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1. Introduction

When locating the zeros of a polynomial, it is usually difficult to
know just when to terminate the iteration process. It is desirable to
terminate the process when the zero is known to within roundoff accuracy.
Various ad hoc methods have been used as stopping criteria; however,
such methods do not take into account particular properties of the
polynomial being evaluated. Such properties might include the condition
of the polynomial, multiple zeros, or clusters of zeros. In this paper
a stopping criterion is presented which requires that the value of the
polynomial be less than a calculated bound for the roundoff error.

Bounds for the roundoff error can be obtained by using the methods
of range arithmetic [1] or interval arithmetic [4], but such methods
require a large amount of computation. The algorithm described here
produces similar bounds, and offers the advantage of being easily
calculated, Kahan and Farkas [3) have used this algorithm to bound the
roundoff error for a real polynomial evaluated at a real point, but
they offer no motivation as to why the algorithm works. In this paper
Kahan's bounds for a real polynomial evaluated at a real point are
summarized, and then the analysis is extended to a real polynomial

evaluated at a complex point. The use of this bound as a stopping

criterion is discussed.
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2. Summary of Results for a Real Polynomial
Evaluated at a Real Point
This section contains a brief summary of K'Jahan'sl results on
bounding the roundoff error for a real polynomial evaluated at a real

point. Consider the polynomial

_ n n-1 +
P(Z)—aoZ +aZ ceeta .
The Horner recurrence is given by
b =a
o o
(1)
bk = x-bk_l + ak sk =1,...n

The last term of this recurrence, bn , 1s P(x)

Associated with (1) we have a second recurrence, given by

e, = \aolx/(n + a)

(2)

e, _ |xlek_ + \bk| 5 k = 1,...0 .

k 1

In (2), bk represents the calculated quantity and ® 5nd g are the
maximum absolute rounding errors which take place in any single product

or sum, respectively. We have
1- -
T < B K s 05 3 Bl ¢ ’

where B represents the base in which the machine floating point
arithmetic is performed and +t represents the number of digits in the
mantissa. For the Burroughs B5500, an octal machine with a 39bit

mantissa, we have B = 8and t = 13 .

1. Lectures presented by Professor Kahan at Stanford University,
Spring 1966.
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Kahan shows that a bound for the roundoff error is given by
(3) |P(x) b I < (a+ rr)en |bnln
He also shows that a suitable stopping criterion for having found a
zero of P to within the bounds given for the roundoff error is

b | <2E,
n-’—

(%)

= - | ‘
E= .. []ﬂ)en -bn s

The reason for having the factor of 2 in (4) is to guarantee that there
is a computer representable number which satisfies (4). Note that the
above criterion does not tell us how close we are to a zero, but only
that we are in some interval about the zero where roundoff error may be

dominating our calculations.

3. Rounding Error Bounds for a Real Polynomial
Evaluated at a Complex Point
Now suppose that

_ n n-1
P(Z)_aOZ taZ T4 .. +ag

is a polynomial with real coefficients ag but that we wish to

evaluate the polynomial at a point Z2 = x + i.y , By taking a quadratic
factor out of the polynomial and then equating coefficients with the
original polynomial, we can obtain the well known recurrence for evaluating
this polynomial at a point in the complex plane which involves only real

arithmetic and a total of 2.n multiplications. Thus if we write

P(2) = (2% + pZ + q)(bozn'2 + blZn'5 toewe 4b_o) + R(Z - x) + S



we obtain for the recurrence

b = a

o o

bl = a - plb

1

(5) °

bk = ak - p.bk-l - q.bk-g ; k = 2,...1’1-1

bn . an + x-bn 1 - q'bn_2
where

= - = + = =

) 2x , @ =X vy, bn—l R and bn S
Note that

RI(P(x + iy)) = b and Im(P(x + iy)) = yo o -

The coefficients a; which appear in the machine may not be
identical to the coefficients of the original problem because of the
error in converting from decimal to binary. We shall not be concerned
with this error, but rather with the errors which accumulate in
attempting to evaluate the polynomial represented in the machine.

The elements of the recurrence (5), as represented within the

machine, are given by

b =a
o) o)

b, = @y - E-bo(l + e /(1 + 0py)

b, = ((ak - E:bk-l(l + “lk))/(l + Ulk) - a'bk2(1-+n2k))/(l-+02k)

k = 2,acnn"1
= + A —c
b= (lay +xb (1 0V (o)) - Qb (14 7, ))/ (1 + 0y ),
We can bound each of the quantitieslg..and ﬁibon the basis of the
floating point arithmetic of the computer being used, that is,

1-t

pi-t BXY: .

la,. | <%

ij » I

1j
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In (6), p and q represent the true values, but will actually
have rounding errors associated with their calculations. For the sake
of simplifying the analysis slightly, let us assume that a is calculated
in double precision and then rounded to single precision. Then we may
write

p=p/(L+x)anda=a/(1+0)=(x"+ ¥)/1 + o)
where

\np| <% it , |0q| <% st |

In practice this double precision calculation is not necessary,

Solving for the a; in (6) we find

a) = bl(l + Gll) + pubo(l + np)( 1 + ﬂll)

& _ bk(l + clk)(l + ogk) + q'bk_z(l + crq)(l + ﬂgk)(l + le)

N p'bk_l(l + np)(l + o kK = 2,...n-1

1) 5
a =b(1+0 )1+o,)+ ab (1 + Oq)(l + 71, M1 + 0
) .

