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1. Introduction

When locating the zeros of a polynomial, it is usually difficult to

_ know just when to terminate the iteration process. It is desirable to

2 terminate the process when the zero is known to within roundoff accuracy.

fe Various ad hoc methods have been used as stopping criteria; however,

such methods do not take into account particular properties of the

| polynomial being evaluated. Such properties might include the condition
o of the polynomial, multiple zeros, or clusters of zeros. In this paper

a stopping criterion 1s presented which requires that the value of the

u polynomial be less than a calculated bound for the roundoff error.

! Bounds for the roundoff error can be obtained by using the methods

of range arithmetic [1] or interval arithmetic [4], but such methods
-

require a large amount of computation. The algorithm described here

produces similar bounds, and offers the advantage of being easily

| calculated, Kahan and Farkas[3] have used this algorithm to bound the
i roundoff error for a real polynomial evaluated at a real point, but
-

] they offer no motivation as to why the algorithm works. In this paper
Kahan's bounds for a real polynomial evaluated at a real point are

summarized, and then the analysis 1s extended to a real polynomial

~ evaluated at a complex point. The use of this bound as a stopping
| criterion 1s discussed.
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2. Summary of Results for a Real Polynomial

L Evaluated at a Real Point

| 1
LL This section contains a brief summary of Kahan's™ results on

bounding the roundoff error for a real polynomial evaluated at a real

L point. Consider the polynomial
n n-1 +

P(Z) = + az coo T o_ ( ) a Z a, a,

| The Horner recurrence 1s given by

L
b = a
0 ®

(1)
he. = LJ : =ob, X bq toa; k l,...n .

| The last term of this recurrence, ob , 1s P(x) .
Assoclated with (1) we have a second recurrence, given by

e, = ENE: + a)

(2)Lo € _ |xle, 5 + b, | 5 Kk = l,.een

1 In (2), b, represents the calculated quantity and # and ¢ are the
maximum absolute rounding errors which take place in any single product

L or sum, respectively. We have
1-t -

L ; n< 5B , 05% pt k ’
where P represents the base in which the machine floating point

{

L arithmetic 1s performed and t represents the number of digits in the

; mantissa. For the Burroughs B5500, an octal machine with a 39 bit

L mantissa, we have B = 8and t = 13.

L 1. Lectures presented by Professor Kahan at Stanford University,
Spring 1966.
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1 Kahan shows that a bound for the roundoff error 1s given by

i (3) P(x) - bv! < (a + ne RES
He also shows that a suitable stopping criterion for having found a

1 zero of P to within the bounds given for the roundoff error 1s

lb | < 28,

(4) lp |
E= .. = ne, - 'b In ]

L The reason for having the factor of 2 in (4) is to guarantee that there

[ 1s a computer representable number which satisfies (4). Note that the
above criterion does not tell us how close we are to a zero, but only

[ that we are in some interval about the zero where roundoff error may be
dominating our calculations.

-

1 3. Rounding Error Bounds for a Real Polynomial
ig Evaluated ata Complex Point

i Now suppose that
PZ) = a 7" + a 701 4 + a

( 0 1 I n
—

1s a polynomial with real coefficients as but that we wish to
!

L evaluate the polynomial at a point Z = x + i.y, By taking a quadratic

1 factor out of the polynomial and then equating coefficients with the
original polynomial, we can obtain the well known recurrence for evaluating

L this polynomial at a point in the complex plane which involves only real
arithmetic and a total of 2.n multiplications. Thus if we write

2 - -L Pz) = (2° +pZ + QO) 2° + v.22 + ... +b.) + RZ - x) + S
0 1 ne

L
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1 we obtain for the recurrence

b =a
0 o)

2 bl = a, — pb
1 0

= (5)

