
CS 47

AN INTERPRETER FOR "IVERSON NOTATION"

BY

PHILIP S. ABRAMS

TECHNICAL REPORT CS47

AUGUST 17, 1966

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

AN INTERPRETER FOR "IVERSON NOTATION"

. PHILIP S. ABRAMS

L

Computer Sclence 259

8 Professor N. Wirth
Stanford University

May 30, 1966
[

-

CONTENTS

| I. Introduction . . « ©. + + « « o ¢ 0 + 0 + 4 oe oe so. oo 1

g IT. The Language - « « «o « « o 5 a os so os o « os so o o o o 2

. III. Implementation« « « o « oa « o « 0 « « « « « o « oo . 17
IV. Critique of Program . . . « « + ¢ « o 4 « oo « + « + 29

i V. Critique of the Language « . . . « 3h

L Acknowledgments « « « « 0 ov 0 © © © © w « « « oo U5
| References [+] L-] [J a - L [] - «ah ° an an an an [J an an an an an «ah L6

Appendices

3 A, Transition Diagrams « « « « « . . 48
B. Subprograms in the Interpreter 52

L C., Examples of Programs . . . « « + « « « « . 5h
|

|
-

|
—

—

i

—

L
I. INTRODUCTION

L
Kenneth E. Iverson's book,A Programming Language [4], presented a

L highly elegant language for the description and analysis of algorithms.
| Although not widely acclaimed at first, "Iverson notation" (referred to

as "the language" in this report) is coming to be recognized as an impor-

| tant tool by computer scientists and programmers.
The current report contains an up-to-date definition of a subset of

L the language, based on recent work by Iverson and his colleagues. Chapter

i! III describes an interpreter for the language, written jointly by the
author and Lawrence M. Breed of IBM. The remainder of the paper consists

| of critiques of the implementation and the language, with suggestions for
improvement.

\

|

y

.-

he TT a

L
II. THE LANGUAGE

.

| Although the Iverson language has previously been described in the
literature [2,4,5,6,7], the subset implemented includes a number of hither-

| to unpublished changes and additions. This chapter will be devoted to a
brief description of the current state of the language.

A. Data

| Data are either scalars or arrays of scalars. A scalar is a numerical
quanitity or a quoted alphanumeric character. Numbers are represented

L either as integers, terminated decimal fractions, or either of these two
i followed by a decimal scale factor, (e.g. 6.023~24, meaning 6.023 « 102%)

A negative sign can be associated with a number or its scale factor, and |

| is written above the line, as -36 or 1.6E 19 . This is done to distin- |
guish between the sign of a number and the operator '-' . A logical valued

L numerical datum has as its value either OO or 1 .

| Arrays can be of any rank. It is important to note the difference
between multidimensional arrays and lists of lists. EULER [11,12], for

] ’ example, represents a matrix as a list (ordered set) of lists, each of

: the latter representing a row. The disadvantage of this approach is

L that 1t singles out a particular coordinate, in this case rows, of the

| array, thereby making it difficult to deal with an arbitrary cross-section
- of an array. In this language, arrays have a symmetric structure, in the

| sense that no dimensions are distinguished. (This point is discussed fur-
ther in Chapter V, A.)

L The rank vector pA of a datum A is a vector each of whose compon-

ents is the dimension (number of elements) of the corresponding coordinate of A.
—

2

_

Hence, if A is a 5 by 7 matrix, we have pA =57 ¢ w (Notationally,

L the elements of a vector are separated by commas.) If A is a scalar,

| then pA 1s an empty vector, that is, a vector of no elements. Also,
opA gives the rank or dimensionality ofA . Hence, for a matrix, the

| rank 1s 2, while for a scalar, the rank would be O .

| B. Identifiers
An identifier is defined in the usual way and can be used to name

| data or functions. In the former case, the identifier is called a varia-

| ble. A value can be assigned to a variable by the statement
variable «expression

The value of a variable.is the most recent value assigned to that variable.

| The use of identifiers as function names is defined in section J of this

| chapter.
C. Indexing

| It is often necessary to refer to a subpart of an array. This is

| done by the indexing operation. Indexing is indicated by a pair of square
| brackets containing a subscript list, immediately to the right of the guan-

] tity to be indexed, with the syntax shown below.

| indable ::= varb
: indable ::= const

indable ::= (expr)
slistl ::= sexp]
slistl ::=]
slist ::= slistl

slist t:= ; slist

slist ::= sexp ; slist

C indexedexp ::= indable[slist

! * : : :
The sign '=' will be used to denote mathematical equality, to avoid

C confusion with the operator '=' of the language.

3

The number of semicolons in the slist of an indable A must be (pp) - 1 .

8 This subset of the language uses l-origin indexing. Thus, for a datum A

with rank vector pA (and (ppA) > 1) the subscripts for the jth coor-

= dinate must fall in the range

|
.- 1 <i, < (pA)]] for all 1 < j < ppA

= 75 = = =

Ig A subscript may be a vector, in which case a subarray is selected by

the indexing operation. For vectors, define Ali si... i] to mean
|

Ali], Ald L, .. - Ald] . An analogous definition applies to vector sub-

i scripts onhigherrark arrays. Anempty subscript position is an elision
meaning that the whole coordinate is to be selected. That is, if the ith

| subscript of A is elided, it 1s taken to be v(pA)[i] . Thus, for exam-

ple, for a matrix M, M[I;] represents the Ith row of M . Indexing

L returns a result with the smallest possible rank. Thus, in the example

| just given, M[I;] is a vector.
-

| D. Operators defined on scalars
= 1. The following simple binary operators (sops) are defined for sca-

L) lar-valued numerical arguments. In all cases, the result is also scalar.

| Operator Function Definition Example
+ Addition As usual 345 = 8

{ a

L = Subtraction : " 3.5 = 2

X Multiplication ! § 3X5 = 15

L + Division " " 3.5 = .6

| L Minimum AlB is A or B, which- 35 = 5i ever 1s smallest numeri-

cally

|

in

|

(continued)

| Operator Function Definition Example
[Maximum AlB is A or B, 35= 5

i whichever is largest
numerically

| Modulus R —A|B is the least 2|5 =1positive number such that
for some integer Q,

| B=R+AXQA|B is undefined when
A = ® and when both A = 0

| and B< 0 .
* Exponentiation As usual A¥B = AB o¥3 = §

| |

] A Logical AND X " Arguments INO = 0
must be logical

\ Logical OR " "| valued 1Vo = 1

| : _ J1 iff ARB holds 5<7 = 1
p Relationals ARB = 0 otherwise tat = IT = QO

F (= and £ are defined in

1 > the same way for character_ S scalars.)

2. If A andB are not scalars but are arrays with identical rank

| | vectors, then the operations defined above are applied toA and B
element-by~element to produce a result with the same rank vector. For

| example,

| 1 2 3 5 2 1 6 4 k
L 5 6|+ TT 9 2 | E 11 14 9 .

| 7 8 9 9 2 4 2 10 5

| If one argument of a sop is a scalar and the other is an array, the scalar
| is extended to match the other operand in rank. For example, this rule

| p

pr

gives 3 + (4,5,6,7,9) = 7,8,9,10,6 . If any of the cases discussed

L so far holds, the two arguments are said to be compatible. A binary opera-

| tion in which the operator 1s a sop is undefined 1f its arguments are not
compatible.

L 3. The following unary operators (also sops) are defined on numerical

| scalars:

| Operator Function Definition Example
= A must be logical valued —

| Complement {24 = 1-A 1 = 0
+ Unary + +A = +A = A

| Unary - -A = 0-A -5 = 5
| Absolute value A = Al -A | 75 = 5

| L Floor "greatest-integer-less-
than" |B = B-1|B 3.5 = 3

| [Ceiling "least-integer-greater-than" [B = - |-B [3,5 = 4

* Exponential ¥A = e¥A, e = 2,71828...

If © is one of the unary operators above and A is non-scalar,

then the value of ©A is the result of applying © to all elements of A .

4. There is no operator hierarchy for any of the sops or oops (Sec-

tion F). Expressions are evaluated from right to left, with each operator,

acting binarily if possible, using the first available operands. Paren-

theses may be used in the normal way to alter the order of evaluation of

an expression.

