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I. INTRODUCTION

Kenneth E. Iverson's book, A Programming Language [4], presented a

highly elegant language for the de;cription and analysis of algorithms.
Although not widely acclaimed at first, "Iverson notation" (referred to
as "the language" in this report) is coming to be recognized as an impor-
tant tool by computer scientists and programmers.

The current report contains an up-to-date definition of a subset of
the language, based on recent work by Iverson and his colleagues. Chapter
IIT describes an interpreter for the language, written jointly by the
author and Lawrence M. Breed of IBM. The remainder of the paper consists
of critiques of the implementation and the language, with suggestions for

improvement.
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IT. THE LANGUAGE

Although the Iverson language has previously been described in the
literature [2,4,5,6,7 ], the subset implemented includes a number of hither-
to unpublished changes and additions. This chapter will be devoted to a

brief description of the current state of the language.

A. Data
Data are either scalars or arrays of scalars. A scalar is a numerical
quanitity or a quoted alphanumeric character. Numbers are represented

either as integers, terminated decimal fractions, or either of these two

A).

followed by a decimal scale factor, (e.g. 6.023~24, meaning 6.023 X 10°
A negative sign can be associated with a number or its scale factor, and
is written above the line, as -3§ or 1.6E 19 . This is done to distin-
guish between the sign of a number and the operator '-' . A logical valued
numerical datum has as its value either O or 1 .

Arrays can be of any rank. It is important to note the difference
between multidimensional arrays and lists of lists. EULER [11,12], for
example, represents a matrix as a list (ordered set) of lists, each of
the latter representing a row. The disadvantage of this approach is
that it singles out a particular coordinate, in this case rows, of the
array, thereby making it difficult to deal with an arbitrary cross-section
of an array. In this language, arrays have a symmetric structure, in the
sense that no dimensions are distinguished. (This point is discussed fur-
ther in Chapter V, A.)

The rank vector pA of a datum A is a vector each of whose compon-

ents is the dimension (number of elements) of the corresponding coordinate of A.



Hence, if A is a 5 by 7 matrix, we have oA =57 ¢ @ (Notationally,

the elements of a vector are separated by commas.) If A is a scalar,

then pA 1is an empty vector, that is, a vector of no elements. Also,
ppA gives the rank or dimensionality of A . Hence, for a matrix, the

rank is 2, while for a scalar, the rank would be O .

B. Identifiers
An identifier is defined in the usual way and can be used to name
data or functions. In the former case, the identifier is called & varia-

ble. A value can be assigned to a variable by the statement
variable « expression

The value of a variable. is the most recent value assigned to that variable.
The use of identifiers as function names is defined in section J of this

chapter.

C. Indexing

It is often necessary to refer to a subpart of an array. This is
done by the indexing operation. Indexing is indicated by a pair of square
brackets containing a subscript list, immediately to the right of the gquan-

tity to be indexed, with the syntax shown below.

indable ::= varb

indable ::= const

indable ::= (expr)

slistl ::= sexp]

slistl ::= ]

slist ::= slistl

slist ::= ; slist

slist ::= sexp ; slist

indexedexp ::= indable[slist
*The sign '=' will be used to denote mathematical eguality, to avoid

confusion with the operator '=' of the language.
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The number of semicolons in the slist of an indable A must be (DDA) - 1.

This subset of the language uses l-origin indexing. Thus, for a datum A
with rank vector pA (and (ppA) > 1) the subscripts for the jth coor-

dinate must fall in the range
1< ij < (pA)[J] for all 1 < j < ppA

A subscript may be a vector, in which case a subarray is selected by
the indexing operation. For vectors, define A[il,ig,..., ik] to mean
A[il]’A[ie]’°° . A[ik]. An analogous definition applies to vector sub-
scripts on higherrark arrays. An empty subscript position is an elision
meaning thatkthe whole coordinate is to be selected. That is, if the ith
subscript of A is elided, it is taken to be (pA)[i] . Thus, for exam-
ple, for a matrix M, M[I;] represents the Ith row of M . Indexing

returns a result with the smallest possible rank. Thus, in the example

just given, M[I;] 1is a vector.

D. Operators defined on scalars
1. The following simple binary operators (sops) are defined for sca-

lar-valued numerical arguments. In all cases, the result is alsoc scalar.

Operator Function Definition Example
+ Addition As usual 3+5 = 8
- Subtraction oo 3-5= 2
X Multiplication ! ! X5 = 15
+ Division " ! 3:5 = .6
L Minimum AlB is A or B, which- 3 [5= 5
ever is smallest numeri-
cally
L



(continued)
Operator Function Definition Example
[ Maximum AlB is A or B, 3[5 =75
whichever is largest
numerically
| Modulus R e—AiB is the least 2|5 =1
positive number such that
for some integer Q,
B=R+AXAQ
AIB is undefined when
A = o, and when both A =0
and B< O
* Exponentiation As usual A¥B = AP %3 = 8
A
A Logical AND " " Arguments N0 =0
must be logical
\% Logical OR " " | valued Vo =1
. = J1 iff ARB holds 57 =1
2 Relationals ARB = { 0 otherise ST LR
F (= and £ are defined in
> the same way for character
S scalars. )

2.

vectors, then the operations defined above are applied to A and B

element-by-element to produce a result with the same rank vector.

example,

12 3
L 5 6
7 89

+

5 2 1 6 4 &4
7T 93 = (1 % 9
9 2 4 2 10 5

For

If A and B are not scalars but are arrays with identical rank

If one argument of a sop is a scalar and the other is an array, the scalar

is extended to match the other operand in rank.

For example, this rule



gives 3 + (4,5,6,7,79) = 7,8,9,10, 6 . If any of the cases discussed
so far holds, the two arguments are said to be compatible. A binary opera-

tion in which the operator is a sop is undefined if its arguments are not

compatible.

3. The following unary operators (also sops) are defined on numerical

scalars:
Operator Function Definition Example
- Complement { ﬁAnzéfdfe logical wvalued ~ = 0
+ Unary + +A = 0+A = A
Unary - -A = 0-A -5 =5
| Absolute value |A = Al -A |"5 = 5
L Floor "greatest-integer-less-
than" |B = B-1|B 3.5=3
r Ceiling "least-integer-greater-
than" [B = - [-B 3.5 =14
* Exponential ¥\ = e¥A, e = 2.71828.. .

If © is one of the unary operators above and A is non-scalar,

then the value of ©A is the result of applying © to all elements of A .

4. There is no operator hierarchy for any of the sops or oops (Sec-
tion F). Expressions are evaluated from right to left, with each operator,
acting binarily if possible, using the first available operands. Paren-
theses may be used in the normal way to alter the order of evaluation of

an expression.



