*isy var “6: primary — isp var

57: primary = isu ver 58: primary - abs primary

59: primary *length var 60: primary <= integer primary

€1: primery = real primary 62: primary = logical primary

63: primary = list primary 64: factor- = primary

65: factor- = factor- t primary 66: factor -> factor-

67: term- ~ factor 68: terme — term- X factor

69: term- — term- / factor 70: term- — term- ¥ factor

71: term- — term- mod factor 72: term — term-

73: sum- — tern: Th: sum- —Q® term

75: sum- - - term 76: sum- ~ sum- © term

77: sum- — sum- - term 78: sum — sum-

79: choice~ = sum 80: choice- = choice- min sum

81: choice- = choice- max sum 82: choice = choice-

8%: relation — choice 8k: relation — choice = choice

85: relation = chcice £ cho.ce 86: relation — choice < choice

87: relation —» choice < choice 88: relation — choice > choice

89: relation — choice > choice 90: negation — relation

91: negation =~ relation 92: conjhead — negation A

9%: conj- — conjhead con} 9k: conj- — negation

35: conj — conj- 9%: disjhead — conj Vv

129

97: Ais] ~ disjhead dis} 98: dis) ~» con

| 9G: catens > cetena & primary 100: catena — dis]

101: truspart —* expr else 102: ifclause — if expr then

103: expr- -» block 10k: expr- — ifclause truepart
expr-

105: expr. —* Var *- expr- 106: expr- . = goto primary

107: expr- = out expr- 108: expr- - catena

109: expr =» eXpre- 110: stat- = labdef stat-

111: stat- =» expr 112: stat - stat- |

113: labdef +i : 114: blokhead = begin y

115: bdlokhead — blokhead vardecl; 116: blokhead -* blokhead labdecl;

117: Dblokbody = blokhead 118: blokbody -* biokbody stet ;

119: block -* blokbody stat end 120: program = i block .

In order to make the system of equations obtained by regular expressions

manipulation techniques more readable, we do not fully eliminate all the

variables which can be eliminated; i.e., all but expr , but leave it

in the form:

program = f, (block)

block = f (expr)

expr = f,(expr,primary,block,catena)
catena = f) (negation,primary)

negation = £5 (sun)

sum = f (primary)

primary = £. (expr)

150

f
3

catena

f hy

progran —=——» block ¢————— XPT f,
Is " negation .

fs t,
fs

f

primary —2— sum
expr is common to all circuits.

f, corresponds to rule 120

i 109-101, 7-4

f),s5:%¢ 100-6)

f 63-4, 2

program = 1 block 4

* * * *

block = begin ({new i + label 1);) (i:) expr{;(i:) expr) end
+ ¥*

expr = (out + if expr then expr else + i([expr] + :) =)

(goto primary + block + catena)
* * »* *

catena = ((negation A) negation V) (negation A) negation(& primary)

negation = (— + 1)sum((mex + min)sum)

(n+ (>+>+<+<e yd + =)sum((max + min)sum)’)
*

sum = (\ + - + O)primary(t primary)
» »

((mod + + + / + @)primary(t primary)) |
*

((- + ©)primary(! primary)
TR

((mod + + + / + @)primary(t primary)))

131

primary = (tail + List + logical + real + integer + length + abs)

((isu + isp + isy + isi + isl + isr + isn + isb)

i([expr] + oN +

in+ [expr] + Q + ¢ + ‘(formal 1;) expr’ +

{(expr,) expr] + ® 1([expr] + +)" +

(04 ces #9)(0 + our +9)

(A+ (0+. +9) (0+ aus +9)

(a + 10{A $2) 0+ ue +9) (0+... +9) +
re F204 cue +9) (0+ uuu + 9) +
1([expr] + =) (A + ((expr;) expr}) + true + false .

We have here, in less than one page the context-free syntax of a

systematic generalization of Algol 60. At the same time this syntax

specifies a hirn speed analyzer for the language.

If such expressions are not easy to handle for a human being,

they mre well adapted to machines.