E. Reduction

L If A is a vector (ppA = 1) then for any binary sop ©, &A

| (read: © reducing A) is defined as follows:
If 7 « ©/A then

L Z = A[1] @A[2]0 . . . OA[pA]

| where precedence 1s from the right to the left, as usual. If A is empty,

| then Z is the identity element of © . For example,

f X/10 = 1
If (ppA) > 1, then &/A means reduction along the last coordinate

| of A . In general, reduction can be carried out over any coordinate of

| an array by subscripting the slash. We can define this general construction
as follows:

| If Z «©/;M then
| Z = (pM)[1],..., (M)[J - 11, (pM)[J + 11,..., (oM)[ppM]

ARSE ITE 151 Lipqseess Lom =

| M1, 3 UPR L313) Lips ces Loom

| for all combinations of the subscripts over the ranges

| 1< ip < (oM)[K], for all K = 1,2,..., j - 1, J + 1,..., ppM
| From the above, if M is multidimensional, then
|

O/M = © M=o
L

-TTTTTTTTTE— a—

.

|
I. Operators defined on non-scalars

L There are a number of operators which are defined on non-scalars or
(whose results have a different rank vector from their argument(s). This

L class of operators, the oops (Other operators) is summarized below and

| defined in detail in section F.2. In the tables below, the following
abbreviations are used:

l 0 Any one-element quantity (A 1s a one element quantity iff
X/ pA =1.)

l v Vector
s Scalar

| a Arbitrary rank

| 1. (a) Unary oops ©@A
Operator Rank of arg Rank of result Function

| 2 © Vv Interval vector
| P a A Rank vector

|) \ A 1A

| ¢ Vv \'s 1VA
-

4 v S 2 dA

| (b) Binary oops AGB
Operator Rank of A Rank of B Rank of result Function

x O 0 Vv Prefix vector

w O o) \'4 suffix vector

z \' \ \% Index vector

- € v v v Characteristic
vector

C

w

Operator Rank of A Rank of B Rank of result Function

i 0 v a a Replication

| t o \% \s Left rotation
{ 0 \'s Vv Right rotation

| ? Vv \'% \% Catenation
1 \ \'s S Base value

| T \% o Vv Representation

| 2. Definitions of oops
(a) Unary oops

| ~ (i) Interval vector

| | undefined for nonintegral N and N< O
| LN = empty vector if N = O

| eN - 1),N if N > O

i (ii) Rank vector

| The operator p applied unarily to
a datum A produces the rank vector of A ,

Its meaning is defined in section A.

| (b) Binary oops
L

(i) Prefix vector

NoJ = J > uN

(ii) Suffix vector

NJ= (N - J + 1) <N

9

A.

(iii) Index vector

If R « XzY, then pR = pY

| For J = 1,..., pR, R[J] is the least K such that
X[K] = Y[J] . If no such K exists, then

L R[J] =1 + pX .

| (iv) Characteristic vector

| If R « MeC, then pR # pM and
R = (pC) < CM

| ~ That is, R[I] = 1 iff at least one component

| of C is equal to M[I] .

| (v) Replication
If A « RpU, then pA = R

L Let A’ and U’ be vectors formed from A and

| U respectively, by taking the components of
each in row-major order. Then

| AIT] = UML + (UT - 1), for J = 1,2,..., X/R
| That is, A is built up in row-major order from

| the elements 3f U taken in row-major order,

| cycling on U as often as necessary. In particu-
lar, OpA, for any A, is an empty vector.

L (vi) Rotation

| Right rotation of U by J: R « JVU
R = UL + (pU)](zpU) - J + 1]

10

-

L
Left rotation of U by J: R «JIU

| R= U[1 + (pU)| pu) + J = 1]

| (vii) Catenation
If R «A,B then R is a vector formed by

| appending the components of B to the right
| of A . That is,

R = All], ..., A[pA], B[1],..., B[pB]

§
(viii) Base value

| If R «RLV, with B and V compatible,

) let B= t if B is a vector(oV)pB if B is a one-component

| quantity
and let W be defined as follows:

| Wipv] = 1

| Ww[I] = WI + 1] x B[I + 11,
= for IT = ((pV) = 1),..., 1

Then, R = +/W X V

(ix) Representation

] R «VTN then pR = pV
R is a vector such that:

] VAR = (X/V)|N and A/V< R =1

G. Generalized matrix product

i The generalized matrix product, MO, * ON, for ©,, 0, any two
binary sops, 1s a double operator between the operands M and N .

| M and N are compatible for matrix product if the dimensions of the
last coordinate of M and the first of N agree. That is, if

l (eM) pM] = (pN)[1] .
11

L

1f one of the operands is a scalar, it will be extended in the normal

L way to a vector matching the other operand.

| In general, the result Z of the matrix product M ©, .QN is
defined as:

2[1)3 LEEREE EY PUEVASLEBNPEIN ES EERE Jon]

| = © ,/Mi; 155 ° . ’ Loom)-13] © N[; dps © DDD Joon
| for all values of the subscripts in the ranges:

| 1<i <(eM)xK] , k = 1,..., (pM)- 1

| 1< 3, < (pN)[4] , 4 =2,..., (ppN)

| For example, suppose M and N are matrices. Then the familiar matrix
product of linear algebra is given by: Z «M+ . X N; for suppose that

| PM = m,n and pN = n,p . Then from the above definition, we have

i Z[1;3) = +M[I;]1xN[;J] for all 1 < I < m
and 1<J<0p

|) Other uses of the generalized matrix product are discussed in [4].
For two vectors X and Y, the outer product R «X °. OY, where ©

}

| © is the null operator, is defined as:

oR = (pX), pY

} — 1 < I< pX

As an example,(M)°. = tM is the identity matrix of order M .

]

L

12

L
H. Compression, expansion

. The compression of a vector A by a compatible logical vector U

| is denoted by X « U/A and defined as follows:
oX = +/U. Then X is derived from A by suppressing those elements

| A[I] for which U[I] = O . This operation can be defined by the program
below.*

L The expansion of a vector A by a logical vector U with pA = +/U,

| is denoted by X « U\A and has the following properties:
oX = pU and X 1s a vector such that

i ~ U/X = A and (~U)/X = (+/~U)p0 .

| These operations are generalized to arbitrary arrays in the same way as

| reduction.
VX « U/A

L [1] IT «1

{ [2] X « OpA
[31 > (I > pA)/0

| [4] > (0 = UlT1)/6
[5] X «X,A[I]

i [6] IT «TI + 1

i [7] -3
Y

L I. Statements

[The syntax for a statement (stmt) is
st ::= leftpart « expression

[* This program is written in the style described in section J.
15

i

oo oo]

L st i=— expression
st ::= expression

| leftpart ::= varb

| leftpart ::= varb[slist]
leftpart ::= Ul

stmt ::= st)

| stmt ::= label : stmt -
label ::= varb

L Varb and varb[list] are to be interpreted as (possibly subscripted) vari-

| ables. The symbol ' OO ' (box) suggests a blank page and denotes the
| output string. Assignment to [J causes the expression assigned to be

| evaluated and printed.
The symbol '-' (right arrow) designates a branch and is used to alter

| the flow of control in the execution of a function. Let £ be the value

| of the expression to the right of the right arrow. If € is an integral
single-component quantity and is within the range of the line numbers in |

| the currently executed function, then control passes to the statement on
line numbered £ ; if £ 1s an integral single-component quantity out of

| this range, the function is exited and control is passed to the point at

| which the function was entered. If £ is an empty quantity, control is
passed to the next statement if such exists; otherwise the function is

| ’ exited as above. If none of these cases applies, the statement is unde-
~ fined and (in an implementation) an error is indicated.

| Fach statement must begin on a new line, and the symbol 'y in the
(syntax is an end-of-line marker indicating this. A statement consisting

L solely of an expression has as its effect the calculation of that expres-
sion. In general this effect is used to call a function.

| J. Functions and programs
| A function is defined by a program consisting of a head followed by

a body of statements. The entire function definition is enclosed in

14

BaeolTy

function quotes ' V' . The head establishes the function's name, the

. number of parameters, and whether or not it returns a value. A function

I definition has the following syntax:
functiondef ::= V head D body V

i head ::= headlhead ::= varb «headl

headl ::= varb dfn varb

| headl ::= dfn varbheadl ::= dfn

dfn ::= varb

body ::= stmt

| body ::= stmt body

i The varbs in the function head identify the parameters. If there
is a left arrow preceded by a varb in the head, the function is expected

| to return a result. This is done by an assignment to this result variable

| within the body of the function. A function is invoked by mentioning its
name in an expression, together with the appropriate number of parameters.

[A function has the same syntax within an expression as a binary or unary
SOp or a varb, depending on the number of parameters it takes. Actual

| parameters are transmitted to the function program by value.

i Labels on statements in functions are varbs which are initialized
to the line number on which they appear. These variables are non-local

i to the function and may be used in arithmetic expressions at will. Chang-
ing their values by assignment may affect their use as labels.

Example: The function below computes the GCD of two numbers.