$ Pe = 8 — Pb — aby5 k= 2,...0-1

- ®y = %n * X-b,, 1 Le,

: where
| —

| - 2% ,q=%x+y ,b .=Randb= S

 — Note that

| RL(P(x + iy)) = b, and Im(P(x + iy)) = yb_. -

| The coefficients a, which appear 1n the machine may not be

= identical to the coefficients of the original problem because of the

; error 1in converting from decimal to binary. We shall not be concerned

with this error, but rather with the errors which accumulate in
I

- attempting to evaluate the polynomial represented in the machine.x The elements of the recurrence (5),as represented within the

| machine, are given by

i © ©

by = @ - pep(1 +7 ))/(1 + op)

- WO), ((a ped, (1 4 ow ))/(1 ) — qbk k — PrP + Tx +o) = Bplay))/(140)

= k = Cyeeen-1
= + * + Ae

b= (lay + xd (ym 0/0) - ab (1+ 7,))/(1 +0,),

We can bound each of the quantities a.. and Ton the basis of the
. floating point arithmetic of the computer being used, that 1is,

1-t 1-t
< zF x

la, 1 <%8 ’ rol <P °
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E In (6),p and q represent the true values, but will actually

| have rounding errors associated with their calculations. For the sake

x of simplifying the analysis slightly, let us assume that q 1s calculated

B in double precision and then rounded to single precision. Then we may

_ write

i p=rp/(l+n )andqg=0q/(1+o)=(x"+ y7)/(1 + a) ,
where

» 1-t 1 Al-t
| tn | <3PB cl <%8 .

x In practice this double precision calculation 1s not necessary,
i

~ Solving for the a, in (6) we find
!

| a =b
- 0 o

: a, = b, (1 + 0.4) + ped (1 + 7) 1 + Tq)
|—

b, (1 »

§ 8 = mn + 0, (1 + Or) + q b, (1 + 0g )(1 + Ty) (1 + Jn
’ (7)ee . .

+ p b (1 + (1 + The) b) k = 2yo0ol=l
= b (1 .- “4 ol + 0.) (1 + Top) + ab (1 + 0g) (1 + Tog (1 + 0p)

~ Xb 1 + x 0: xD In)
 —

Note that in (7), and for the rest of this analysis, the letters a;

— ob. s, P, and g shall represent the numbers within the machine, and

any deviation from the true values 1s represented by the error bounds,,

~~ By substituting the a, of (7) into P and simplifying we find

ds n-k} P = + qe ° - .. (2) b + ieyb , - xb mw + > 0,0,7
k=1

+ b, (x ‘p/Z + w A ALY/ )
_ 5 k' k+l k+2

where
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i=

3 Lro=0+0) + dolce

3 1+ = (1+ mr ) - Ix | < 3 ple» n ln ’ n = ®

» 1-+ = .

L+o = (1+ 0,5, (1 + 01) ; lo, | <B
2 _ 1-t

| 3 gl-t+ = . =

i 1+ wo (1 4 0) (1 + To) (1 + 01) ; |, | <5 8 :
| Recalling that the calculated value of the polynomial as given by
nN the recurrence is

: b + 1tyb 1

| we have

i | P(x + iy) = (bo + iyo I

3 < n|x| LI + o(lp | + [0 lelz)
—
‘ —

BF (xlpl/121 + Z|/12])|p 1- [27]

|e _ n-2 n-k
| to + nlol/ lz] + olZ)/|2]) 3 16,227,

- where
E 0 = max |o, | , ® = max |= | , @ = max lo, |.
l — 1 1 1

| Now choose

a e, = |p| (en + w)/(en + ow+ a>
| (8)

€ _ Z] e, 4 + 1, | 3 k = L,...n

| Hence

i |Ib, | = (2n + A + 0)-e_/(en + Ww)

Ce ol =e 2],
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3 and upon substituting into the above and simplifying we obtain
|P(x + iy) - (bo + yep Jl < (en + w + ole,

“ (9)
- (2x( + ©)(|o_| + 1b, Hz) +n |x| 1 ,

| where
= 1-t | 1-t 1-t
| nr <P y, 0<BP ) w< 2p o
. The formula given in (9)is a generalization of the formula given

L , in (3). To complete the parallelism between the real and the complex
cases, we give the stopping criterion for having found a complex zero.