Note that by not completely eliminating the variables which can

be eliminated, one can reduce the total size of the tables; for

instance, i’. would be unwise to eliminate primary in sum while primary

is repeated 8 times in sum. In the same way the construct

(0+ ... + 9) (0 + +e. + 9) occurs 4 times in primary, it should be

replaced by a variable, unless somebody is interested only in speed

since naturally the introduction of spurious varlables results in more

pushdown manipulations end a speed loss. On the other hand, introducing

extra variables can result in considerable space savings when the

corresponding extra automata use but a small fraction of the alphabet.

132

APPENDIX &

Computation of II

By Definition 5.2:

n(x, ,X,) = [£irse(sy X,) Nn first(X,) - 8
There are well-known techniques for the computation of first(X,)

when X, is context-free.

We are going to give an algorithm to compute first(8y X;) . An
1

example is given at the eni of this Appendix.

(i) For regular form systems.

let us set ft(X) = first(,X) .
Consider the subsystem of X .

The equation of X has two possible forms:

8) X=} aB_ + 6(X)
acfirst(X)

b) X= YZ

By definition, we see that, respectively:

a) £5(X) = 8(X) first(X) + ¥ £t(B)
acfirst(X)

b) ft(X) = 6(Y)-8(2Z) first(X) + £t(2) + 6(2)-rt(Y) .

So that to compute ft(X) we need compute the ft(B,) terms
or ft(Z) and possibly ft(Y) .

153

Note that &8(A) , where A is a context-free set, is easy to

compute.

We do the same manipulation on ft(B,) or ft(Z) and f£t(Y)

and we expand ft(X) in that way.

I is finite. When in expanding ft(P) we meet ft(P) we

naturally do not start computing it recursively, it would amount to

write A=B +A +A +A +... ; instead, we Just leave it in the

expression, so that we will end up with something of the form:

ft(X) = ¥ first(A) + 3 £t(z) I,I,cI .
L I

This implies J first(A) c £(X) .
I
1

Let us show that ft(X)c > first(A)
I
1

No veriable Z in the Y ft(Z) term depends upon a variable
I,

not in 1% + I, » byhypothesis.

If I = @ no variable contains A , this implies X = @ } the

initial system should be simplified; let us suppose then that I, £0.

Suppose (T)[b ¢ £ft(X) Ab £ first(a)] .
I

b necessarily occurs in a type a) rule, these are the only rules

convaining letters:

(v)[B = 2s + 1B, + §(B)]afb

and

134

be ft{X) = X>*B ASB) =A = Bel, =

b € first(B) c) first(A) a contradiction.
I

| Thus £t(X) c Lfirst(A) so that ft(X) = Teirst(A) :IL 1

In graph terms what we do is very simple: We consider all the

nodes which are exit points (x, such that 8(x;) = A), the labels

of the vertices going from these nodes yield the elements of £4(X,) ,
unless they correspond to an equation of type b, in which case alittle

more work is required.

(ii) for s'-grammars,

The same algorithm, with obvious variations will work for s'-grammars

or we can reduce an s'-grammar to a regular form system as follows:

-- reduce to an s'-2-grammar (Corollary 5.9).

-- to a rule X = aX, X, acsonciate a term aX, » X, a8 new symbol,

in the equation of X , and add the equation Xs = X.X, . Take
5(X) = A in the equation of X if and only if X =A occurs in the

s'-2-grammar.

(iii) for fer grammars.

An algorithm is discussed in Schorre [1965]. It works on the same

principle that the one in (i), which we could clearly adapt to

fer grammars too, but is somewhat more complicated.

135

Example.