- Xb +
x n—l(l T(ln

Note that in (7), and for the rest of this analysis, the letters 8
bi » Py and g shall represent the numbers within the machine, and
any deviation from the true values is represented by the error bounds,,

By substituting the a; of (7) into P and simplifying we find

n
_ A . n-k
P(z) = bn Ty bn 1 - % bn-l“n * g;i 0kbkz
n-2 n-k
= o (me, D2+ @y, E/2)e2

where



i
: _ 1 al-t
| 1+o0 = (1 + o, ; !cl| <%8B
) 1-t
1+nn=(1+nln) ; lnn|§_%r3
L 1-t
+ = .
: 1+o,=(1+ GZk)(l + glk) ; |ok| <B
- . 1-t
_ 1+m = (1+ nlk)(l + rcp) ; \:rkl <B
+ = 1 . 2 1-t
1 Wy ( + O'q)(l + 121{)(1 + Ulk) R !(Dkl < 5 B .
Recalling that the calculated value of the polynomial as given by
'_ " the recurrence is
bn + 1'y°bn 1
—
v we have
" P ) - I o re
“ |P(x + i-y) (bn+1ybn_l)|
< . .
} <xlxl-lo o1+ o o |+ 1o 1-1z21)
' —
t (nlpl/l2! + m|21/|z|)|bo\-|zn\
- _ n-2 n-k
| t (o + xlol/lz] + 0lZ)/12]) 3 b2k,
v k=1
;-_ where
‘,':e g = mai,x |0'i‘ ) T = m?x Iﬂil 7 w = lm.a.}( '(Di|o
— 1 1 1
Now choose
:h— e, = !bol(Qn + w)/(2n + © + a>
" (8)
N e _ 1Zleg  *Ib s k = L.een .
‘ Hence
|

|bol = (2 + o + g)»eo/(2n + W)

o | =e - |Z2]-e, 1
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and upon substituting into the above and simplifying we obtain

—

|P(x + iy) - (bn + iyobn_l)| < (o + w + c)en

(9)

r——

- (2r
(er 4 w)(fo, | + 1o (1Z1) + = x|, 1,
i~ where )

<8t s<ptt wg%ﬁl't .
~ The formula given in (9) is a generalization of the formula given

, in (3). To complete the parallelism between the real and the complex
-

cases, we give the stopping criterion for having found a complex zero.
L A zero has been found to within roundoff accuracy when
, |bn + 1-y°bnll< g,
o (10)

E= (21 + o + ale, - (2n + a))(\bnl + |bn_l||Z|) + n\x||bn_l| .
~ The following section contains a discussion of the acceptability of
; this criterion.

-

4. Use of Error Bound as Stopping Criterion

We may think of the E as given in (10) as defining a region about
a zero in the complex plane, such that for the set of all machine
representable points in this region the stopping criterion in (10)
is satisfied. For each zero j of P let & denote the region
defined by E . If indeed our error bound is a good one, then we will
not be able to distinguish any of the points in §j from the true

zero Zj on the basis of calculated function values, for any non-zero

m— - r— r—

quantities will only represent "noise". In general, E will define a

larger region than the ideal one just described. We have made rather

r—
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extensive tests to see how the bound given in (10) compares with the
actual roundoff errors. Included in our tests have been the polynomials
given in Table 1 and Table 2 of Henrici [2].

The zeros of these polynomials were determined using the method
suggested by Traub [5],[6]. The iteration process was terminated
when (10) was satisfied, After all of the zeros of each polynomial
had been located, they were then reevaluated in the original polynomial
in both single and double precision, and any zeros which did not satisfy
(10) were purified. The roundoff error is then the difference between
the evaluations in single and double precision.

Figure 1 shows a distribution of the ratios of roundoff error to
the roundoff error bound when (10) was first satisfied for each zero,
These calculations were performed on a Burroughs B5500, an octal machine,
and hence the error bound contains an additional factor of 4 over that of
a binary machine to account for the worst case where a rounding operation
can cause a change in the exponent. From Figure 1 we see that in nearly
85% of our examples the roundoff error is bigger than 0.0l times the
error bound, and this we feel is a reasonable bound for the error.

The distribution shown in Figure 1 tells us how the roundoff error
compares with the error bound, but not how close we are to a zero of P .
When (10) is satisfied we only know that we are within the region &j.
However, our analysis of the data shows that in the majority of the
examples we have tested, we are sufficiently close to the zero when the
stopping criterion is satisfied, that even one more iteration 1is
unwarrented. In performing the extra iteration either no change occurs,

there is a perturbation in the roundoff error but the answer is not
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improved, or the answer is improved by 2 or 3units in the last decimal.
In referring to the region £j about each zero, we have not dealt
with the case where £j may be empty, If there is no machine
representable number which satisfies the error bound, then the algorithm
would search endlessly for such a value unless terminated after a certain
number of steps, We have not been able to prove that there always exists
a machine number which satisfies (10). On the other hand, we have not
found an example where there is no such number, For the real case,
Kahan has shown that by doubling the error bound, it is always satisfiable,
For the complex case it can probably be shown that for some small multiple
of the error bound, there is always a machine representable number which

satisfies the bound, However, we have not shown this.

5. Conclusions

The stopping criterion given in (10) serves as a very adequate
means of determining when a complex zero of a real polynomial has been
obtained to within roundoff accuracy, The bound for the roundoff
error used in (10) is easily calculated as the polynomial is evaluated
by using the recurrence given in (8). Little is to be achieved by
iterating beyond the stopping criterion, An open question at present
is whether or not there always exists a machine representable number

which satisfies (10).
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Fig. 1 Distribution of the ratio of roundoff
error to error bound.
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