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For determining the eigenvalues of a symmetric, tridiagonal matrix,
various techniques have proven to be satisfactory; in particular the
bisection method and &R-transformation with shifts determined by the last
diagonal element or by the last 2X2 principal minor. Bisection, based
upon a Sturm sequence, allows one to concentrate on the determination of
any prescribed set of roots, prescribed by intervals or by ordering
numbers. The &R-transformation is faster,; however, it gives the eigen-
values in a non-predictable ordering and is therefore mainly advocated
for the determination of all roots.

Theoretically, for symmetric matrices, a &R-step is equivalent to
two successive LR-steps, and the LR-transformation for a tridiagonal
matrix is, apart from organizational details, identical with the gd-method.
For non-positive definite matrices, however, the LR-transformation can-
not be guaranteed to be numerically stable unless pivotal interchanges
are made. This has led to preference for the &R-transformation, which
is always numerically stable.

If, however, some of the smallest or some of the largest eigenvalues
are wanted, then the &R-transformation will not necessarily give only

-these, and bisection might seem too slow with its fixed convergence rate
of 1/2 . In this situation, Newton's method would be fine if the Newton
correction can be computed sufficiently simply, since it will always tend
monotonically to the nearest root starting from a point outside the
spectrum. Consequently, if one always worked with positive (or negative)
definite matrices, there would be no objection to using the now stable

gd-algorithm. 1In particular, for the determination of some of the
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smallest roots of a matrix known to be positive definite -- this problem

arises frequently in connection with finite difference or Ritz approxi-
mations to analytical eigenvalue problems -- the starting value zero
would be usually a quite good initial approximation.

We shall show that for a gd-algorithm, the Newton correction can
very easily be calculated, and accordingly a shift which avoids under-
shooting, or a lower bound. Since the last diagonal element gives an

upper bound, the situation is quite satisfactory with respect to bounds.

Let ¢(h) = (A - XI)-L be the resolvent of a matrix A . Then
ﬁ YO = -7 .

Assume that A is of Hessenberg form of order n > 2, viz,

O

with +1 's in the lower off-diagonal. Then since A - AI is again of
Hessenberg form, the co-factor of the O,n) element is +1 , and there-
fore the hbl) -element of (A -kl)_l is -1/f(h) , where f(h) is
the characteristic polynomial of A . From the result above we conclude
that the (n,1) element of (A - )xI)-2 is f”(k)/fg(x) , and there-
fore 8(A) = -£(A)/£*(\) = eE(A - XI)-lel/eg(A - )\I)-eel is the Newton

correction, A + 8(\) being the next approximation.



The calculation of eg(A - \I) -lel and ei(A -KI)_zel can be based

e, and ozgyT(A - A\I) = eg by back-

upon the solution of (A — AI)x = aje

ward substitution starting with (x) h = 1 and (y)l =1 . Then @ =0,

L ioor

f(h) =a, £'(h) = yTx , 6(h) = oz/yTx . The final result holds even

- -2
(= o), Yo =e (-2l , and yx/a® = e (A - AI) e

when A is an eigenvalue, ¢ then being zero and yTx /é 0 unless A
is defective. While for the approximation of eigenvectors this back-
substitution, known as Hyman's technique, cannot be generally advocated,
it offers a simple way to the calculation of f!'(\) = yTX and of the
Newton correction. It can be used when Newton's method can safely be
used; e.g., when the roots of the Hessenberg matrix A are known to be

all real, in connection with some deflation technique.

For tridiagonal matrices, however, the LR-transformation or the
gd-algorithm gives the Newton correction as a by-product. In the gd
version of the LR-transformation we perform first for a certain value

of A the triangular decomposition of A - \I ,
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multiply the factors conversely and decompose again
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The transformed matrix A' - AI has the same characteristic poly-
= nomial and may serve as well to calculate the New-ton correction. How-
ever, the solution of (A' - AI)x _ ozlel is immediately given by
E{&-
' n+l 7
-1
(-1) q X, 5 X . X qBXq,e
n
(-1) qXq g X oee X % n 1
x= s o 0 q. .(-1)
1 . i
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m
E"" and likewise for the solution of y*(A' - \I) = agei by
T + !
¥y =(l,-qi,inqé,...,(-l)n lQiXQéx-@ . %&%D.@ ’ 0’2 = [ q! -(" l)n+l d
= i=1
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Note that al = a2 -det(AI -A) is the determinantal invariant of the

gd-algorithm. Hence the relation

or rather
5(\) =q!/( ..((jl—'i—+ 1) %—? 1) &z“— + 1)
-1

The quotients qLH/qi in the nested product, however, are calculated
as a matter of course in the LR-step with the quotient rule

el = (ay,,/a))e; :
The extra work amounts therefore to n-1 multiplications, n-1
additions of 1 , and one division.

The shift by' 8(\) is now preferably made after the next inter+
mediate matrix A: - AI is formed and is done, as usual, implicitly
in the difference rule. Thus, a shift is made every second qgd-step.
As mentioned in the introduction, numerical stability requires A
in the beginning to be essentially symmetric and positive definite;

i.e., eu > 0 and qu > 0 . This property will then be preserved.

5.
The quantities qpand q;' can be calculated also by a continued
fraction recurrence directly from
Tar o '
2y A bl
t _ t
1 a, A b2 ‘::)
]
1 a'=\

n
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q = al - XT-~bi[qi+l (i = n-1,...,1)

i.e., q,
q = a5 -\, q =a;-A-bl fa; . (1 =2,3,..4,n) .

For an essentially symmetric matrix; i.e., bp > 0 , the components

of x and yH together with -o form a Sturm sequence. Correspond-

ingly, if all the qu # 0 and qﬁ A 0, the number of positive elements

in the g-sequence counts the number of positive eigenbalues. This use

of the continued fraction recurrence has some merits for the bisection

method. The gd-transformation would not allow one to calculate the

Sturm sequence in a stable way, apart from the trivial case where all

>0 .
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