Let us take the regular form system which we use as an example

for Theorem 5.8:

| pA
A, = 1A_ + [A ; *\ A
1 2 3 [;] \
A_=@\ + TA. +) IN OUT
2 1 1 ®

AA ENekAy = AA

ft(A,) = £t(A,) + £1(A,) expanding f£(A,)

=® +0 + ££(A,) + £1(A,) expanding £1(4,)
= +0 + f£(A,) + f£(A)) + §(A,)ft(A,) + §(A)8(A))first(A,)

=@ +0 + f(A) + ft(A,) all the ft terms have been met.
=@ + 0

as we have just proved, and as is obvious from an examination of the

graph,

136

APVENDIX 6

Two Conjectureson the Boolean Closure of Context-free Languages

(i) Ambiguity and inherent ambiguity.

Since a set belonging to the Boolean closure of context-free

languages is deterministic context-sensitive, it Las a non-amblguous

context-sensitive grammar (see in Kuroda [1964] the one-to-one

correspondence between a linear bcunded automaton computation and a

context-sensitive grammar derivetion).

This is true even of such a context-free language as:

(a™cP |n,p ¢ Q)+ {a% cT|q,r € QO)

which is inherently ambiguous for any string of the non-context-free

intersection of its two components (Parikh [1961)). This fact evokes

the Boolean equaiity

A+B=A&B' +B

which shows how the set cCuld be defined without overlapping,

providing an intuitive but possibly wrong explanation for the

existence of a non-smbiguous context-sensitive grammar defining it.

This yields another question: Is every inherently ambiguous

language the union of two context-free languages such that their

intersection is not context-free?

There are very few inherently ambiguous langusges known (see

Ginsburg and Ullian [1966], Hibbard and Ullian [1966])) and it is the

case for all of then.

7

Iet P be the context-free set of all palindromes without central

marker. (Even palindromes.)

We conjecture that the context-free sets PT and P-P are

.nherently ambiguous. Unfortunatelythe Parikh and Ginsburg techniques

are r:0f applicable here. We have been able to obtain only partial

results for PT by studying the ways in which an even palindrome can

be embedded into another one.

(11) Characterization.

Another interesting research tople is to try to characterize the

Boolean closure of context-free languages by a property similar to

the important Bar-Hillel, Perles and Shamir theorem 4,1: A is

context-free and infinite =

(3a,B,7,6,e)(0By8e c A = ag"s e A, Yn ¢ Q]

This theorem is a non-commutative restriction of the Parikh

mapping theorem; the results of Ginsburg and Spanier [1964], [1966],

on the Boolean closure of semi-linear sets make it a reasonable

conjecture that a similar commutative mapping theorem can be obtained

for the Boolean closure of context-free languages.

On the other hand a number of results on this class can be

gathered from results on context-free languages, such as the undecidability

of the emptiness problem (see Theorem 5.18). A family of endomorphisms

of this class has also been studied by Schutzenberger [1964].

138

REFERENCES

Aanderaa, S. [1965]. "On the algebra of regular expressions". Harvard

University. Mimeograph.

Abelson, R. P. and Carrol, J. D. [1965]. "Computer simulation of |

individual belief systems." American Behavioral Scientist. |

Vol. VIII. No. 9. p. 24-30.

Arden, D. N. [1961]. "Delayed logic and finite state machines.”

Proceedings of the second annual symposium on switching theory

and logical design. (AIEE). p. 133-151. -

Bar-Hillel, Y., Perles, M. and Shamir, E. [1961]. "On formal properties

of simple phrase structure grammars.” Zeitschrift fiir Phonetik,

Sprachwissenschaft und Kommunikationsforschung. Vol. 14. p. 143-172,

Also as Chapter 9 in Bar-Hillel, Y. [1964]. "Language and

Information", p. 116-150, Addison-Wesley, Reading.

Berge, C. [1958]. "La théorie des graphes et ses applications.”
(in French.) Dunod, Paris. (English translation: "The theory

of graphs and its applications", Wiley (1962), New York.)

Braffort, P. and Hirschberg, D. (Eds.) [1963]. "Computer programming

and formal systems.” (Ctudies in logic and the foundations of

mathematics.) Nortn-Holland Publishing Company, Amsterdam.

Brzozowski, J. A. [1964]. "Derivatives of regular expressions." Journal

of the ACM. Vol. 11. p. u481-L9kL.