E. Reduction
If A is a vector (ppA = 1) then for any binary sop @, @/A

(read: © reducing A) is defined as follows:

If 7 « O/A then

z = A[1] 0a[2]O . . . OA[pA]

where precedence is from the right to the left, as usual. If A is empty,

then Z is the identity element of © . For example,

11}
'—J

X/10

If (ppA) > 1, then CyA means reduction along the last coordinate
of A . 1In general, reduction can be carried out over any coordinate of
an array by subscripting the slash. We can define this general construction

as follows:

If 7 <—®/jM then

ez = (eM)[1], ..., (eM)[5 - 11, (pM)[§ + 11,..., (oM)[ppM]

Z[1l; i3 13_1; 1j+l;°"; lple =

/MM 5 - T . A
/M[ll, oo 14933 lj+l’ e} lple

for all combinations of the subscripts over the ranges

1< i < (oM)[K], for all K = 1,2,..., j -1, j + 1,..., ppM

From the above, if M is multidimensional, then

u =9 M



F. Operators defined on non-scalars
There are a number of operators which are defined on non-scalars or
whose results have a different rank vector from their argument(s). This
class of operators, the oops (Othef operators) is summarized below and
defined in detail in section F.2. 1In the tables below, the following
abbreviations are used:
o Any one-element quantity (A is a one element quantity iff
X/ph =1 .)
v Vector

s ©Scalar

a Arbitrary rank

1. (a) Unary oops @A

Operator Rank of arg Rank of result Function

v o v Interval vector
P a v Rank vector

1 v v 1tA

4 v v 1A

4 v S 24.A

(b) Binary oops AQG®B

Operator Rank of A Rank of B Rank of result Function

a o o] v Prefix vector
w o) o) v Suffix vector
2 v v v Index vector

€ v v v Characteristic

vector



Operator Rank of A Rank of B Rank of result Function

ol v a a Replication

* o v v Left rotation
v o v v Right rotation
> v v v Catenation

1 v v ] Base value
T v o v Representation

2. Definitions of oops
(a) Unary oops

~ (i) Interval vector

undefined for nonintegral N and N< O
LN = ] empty vector if N = O

¢N - 1),N if N > O

(ii) Rank vector
The operator p applied unarily to
a datum A produces the rank vector of A ,

Its meaning is defined in section A.

(b) Binary oops

(i) Prefix vector

J > N

NoJ
(ii) Suffix vector

NoJ = (N - J+ 1) <N



(iii) Index vector

If R «XuY, then pR = pY

For J = 1,..., pR, R{J] is the least K such that

X[K] Y[J] . If no such K exists, then

R[J] 1+ pX .

(iv) Characteristic vector

If R «MeC, then pR Z pM and
R = (pC) < CM
- That is, R[I] = 1 iff at least one component

of C is equal to M[I] .

(v) Replication

If A « RpU, then pA = R
Let A’ and U’ be vectors formed from A and
U respectively, by taking the components of

each in row-major order. Then

A'[J] = U'[1 + (pU")|J - 1), for J = 1,2,..., X/R

That is, A is built up in row-major order from
the elements 3f U taken in row-major order,
cycling on U as often as necessary. In particu-

lar, OpA, for any A, is an empty vector.

(vi) Rotation
Right rotation of U by J: R « JIU

R = U[1 + (oU)|(zpU) - T + 1]

10
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Left rotation of U by J: R «J'U

R = U[1 + (pU)]| 2poU) + J - 1]

(vii) Catenation
If R «A,B then R is a vector formed by
appending the components of B to the right
of A . That is,

R = A[1], ..., AleAl, B[1],. .., B[eB]

(viii) Base value

If R «RLV, with B and V compatible,

let B’ = B if B is a vector
(pV)pB if B is a one-component
gquantity
and let W be defined as follows:
Wipv] = 1

W[I] = W[I + 1] x B[T + 1],
((pV) - 1)y..05 1

for I
Then, R = +/W X V

(ix) Representation
R «VTN then pR = pV
R is a vector such that:

VLR

(X/V)|N and A/Y< R = 1

G. Generalized matrix product

17 ®2 any two

The generalized matrix product, M®l ’ @21\1, for ©
binary sops, 1s a double operator between the operands M and N
M and N are compatible for matrix product if the dimensions of the

last coordinate of M and the first of Nagree. That is, if
(oM) [ ppM] (pN)[1]

11



If one of the operands is a scalar, it will be extended in the normal
way to a vector matching the other operand.
In general, the result Z of the matrix product M Ol . QaN is

defined as:

ZLi,y i 3 ee. i 5 a3 Jos e J
[ll’ 15 5 l(ppM)-l’ dos 35$ 5 JppN]
O /MIEy 5 ip5 . s ey 130 @ N5 g5 ceee 3]

for all values of the subscripts in the ranges:

'—1
A
l_l

AN

< (pM)[k] s k =1,..., (ppM) - 1
1< 3, < (eN)[4] s L =2,..., (ppN)

For example, suppose M and N are matrices. Then the familiar matrix
product of linear algebra is given by: Z « M+ . X N; for suppose that

PM = myn and pN = n,p . Then from the above definition, we have

Z[I;3] = +MII;1xN[;J] for a1l 1< I < m
and 1<J<0p
Other uses of the generalized matrix product are discussed in [4].

For two vectors X and Y, +the outer product R « X °. OY, where °

* is the null operator, is defined as:

pR = (pX), oY

. = 1 = I S oX
R[1;3] = X[1]0 Y[J] 1<J< oY
As an example,( M) °. = ¢M is the identity matrix of order M .

12
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H. Compression, expansion

The compression of a vector A by a compatible logical vector U
is denoted by X « U/A and defined as follows:

pX = +/U. Then X is derived from A by suppressing those elements
A[I] for which U[I] = O . This operation can be defined by the program
below.*

The expansion of a vector A by a logical vector U with pA = +/U,

is denoted by X e—U\A and has the following properties:

oX = pU and X is a wvector such that

~ U/X = A and (~U)/X = (+/~U)p0

These operations are generalized to arbitrary arrays in the same way as

reduction.

VX « U/A

I. Statements
The syntax for a statement (stmt) is

st ::= leftpart « expression

* This program is written in the style described in section J.

13




st ::= — expression

st ::= expression
leftpart ::= vardb
leftpart ::= varb[slist]
leftpart ::= O

stmt t:= sty

stmt ::= label : stmt
label ::= varb

Varb and varb[list] are to be interpreted as (possibly subscripted) vari-
ables. The symbol ' O ' (box) suggests a blank page and denotes the
output string. Assignment to [J causes the expression assigned to be
evaluated and printed.

The symbol '—' (right arrow) designates a branch and is used to alter
the flow of ceontrol in the execution of a function. Let & be the value
of the expression to the right of the right arrow. If £ is an integral
single-component quantity and is within the range of the line numbers in
the currently executed function, then control passes to the statement on
line numbered 8 s if € is an integral single-component quantity out of
this range, the function is exited and control is passed to the point at
which the function was entered. If 8 is an empty quantity, control is
passed to the next statement if such exists; otherwise the function is
exited as above. If none of these cases applies, the statement is unde-
fined and (in an implementation) an error is indicated.

Each statement must begin on a new line, and the symbol :,' in the
syntax is an end-of-line marker indicating this. A statement consisting
solely of an expression has as its effect the calculation of that expres-

sion. In general this effect is used to call a function.

J. Functions and programs
A function is defined by a program consisting of a head followed by

a body of statements. The entire function definition is enclosed in

1k



function quotes ' V' . The head establishes the function's' name, the
number of parameters, and whether or not it returns a value. A function

definition has the following syntax:

functiondef ::= ¥V head > body V
head ::= headl

head ::= varb « headl

headl ::= varb dfn varb

headl ::= dfn varb

headl ::= dfn

dfn ::= varb

body ::= stmt

body ::= stmt body

The varbs in the function head identify the parameters. If there
is a left arggw preceded by a varb in the head, the function is expected
to return a result. This is done by an assignment to this result variable
within the body of the function. A function is invoked by mentioning its
name in an expression, together with the appropriate number of parameters.
A function has the same syntax within an expression as a binary or unary
sop or a varb, depending on the number of parameters it takes. Actual
parameters are transmitted to the function program by value.

Labels on statements in functions are varbs which are initialized
to the line number on which they appear. These variables are non-local

to the function and may be used in arithmetic expressions at will. Chang-

ing their values by assignment may affect their use as labels.

Example: The function below computes the GCD of two numbers.

VX « A GCD B
Ll: X «A
A<——A|B

B «X

- (A £0)/11
v

15



The function might be used later as follows:
R «4 + 6 GgcD 15,

in which case the value of R will be 7 at the completion of execution

of this statement.