I VX «A GCD B
Ll: X «A

| A «A|B
B «X

-» (A £0)/11

" 9
15

The function might be used later as follows:

R «4% + 6 GCD 15,

in which case the value of R will be 7 at the completion of execution

| of this statement.
It should be noted that arguments to a function are passed exactly

| as they appear in the calling statement; that is, there is no extension

| as in the case of sops. Also, it is meaningless to use a binary function
in a reduction or matrix product.

|

|
L

]

16

|
| III. IMPLEMENTATION

L

| The language defined in the previous chapter was implemented by an
interpreter for the IBM 7090/7094 by the author and L. M. Breed of IBM.

| Except for a small number of machine dependent functions such as bit-
pushing and type conversion, the entire system was written in FORTRAN IV

| to run under the IBSYS operating system. FORTRAN was chosen because it

| was the only high-level language available to both programmers.
This section describes the organization of the interpreter and dis-

| cusses interesting techniques used in programming. For purposes of ex-
position, the organization of data and the logic of the program are

| described separately.

| A. Data organization
All references to variables, constants, operators, defined functions,

L and temporary storage are made through a symbol table. In the interpreter,

| the symbol table is an array named §S; its structure is shown schematically
in figure 1.

| All S-entries are either two or three machine words, depending on
the class (syntactic category) of the entity represented. The first word

is the class number (CLASS); the second is its base address (SPTR) in the

| M array; and the third, if present, is a pointer to a BCD print name in
the high order part of S . The only entries which have print names are

] variables, function names, and language primitives.

In the program, the pointer to the symbol table entry under considera-

tion at any time is generally in SYPTR, and CLASS and SPTR have values

corresponding to S(SYPTR) and S(SYPIR+l), respectively. (In describing

the program, FORTRAN notation will be used where appropriate.)

L7

1000

L Print names
PNPTR N

0TOPSYM

L —
Constants,

i Variables,
Dfns,

| TempsTCSYM
—>

| Entries for
~ Operators (Constant

| and symbol} Language table)

i 1 Primitives
Figure 1: Symbol table (S) organization

LL

| The values of SPTR for operators and primitives are "magic numbers"
which are used by the interpretation rules. For variables, constants,

-

| and temps, SPTR points into M to the value of the entity, and for func-

tion names (dfns) SPTR is the base address in M of the branch vector
|
- . of the function.

| TCSYM points to the top of the fixed symbol table; TOPSYM is the
[.

index of the next unused §©S location; PNPTR is the bottom of the print-

L name section. When TOPSYM > PNPTR, table overflow has occurred and an

error is signalled. Note that storing the BCD print names from the top
|

L of © instead of in the lower part of S with the rest of the entry

facilitates table searching, as there are no variable-sized entries in S .

18

|
-

5000

| Code syllables for
CBOT dfns

| Code syllables for . MR Hg
ML IM current statement

J

i) J]

wy A | length| ! Data (in row- 1 &S | -

+ major order)
c3|

| .| +» (pA) [pea]

; or
) bata (pA)[1]

Entries

| PPA
SYPTR length

(. SPIR|
100 Narbage marker

| Location counter vector,
other system data

| L
Figure 2: "Memory" (M) organization and typical data entry

| The organization of M is shown in figure 2. Statements are trans-

| lated into a code string of pointers to S and are stored down from the
top of M . CBOT is the index of the bottom of the code for dfns, which

is not changed, while MLIM is the bottom of the code for the current outer-

level statement. MX points to the next piece of M available for data

| storage. All data space in M is allocated by the subroutine GETSPA.
When N words are requested of GETSPA and MX + N > MLIM, a garbage

| collection is made to reclaim abandoned space in M .

19

[:

L
When an M entry with base address SPTR is no longer needed,it is

| marked as garbage by a bit in M(SPTR+1) . Garbage collection moves active

| entries down into abandoned space. The SYPTR and length entries are usedby the garbage collector (GCOL) to update S for moved entries. One

| implication of this organization is that each M entry can be pointed to
by only one S entry. This simplifies garbage collection but causes

| inefficiencies in M usage, as discussed in the next chapter.
Data 1n the system are classified into four type groups, which deter-

i mine their internal representation. These types are:
| 1. Logical variables are represented as bit strings, packed

| 32 bits per machine word.

i 2. Integer values are represented as 36-bit sign-magnitude
integers, 1 per word.

L 5. Floating values are represented in T7090 floating point
i format, 1 per word.

LL. Character values are represented as 8-bit bytes, packed

| L characters per word.
For numeric values, quantities are represented as the lowest possible type

in an attempt to conserve storage.

] Each data entry in M contains the rank and rank vector of the data
| being stored. For multidimensional arrays M, the X/ pM entries are

i stored in row-ma jor order following the rank vector. That is, the mapping
function used 1s exactly the base value function with the rank vector as

L radix. For example, if B 1s a floating array, the element

i Bli; i 00s Lop] has M index

i SPTR + 3 + (ppB) + (eB) L(4,, Los wees Lo) - 1.
20

i

EEEEE)

§
B. The program

| The purpose of the interpreter is to execute statements; that is, a

| statement is read, executed, and the cycle is repeated. In order to provide
. for programs with branching, such programs are defined as functions and

| are executed by calling the function.
Because of the limited character set of the 7090-1401 system in general

4 use, it was necessary to transliterate the names of most of the symbols
of the language. These are all reserved words in the system, and are part

g of the constant symbol table (see Figure 1). A table of correspondences
| between language symbols and their transliterations is given on the next page.

One of the two major subprograms in the system is TYPEIN, which scans

i each statement from left to right as it is read in and does the following
tasks:

|
— 1. Recognizes reserved words and system symbols.

i 2. Creates symbol table entries for new identifiers.
| 3. Converts constants into M entries with matching S entry.

| In this process, constant vectors are treated as a single
quantity, saving space in M and eliminating unnecessary

L catenation operations. For example, the statement

| x= y MIN 3,4,7,9,46,Z = R DIV 5

i will be scanned and the underlined part will be entered
into M as a 5-element vector rather than as five scalars

L and four operators.

| Ll. Each statement is converted into a code string of pointers
to appropriate entries in S, and these code syllables are

i
| 21

i

g Symbol Transliteration Class ~~ Meaning
+ + 16 Operators, see chapter II

| 16
X * 16

+ DIV 16

[* EXP 16-
L MIN or FLOOR 16
| MAX or CEIL 16

. | ABS or MOD 16A AND 16
\Y, OR 16

f < LT 16
i < LE 16

_ EQ 16

| > GE 16
L > GT 16

£ NE 16
~ NOT 16

| a ALPHA 17
- w ~ OMEGA 17

€ EPS 17

Z IOTA 17]

| fo RHO 17
? ROTL 14

y ROTR 17

| 1 BASE 17
T REP 17

_— _——— 4 Temporary result (temp)

| -—— -—— 5 Variable (varb)- -— 6 Constant (const)
[$(7

| ((8
C. | $) 9

)) 10
; oy 11

1 ° oe 12
. o 13
- = 14

| — GOTO 15
. / / 15

| $/ 19
{ a BOX 20

L o NULL 21 Used in outer product
—— ——- PP Function name (dfn)
me —— 0% Actual parameter (dummy)

| —— -_— ol Reserved word (used internally)A LOCN 25 Location counter

\% DEFINE -— Function quote
——— HYPHEN -— Continuation to next card

o — DEBUG - cet diagnostic level
——— FINISH - End of run

Table 1: Language symbols and transliterations

22

|

L
stored in M from CBOT down. The left-most syllable of

L a statement is in the high part of M and the right-most

| has the lowest index in M. TYPEIN inserts a colon (:) as
the left-most symbol in every code string,to be used by

1 SYNTAX as a statement terminator.
5. When a function quote is encountered, TYPEIN sets an internal

| switch to change its mode from immediate execution to function

i definition mode. In this mode, the header of the function
is scanned and the names of the formal parameters and the

[function are determined. As each statement is scanned, it
| is processed as described in steps 1 - 4 above. In addition,

i lines are numbered sequentially from 1, and when labels
are encountered, they are given as value the current line

L number. The function name has as its value an integer vector
[of which the i + 15 element is a pointer to the right-

most code syllable of statement (line number) i . The first

[element of this vector points to information obtained from |
the header, which is used for syntax checking.

When an identifier correspondingto a formal parameter

| is scanned, a negative code syllable 1s emitted. These are
interpreted as relative stack references by the syntax

i analysis, and are the mechanism for parameter linkage in
function execution. Finally, when a closing function quote

L is found, TYPEIN returns to immediate execution mode, resets
| CBOT, and looks for the next statement.

6. When the end of an immediate statement is reached, TYPEIN

i terminates and control is passed to SYNTAX for statement

| execution. 03

L
The second major subprogram in the system is SYNTAX, which performs

L syntactic analysis of statements and controls execution through a series
of interpretation rules.