Brzozowski, J. A. and McCluskey, E. J. Jr. [1963]. "Signal flow graph

techniques for sequential circuit states diagrams." IRE Trans.

on EC. Vol. 12. p. 67-76. |

139

Carr, John W. III, Weiland, J. [1966]. "A non-recursive method of syntax
specification.” Comm. of the ACM. Vol. 9. p. 267-269.

Chomsky, N. [1959a]). "On certaih formal properties of grammars.’
Information and Control. vol. 2. bp. 157-167.

Chomsky, N. [1959b]. "A note on phrase structure grammars.” Information
and Control. Vol. 2. p. 395-395. ’

Chomsky, N. [1963]. "Formal properties of grammars.” in Handbook of

mathematical psychology. vol. 2, Chapter 12. bp. 303.1418.
luce, Bush and Galanter (Eds.). J. Wiley, New York.

Chomsky, N. [1965]. "Aspects of the theory of syntax.” The M.I.T.
Press, Boston.

Chomsky, N. and Miller, G. [1958]. "Finite state languages." Information

and Control. Vol. 1. p. 91-112.

Chomsky, N. and Schitzenberger, M. P. [1963]. "The algebraic theory of

context-free languages." in Braffort snd Hirschberg (Eds.) [1963].

p. 118-161.

Church, A. [1956]. "Introduction to Mathematical Logic." Vol. I.

Princeton University Press. Princeton.

Colby, K. M. [1965]. "Computer simulation of change in personal belief

systems.” Paper delivered in Section Los the Psychiatric Sciences,
General System Research, AAAS Berkeley Meeting, December 29, 1965.

Culik, K. [1962]. "Formal structure of Algol and simplification of its

description.” in Symbolic languages in data processing. p. 75-82.

Gordon and Breach, New York.

Davis, M. [1958]. "Computability and unsolvability." McGraw-Hill,

New York.

140

Floyd, R. W. [1963]. "Syntactic analysis and operator precedence.”

Journal of the ACM. Vol. 10. p. 316-333.

Floyd, R. W. [1964]. "Bounded context syntactic analysis." Comm. of

the ACM. Vol. 7. p. 62-65.

Friedman, J. [1957]. "Some results in Church's restricted recursive

arithmetic.” Journal of symbolic logic. Vol. 22. No. 4. p. 337-342,

Ghiron, H. [1962]. "Rules to manipulate regular expressions of finite

automata.” IRE Trans. on EC. Vol. 11. p. 57L-575.

Gilbert, P. [1966]. "On the syntax of algorithmic languages.” Journal

of the ACM. Vol. 13. p. 90-107.

Ginsburg, S. [1966]. "The mathematical theory of context-free languages.”

McGraw-Hill, New York.

Ginsburg, S. and Greibach S. [1965]. "Deterministic context-free

languages." SDC report T™-738/014/00. May 7, 1965. Also, in

Information and Control. Vol. 8. (1966). p. 620-648.

Ginsburg, S. and Harrison, M. A. [1966]. 'Bracketed context-free

languages.” SDC report TM-738/023/00. Jan. 4, 1966.

Ginsburg, S. and Rice, H. G. [1962]. "Two families of languages

related to Algol." Journal of the ACM. Vol. 9. p. 350-371.

Ginsburg, S. and Rose, G. F. [1963]. "Operations which preserve

definability in languages." Journal of the ACM. Vol. 10. p. 175-195.

Ginsburg, S. and Spanier, E. H. [1964]. "Bounded Algol-like languages."

Transactionsof the American Math. Soc. Vol. 113. p. 333-368,

Ginsburg, S. and Spanier, E. H. [1966]. "Semigroups, Presburger

formulas end languages.’ Pacific Journal of Mathematics. Vol. 16.

p. 285-296,

141

Ginsburg, S. and Ullian, J. [1966]. "Ambiguity in context-free languages."