It should be noted that arguments to a function are passed exactly
as they appear in the calling statement; that is, there is no extension
as in the case of sops. Also, it is meaningless to use a binary function

in a reduction or matrix product.

16



ITI. IMPLEMENTATION

The language defined in the previous chapter was implemented by an
interpreter for the IBM’709Q/709M by the author and L. M. Breed of IBM.
Except for a small number of machine dependent functions such as bit-
pushing and type conversion, the entire system was written in FORTRAN IV
to run under the IBSYS operating system. FORTRAN was chosen because it
was the only high-level language available to both progrsmmers.

This section describes the organization of the interpreter and dis-

cusses interesting techniques used in programming. For purposes of ex-

position, the organization of data and the logic of the program are

described separately.

A. Data organization

All references to variables, constants, operators, defined functions,
and temporary storage are made through a symbol table. In the interpreter,
the symbol table is an array named §S; its structure is shown schematically
in figure 1.

All S~entries are either two or three machine words, depending on
the class (syntactic category) of the entity represented. The first word
is the class number (CLASS); the second is its base address (SPTR) in the
M array; and the third, if present, is a pointer to a BCD print name in
the high order part of S . The only entries which have print names are
variables, function names, and language primitives.

In the program, the pointer to the symbol table entry under considera-
tion at any time is generally in SYPTR, and CLASS and SPTR have values
corresponding to S(SYPTR) and S(SYPTR+1l), respectively. (In describing

the program, FORTRAN notation will be used where appropriate.)
17
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PNPTR Print names

Constants,

Variables,
Dfns,
Temps

TCSYM

Entries for

Operators (Constant
and symbol
Language table)

Primitives

Figure 1: Symbol table (S) organization

The values of SPTR for operators and primitives are "magic numbers"
which are used by the interpretation rules. For variasbles, constants,
and temps, SPTR points into M to the value of the entity, and for func-
tion names (dfns) SPTR is the base address in M of the branch vector

of the function.

TCSYM points to the top of the fixed symbol table; TOPSYM is the
index of the next unused S location; PNPTR is the bottom of the print-
name section. When TOPSYM > PNPTR, table overflow has occurred and an
error is signalled. ©Note that storing the BCD print names from the top
of S instead of in the lower part of S with the rest of the entry

facilitates table searcﬁing, as there are no variable-sized entries in S .

18




5000
Code syllables for
CBOT dfns
> CPTR
Code syllables for . <4 — == —
MLIM current statement
‘P'//,
, SP
MX - V4 < — ]T_Sngth
o Data (in row- .
] major order)
£a]
4]
s (pA)[ppA]
A
- Darts (pa)([1]
Entries
PPA
™| SYPTIR length
( P SPTR
Type N
100 ﬂ;/
arbage marker
Location counter vector,
other system data
1
Figure 2: "Memory" (M) organization and typical data entry

The organization of M is shown in figure 2. ©Statements are trans-
lated into a code string of pointers to S and are stored down from the
top of M . CBOT is the index of the bottom of the code for dfns, which
is not changed, while MLIM is the bottom of the code for the current outer-
level statement. MX points to the next piece of M available for data
storage. All data space in M is allocated by the subroutine GETSPA.

When N words are requested of GETSPA and MX + N > MLIM, a garbage

collection is made to reclaim abandoned space in M .

19



When an M entry with base address SPTR is no longer needed, it is
marked as garbage by a bit in M(SPTR+1) . Gerbage collection moves active
entries down into abandoned space. The SYPTR and length entries are used
by the garbage collector (GCOL) £6 update S for moved entries. One
implicetion of this organization 1s that each M entry can be pointed to
by only one S entry. This simplifies garbage collection but causes
inefficiencies in M wusage, as discussed in the next chapter.

Data in the system are classified into four type groups, which deter-
mine their internal representation. These types are:

1. Logical variables are represented as bit strings, packed
32 bits per machine word.
2. Integer values are represented as 36-bit sign-magnitude
integers, 1 per word.
3. Floating values are represented in 7090 floating point
format, 1 per word.
L, Character values are represented as 8-bit bytes, packed
4 characters per word.
For numeric velues, quantities are represented as the lowest possible type
in an attempt to conserve storage.

Each data entry in M contains the rank and rank vector of the data

being stored. For multidimensional arrays M, the X%/pM entries are
stored in row-major order following the rank vector. That is, the mapping
function used is exactly the base value function with the rank vector as
radix. For example, if B 1is a floating array, the element

i ] has M index

B[ll; 12; "'; QDB

) - 1.

SPTR + 3 + {ppB) + (oB)L(iy, iy, --o) 108

20
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B. The program

The purpose of the interpreter is to execute statements; that is, a
statement is read, executed, and the cycle is repeated. In order to provide
for programs with branching, such programs are defined as functions and
are executed by calling the function.

Because of the limited character set of the 7090-1401 system in general
use, it was necessary to transliterate the names of most of the symbols
of the language. These are all reserved words in the system, and are part

of the constant symbol table (see Figure 1). A table of correspondences

between language symbols and their transliterations is given on the next page.

One of the two major subprograms in the system is TYPEIN, which scans
each statement from left to right as it is read in and does the following
tasks:

1. Recognizes reserved words and system symbols.

2. Creates symbol table entries for new identifiers.

3. Converts constants into M entries with metching S entry.
In this process, constant vectors are treated as a single
quantity, saving space in M and eliminating unnecessary

catenation operations. For example, the statement
x= y MIN 3,4,7,9,46,Z - R DIV 3

will be scanned and the underlined part will be entered
into M as a 5-element vector rather than as five scalars
and four operators.

L. Each statement is converted into a code string of pointers

to appropriate entries in S, and these code syllables are

2l
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Symbol Transliteration Class Meaning
+ + 16 Operators, see chapter II
16
X * 16
+ DIV 16
* EXP 16~
L MIN or FLOOR 16
I MAX or CEIL 16
| ABS or MOD 16
A AND 16
Vv OR 16
< LT 16
< LE 16
= EQ 16
> GE 16
> GT 16
£ NE 16
~ NOT 16
a ALPHA 17
w ~ OMEGA 17
€ EPS 17
L IOTA 17
P RHO 17
t ROTL 17
4 ROTR 17
1 BASE 17
T REP 17
-— _— 4 Temporary result (temp)
- - 5 Variable (varb)
- - 6 Constant (const)
[ $( 7
( ( 8
1 $) 9
) ) 10
5 oy 11
: . 12
. 13
- = 14
- GOTO 15
/ / 18
$/ 19
a BOX 20
o NULL 21 Used in outer product
— -— 22 Function name (dfn)
— _— 23 Actual parameter (dummy)
-— -— 2l Reserved word (used internally)
A LOCN 25 Location counter
\Y DEFINE - Function quote
-—- HYPHEN -— Continuation to next card
—— DEBUG - Set diagnostic level
- FINISH - End of run
Table 1: Language symbols and transliterations

22



stored in M from CBOT down. The left-most syllable of

a statement is in the high part of M and the right-most
has the lowest index in M. TYPEIN inserts a colon (:) as
the left-most symbol in every code string, to be used by
SYNTAX as a statement terminator.

When a function quote is encountered, TYPEIN sets an internal

switch to change its mode from immediate execution to function

definition mode. In this mode, the header of the function

is scanned and the names of the formal parameters and the
function are determined. As each statement is scanned, it

is processed as described in steps 1 - 4 above. 1In addition,
lines are numbered sequentially from 1, and when labels

are encountered, they are given as value the current line
number. The function name has as its value an integer vector
of which the 1 + lEE element is a pointer to the right-
most code syllable of statement (line number) i . The first
element of this vector points to information obtained from
the header, which is used for syntax checking.

