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i For determining the eigenvalues of a symmetric, tridiagonal matrix,

E various techniques have proven to be satisfactory; in particular the

- bisection method and &R-transformation with shifts determined by the last
I diagonal element or by the last 2X2 principal minor. Bisection, based

5 upon a Sturm sequence, allows one to concentrate on the determination of

N any prescribed set of roots, prescribed by intervals or by ordering

E numbers. The &R-transformation is faster,; however, 1t gives the eigen-

values 1n a non-predictable ordering and 1s therefore mainly advocated

3 for the determination of all roots.
.

. Theoretically, for symmetric matrices, a &R-step is equivalent to

| two successive LR-steps, and the LR-transformation for a tridiagonal

5 matrix 1s, apart from organizational details, identical with the gd-method.

| ~ For non-positive definite matrices, however, the LR-transformation can-

5 not be guaranteed to be numerically stable unless pivotal interchanges
-

are made. This has led to preference for the &R-transformation, which

-— 1s always numerically stable.

If, however, some of the smallest or some of the largest eigenvalues

- are wanted, then the &R-transformation will not necessarily give only
| -these, and bisection might seem too slow with its fixed convergence rate
-~

of 1/2 . In this situation, Newton's method would be fine if the Newton

— correction can be computed sufficiently simply, since it will always tend

monotonically to the nearest root starting from a point outside the

—- spectrum. Consequently, 1f one always worked with positive (or negative)

| definite matrices, there would be no objection to using the now stable
-—

gd-algorithm. In particular, for the determination of some of the
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smallest roots of a matrix known to be positive definite -- this problem

a arises frequently in connection with finite difference or Ritz approxi-

mations to analytical eigenvalue problems -- the starting value zero

- would be usually a quite good initial approximation.

We shall show that for a gd-algorithm, the Newton correction can
—

} very easily be calculated, and accordingly a shift which avoids under-

” shooting, or a lower bound. Since the last diagonal element gives an

upper bound, the situation 1s quite satisfactory with respect to bounds.

-—

fo -

5 Let (A) = (a - AI) be the resolvent of a matrix A . Then

“ yA) = (a -AD)C

| Assume that A is of Hessenberg form of order n 2 2, viz,

-N
with +1 's in the lower off-diagonal. Then since A - AI is again of

o Hessenberg form, the co-factor of the (l,n) element is +1 , and there-
fore the (n,1) —element of (A = AI) 7t is -1/f(h) , where f(h) is

i the characteristic polynomial of A . From the result above we conclude

that the (n,1) element of (A - AI) 2 is £1 (0)/ £50) , and there-

fore 8(\) = -£(\)/f*(A) = e (A - AI) “le, fel (a - AI) “Ce, is the Newton
o correction, A + &(A) being the next approximation.
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The calculation of e, (A — AI) le, and , (A -\I) “Ze, can be based
| upon the solution of (A - AI)x = ae, and oy (A - AI) = el by back-
= ward substitution starting with (x) N= 1 and (vy), = 1 . Then x, =o,
| | (= a) , Ja = ce. (A - AI) te, , and 7ox/a” = e. (A - AI) e. : or
u f(h) =a, £'(h) = _— , b(h) = of yx . The final result holds even
N when \ 1s an eigenvalue, © then being zero and won £ 0 unless A

: 1s defective. While for the approximation of eigenvectors this back-

~ substitution, known as Hyman's technique, cannot be generally advocated,
it offers a simple way to the calculation of f' (A) = _— and of the

= Newton correction. It can be used when Newton's method can safely be

- used; e.g., when the roots of the Hessenberg matrix A are known to be
8 all real, 1n connection with some deflation technique.

3 For tridiagonal matrices, however, the LR-transformation or theu gd-algorithm gives the Newton correction as a by-product. In the gd
| version of the LR-transformation we perform first for a certain value

~ of A the triangular decomposition of A - AI ,

| ) a, 1 e

* & . 1 .O
A - AL = 1 gq Le
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2 multiply the factors conversely and decompose again

= 1 eg O) a, |
= SE 1 as

re 0 nel th = A" - AI=
_ La,

-

a - = ?

I Ley

: 1 a; 0 L e's
'

1 % :

| () to. 0 “n-11 ' 1

I *n

| The transformed matrix A' - AI has the same characteristic poly-

nomial and may serve as well to calculate the New-ton correction. How-

ever, the solution of (A' -AI)x _ @,e, 1s immediately given by

n+l
-1

| (-1) 4,59, 1 X ...X % Xd,

(-1)™ Xq 1X «.. X gq n-1 +- X= “n > » oa =1I qd. - (-1)" :
: 1 i
 — 1=1

1

|= and likewise for the solution of y(A' - AI) = ae, by
T + :

_ y 21,07 Xe (+1) iar 0 Hox[]e0 y oo= Tq! = yr || © i=l
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Note that @, = @, -det(AI -A) is the determinantal invariant of the
| — gd-algorithm. Hence the relation

2 1 Az ++ +a, Oz +» +d a, 1

130° ood Tah 4

x or rather
u BL, S I3

’ 5) =q)/(. (GFL gD m1)
: 1 2 "n-1

|-—

The quotients VEN in the nested product, however, are calculated

~ as a matter of course in the LR-step with the quotient rule

¥ “1 (93,1/aj)e;
|“ The extra work amounts therefore to n-1 multiplications, n-1

B additions of 1 , and one division.
|

The shift by' 8(A) is now preferably made after the next inter+

mediate matrix A: - AI is formed and is done, as usual, implicitly

in the difference rule. Thus, a shift is made every second gd-step.
|

= As mentioned in the introduction, numerical stability requires A
| in the beginning to be essentially symmetric and positive definite;

i.e., ©, >0 and a, > 0 . This property will then be preserved.

.

= The quantities Gy and a can be calculated also by a continued
fraction recurrence directly from

RP t
aq A by

t _ to 1 2, A b, 0
— t

1 a'=\

| n
~~
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= Vo = | - Cm! = -—

En ''— a' - gq) =a! =X =D! _/q] =D )9 = % rd Tg i-1/% 5 (1 =2535...,0) .

| For an essentially symmetric matrix; 1i.e., b, > 0 , the components|N—_-

H

p of x andvy together with =-o form a Sturm sequence. Correspond-

= ingly, 1f all the 9, £ 0 and 9, £ 0, the number of positive elements
| in the g-sequence counts the number of positive eigenWalues. This use

_
of the continued fraction recurrence has some merits for the bisection

method. The gd-transformation would not allow one to calculate the
|—-—

Sturm sequence in a stable way, apart from the trivial case where all

— a, > 0 .

.
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