L A zero has been found to within roundoff accuracy when
lo, + ioyd l<s,

(10)

E= (2 + oo 4 ole, - (en + w)(|o | + lolz) + |x| ol.

L The following section contains a discussion of the acceptability of
L this criterion.

L L, Use of Error Bound as Stopping Criterion

i We may think of the E as given 1n (10) as defining a region about
a zero 1n the complex plane, such that for the set of all machine

L representable points 1n this region the stopping criterion in (10)

| is satisfied. For each zero J of P let §{j denote the region
defined by E . If indeed our error bound 1s a good one, then we will

[ not be able to distinguish any of the points in §j from the true |
zero Z7j on the basis of calculated function values, for any non-zero

L quantities will only represent "noise". In general, E will define a

| larger region than the ideal one just described. We have made rather
—

/
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extensive tests to see how the bound given in (10) compares with the

actual roundoff errors. Included in our tests have been the polynomials

given in Table 1 and Table 2 of Henrici [2].

The zeros of these polynomials were determined using the method

suggestedby Traub [5],[6]. The iteration process was terminated

when (10) was satisfied, After all of the zeros of each polynomial

had been located, they were then reevaluated in the original polynomial

, 1n both single and double precision, and any zeros which did not satisfy

(10) were purified. The roundoff error is then the difference between

the evaluations 1n single and double precision.

Figure 1 shows a distribution of the ratios of roundoff error to

. the roundoff error bound when (10) was first satisfied for each zero,

~ These calculations were performed on a Burroughs B5500, an octal machine,
and hence the error bound contains an additional factor of 4 over that of

| a binary machine to account for the worst case where a rounding operation

can cause a change in the exponent. From Figure 1 we see that in nearly

~ 85% of our examples the roundoff error is bigger than 0.01 times the

error bound, and this we feel 1s a reasonable bound for the error.
—

The distribution shown 1n Figure 1 tells us how the roundoff error

— compares with the error bound, but not how close we are to a zero of P .

When (10) is satisfied we only know that we are within the region {J.

— However, our analysis of the data shows that in the majority of the

L examples we have tested, we are sufficiently close to the zero when the
stopping criterion 1s satisfied, that even one more iteration 1is

. unwarrented. In performing the extra iteration either no change occurs,

there is a perturbation in the roundoff error but the answer is not

8



improved, or the answer is improved by 2 or 3units in the last decimal.

In referring to the region {j about each zero, we have not dealt

with the case where {J may be empty, If there is no machine

representable number which satisfies the error bound, then the algorithm

would search endlessly for such a value unless terminated after a certain

number of steps, We have not been able to prove that there always exists

| L a machine number which satisfies (10). On the other hand, we have not

found an example where there 1s no such number, For the real case,

- Kahan has shown that by doubling the error bound, 1t 1s always satisfiable,

_ For the complex case it can probably be shown that for some small multiple
of the error bound, there 1s always a machine representable number which

L satisfies the bound, However, we have not shown this.

5. Conclusions

— The stopping criterion given in (10) serves as a very adequate

means of determining when a complex zero of a real polynomial has been
—-—

obtained to within roundoff accuracy, The bound for the roundoff

— error used in (10) 1s easily calculated as the polynomial 1s evaluated

by using the recurrence given in (8). Little is to be achieved by

— iterating beyond the stopping criterion, An open question at present

1s whether or not there always exists a machine representable number

= which satisfies (10).

L Acknowledgements: I wish to thank Professor J.F. Traub for suggesting
| this problem to me and for his patience in reading the report and
—

suggesting improvements, Also I wish to thank Professor W, Kahan for

- his many helpful suggestions,
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