When an identifier corresponding to a formal parameter
is scanned, a negative code syllable is emitted. These are
interpreted as relative stack references by the syntax
analysis, and are the mechanism for parameter linkage in
function execution. Finally, when a closing function quote
is found, TYPEIN returns to immediate execution mode, resets

CBOT, and looks for the next statement.

6. When the end of an immediate statement is reached, TYPEIN

terminates and control is passed to SYNTAX for statement

execution.

23



The second major subprogram in the system is SYNTAX, which performs
syntactic analysis of statements and controls execution through a series
of interpretation rules.

Syntactic analysis is based on the separable transition diagram scheme
of Conway [1]. 1In this scheme, the syntax of a nonterminal symbol of the
grammar is represented by a transition diagram, the edges of which cor-
respond to another grammatical symbol. To each edge there corresponds
an interpretation rule (c.f. [11], [12]), which providesthe semantics of
the language. Each node in a diagram represents a set of alternatives.
These are examined in a fixed order, thus providing a degree of context
sensitivity. A circled edge from a node corresponds to 'none of these"
and is a default branch which is always satisfied if none of the others
are. Self-recursion is replaced by looping within a given diagram.
Figure 3 is an example of the diagram for stmt and the complete set of
diagrams necessary to scan a statement is given in Appendix A.

The only syntax built into the transition diagrams is for a state-
ment. Flow of control between statements is handled by the end-of-
statement interpretation rule (S13 in figure 3). Also, note that in
syntactic analysis, a statement is, in effect, scanned from right to left.
Under the assumption that expressions will be written to take advantage
of the right-to-left precedence rule of language operators, this scheme
tends to conserve stack space.

The syntactic analysis described above is necessarily recursive;
this recursion is handled by the "translator stack," ST (actually 2
arrays, STl and ST3 .) In SYNTAX, SI is always used as the stack

pointer for ST .
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Figure 3: Transition diagram for stmt

There is also a "value stack," SV, indexed by SVI, which holds
all temporary values (actually pointers to S) and function parameters.
In general, each interpretation rule gets values from the top of SV,
operates on them, and pushes the result(s) back into SV. The sub-
program PUSH(V) puts V on the top of SV, increases SVI, and checks
for stack overflow.

Interpretation rules, most of which are straightforward, make up
the main body of SYNTAX. An examination of a typical rule will be in-
structive. The rule below is a simplified version of M6, which is
encountered in traversing a smurg after having seen a sop followed by

a basic.
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980 SVI = SVI - 3
T2 = SV(SVI)
T1 = SV(SVI+2)
CALL GETTEM(V)
CALL DOSOP(V,T1,SV(SVI+1),T2)
CALL PUTTEM{T1)
CALL PUTTEM(T2)
CALL PUSH(V)
Go TO 205

When this rule is encountered, the stack looks like this:

SVI=»

SYPTR for left operand
SPTR for operator SV
-~ SYPTR for right operand

The routine GETTEM(V) creates a symbol table entry of class temp (4)
and assigns the SYPTR to V . DOSOP performs the operation coded in
SV(SVI+l) on Tl and T2 and assigns the result to V . PUTTEM(T)
marks temporary M storage for T as garbage and returns the symbol
table entry for T to a linked temp list. This scheme keeps the number
of temp S entries small. Thus, when GETTEM is called, it has to
create a new S entry only if there are not any returned temp entries
available. Finally, PUSH(V) pushes the result of executing the sop
onto SV . The statement GO TO 205 returns control to the syntactic
analyzer.

Within the system is a location counter vector, LOCN, which records
the current line numbers of all active functions. TIn immediate execution
mode, LOCN starts off as an empty vector. Each time a function is

entered, a new element, starting at 1, is catenated to the right of LOCN.
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When a function is exited, the last element of LOCN is deleted. The
location vector is updated by function calls, the branch interpretation
rule, and the end-of-statement interpretation rule. When a statement has
been completely executed and LOCN is an empty vector, SYNTAX returns
control to TYPEIN to read the next statement.

Function execution is straightforward. Actual parameters (if any)
are copied to temp storage, if necessary, and are pushed into SV . If
a result is indicated, a temp for the result is pushed. All actual param-
eters are given the type actual in S . Also on SV are put the SYPTR
of the function name and certain global variables that record the current

state of the syntactic analysis. A pointer FPTR is reset to indicate

the innermost function being executed. LOCN is changed as described above,

and execution of the function begun.

Upon exit, LOCN is reset, as are the global variables from the
stack, and the result, if any, is pushed back into SV .

A complete list of the subroutines in the interpreter and their
functions is given in Appendix B.

Extensive error checking is done in all parts of the program. When
an error is detected, execution of the statement is abandoned and control
is returned to TYPEIN to read and attempt a new statement. A diagnostic
message indicates the cause of the error and the state of the interpreter

when it was detected.

The interpreter includes almost all of the language described in
chapter II. Those features which were not implemented are outlined below:
1. Subscripting of the operators / and \ is not in the

system., - The most obvious modifications to the transition
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diagrams to allow this, also introduce syntactic ambigui-
ties. When this feature 1s added to this or another inter-
preter, one would also like to add subscripting of some of
the oops (for exampie t, ,L ) to provide for their

extension to multidimensional data. Such generalizations

to matrices are descirbed in [4].

The mask and mesh operators [4] have not yet been programmed.
(See chapter V, D)

In [4], compression on the left of an assignment arrow is
allowed, as in the statement: U/X « 2,3,9 . Although this
is a convenience, the same thing can be said using ordinary
indexing: X[U/tpXle 2,3,9, and thus this feature was not
included in the interpreter.

The constant high minus sign and the exponential form of

constants have not been implemented.
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IV. CRITIQUE OF PROGRAM

The interpreter Jjust describgd has been thoroughly tested on a number
of programs and appears to be reasonably bug-free. Little effort was put
into any attempt to make the program efficient with respect to timing,
and it appears that the interpreter is indeed rather slaw. It is diffi-
cult to give meaningful timing figures, since each different kind of
operator takes a varying amount of time; as an example of this, note the
timings of the sample programs in Appendix C.

Ir the~system were to be rewritten, there are several changes that
should be considered, based on experience gained from this implementation.

Some of these proposals have been suggested by L. M. Breed, based on work

with the TSM system (see below).

1. The 7090 system is difficult to use because of the trans-~
literation of symbols necessary to present a program to the
machine. This problem can be solved by using an input de-
vice such as a CRT terminal or an IBM 1050 or 2741 typewriter
terminal for which a typing element (type-ball) with the
Iverson character set is available. For example, Breed
adapted an earlier version of the interpreter for use on
the now defunct TSM time-sharing system at IBM. With the
inclusion of simple text-editing statements in the language,
its usability was increased manyfold by being available at
an online terminal with the proper character set.

2. Organization and allocation of M storage can be changed

to simplify the interpreter and increase M usage efficiency.
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There are several aspects to consider:

(a) The major reason for storing statement text as a series

of S pointers was to allow for text editing and re-
construction of statements for error diagnostics.
Editing does not exist in the current implementation
but would be necessary in any online use of this sys-
tem. Under the current arrangement, a special garbage
collector would be needed to reclaim abandoned code
space at the top of M . It thus makes sense to store
the code string for a statement directly in M as, say,
an integer vector. Then, the regular garbage collector
can be used to reclaim abandoned text. This proposal
will complicate the garbage collector, as there would
be M entries, namely the branch vectors for the
function names, which point to other (moveable) M
entries; this problem is not very significant, however,
since the addition of lists of the language (see
Chapter V, A) requires an identical extension of the
garbage collector. It would still make sense to put
code strings for immediate execution statements into
high M to eliminate the necessity of reclaiming the
space thus used.