L Syntactic analysis is based on the separable transition diagram scheme
i of Conway [1]. In this scheme, the syntax of a nonterminal symbol of the

grammar is represented by a transition diagram,the edges of which cor-

| respond to another grammatical symbol. To each edge there corresponds
an interpretation rule (c.f. [11], [12]), which providesthe semantics of

i the language. Each node in a diagram represents a set of alternatives.

| These are examined in a fixed order, thus providing a degree of context
sensitivity. A circled edge from a node corresponds to "none of these"

i and 1s a default branch which is always satisfied if none of the others
are. OSelf-recursion is replaced by looping within a given diagram.

. Figure5 is an example of the diagram for stmt and the complete set of

i diagrams necessary to scan a statement is given in Appendix A.
The only syntax built into the transition diagrams is for a state-

i ment. Flow of control between statements is handled by the end-of-
statement interpretation rule (S13 in figure 3). Also, note that in

L syntactic analysis, a statement is, in effect, scanned from right to left.

i Under the assumption that expressions will be written to take advantage
of the right-to-left precedence rule of language operators, this scheme

i tends to conserve stack space.
The syntactic analysis described above is necessarily recursive;

. this recursion is handled by the "translator stack," ST (actually 2
arrays, ST1 and ST3 .) In SYNTAX, SI is always used as the stack

L pointer for ST .

i
24

g

. 1
exp |

SI

"

| Q
D ;

| 52

g ’
~

| S12
| . S13

| Figure 3: Transition diagram for stmt

There is also a ‘value stack,” SV, indexed by SVI, which holds

| all temporary values (actually pointers to S) and function parameters.
In general, each interpretation rule gets values from the top of SV,

operates on them, and pushes the result(s) back into SV. The sub-

| program PUSH(V) puts V on the top of SV, increases SVI, and checks
for stack overflow.

| Interpretation rules, most of which are straightforward, make up

the main body of SYNTAX. An examination of a typical rule will be in-
|

L structive. The rule below is a simplified version of M6, which is

encountered in traversing a smurg after having seen a sop followed by

a basic.

25

L
980 SVI = SVI - 3

T2 = SV(SVI)
[Tl = SV(SVI+2)

CALL GETTEM(V)
CALL DOSOP(V,T1,SV(SVI+1),T2)

| CALL PUTTEM{(T1)
— CALL PUTTEM(T2)

CALL PUSH(V)

[Go TO 205

When this rule is encountered, the stack looks like this:

[SVI™=¥»
SYPTR for left operand

SPTR for operator SV

L ~. SYPTR for right operand

] The routine GETTEM(V) creates a symbol table entry of class temp (4)
and assigns the SYPTR to V . DOSOP performs the operation coded in

[SV(SVI+1l) on Tl and T2 and assigns the result to V . PUTTEM(T)
marks temporary M storage for T as garbage and returns the symbol

i table entry for T to a linked temp list. This scheme keeps the number
[; of temp S entries small. Thus, when GETTEM is called, it has to

create a new S entry only if there are not any returned temp entries

[available. Finally, PUSH(V) pushes the result of executing the sop
onto SV . The statement GO TO 205 returns control to the syntactic

_ analyzer.

[Within the system is a location counter vector, LOCN, which records
the current line numbers of all active functions. In immediate execution

[mode, LOCN starts off as an empty vector. Each time a function is
entered, a new element, starting at 1, is catenated to the right of LOCN.

26

ST

I

§
When a function 1s exited, the last element of LOCN is deleted. The

5 location vector is updated by function calls, the branch interpretation
rule, and the end-of-statement interpretation rule. When a statement has

- been completely executed and LOCN is an empty vector, SYNTAX returns
i control to TYPEIN to read the next statement.

Function execution is straightforward. Actual parameters (if any)

| are copied to temp storage, if necessary, and are pushed into SV . If

| a result is indicated, a temp for the result is pushed. All actual param-

— eters are given the type actual in S . Also on SV are put the SYPTR

| of the function name and certain global variables that record the current
- ~

state of the syntactic analysis. A pointer FPTR is reset to indicate

§ the innermost function being executed. LOCN is changed as described above,
and execution of the function begun.

L Upon exit, LOCN 1s reset, as are the global variables from the

stack, and the result, if any, is pushed back into SV .

. A complete list of the subroutines in the interpreter and their

| functions is given in Appendix B.
Extensive error checking is done in all parts of the program. When

{

L an error is detected, execution of the statement is abandoned and control

is returned to TYPEIN to read and attempt a new statement. A diagnostic

= message indicates the cause of the error and the state of the interpreter

LC when it was detected.

The interpreter includes almost all of the language described in
- |

chapter II. Those features which were not implemented are outlined below:

- 1. Subscripting of the operators / and \ is not in the

system.- The most obvious modifications to the transition

—

| 2(

I So oo]

L
diagrams to allow this, also introduce syntactic ambigui-

| ties. When this feature 1s added to this or another inter-
preter, one would also like to add subscripting of some of

i the oops (for example t, {,d) to provide for their
| extension to multidimensional data. Such generalizations

to matrices are descirbed in [4].

| 2. The mask and mesh operators [4] have not yet been programmed.
(See chapter V, D)

i 3. In [4], compression on the left of an assignment arrow is
| allowed, as in the statement: U/X « 2,3,9 . Although this

) 1s a convenience, the same thing can be said using ordinary

L indexing: X[U/pX] « 2,5,9, and thus this feature was not
included in the interpreter.

L LL. The constant high minus sign and the exponential form of
| constants have not been implemented.
L

L

L

L

L

L

!

L
28

L

"

L
IV. CRITIQUE OF PROGRAM

L

| The interpreter just described has been thoroughly tested on a number
of programs and appears to be reasonably bug-free. Little effort was put

L into any attempt to make the program efficient with respect to timing,
and it appears that the interpreter is indeed rather slaw. It is diffi-

L cult to give meaningful timing figures, since each different kind of

L operator takes a varying amount of time; as an example of this, note the
| timings of the sample programs in Appendix C.

[If the system were to be rewritten, there are several changes that
should be considered, based on experience gained from this implementation.

| come of these proposals have been suggested by L. M. Breed, based on work

| with the TSM system (see below).
1. The 7090 system is difficult to use because of the trans-

| literation of symbols necessary to present a program to the
machine. This problem can be solved by using an input de-

L vice such as a CRT terminal or an IBM 1050 or 2741 typewriter
| terminal for which a typing element (type-ball) with the

Iverson character set is available. For example, Breed

| adapted an earlier version of the interpreter for use on
the now defunct TSM time-sharing system at IBM. With the

inclusion of simple text-editing statements in the language,

| its usability was increased manyfold by being available at
an online terminal with the proper character set.

i 2. Organization and allocation of M storage can be changed
to simplify the interpreter and increase M usage efficiency.

L
29

L

|

| There are several aspects to consider:

| (a) The major reason for storing statement text as a series
: of S pointers was to allow for text editing and re-

L construction of statements for error diagnostics.
| Editing does not exist in the current implementation

but would be necessary in any online use of this sys-

| tem. Under the current arrangement, a special garbage
collector would be needed to reclaim abandoned code

§ space at the top of M . It thus makes sense to store
| the code string for a statement directly in M as, say,

| an integer vector. Then, the regular garbage collector

| can be used to reclaim abandoned text. This proposal
will complicate the garbage collector, as there would

| be M entries, namely the branch vectors for the
| function names, which point to other (moveable) M

| entries; this problem is not very significant, however,

| since the addition of lists of the language (see
Chapter V, A) requires an identical extension of the

L garbage collector. It would still make sense to put
| code strings for immediate execution statements into

high M to eliminate the necessity of reclaiming the

1 space thus used.
(b) It was found by users of the TSM system that in long

L work sessions, many constants were introduced in im-
| mediate execution statements which were no longer

= needed when these statements were completed. The net

i
30

L
result was that both 5S and M became filled with

| unused entries which were not reclaimable because there
was no mechanism for marking them as garbage. A pos-

L sible solution is to put a constant directly into the
| code string, preceded by a special syllable which marks

the next entry as a constant. This would slightly

| complicate the problem of getting the next code sylla-
ble in the syntactic analysis, but would eliminate all

| constant entries in 5S, as well as left-over constants
[in M from immediate execution statements.