Journal of the ACM, Vol. 13. p. 62-89,

Greibach, S. A, [1965]. "A new normal form theorem for context-free

phrase-structure grammars.” Journal of the ACM. Vol. 12. p. 42-52,

Gross, M. [1966]. "Applications géométriques des langages formels,"

(in French.) ICC Bulletin. Vol. 5. No. 3. p. 141-167.

Hibbard, T. N. [1566]. "Scan limited automata and context limited

grammars.” To appear.

Hibbard, T. N. and Ullian, J. [1966]. "The independence of inherent

ambiguity from complementedness among context-free languages.”

Journal of the ACM. Vol. 13. p. 588-593.

Huntington, E. V. [190%]. "Sets of independent postulates for the
algebra of logic." Trans. Amer. Meth. Soc. Vol. 5. p. 288-309.

Irons, E. T. [1964]. '""Structural connections" in formal languages."

Comm. of the ACM. Vol. 7. p. 67-71.

Kleene, S. C. (1951). "Representation of events in nerve nets and finite

automata.” RAND research memorandum RM-70% (12/15/1951) and in

Shannon, C. E. and McCarthy, J. (Eds.) [1956]. p. 3-41,

Knuth, D. E. [1965a)]. "A list of the remaining trouble spots in

Algol 60." ABl9.3.7 Algol Bulletin No. 19. p. 29-38.

Knuth, D. E. [1965b]. "On the translation of languages from left to

right." Information and Control. Vol. 8. p. 607-639. |

Knuth, D. E. and Merner, J. N. [1961]. "Algol 60 Confidential."

Comm. of the ACM, Val, 4, p. 268-272.

142

Korenjak, A. J. and Hopcroft, J. E. [1966}. "Simple deterministic

languages." Technical report No. 51, August 1966. Princeton

University. Also in the proceedings of the 7th annual symposium

on switching and automata theory. (IEEE). p. 36-U6,

Kuno, S. and Oettinger, A. G. [1962]. "Multiple-path syntactic

analyzer." In Information Processing 62 (IFIP congress).

p. 306-311. Popplewell (Ed.), North-Holland, Amsterdam.

Kuroda, S.-Y. [1964]. "Classes of languages and linear bounded

automata." Information and Control. Vol. 7. p. 207-223.

Landweber, P. S. [1964]. '"Decisior problems of phrase structure

grammars.” IEEE Trans. on EC. Vol. 13. p. 354-362.

Letichevskii, A. A. [1965]. "The representation of context-free

languages in automata with a push-down type store." Cybernetics

(Kibernetika). Vol. 1. No. 2. p. 81-86. The Faraday Press,

New York.

Medema, P. [1965]. "Another trouble spot in Algol 60." AB 20.3.7.

Algol Bulletin. No. 20. p. 47-8,

McCarthy, J. [1960). "Recursive functions of symbolic expressions and

their computation by machine. Part I." Comm. of the ACM, Vol. 3.

p. 184-195,

McCarthy, J. [1963]. "A basis for a mathematical theory of computation.”

in Braffort. P. and Hirschberg D. (Eds.). [1963]. p. 33-70.

McNaughton, R. [1965]. "Techniques for manipulating regular expressions."

M.I.T. Project M.A.C. Machine structure group memo No. 10.

McNaughton, R. and Yamada, N. [196C}. "Regular expressions and state

graph for automata.” IRE Trans. on EC. Vol. 9. p. 39-47.

x 143

Mors, E. F. [1956]. "Gedanken-experiments on sequential machines."
in Shannon and McCarthy (Eds.) [1956]. p. 129-153.

Neur, P. (Ed.) [1963]. "Revised report on the algorithmic language

AIGOL 60." Comm. of the ACM, Vol, 6. p. 1-17.

Parikh, R. J. [1961]. "Language generating devices." Quarterly progress

report No. 60. Research laboratory of Electronics, M.I.T.

January 1961. p. 199-212. Reprinted with minor editorial revisions

under the title: "On context-free languages." Journai of the ACM.

Vol. 13. p. 570-581.