It was found by users of the TSM system that in long
work sessions, many constants were introduced in im~
mediate execution statements which were no longer

needed when these statements were completed. The net
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result was that both S and M became filled with
unused entries which were not reclaimable because there
was no mechanism for marking them as garbage. A pos-
sible solution“is tc put a constant directly into the
code string, preceded by a special syllable which marks
the next entry as a constant. This would slightly
complicate the problem of getting the next code sylla-
ble in the syntactic analysis, but would eliminate all
constant entries in S, as well as left-over constants

in M from immediate execution statements.

(c) Most of the M space marked as garbage is from aban-

doned temporary storage. In an earlier version of the
interpreter, temp storage was stacked down from the
bottom of the code string, and abandoned by changing
MLIM when a statement was finished. This was unsatis-
factory for two reasons: MLIM had to be stacked on
SV whenever a function was entered; also, in a long
statement using many temps, if M became full, a spe-
cial garbage collector was needed to compact the temp
storage abandoned but not yet erased.

One possible solution is as follows: In the exe-
cution of almost all of the sops and most of the oops,
at least one of the operands is the same size as the
result. Further, the execution of these operators is

sequential. Thus, it should be possible to rewrite

the operator execution programs for sops (DOSOP) and the

appropriate oops (such as 1,+,T, €, ¢) to put the
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result directly into the space occupied by the longer
operand, if the latter is itself a temp.
5. The present method of syntactic analysis appears to be more
powerful than necessary to treat this language. Even so,

it is extremely simple to implement and is relatively compact.

(The entire syntax analyzer is written in about one page of

FORTRAN, and the diagram tables take less than 200 words of

7090 storage. This latter figure can be cut by at least a

factor of 3 by judicious packing of the table.) One might

still desire a simpler analysis routine, and at least two
candidates for this position come to mind.

(a) Rewriting the syntax so that it is a precedence gram-
mar allows an even simpler analysis routine [11], [12].
However, a disadvantage is that in order to provide
for complete error detection and recovery, the whole
precedence matrix has to be kept in the program. In
addition, the table of productions necessary for syn-
tactic reduction would probably be at least as long
as the present tables. The interpretation rules would
probably be no more complex than those in the current
scheme.

(b) Another scheme which requires very little table storage
and an extremely short analysis routine is as follows:
A current state (essentially an indication of what is
on top of the stack) is kept and compared to the syn-

tactic class of the incoming symbol. If this
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state-class pair is allowable, then an appropriate
interpretation rule is invoked and state is altered;
if not, an error is signalled. The simplicity of the
scheme follows from the observation that a very small
number of states and classes is necessary to define
the syntax of the language. Thus, a short table of
bits 1s sufficient to contain all the requisite informa-
tion for the analyzer. A slight disadvantage is that
the interpretation rules will probably have to be a
little more complicated than at present in order to do
extended error checking and operator execution.
With these two proposals in mind, it still appears that the
transition diagram approach is most satisfactory for this
and future interpreters. The primary reason for this is that
using the diagram formulation, it is easier to alter the
syntax of the language than in either of the other two
schemes; this is particularly important in an experimental
interpreter. Also, with the syntax represented in diagrams,
much of the recursion which would normally occur in parsing
can be replaced by iteration, which tends to conserve stack

space.
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V. CRITIQUE OF THE LANGUAGE

While I am a strong supporter of the Iverson language, I believe
there are a number of areas where it is weak and could bear improvement.
Almost all of these are points of omission rather than objections to
features already in the lgnguage. This chapter is devoted to an outline
of desirable new features, and should be considered as a set of sugges-
tions for future work rather than detailed proposals.

The problem of adding new features to this language is not a trivial
one. As it stands, the language is a powerful notation for describing
processes, and is rich in formal identities. Any changes to the language
should be consistent with the established body, both syntactically and in
spirit. The danger of making ad hoc additions 1s ever present, and much
thought will be necessary to work out the details of the suggestions that
follow to avoid destroying the language or cluttering it with questionable

kludgery.

A. Lists

The language currently has no provision for list-like structures.
In his book [4], Iverson developed a subset of the notation to deal with
trees. While powerful, it was wholly analytic; in order to construct a
tree, one had to resort to building up a different representation of it,
such as a right- or left-list matrix. Rather than extend this tree nota-
tion, I suggest a more "conventional" approach, along the lines used in
EULER [11], [12].

Define a list to be an ordered set of elements, each of which can

be a scalar, an array,- or a list. Notationally, a list will be

3k



L

r—

—

e

" r‘“ - [ G—

—

represented as

€ ;€ € 3

EAZTREEELIN

where each of the ELi is a list element and the curly brackets are called

list brackets. The use of the semicolon as a separator is consistent with

the existing notation, in which subscript elements are separated by semi-
colons. Thus with lists, it becomes apparent that the construction
A[R] where £ is an slist, is really an abbreviation for A[{&K}] .

In adding lists, the available data space is made richer because
lists extend it to include cartesian products of arbitrary subspaces,
in the sense of McCarthy [8]. It is not desirable, however, to eliminate
arrays as they exist in the language. A formulation of an array in list
terminology makes it a list of lists of...of lists of elements. For
example, a matrix becomes a list of rows (columns). The disadvantage of
this approach is that it distinguishes some coordinates of an array over
others, which for many purposes is undesirable. In different terms, con-
sidering arrays as lists of lists is to confuse the idea of an array, a
purely mathematical concept, with its representation. In making the
generalization to lists while retaining arrays it is tempting to consider
the possibility of arrays of lists, but this, I think, is carrying a good
thing a bit too far.

Given lists, it is necessary to define operations upon them. T
propose the following as a start:

1. Catenation (appending) -- For A and B both lists, A,B is

a list composed of catenating A and B at the top level.
For example,
fasbseclh,{asel={a;psc5d; 6]
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The symbol ';' cannot be used for the list catenation operator
because this would cause a conflict in the meaning of the symbol.
For example, it would then be difficult to explain how

{{1} ; {2}} represents a list of two elements, each of which is
a list, as opposed to being a list whose sole element is the
catenation of the lists {1} and {2} .

Arithmetic operations -- Arithmetic operations can be extended
to compatible lists element-by-element, as is currently done

for arrays. Here the definition of compatibility would have

to require both identical structure and that the primitive ele-
ments at the lowest levels are numerical quantities which are
array compatible.

Indexing -~ A list can be indexed in order to select individual
elements. If a subscript is a list of more than one element,
then it will be interpreted to mean level-by-level selection.

For example, this rule would give

{1s{2s3;4)5{5;(6}3}2 ; 1]

n
\V)

Here, as in array subscripting, the use of square brackets a-
round a list is actually an elision of an inner pair of list
brackets. Using this convention for square brackets, there is
no reason not to allow a list-valued expression to appear as a
subscript within square brackets.

It would probably be desirable to allow vectors as subscripts
to lists. However, I can think of no definition which would

have the following property analogous to vector subscripting

36



L
L
{
L
]

of wvectors:
L{z (length(L))] = L

I submit that for the sage of consistency, we would like that
property to hold, and that any definition should conform to it.
Structural operators -- In the absence of declarations, it should
be possible to determine whether a datum is a list, as well as
some information about its structure. Since lists as we have
defined them are in some sense isomorphic to a generalization

of Iverson's trees, one possibility for determining structure
would be to use his analytic tree operators for moment vector,
dispersion vector, number of leaves, and degree s ¥ N, O,
respectively.