B (c) Most of the M space marked as garbage is from aban-

| doned temporary storage. In an earlier version of the
interpreter, temp storage was stacked down from the

L bottom of the code string, and abandoned by changing
| MLIM when a statement was finished. This was unsatis-

factory for two reasons: MLIM had to be stacked on

| SV whenever a function was entered; also, in a long
statement using many temps, if M became full, a spe-

L cial garbage collector was needed to compact the temp

| storage abandoned but not yet erased.
One possible solution is as follows: In the exe-

L cution of almost all of the sops and most of the oops,
at least one of the operands is the same size as the

L result. Further, the execution of these operators is |
| sequential. Thus, 1t should be possible to rewrite |

the operator execution programs for sops (DOSOP) and the

appropriate oops (such as 1t,4,T, €, z) to put the

-— “
—

|
| result directly into the space occupied by the longer

L operand, if the latter is itself a temp.

| 5. The present method of syntactic analysis appears to be more
powerful than necessary to treat this language. Even so,

| it is extremely simple to implement and is relatively compact.
| (The entire syntax analyzer is written in about one page of

L FORTRAN, and the diagram tables take less than 200 words of
(7090 storage. This latter figure can be cut by at least a

L factor of3 by judicious packing of the table.) One might

| still desire a simpler analysis routine, and at least two
| candidates for this position come to mind.

| (a) Rewriting the syntax so that it is a precedence gram-

| mar allows an even simpler analysis routine [11], [12].
~ However, a disadvantage is that in order to provide

1 for complete error detection and recovery, the whole
| precedence matrix has to be kept in the program. In
{ addition, the table of productions necessary for syn-

tactic reduction would probably be at least as long

L as the present tables. The interpretation rules would
1 probably be no more complex than those in the current

scheme.

. (b) Another scheme which requires very little table storage
and an extremely short analysis routine is as follows:

“ A current state (essentially an indication of what is

1 on top of the stack) is kept and compared to the syn-
tactic class of the incoming symbol. If this

g
32

—

|

|

|
| state-class pair is allowable, then an appropriate

| interpretation rule is invoked and state is altered;

| if not, an error is signalled. The simplicity of the
| scheme follows from the observation that a very small

| number of states and classes is necessary to define
| the syntax of the language. Thus, a short table of

{ bits 1s sufficient to contain all the requisite informa-

| tion for the analyzer. A slight disadvantage is that
“ the interpretation rules will probably have to be a

| little more complicated than at present in order to do
) extended error checking and operator execution.
| With these two proposals in mind, it still appears that the

| transition diagram approach is most satisfactory for this
and future interpreters. The primary reason for this is that

| using the diagram formulation, it is easier to alter the
| syntax of the language than in either of the other two

| schemes; this is particularly important in an experimental

| interpreter. Also, with the syntax represented in diagrams,
| much of the recursion which would normally occur in parsing

3 can be replaced by iteration, which tends to conserve stack
space.

L

L

L

53

[
V. CRITIQUE OF THE LANGUAGE

| While I ama strong supporter of the Iverson language, I believe
| there are a number of areas where it is weak and could bear improvement.

[Almost all of these are points of omission rather than objections to
features already in the language. This chapter is devoted to an outline

| of desirable new features, and should be considered as a set of sugges-

| tions for future work rather than detailed proposals.
The problem of adding new features to this language 1s not a trivial

| one. As it stands, the language is a powerful notation for describing
processes, and is rich in formal identities. Any changes to the language

L should be consistent with the established body, both syntactically and in

| spirit. The danger of making ad hoc additions is ever present, and much
thought will be necessary to work out the details of the suggestions that

follow to avoid destroying the language or cluttering it with questionable

kludgery.

i A. Lists

| The language currently has no provision for list-like structures.
In his book [4], Iverson developed a subset of the notation to deal with

trees. While powerful, it was wholly analytic; in order to construct a

| tree, one had to resort to building up a different representation of it,
such as a right- or left-list matrix. Rather than extend this tree nota-

| tion, I suggest a more "conventional" approach, along the lines used in
EULER [11], [12].

Define a list to be an ordered set of elements, each of which can

be a scalar, an array,-or a list. Notationally, a list will be

L

3h

g
represented as

a

OF cs . 5&1]

~ where each of the c. is a list element and the curly brackets are called
3 list brackets. The use of the semicolon as a separator is consistent with

| the existing notation, in which subscript elements are separated by semi-

1 colons. Thus with lists, it becomes apparent that the construction

| A[L] where &£ is an slist, is really an abbreviation for A[{K}] .
~ In adding lists, the available data space is made richer because

1 lists extend it to include cartesian products of arbitrary subspaces,
in the sense of McCarthy [8]. It is not desirable, however, to eliminate

. arrays as they exist in the language. A formulation of an array in list
terminology makes it a list of lists of...of lists of elements. For

L example, a matrix becomes a list of rows (columns). The disadvantage of
this approach 1s that it distinguishes some coordinates of an array over

|

others, which for many purposes is undesirable. In different terms, con-

3 sidering arrays as lists of lists is to confuse the idea of an array, a

purely mathematical concept, with its representation. In making the

! generalization to lists while retaining arrays it is tempting to consider

| the possibility of arrays of lists, but this, I think, is carrying a good
«

thing a bit too far.

Given lists, it is necessary to define operations upon them. I

| propose the following as a start:

= 1. Catenation (appending) -- For A and B both lists, A,B is

| a list composed of catenating A and B at the top level.
For example,

_ {a ;bscl,{d;e}={a;v;c;d; el

55

)

L
The symbol ';' cannot be used for the list catenation operator

} because this would cause a conflict in the meaning of the symbol.

| For example, it would then be difficult to explain how
{{1} ; {2}} represents a list of two elements, each of which is

| a list, as opposed to being a list whose sole element is the
catenation of the lists {1} anda {2} .

| 2. Arithmetic operations -- Arithmetic operations can be extended

| to compatible lists element-by-element, as 1s currently done
for arrays. Here the definition of compatibility would have

to require both identical structure and that the primitive ele-

ments at the lowest levels are numerical quantities which are

| array compatible.

| 5. Indexing -- A list can be indexed in order to select individual
elements. If a subscript is a list of more than one element,

then it will be interpreted to mean level-by-level selection.

For example, this rule would give

(1s{2;3;54};{5;{6}}}2 ; 1] = 2

Here, as in array subscripting, the use of square brackets a-

| round a list is actually an elision of an inner pair of list

brackets. Using this convention for square brackets, there is

| no reason not to allow a list-valued expression to appear as a

| subscript within square brackets.
It would probably be desirable to allow vectors as subscripts

to lists. However, I can think of no definition which would

| have the following property analogous to vector subscripting

36

i

L
of vectors:

|
L{z (length(L))] = L

| I submit that for the sake of consistency, we would like that
[property to hold, and that any definition should conform to it.

4. Structural operators -- In the absence of declarations, it should

| be possible to determine whether a datum is a list, as well as
some information about its structure. Since lists as we have

| defined them are in some sense isomorphic to a generalization
| of Iverson's trees, one possibility for determining structure

would be to use his analytic tree operators for moment vector,

i dispersion vector, number of leaves, and degree Hs Vs Ay O,
respectively.

L All that 1s really necessary to use lists is a list predicate
| and a length function. The other functions mentioned above can

be defined in terms of functions in the language. The predicate

[can be similar to the operator isli of EULER, and the unary po
operator of the language can be interpreted to mean the length

L of the top level of a list when given a list as argument,
| It should be possible to convert a vector to a list of its

elements by a primitive operator. A suggestive notation for

i this is list « ; / vector, with the obvious definition. It
might also be possible to extend the definition of the binary

L po operator to the construction of lists, but I have no clear
| notion of how this could be done.

4
>

L
B. Program structure

3 One of the most important features of the language is its ability

| to express, easily and naturally, operations on structured data. At the
expression level, this is highly elegant. The structure of programs,

| however, is still at the level of machine language. When arrows along
the side of the page are used to indicate branching (as in [4]), the

L structure of a program is equivalent to a flow chart, and is easy to fol-

t low. It is, however, inconvenient and often verbose to have to write all
this flow information with explicit branches, as is necessary when a pro-

[gram is presented linearly to a computer.
I believe that a good programming language should make it possible

| to state an algorithm simply, in such a way that the complexity of the

[program corresponds in some straightforward way with the complexity of
the algorithm it expresses. The current language has this property to a

| large degree, and the suggestions in this section are directed towards
improving it in this area.

t 1. Iteration control -- The DO statement of FORTRAN and, even

[more so, the for statement of ALGOL 60 have proved to be
very powerful and convenient mechanisms for iteration control.

[With the inclusion of lists in the language, a generalization
of the for statement can be added quite easily.

L Let us allow the following construction:

i for Xe L dod
where X is a variable, L is a list, and S is a state-

ment. This statement is executed by letting X take on as

38

L
value successive elements of L, with S being executed

L for each such value. Also of value would be an optional

| while clause, as in ALGOL, and the statement
while R do § ,

L

for R any logical valued expression. This statement would

| evaluate R, execute S if the value of R 1s 1, and

| repeat the cycle as long as the value of R remains 1 .
One problem that appears immediately is that the pro-

| posed constructions allow only a single statement in the
scope of an iteration. At least three ways of indicating

i scope come to mind: compound statements as in ALGOL; labeling

| the last statement in the scope as in FORTRAN; and indicating
the number of statements in the scope. Of these three, 1

i prefer the first as being the cleanest and most straight-
forward. As a convenience in writing compound statements

i and programs in general, it would be helpful to introduce

i . an (optional) statement termination symbol, analogous to
) the ';' in ALGOL or PL/I, which allows several statements

i to be written on a single line.
2. Case analysis -- Almost all but the most trivial programs

- employ some form of case analysis; that is, execution of

: different parts of a program depending on some condition.