Post, E. [19k]. "Recursively enumerable sets of positive integers and

their decision problems” Bulletin of the American Math. Soc.

| Vol. 5@. p. 284-316.

Post, E. [1946]. "A variant of a recursively unsolvable problem.”

| Bulletinof the American Math. Soc. Vol, 52. p. 264-268.

Rabin, O, and Scott, D. [1959]. "Finite automata and their decision

problems." IBM Journal of Res, and Dev.. Vol, 3. p. 114-125,

~ Redko, V. N, [1964}. "On defining relations for the algebra of events."

| (in Russian.) Ukrain. Mat. Z.. Vol. 16. p. 120-126.

Riguet, J. [1962]. "Programmation et théories des catégories.”

(in French.) in Symbolic languages in data processing. p. 83-98,

Gordon and Breach, New York.

Ross, D. T. [1964]. "On context and ambiguity in parsing," Comn. of

the ACM, Vol. 7. bp. 131.133,

Rudeanu, S. [1963]. "Axiomele laticiorsi algebrelor Boolene."

(in Rumanian.) Edition of the Rumanian Popular Republic Academy.

LY

Salomea, A. [1966]. "Two complete axiom systems for the algebra of

| regular events." Journal of the ACM. Vol. 15. p. 158-169.

Scheinberg, S. [1960]. "Note on the Boolean properties of context-free

languages.’ Information and Control. Vol. 3. p. 372-375.

Schneider, F. W. and Johnson, G. D. [1964]. "Meta-3, a syntax directed

compiler writing conpiler to generate efficient code." Proceedings
of the 19th national conference of the ACM. Dl.5.

Schorre, D. V. [1963]. "A syntax-directed Smalgol for the 1401."

1965 ACM Naticnal Conference.

Schorre, D. V. (1964). "Meta II. A syntax oriented compiler writing

language,” 1964 ACM National Conference. Dl1.3.

Schorre, D. V. [1965]. "A necessary and sufficient condition for a

context-free grammar to be unambiguous." SDC report SP-2153.

Schiitzenberger,M. P. [1963]. "Context-free languages and push-down

automata." Information and Control. Vol. 6. p. 246-264,

Schutzenberger, M. P. [1964]. "Classification of Chomsky languages."

in T. B. Steel (Ed.) [1966]. p. 100-102.

.Schiitzenberger, M. P, [1966]. "Some remarks on acceptable sets of

numbers." Paper presented at the August 1966 conference on the

algebraic th:-ory of machines, languages and semigroups.

Shannon, C. E. and McCarthy, J. (Eds.) [1956]. "Automata studies." |

Princeton University Press. Princeton.

Slagle, J. R. [1965]. "Experiments with a deductive question answering

program.” Comm. of the ACM. Vol. 8. p. 792-798.

Stearns, R. E. and Hartmanis, J. [1963]. "Regularity preserving

modifications of regular expressions." Information and Control.

Vol. 6. p. 55-69.

145

Steel, T. B. (Ed.) [1966]. "Formal language description languages for

computer programming.” North-Holland (1966). (Proceedings of

the Baden IFIP conference of September 1964.)

Tarski, A. [1956]. "Logic, semantics, metamathematics." Clarendon

Press, Oxford.

Welzenbaum, J. [1966]. "ELIZA - A computer program for the study of

natural language communication between man and machine.” Comm,

of the ACM, Vol, 9. p. 36-45,

Wirth, N. and Weber, H. [1965]. "Euler, a generalization of Algol and |

its formal definition.” Report CS20, Stanford University,

__Apria 27, 1965, and Comm. of the ACM. Vol. 9. p. 13-25 and 89-99.
“Wirth, N. [1966]. "A programming language for the 360 computers.”

Report CS5%, Stanford University, December 20, 1966.

Zwicky, A. M., Friedman, J., Hall, B. C., Walker, D. E. [1965]. "The

Mitre syntactic analysis procedure for transformational grammars."

Proceedings of the Fall Joint Computer Conference 1965. p. 317-326.

Spartan Books, Baltimore.

146