All that is really necessary to use lists is a list predicate
and a length function. The other functions mentioned above can
be defined in terms of functions in the language. The predicate
can be similar to the operator isli of EULER, and the unary p
operator of the language can be interpreted to mean the length
of the top level of a list when given a list as argument,

It should be possible to convert a vector to a list of its
elements by a primitive operator. A suggestive notation for
this is list « ; / vector, with the obvious definition. It
might also be possible to extend the definition of the binary
p operator to the construction of lists, but I have no clear

notion of how this could be done.
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B. Program structure

One of the most important features of the language is its ability
to express, easily and naturally;qperations on structured data. At the
expression level, this is highly elegant. The structure of programs,
however, is still at the level of machine language. When arrows along
the side of the page are used to indicate branching (as in [4]), the
structure of a program is equivalent to a flow chart, and is easy to fol-
low. It is, however, inconvenient and often verbose to have to write all
this flow information with explicit branches, as is necessary when a pro-
gram is presented linearly to a computer.

I believe that a good programming language should make it possible
to state an algorithm simply, in such a way that the complexity of the
program corresponds in some straightforward way with the complexity of
the algorithm it expresses. The current language has this property to a
large degree, and the suggestions in this section are directed towards
improving it in this area.

l. TIteration control -- The DO statement of FORTRAN and, even

more so, the for statement of ALGOL 60 have proved to be

very powerful and convenient mechanisms for iteration control.

With the inclusion of lists in the language, a generalization
of the for statement can be added quite easily.

Let us allow the following construction:

for X e L do S

where X 1is a variable, L is a 1list, and S is a state-

ment. This statement is executed by letting X take on as
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value successive elements of L, with S being executed
for each such value. Also of value would be an optional

while clause, as in ALGOL, and the statement
while R do & ,

for R any logical valued expression. This statement would
evaluate R, execute S if the value of R is 1, and
repeat the cycle as long as the value of R remains 1

One problem that appears immediately is that the pro-
posed constructions allow only a single statement in the
scope of an iteration. At least three ways of indicating
scope come to mind: compound statements as in ALGOL; labeling
the last statement in the scope as in FORTRAN; and indicating
the number of statements in the scope. Of these three, I
prefer the first as being the cleanest and most straight-
forward. As a convenience in writing compound statements
and programs in general, it would be helpful to introduce
an (optional) statement termination symbol, analogous to
the ';' in ALGOL or PL/I, which allows several statements
to be written on a single line.
Case analysis -- Almost all but the most trivial programs
employ some form of case analysis; that is, execution of
different parts of a program depending on some condition.
In McCarthy's formalism [ 8], ALGOL 60, EULER, PL/I, and a
proposed extension of ALGOL [13], among others, case state-
ments, conditional statements, and conditional expressions
have been provided to make this easily expressable.
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At the program level, the case statement corresponds
to indexing a pseudo-array of statements and as such, is a
generalization of the conditional statement. Such a construct
in the language would considerably shorten programs in the
notation with no sacrifice in clarity. As an example of the
usefulness of a case-type statement, consider the machine
simulation example in Appendix C.

The need for a conditional expression or a generalization
thereof is just as great in that it allows conciseness in
expressions. It remains true that none of the constructions
in this section add "power" to the language, in the sense that
new things can be said which couldn't be said before; however,
the goal of ease of expression suggests their necessity.

A re-interpretation of an existing construction can
provide a generalization of the conditional expression anal-

gous to the case statement. Given the expression

leg 5055 «o0 5 2}

let this mean selection of the ith element of the list,

without evaluating the rest of the list.

For example, the factorial function can now be defined in a
single statement (compare the same function defined using

branching in Appendix C):

VX « FACT N
X «f{1 ; NXFACT N - 1}[1 + N £ 0]

v
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C. Functions

As currently formulated, functions (procedures) may have at most
two parameters. Further, there is no mechanism for local variables within
a function, which makes recursive Aefinitions difficult. A proposed solu-
tion has been put forth by the Iverson group and is described below.
Other questions to be considered are name parameters, functional arguments,
and block structure.

Let the function header line be of the following form:

VXeFIH;Pe;...;Pn

In using the function, the right hand parameter can be a list. When the
function program is entered, the Pi are initialized to the corresponding
list elements. If n is greater than the length of the list used as a
parameter, the remaining Pi are undefined until values are assigned to
them by the program. This scheme appears to solve both the problem of
number of parameters and that of local variables rather handily. By
introducing a function (operator) isdef such that_isdef X is 1 iff X
is defined (has a value) and O otherwise, it becomes possible to deter-
mine which of the Pi were initialized on a particular call of the func-
tion.

Some mechanism should be available to allow the use of name parame-
ters, in the ALGOL 60 sense. I have no good ideas on how this could be
fitted into the current notation. A similar situation holds for functional
arguments to functions. Here, perhaps something on the order of McCarthy's
use of A-expressions would be workable, possibly using part of the avail-

able notation for function definitions. Implementationally, functional
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arguments open a Pandora's box of problems associated with variable bind-
ings, so much thought will be required on this point.

The equivalent of block strugture can easily be introduced given
the mechanism for local variables discussed above. It is only necessary
to allow function definitions to be nested to achieve this effect. This

eliminates the need for an explicit block syntax.

D. Operators

As the notation is replete with powerful primitive operators, it is
difficult to think of new ones which need to be added. The only situations
in which this is Jjustifiable are for functions which either are not de-
finable in the notation, such as catenation, or which are sufficiently
primitive and useful, yet complicated to program as defined functions.
I will list the few primitives I think should be considered and give a
few general remarks about each.

1. Ravel -- This would be a generalization or row- or column-
list expansion of an array [4], and would decompose a higher
dimensional array into a vector in an order specified by
other parameters to the operator.

2. Laminate -- A generalization of catenation which juxtaposes
two compatible arrays in a parametrically specified way.

For example, if A and B are matrices with the same number
of rows, then the lamination operation should be able to

adjoin A to B as illustrated schematically below:
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Transpose -- It is desirable to be able to obtain only only
the regular transpose of a matrix, but to be able to permute
the elements of any array in a number of specified ways.

The Iverson group at“IBM is working on a generalization of

this operator.

4., Mask and mesh -- These two operators, part of the "classical"

notation, while very elegant, are not generally useful enough
to Jjustify their being primitives in the language. A major
use of mask (as, for example in [2]) has been as a special
case of conditional expressions. With the adoption of the
suggestions in Section B, the mask is no longer necessary

in this context.

Set operators -- Using vectors to represent ordered sets,
Iversion introduced set operators in [4]. With lists in
the language, it seems more natural to let lists represent
sets and to redefine these operators. On the other hand,

if sets and set operations are sufficiently useful in a
programming language, it may be more reasonable to introduce
a new data type, the set. Such sets would be unordered and
the operators defined on them could be introduced in such a

way that they obey the laws of set theory for finite sets.

E. Independent programs

In machine descriptions (for example [2]) the use of independent
programs (system programs) is necessary. There are no syntactic problems
in allowing several independent programs, but many difficulties are im-

posed on an implementation. That is, as soon as system programs are
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allowed in an interpreter for the language, @1l of the problems associated

with simulation come to the fore, Ultimately, one would like to be able

to execute several programs simultaneously, but the implementation of a

system to allow this will be a major project in itself.
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APPENDIX A -- Transition Diagrams and their Internal Representation
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The transition diagrams of the preceding pages are stored in the
array DIAG. In SYNTAX, DIAG is indexed by D . Each node in a diagram
is represented internally by a sequence of triples of words, each of
which corresponds to a path from ﬁhat node. For a given node, if all
paths leading from it contain terminal or nonterminal symbols (that is,
no null paths from this node), a word containing the flag 'l' follows
the set of triples for that node.