= In McCarthy's formalism [8], ALGOL 60, EULER, PL/I, and a

proposed extension of AILGOL [1%], among others, case state-

ments, conditional statements, and conditional expressions

have been provided to make this easily expressable.

59

—

STTTme imme TT N

L
At the program level, the case statement corresponds

. to indexing a pseudo-array of statements and as such, is a
generalization of the conditional statement. Such a construct

L in the language would considerably shorten programs in the

i notation with no sacrifice in clarity. As an example of the
usefulness of a case-type statement, consider the machine

| simulation example in Appendix C.

| The need for a conditional expression or a generalization
thereof is just as great in that it allows conciseness in

i expressions. It remains true that none of the constructions
in this section add "power" to the language, in the sense that

i new things can be said which couldn't be said before; however,
the goal of ease of expression suggests their necessity.

L A re-interpretation of an existing construction can

| provide a generalization of the conditional expression anal-
gous to the case statement. Given the expression

i
(hy 5 25 5 «ve 5 2 JA]

L let this mean selection of the ith element of the list,
| without evaluating the rest of the list.

| For example, the factorial function can now be defined in a

| single statement (compare the same function defined using

| branching in Appendix C):
VX « FACT N

L X «f{1 ; NXFACT N - 1}[1 + N £ 0]

L oo
LO

L

[

i
C. Functions

| As currently formulated, functions (procedures) may have at most

| two parameters. Further, there is no mechanism for local variables within
a function, which makes recursive definitions difficult. A proposed solu-

i tion has been put forth by the Iverson group and is described below.
Other questions to be considered are name parameters, functional arguments,

| and block structure.

I Let the function header line be of the following form:

i VX FP 5P, 5 wee 5 PL
In using the function, the right hand parameter can be a list. When the

L function program is entered, the P. are initialized to the corresponding |

| list elements. If n is greater than the length of the list used as a |
| parameter, the remaining P. are undefined until values are assigned to

i them by the program. This scheme appears to solve both the problem of
number of parameters and that of local variables rather handily. By

. introducing a function (operator) isdef such thatisdef X is 1 iff X

|] is defined (has a value) and O otherwise, it becomes possible to deter-
mine which of the P. were initialized on a particular call of the func-

i tion.
Some mechanism should be available to allow the use of name parame-

| ters, in the ALGOL 60 sense. I have no good ideas on how this could be

| fitted into the current notation. A similar situation holds for functional
arguments to functions. Here, perhaps something on the order of McCarthy's

i use of A-expressions would be workable, possibly using part of the avail-
able notation for function definitions. Implementationally, functional

y
Ll

i

)
| arguments open a Pandora's box of problems associated with variable bind-

_ ings, so much thought will be required on this point.

| The equivalent of block structure can easily be introduced given
n the mechanism for local variables discussed above. It is only necessary

| to allow function definitions to be nested to achieve this effect. This

eliminates the need for an explicit block syntax.

D. Operators

i As the notation is replete with powerful primitive operators, it is
difficult to think of new ones which need to be added. The only situations

_ in which this is justifiable are for functions which either are not de-
| finable in the notation, such as catenation, or which are sufficiently

L primitive and useful, yet complicated to program as defined functions.
i I will list the few primitives I think should be considered and give a
| few general remarks about each.

_ lL. Ravel =-- This would be a generalization or row- or column-

i list expansion of an array [4], and would decompose a higher
dimensional array into a vector in an order specified by

i other parameters to the operator.
2. Laminate -- A generalization of catenation which juxtaposes

. two compatible arrays in a parametrically specified way.
For example, if A and B are matrices with the same number

L of rows, then the lamination operation should be able to
i adjoin A to B as illustrated schematically below:

cl-i |
Lo

[

L
5. Transpose -- It is desirable to be able to obtain only only

L the regular transpose of a matrix, but to be able to permute

| the elements of any array in a number of specified ways.
The Iverson group at TBM is working on a generalization of

| this operator.
L, Mask and mesh -- These two operators, part of the "classical"

| notation, while very elegant, are not generally useful enough

| to justify thelr being primitives in the language.A major
use of mask (as, for example in [2]) has been as a special

| case of conditional expressions. With the adoption of the
suggestions in Section B, the mask is no longer necessary

i in this context.

] 5. Set operators -- Using vectors to represent ordered sets,
Iversion introduced set operators in [4]. With lists in

I the language, it seems more natural to let lists represent
sets and to redefine these operators. On the other hand,

| if sets and set operations are sufficiently useful in a
programming language, it may be more reasonable to introduce

a new data type, the set. Such sets would be unordered and

| the operators defined on them could be introduced in such a
} way that they obey the laws of set theory for finite sets.

i E. Independent programs

| In machine descriptions (for example [2]) the use of independent
programs (system programs) is necessary. There are no syntactic problems

in allowing several independent programs, but many difficulties are im-

posed on an implementation. That 1s, as soon as system programs are

.

allowed in an interpreter for the language, all of the problems associated

L with simulation come to the fore, Ultimately, one would like to be able

| to execute several programs simultaneously, but the implementation of a
system to allow this will be a major project in itself.

| ~

4h

TT TTTTSr p———]

L
ACKNOWLEDGMENTS

L

| The interpreter described in this paper was written jointly with
Lawrence M. Breed of IBM Research. Without his effort and the countless

| conversations and arguments we had together, this work would not have
been possible. I am especially grateful to Kenneth E. Iverson, who

L developed the language in the first place, and Adin D. Falkoff, both of

| IBM, for numerous discussions on the language and its philosophy. I
also wish to thank John Lawrence of SRA for his encouragement and sup-

| port; Michael Montalbano of IBM and Stanford for his help and enthusiasm;
and my adviser, Professor Niklaus Wirth, for his many helpful criticisms

L and suggestions.

| Parts of this work have been supported by the Computer Science
Department of Stanford University, Science Research Associates, Inc.,

| International Business Machines Corporation, and the National Science
Foundation (Grant GP-4053).

| PSA

i

i

i

L

L

45

REFERENCES

1. Conway, Melvin E., "Design of a Separable Transition-Diagram Compiler,"

| Comm. A.C.M., 6, 7 (1963) 396-408.
2. Falkoff, A.D., K.E. Iverson, and E.H. Sussenguth, "A Formal Description

of SYSTEM/360," IBM Systems J., 3, 3 (1964) 198-262.

| 3. Hellerman, H., "Experimental Personalized Array Translator System,"
Comm. A.C.M., 7, 7 (1964) 433-438.

L Lk, Iverson, Kenneth E., A Programming Language, Wiley, New York (1962).
5. ===-=---, Elementary Functions, Science Research Associates, Chicago

| (1966) In Press.
6. =------, "Formalism in Programming Languages," Comm. A.C.M., 7, 2

i (1964) 80-88.
7. ===----, "Programming Notation in Systems Design," IBM Systems J.,

| 2, 2 (1963) 117-128.
8. McCarthy, John, "A Basis for a Mathematical, Theory of Computation,"

in Computer Programming and Formal Systems, North-Holland

| Publishing Company, Amsterdam (1963) 33-70.
9. =--=----et al., LISP 1.5 Programmer's Manual, M.I.T. Press, Cambridge

| (1962).
10. Naur, Peter (ed.), "Revised Report on the Algorithmic Language ALGOL 60,"

| Comm. A.C.M., 6, 1 (1963) 1-17.
11. Wirth, Niklaus and Helmut Weber, EULER: A Generalization of AILGOL,

and its Formal Definition, Computer Science Dept., Stanford Univ.,

| ; Technical Report CS20 (April 27, 1965).
12, ======, @N4 ——ee-- "EULER: A Generalization of AILGOL, and its Formal

| Definition" Comm. A.C.M., 9, 1&2 (1966) 13-23 and 89-99.
13. =-----, and C.A.R. Hoare, A Contribution to the Development of ALGOL,

Computer Science Dept., Stanford Univ., Technical Report CS35

| (February 12, 1966, revised).
14. Weizenbaum, J., "Symmetric List Processor," Comm. A.C.M.,6, 9 (1963)

| Sol -5hl
15. Collins, G.E., REFCO III,A Reference Count List Processing System

| for the IBM 709%, IBM Research Division, Research Reporti RC-1436 (May 11, 1965).

L6

-

i

i

i

i

i

i APPENDICES

i

L7

| APPENDIX A ~~ Transition Diagrams and their Internal Representation

L exp E

| S2
5

Sk

| Q
NC)

/

(2
«,

S10 stmt

| S13

:

| basic

| smurg
sexp

L

|
L

L8

—

Bl

]]
BI 1. slist (B2

BS

L
(

L - B5 B10

! const 59 vars exp dfnB8

| | (86
-

|
L

J

basic > M2

he ‘

Sop

C 6 smurg

g

3
-

{
-
—

sexp

{

//
2
H |

~ \

/ 2 (OUsmurg

basic

’)

basic exp

 —

_-
' __/

“—

(/)

sexp

50

-

The transition diagrams of the preceding pages are stored in the

| array DIAG. In SYNTAX, DIAG is indexed by D . Each node in a diagram
is represented internally bya sequence of triples of words, each of

- which corresponds to a path from that node. For a given node, if all

paths leading from it contain terminal or nonterminal symbols (that is,

no null paths from this node), a word containing the flag 'l' follows

{ the set of triples for that node.

| For each triple, the words have the following contents:
- word 1 Class of the element to be scanned for this path, as

follows:

| ~. 0 default path (always satisfied)
1 no more paths from this node

5,6,..., 30 terminal symbol
> 50 index in DIAG of the diagram for a nonterminal

symbol to be scanned

| word 2 Interpretation rule to be executed if this path is successful
| word 3 Link to next node in diagram. If this word is 0, then the

| diagram has been satisfied.
Example: Schematic of internal representation of the diagram for

| an slist.
sR

bist ___°

| ——
o

\V \ ——o | |

— _—
|

51

)
APPENDIX B -- Subprograms in the Interpreter

L
Program Function

[ADDSYM Used by TYPEIN to ereate a new S entry
ARTHTP Checks for type compatibility and finds common types for

[operator execution
CODE Emits one code syllable into high M

| DOOOP oop execution

| DOSOP sop execution
ERROR Error analysis and recovery

| EXC Execution of individual sops on 1 or 2 scalars
EXPAND) Unpacks 6-bit bytes into 8-bit bytes (written in MAP)

[FUZZY Contains floor, ceiling and approximate comparisons
(in MAP)

[GCOL Garbage collector
| GETSPA M storage allocation

| GETTEM Create temp S entry

| INCHAR Character-by-~character input routine
INDEX Subscript execution

| MASTER Main program -- alternates between TYPEIN and SYNTAX
MATRIX Generalized matrix product execution

{ OUT Output routine (used by [J and diagnostics)

t PUSH Stack entry on SV and check for overflow
PUTTEM Reclaim temp S entry and mark used M space as garbage

1 SELECT Compression and expansion execution
REDUCE Reduction execution

| STNEXT Symbol table search

g
52

TTT - Bl

|

1 Program Function
SYNTAX See Chapter III

L TYPE Contains fetch and ‘store routines and type conversion
(written in MAP)

| TYPEIN See Chapter III

| XRHO Computes X/pA for an M entry A
18

C

\

|
L

g

03

A

| APPENDIX C -- Examples of Programs Run Under the Interpreter

i

54

g

L * FACTORIAL FUNCTION, DEFINED RECURSIVELY- »

DEFINE Z = FACT N

(1) 2 = 1

! (2) GOTO (N EQ 01/0

Lo (3) Zz = Ne FACT NH
(4) DEFINE

[

spr = FACT 3

A 6
L .

T=0.0001

e y+ IS THE NTH ROOT OF P

[

| DEFINE A = N ROOT P| 1) A =P

(2) LOee I = N

(3) l = 1

. (4) L6.. GOT O(IEQO)/L2(5) _ z = Awl

(6) I =] - |

(7) GOTO L6

{ 8) L2.. GOTO IT GE ABS P=2)/0

. (9) A= A+ (P-2Z)DIVNe Z DV A(10) GOTO LO

(11) DEFINE’

*»

BOX = 2 ROOT §

L 2.236069 BOX = 3 ROOT 27

3.000000
[

1 *PERPETUAL CALENDAR4

DEF INE DAY = CALENDAR D

I 1) NAMES={T744) RHO ‘SUN MON TUESWEDSTHURFR][SAT"?

{ (2) SUBSCRIPT= 1 + 7MOD(093939651:94969295909345) ${DS(1$)S) HYPHEN

L (2) +D$(2%) + (6-2 « 4 MOD FLOOR D$(3$) DIV 100) HYPHEN{ 21 + (FLOOR 1.25% 100 MODDS{3$))~ (D$S(1$) LE 2) HYPHEN
(2) AND 0 EQ4 MOD D$(3$)

(3) DAY = NAMES${SUBSCRIPT ., §$)

. ; (4) DEFINE%*

BOX = CALENDAR 1242441943
FRI

BOX= ‘TODAY IS ' , CALENDAR 5,30,1966

| TOOAY IS MON #

#CALCULATE PASCAL TRIANGLE

: 3

¢ DEFINE PASCAL

| (1 Pp = 1(2) BOX= P

(3) P = (0,P) + P,O

(4) GOTO(N GEPS$(28))/2

i (5) DEFINEJ

GENEX - 0
™

8

55

g

|N—

L *A FUNCTION OF NO PARAMETERS (THE GENSYM OF LISP 1.5)

DEFINE X = GENSYM

{ 1) GENEX= GENEX+1

i (2) Xx = 'GEN' *0123456789*$(1 + (3 R H OlO)R E P GENEXS$)
~ (3) DEFINE

| DEFINE PASCAL1 M: (1) N =M

. (2) PASCAL
(3) DEFINE

*POSITIVE OR NEGATIVE PASCAL TRIANGLE

J

DEFINE FB PASCAL2 n

(1) Pp =1

(2) BOX = P

9 (3) P =(P,0) + FB&sQ,P
(4) GOTOING EABSPS$(28))/2

| 5) DEFINE

i .BOX = GENSYM ye GENSYM
GENOO2GENOO1

A = GENSYM

80X = GENSYM

_ CENO004
PASCAL1 3

1

|

1 2 1

1 3 3 1

{(-1)Y PASCAL?2 3

1

| -1

L 1 ~2 1

1 -3 3 -1
%*

FINISH

TOTAL TIME USED 12.472 SECONDS 313 STATEMENTS EXECUTED

0 ERRORS 0 GARBAGE COLLECTIONS 589 CALLS ON GETSPA

[—

{
he

56

[4

a

-

y

—

*EXPRESSION PROCESSOR =-—

® |[NFIX TO REVERSE POLISH

REVERSE POLISH TO COMPLETELY PARENTHESIZED

i DEFINE x = REST Y

~~ (1) X =(NOT(RHCY)AL PHALMY
(2) DEFINE

e¢ ARITHMETIC EXPRESSION TO POLISH

fi DEFINES = POLISH |
Lo (1) PRI= 0¢091s1l51,42,2

{ 2) DPS= t§(4+=)n/?

(3) S=1 RHO '$°*

; { 4) Lti.. GOTO(O EQ RHOI)NLG
(5) T= 1s(1%)

u (6) I =REST |
{ 7) GOTO(AND/T NEOPS)/LS

(8) TP= (T EQ OPS)/PRI
; (9) L2.. GOTOUWITE Q'(*')OR TPGY (SS(1$S)E QOPS)/PRIN/ILA,LA4)S{L1+TEQ')'S)

| (10) S = ROTLS
- (11) GOTO L2

{ 13) GOTO L1

: (14) L4ee s = REST S
i (15) GOTO L1

8 (16) LS.. S=8,T
(17) GOTO L1

(18) L6. S = RESTH((*'S$S*'E QS)/IOTA RHOS}-1)ROTCS

: (19) DEFINE
| # POLISH TO FULLY PARENTHESIZED

DEFINE 0 =PARENS1

— { 1) S = 0 RHO ‘A’
{ 2) O1.. T=1Is(1$)

, { 3) [= REST I

| (4) GOTO (AND/T NE *+-#/%)/02
L { 5) T= {ee NEX , T , NEX 2%)?