For each triple, the words have the following contents:

word 1 Class of the element to be scanned for this path, as
follows:

-~ 0 default path (always satisfied)
1 no more paths from this node
5,6,..., 30 terminal symbol
> 30 index in DIAG of the diagram for a nonterminal
symbol to be scanned

word 2 Interpretation rule to be executed if this path is successful

word 3 Link to next node in diagram. If this word is O, then the

diagram has been satisfied.

Example: Schematic of internal representation of the diagram for

an slist.
5
slist o
d 5
Ll (’—_______—.
()
e —— |
(o]
sexp \/ |
o |9
sexp
1 (o]
*—|
(o)
L2
o— |
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APPENDIX B -~ Subprograms in the Interpreter

Program

ADDSYM

ARTHTP

CODE

DOOOP

DOSOP

ERROR

EXC

EXPAND

FUZZY

GCOL

GETSPA

GETTEM

INCHAR

INDEX

MASTER

MATRIX

OUT

PUSH

PUTTEM

SELECT

REDUCE

STNEXT

Function
Used by TYPEIN to ereate a new S entry

Checks for type compatibility and finds common types for
operator execution

Emits one code syllable into high M

oop execution

sop execution

Error analysis and recovery

Execution of individual sops on 1 or 2 scalars
Unpacks 6-bit bytes into 8-bit bytes (written in MAP)

Contains floor, ceiling and approximate comparisons
(in MAP)

Garbage collector

M storage allocation

Create temp S entry

Character-by-character input routine

Subscript execution

Main program -- alternates between TYPEIN and SYNTAX
Generalized matrix product execution

Output routine (used by O and diagnostics)

Stack entry on SV and check for overflow

Reclaim temp S entry and mark used M space as garbage
Compression and expansion execution

Reduction execution

Symbol table search
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Program
SYNTAX

TYPE

TYPEIN

XRHO

Function

See Chapter III

Contains fetch and "store routines and type conversion
(written in MAP)

See Chapter IIT

Computes X/pA for an M entry A

23



APPENDIX C -- Examples of Programs Run Under the Interpreter
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FRI

TOOAY IS MON

1)
2)
3)
4)

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
1)

1)

2)
21
2)
3)
4)

1)
2)
3)

5)

#* FACTORIAL FUNCTION, DEFINED RECURSIVELY

*

DEFINEZ = FACT N
L =1

GOTO (N EqQ O)/0
Z = N e FACT N-I
DEFINE

spx = FACT 3

L]
T=0.0001
e v+ IS THE NTH ROOT OF P

DEFINE A = N ROOT P

A = P

LOesa I = N

=1

L6.. GOTO(IEQO)/L2
z = Asl

I =1-1

GOTO L6

L2.. GOTO IT GE ABS P-2)/0
A=A+ (P-Z)DIVNe Z DV
GOTO LO

DEFINE’

*

BOX =2 ROOT §

80X = 3 ROOT 27

*PERPETUAL CALENDAR

DEF INE DAY = CALENDAR D

NAMES={744) RHO ‘SUN MON TUESWEDSTHURFR] SAT"*
SUBSCRIPT = 1 + 7MOD(093939641249652+59093,5)
+D$(28) + (6- 2 ¢ 4 MOD FLOOR D$(3$) DIV 100)
+ (FLOOR 1.25# 100 MODDs{3s$))~-

AND 0EQ 4 MOD D$(3s$)

DAY = NAMES${SUBSCRIPT ., $)

DEFINE
»

BOX = CALENDAR 1242441943

BOX = ‘TODAY IS ' , CALENDAR 5+305,1966

-
#CALCULATE PASCAL TRIANGLE
»

DEFINEPASCAL

P =1

BOX = P

P = (0,P) + P,0
GOTO(NGEPS(28))/2
DEFINE

GENEX - 0

25
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( 2)
( 3)

( 1)
( 2)

1)
2)
3)
4)
5)

- o g g

GENOO02GENOO1

CENO004

1

—
|
N

TOTAL TIME USED
0 ERRORS

*A FUNCTION OF NO PARAMETERS (THE GENSYM OF LISP 1.5)
.

DEFINE X = GENSYM

GENEX = GENEX+1

x = 'GEN' , K *0123456789'$(1 + (3R H OlO)R E P GENEXS$)
DEFINE

.

DEFINE PASCAL1 M

N=M

PASCAL

DEFINE

.

*POSITIVE OR NEGATIVE PASCAL TRIANGLE

*

DEFINE FB PASCAL2 n

P =1

BOX = P

P = (P,O) + FB'O,P

GOTO(NG EABSPSI2%))/2

DEFINE

L]
*
BOX = GENSYM ¢ GENSYM

A = GENSYM
80X = GENSYM

PASCAL1 3

1
3 1
(-1) PASCAL2 3

3 -1
-

FINISH

12.472 SECONDS 313 STATEMENTS EXECUTED
0 GARBAGE COLLECTIONS 589 CALLS ON GETSPA
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1)
2)
3)
4)
5)
6)
I2)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17
18)
19)

e kel e LY T

1)
2)
3)
4)
5)
6)
7
8)
9)

o o g o

1)
21

3)
4)

- o -

1)
2)

EiLl]
5)

*EXPRESSION PROCESSOR ==
e INFIX TO REVERSE POLISH

® REVERSE POLISH TO COMPLETELY PARENTHESIZED

DEFINE x = REST Y

X =(NOT(RHCY)A L P H ALMY

DEFINE

e ARITHMETIC EXPRESSION TO POLISH

DEFINES = POLISH |

PRI= 0s091s151492,2

DPS= 1§(+=)n/"

S=1 RHO '$*

Lles GOTO(OEQ RHOI)/LG

T = 1s(1$)

I =REST |

GOTO(AND/T NEOPS)/LS

TP= (T EQ OPS)/PRI

L2.. GOTO(ITE Q'(*)JOR TPGYT (SS(1$)E QOPS)/PRIN/(L3,LG)S{LI+TEQ"*)"'S)

S = ROTLS

GOTO L2

“L3se S =T,S

GOTO L1

L4ee s =REST S

GOTO0 L1

LS.. $=8,T

GOTO L1

6. S = RESTH({(*'S$*'E QS)/IOTA RHOS)-1L)ROTCS
DEFINE

® POLISH TO FULLY PARENTHESIZED
DEFINE 0 =PARENS I

S = 0 RHO ‘A’

01.. T=1s(1$)

[ = REST I
GOTO (AND/T NE *+-#/%)/02
T = *{¢  NEX , T , NEX »°%)°

02.. S = T.'S"S

GOTO(ONE RHOI)/01

0 =(SN E*$*)/S

DEFINE

# NECESSARY TO STACK AND UNSTACK STRINGS
OEFINE X = NEX

R=((SEQ"'$')Y/ I0OTA RHO S)${1ls$)
X =({RHOS)A L PHAR=1)/S

S = (NOT (RHOS)ALPHARD)/S
DEFINE

e DRIVER PROGRAM

DEFINE PROG I

BOX = ‘INPUT EXPRESSION...” , |

I =POLISH |

BOX = ‘REVERSE POLISH...*' 4 I

80X = ‘FULLY PARENTHESIZED...” , PARENS |
DEFINE

# TEST CASES

PROG 'A+B#3/4-2*

INPUT EXPRESSION. .. A+B%3/4-2
REVERSE POLISH..oAB3%4/42-
FULLY PARENTHESIZED oo {(A+((B*3)/4))-2)



r— 1

S r— r— r— r— —

r—

PROG *(A+B)#3/(4-2)"
INPUT EXPRESSICNeee (A+B) 23/ (4-2)
REVERSE POLISHe oo AB+3242~/
FULLY PARENTHESIZED.e (((A+3)23)/(4~-2))
PROG'L/{{L((A))))}=3%(T) )"
INPUT EXPRESSICNeeal/(({L(A))))-32(T))
REVERSE POLISHeee1lA3T72=/
FULLY PARENTHESIZEDeao{1/(A=-(327)))
FINISH