(6) 02.. S = T,%$',S
(7) GOTO{ONE RHOI}/01

(8) 0 =(SN E*$*)/S

| (9) DEFINE

| # NECESSARY TO STACK AND UNSTACK STRINGS
OEFINE X = NEX

(1) R= ({SEQ'$*)/ I0OTA RHO SIS$(1S%)
{ 21 X =({RHOS)ALPHAR=1)/S

B (3) S = (NOT (RHO S)ALPHAR)/SL (4) DEFINE
e¢ DRIVER PROGRAM

DEFINE PROGI

(1) BOX= ‘INPUT EXPRESSION...” , |
(2) | = POLISH |

- { BOX = ‘REVERSE POLISH...' 4 IT
(34) 80X = ‘FULLY PARENTHESIZED...” , PARENS|
(5) DEFINE

' ®

| # TEST CASES
f °

~ PROG 'A+B#3/4-2¢
INPUT EXPRESSION... A+B#3/4-2

; REVERSE POLISHeooAB3®4/+2~
] FULLY PARENTHESIZED .c.{(A+((B®3)/4))-2)

L

|
—

“

oT

he

g
PROG '({A+B)#3/(4-2)"

| INPUT EXPRESSICNeoe(A+B) %3/(4-2) y
— REVERSE POLISHeee AB+3242~/

FULLY PARENTHESIZEDseo ({((A+R)23)/(4~-2))

PROG'1/{((((A))))-3=(T))"?

| INPUT EXPRESSICNeeael/(((L(A))))-32(T))
L REVERSE POLISHeeelA3Ta-/

FULLY PARENTHESIZEDceo{1/(A-(327)))

| FINISH

il TOTAL TIME USED 21.804 SECGNDS 639 STATEMENTS EXECUTED
0 ERRORS 2 GARBAGE COLLECTIONS 1814 CALLS ON GETSPA

-

H

_

L

| .
LL

L

|
-

|
|
kL

[-

58

i e A SIMPLE COMPUTER -- BASED ON NOTES BY IVERSON AND FALKOFF
*

* REGISTERS RHO FUNCTION

. y 16 ACCUMULATOR

. | 16 INSTRUCTION REGISTER

. P 16 PSH

. M 1024,16 MEMORY

ft o INSTRUCTION FORMAT. . . XXXXAAAAAAAAAAAA

. WHERE XXXX = OP CODE

. A.A = ADDRESS

oe MNEMONIC CODE FUNCTION
. LD 0010 LOAD

L . ST 0001 STORE
. AD 0110 ADD

* su 0101 SUBTRACT

. BU 1001 BRANCH UNCONDITIONAL

| . BC 1000 BRANCH CONDITIONAL (IF OVERFLOWJ_. WR 1101 WRITE

. HLT 1111 HALT
»

DEF INE macHINE

(1) FETCH.. I = M$({ (BASE(16 OMEGA 12)/P) +) $)
(2) EA = BASE (16 OMEGA 12)/1

(3) P$(4+I0TA 128)= (12 RHO 2) REP 1 « BASE (16 OMEGA 12)/p
(4) « TRACE WHAT 1S GOING ON INSIDE THE MACHINE

(4) BOX = ‘P= 9,'0L'${1+4P$),* As *,901%$(1+AS)," | = *,001°${le¢l$)

8g (5) GOTO (LS,ASyBR,IO)S(1¢BASE [$(1,28)8$)(6) *LOAD AND STORE

(6) LS.. GOTO I${3$)/LL

«(7 MS(EA.o, 8) = A
{ BJ GOTO FETCH

i (9) LL.. A =M${ EA «,$)(10) GOTO FETCH

(11) = ADD AND SUBTRACT

t 11) AS..K1 = BASEA

I (12) K2 = BASE M$(EA «4 $)(13) GOTO I$(6$)/SS
(14) K= Kl¢K2

(15) GOTO SA

{ 16) ss.. K= K1-K2

. (17 SA.. A=TWOS REP K

L | 18) P$(18) = ((17 RHO 2) REP KJ ${1$)(19) GOTO FETCH

(20) *BRANCH

(20) BR.. GOTO (NOT P$(1+ BASE Is$(3,48)8) JFETCH
(21) P$(4 + IOTA 128) = (16 OMEGA 12)/1

t 22) 6aT0 FETCH

- (23) 10.. GOTO 18(38)/0
| 24) BOX= “---OUTPUT--- 0 , *0198(1 + MS$(EA <o$)8$)
(25) GOTO FETCH
(26) DEFINE

-

~ #HANDY CONSTANTS FOR M SETUP
B= 12 RHO 2

TWOS = 16 RHO 2
X0 = 12 RHO 0

L X100 = BREP 100

|
[—

!

:

L

59

X10l= B REP 101 y[x102 =B REP 102
x103= B REP 103
X104 = B REP 104

LD = 0,0,140

ST= 0'0'0'1

su = 0gle0el

WR = lgle0yl

I HLT= 1'1'1'1

| BU= 1'0'0'1BC= 1'0'0'0

M = (1024,16) RHO 0
A= 16 RHO 0

I = A

| P= ROTL 16 ALPHA 5e ‘LOAD’ PROGRAM INTO M

oe THIS PROGRAM HULTIPLIES M${101.,$)BY M$(100.+8%}) AND PRINTS THE RESULT
M$({ 1 oo “$)=LD,X103

MS 2 <0 $$) = ST,X102

[M$({ 3 .o 8) = LDyX100~M${ 4 +9 8) = SUsX104

MS({ 5 «9» $)=8BCy8 REP 1 1

M$(6 «0 $$) = ST,X100

M$(7 .9 8) = LDyX102

[M${ B «.» $) = AD,yX101M${ 9 «+ $$) = ST,X102

M${10 .»8$)=.8U,8 REP 3

M$(12 .» SJ = HLT’ XO

[M${104.5s8)= 16 OMEGA 1°

e MULTIPLY 1000 TIMES4
»

M$(100 .+$) = x(0,0,1,0,0

[M$(101 ., $$) = 116 RHO 2) REP 1000.

MACHINE

P= 1111000000000010 A= (00000000000000O0O I = 0010000001100111

P= 1111000000000011 A= (0000000000O0O0OOOOO I = 0001000001100110

P= 1111000000000100 A = 0000000000000000 I = 0010000001100100

P= 1111000000000101 A= 0000000000000100O0 I = 0101000001101000

P = 0111000000000110 A= 00000000000000112 I = 1000000000001011

P = 0111000000000111 A= 0000000000000011 I = 0001000001100100

| P = 0111000000001000 A = 00000000O0O0OOOOO11 I = 0010000001100110

t P= 0111000000001001 A= (000000000000O0OOOO I = 0110000001100101P = 0111000000001010 A= (0000001111101000 I = 0001000001100110

P = 0111000000001011 A= 0000001111101000 I = 1001000000000011

P = 0111000000000100 A = 0000001111101000 I = 0010000001100100~

P= 0111000000000101 A= 000000000000O0O011 I = 0101000001101000

{ P= 0111000000000110 A= (0000000000000010 I = 1000000000001011
P= 0111000000000111 A= 0000000000OO0OOO1O0 | = 0001000001100100

P= 0111000000001000 A= 00000000000O0OO1O0 I = 0010000001100110

P= 0111000000001001 A= (0000001111101000 I = 0110000001100101

P = 0111000000001010 A= (0000011111010000 I = 0001000001100110

P= (0111000000001011 A= (0000011111010000 I = 1001000000000011

P = 0111000000000100 A= (0000011111010000 I = 0010000001100100

P = 0111000000000101 A= (0000000000O0O0OOO1O0 I = 0101000001101000

P = 0111000000000110 A= 000000000000O0O0OO0O1 I = 1000000000001011

i P= 0111000000000111 A = 000000000000000~ I = 0001000001100100

L

60

|

L P= 0111000000001000 A = 0000000000000001 I = 0010000001100110
P= (0111000000001001 A = 0000011111010000 I = (0110000001100101

P= (0111000000001010 A = (0000101110111000 1 = 0001000001100110

| P= (0111000000001011 A= 0000101110111000 I « 1001000000000011
- p= (0111000000000100 A= (0000101110111000 0010000001100100

p= (0111000000000101 A= (0000000000000001 I = 0101000001101000

p= (0111000000000110 A= (0000000000000000 I + 1000000000001011

p= (0111000000000111 A= 0000000000000000 0001000001100100

: p= (0111000000001000 A= 0000000000000000 I = 0010000001100110
p= (0111000000001001 As (0000101110111000 I = 0110000001100101

Pp = (0111000000001010 A= (0000111110100000 I = 0001000001100110

| P= 0111000000001011 A= (0000111110100000 I » 1001000000000011P= (0111000000000100 A= (0000111110100000 0010000001100100

- P= 0111000000000101 A = (0000000000000000 I = 0101000001101000

p= 1111000000000110 A= 1111111111111111 I = 1000000000001011

P= 1111000000001100 A= 1111111111111111 [= 1101000001100110

8 ---OUTPUT--- 0000111110100000P= 1111000000001101 A= 1111111111111111 I = 1111000000000000

FINISH

TOTAL TIME USED 34.622 SECONDS 378 STATEMENTS EXECUTED

- 0 ERRORS 4 GARBAGE COLLECTIONS 1730 CALLS ON GETSPA

LC

-

|
|—_-—

61