TOTAL TIME USEC 21.804 SECGNDS
0 ERRORS 2 GARBAGE COLLECTIONS
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1)
2)
3)
4)
4)
5)
6)
6)
n
BJ
9)
10)
11)
11
12)
13)
14)
15)
16)
1n
18)
19)
20)
20)
21)
22)
23)
24)
25)
26)

!

e ASIMPLE COMPUTER -- BASED ON NOTES BY IVERSON AND FALKOFF

* REGISTERS RHO FUNCTION

. p 16 ACCUMULATOR

. 1 16 INSTRUCTION REGISTER
. P 16 PSW

. M 1024416 MEMORY

[ ]

« INSTRUCTION FORMAT . . . XXXXAAAAAAAAAAAA
. WHERE XXXX = OP CODE

. A.A = ADDRESS

[ ]

o MNEMONIC CODE FUNCTION

. LD 0010 LOAD

. ST 0001 STORE

. AD 0110 ADD

. su 0101 SUBTRACT

. BU 1001 BRANCH UNCONDITIONAL

. BC 1000 BRANCH CONDITIONAL ( §iF OVERFLOWJ
. WR 1101 WRITE

. HLT 1111 HALT

L ]

DEF INE macHINE

FETCH..

I = M$({(BASE (16 OMEGA 12)/P) + ) $)

EA = BASE (16 0MEGA12)/1
P$(4+I0TA 128) = (12 RHO 2) REP 1 « BASE (16 OMEGA 12)/p

« TRACE

WHAT IS GOING ON INSIDE THE MACHINE

BOX =P = ¢,001°$(1+4PS),* A= *y'01°S$(1+A8)," | = *901'S$(1lels)
GOTO (LS»AS+BRyIO)S(1+BASE 18(1,28)8)

*LOAD AND STORE

LS.. GOTO Is${3s)/LL

MS(EA .

$)= A

GOTO FETCH
LL.. A =M${ EA «» $)
GOT0 FETCH

*ADD AND

SUBTRACT

AS.. K1 = BASE A

K2 = BASE MS$( EA ., $)
GOTO 1$(4$)/SS

K = K14K2

G070 SA
ss.. K=
SA.. A=
PS$(ls) =

K1-K2
TWOS REP K
((17 RHO 2) REP KJ $t1$)

GOT0 FETCH

*BRANCH

BR.. GOTO (NOTPS$(1+ B AS E I8(3,48)8) J/FETCH
P$(4 + IOTA 128) = (16 OMEGA 12)/1

6070 FETCH

10.. GOTO 1$(3$)/0

BOX= ‘---OUTPUT--- 0y *01°$(1 + MS$( EA <o $)$)
GOTO FETCH

DEFINE

.
#HANDY CONSTANTS FOR M SETUP
B = 12 RHO 2

TWOS = 16 RHO 2

X0 = 12 RHO 0

X100 = BREP 100
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X101=B REP 101

x102 = B REP 102

x103= B REP 103

X104 = B REP 104

LD = 0.0'1'0

ST= 0'0'0'1

AD = 0,1,140

su = 0yle0yl

WR = 1g14041

HLT = 1'1'1'1

BU= 1'0'0'1

BC= 1'0'0'0

M = (1024416) RHO 0

A =16 RHO 0

I = A

P = ROTL 16 ALPHA 5

o ‘LOAD’ PROGRAM INTO M
e THIS PROGRAM HULTIPLIES M$({101.,$)BY M$(100.48$) AND PRINTS THE RESULT
M$( 1 o ’$)=0LD,X103

A MS$( 2 <o $) = ST,X102
M${ 3 .o 8) = LD,X100
|V ~M$( 4 .y 8) = SU,X104
M$( 5 «¢ $)=BCy8 REP 1 1
M$(6 .0 $) = ST,X100
] M$( 7 .9 8) = LD,y,X102
M$({ B .» $) = AD,X101
|V M$({ 9 o $) = ST,X102
M${10 .»$)=.8U,8 REP 3
MS$(1ll .9 S J =WRyX102
] M$(12 .» SJ = HLT’'XO
B M${104.48)= 16 OMEGA 1
] .
e MULTIPLY 1000 TIMES 4
.
] M$(100 .»$) = x0,0,1,0,0
r M${(101 .o $) = 116 RHO 2) REP 1000
] -
MACHINE
P = 1111000000000010 A= 0000000000000000 I = 0010000001100111
P = 1111000000000011 A= 0000000000000000 I = 0001000001100110
P = 1111000000000100 A = 0000000000000000 I = 0010000001100100
L P = 1111000000000101 A= 0000000000000100 I = 0101000001101000
P = 0111000000000110 A= 0000000000000011 I = 1000000000001011
P = 0111000000000111 A= 0000000000000011 I = 0001000001100100
P = 0111000000001000 A = 0000000000000011 I = 0010000001100110
t P = 0111000000001001 A= 0000000000000000 I = (0110000001100101
P = 0111000000001010 A= 0000001111101000 I = 0001000001100110
P = 0111000000001011 A= 0000001111101000 I = 1001000000000011
P = 0111000000000100 A = 0000001111101000 I = 0010000001100100~
P = 0111000000000101 A= 0000000000000011 I = 0101000001101000
t P = 0111000000000110 A= 0000000000000010 I = 1000000000001011
P+ 0111000000000111 A= 0000000000000010 I = 0001000001100100
P = 0111000000001000 A= 0000000000000010 I = 0010000001100110
P = 0111000000001001 A= 0000001111101000 I s 0110000001100101
P = 0111000000001010 A= 0000011111010000 I = 0001000001100110
P = 0111000000001011 A= 0000011111010000 I = 1001000000000011
) P = 0111000000000100 A= 0000011111010000 I = 0010000001100100
P = 0111000000000101 A= 0000000000000010 I = 0101000001101000
P = 0111000000000110 A= 0000000000000001 I = 1000000000001011
L P= 0111000000000111 A = 000000000000000~ I = 0001000001100100

—
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ey

TOTAL TIME USED

0 ERRORS

= (0111000000001000 A = 0000000000000001
= (0111000000001001 A = 0000011111010000
= (0111000000001010 A = 0000101110111000
= (0111000000001011 A = 0000101110111000
0111000000000100 A= 0000101110111000
0111000000000101 A= 0000000000000001
0111000000000110 A= 0000000000000000
0111000000000111 A= 0000000000000000
0111000000001000 A= (0000000000000000
0111000000001001 A= 0000101110111000
= (0111000000001010 A= 0000111110100000
= (0111000000001011 A= (0000111110100000
= (0111000000000100 A= 0000111110100000
= (0111000000000101 A = 0000000000000000
= 1111000000000110 A= 1111111111111111
= 1111000000001100 A= 1111111111111111
-OUTPUT--- 0000111110100000
= 1111000000001101 A= 1111111111111111
FINISH

34.622 SECONDS
4 GARBAGE COLLECTIONS
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0010000001100110
0110000001100101
0001000001100110
1001000000000011

0010000001100100
0101000001101000
1000000000001011

0001000001100100
0010000001100110
0110000001100101
0001000001100110
1001000000000011

0010000001100100
0101000001101000
1000000000001011

1101000001100110

1111000000000000

378 STATEMENTS EXECUTED
1730 CALLS ON GETSPA



