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the eigenproblem

(A - KB) x =0, X # o ,

with large symmetric matrices A and B and positive definite B
These iterations always converge, and almost always converge to
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of the relaxation iteration applied to a semi-definite linear
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Relaxation Methods for an Eigenproblem

Given are two real symmetric N xN matrices A and B with
positive definite B and very large N ( > 500 ). Required are the

minimum value Xo of the Rayleigh Quotient
_ T T
Ax)=x Ax/x Bx for x#0 ,

and a vector % at which the minimum is achieved. 1In other words, a

solution is required for the symmetric eigenproblem
(A-xoB) x, =0 -

The numerical solution of this last equation is complicated by the size
of N ; the matrices A and B occupy so much storage that few of
to-day's electronic computers could allow access to more than a few rows
at a time. It is natural to‘consider a relaxation iteration that approxi-
mates "X via a converging sequence Xy 7 Xpseees X opeee in which
X4 differs from X in Just one component, because such a process can
make do with restricted access to the matrices A and B . But some
questions arise. How best should a specified component of X, be changed,
and what will the consequences be? Does the iteration necessarily converge
to the right answer? '

Surprisingly, these convergence questions have not yet been
discussed in print, although a variety of relaxation methods have been

widely used for a long time. For example, see Shaw (1953) Ch. VIII and




Nesbet (1965). The object of this report is to shed some theoretical light
upon the convergence questions. Since practical applications motivated
this work, the hypotheses are only as weak as are likely to fit methods
currently in use. Consequently, the conclusions are not as general as
those of A. Ostrowski (1965), with whose independent work there is some

overlap.

1.) Preliminaries

First, some convenient abbreviations. Since B is positive definite,

it can be used to define an inner product

(x,y)=x By

and & norm

lwla\ﬂ£,£%=\/£TB£

with the usual properties. Hence

AGx) = &T & 5/l

It is also useful to have the residual vector function

r(x) = (A - h(x) B) x

because r(x) has the same direction as grad A(E)S

an(x) = 2 r(x)T ax/lx|f .




This shows that A(x) is minimized when

E(:_c_o)=0 for EO%O, and
Ay = A(Eo) is minimized
Incidentally, the relation 5? g(x) 20 will be used without comment.

The next step is to replace the infinitesimal dx with a finite
increment & . Starting with some arbitrary x % 0 , and the

corresponding

- A= Ax) and

f_(ﬁ) ’

1=
I

we consider the consequences of changing x to x + x . One consequence

is that M changes to

)»+A)»EA(5+A)_{) 3

M = [2oxTr + (A(ax) - ) Iex|PY/lx + x|

We are incline&to prefer (5 + Ax) to x 'whenever M <0

Suppose now that &x is restricted to the form
&x = Ep

where p is a given direction and § is a scalar which we hope to choose




in such a way that & < 0 . We shall abbreviate
n = A(p)

and assume, without loss of generality, that

-

(Otherwise x and P should be exchanged.) It is convenient to assume

further that

T> A

for two reasons; first because much of what follows can be extended to
the case ® = M via a suitable limiting process with = - A + . Second,

the vector p will range over coordinate vectors like

T
si=(0,0,....,0,1,0,0,-..,0) »

with a 1 in the ith position, so the value = will range over the
quotients aii/bii of diagonal elements of A and B ; &and an
infinitesimal increase in ayy can be of little practical importance.
Now setting &x = &p produces

e

(x - ) (e - 20) [pI?/lx + epl?

(n - A)(1 - 2n/¢ ) I/ Ilx + ax)?

where 1 is another abbreviation;




n=-pir/l(x - \)pl?]

The last few equations, together with the inequality = = A > 0 ,
imply that & < 0 for any value of € strictly between 0 and 27 .
Unless 1 = 0 , there will be some latitude in the choice of &,
and it is natural to look for the best choice.

The "locally best" value for ¢ is defined now as that value
¢ =t for which & is a non-positive minimum. That value { always

exists, even when =n = A, and satisfies the equation

Tr/lpl? + (x - Mt + [(x - Mg » x) - 2 EIC/IkIP = 0

This equation is derived from the condition

BoAx ) -0at £-t,
i.e. P_T r(x + tp) =o

The last equation is similar to one satisfied by 7 in which A(_}_c_ + Qp_)

is replaced by M = A(x) :
T
p (A -AB)(x + np) = 0.

The resemblance is also apparent in the formula

€= on/f1 +\/1 + (il + (2, )/ IxIP 1

which shows that § and n differ by a relatively small amount whenever




N is small or, more precisely, whenever Inl << ||3c_|l/"£|| . . This
condition is satisfied when x 1is a sufficiently good approximation to
X, s SO there is some justification for simply choosing & = n as

is so often done in practice (e.g., by.Nesbet(1965)). But when 7

is large then the choice &€ = { is much to be preferred. (Incidentally,
L €1 < lkl/lell.)

When & = § the change M\ satisfies

M < - (B e)/G slplP k2 where

s = max(A(u) - A(v)) overall u # 0 and v #£0

-

(i.e. s is the spread in the field of values of A .) A brief proof
of the last inequality is given in Appendix I. That proof suggests that
the choice of € is not very critical. In what follows, we shall assume

only that & approximates ¢ roughly, but well enough that
T 2 2).112
Ax<-cp)”/Clel®ixl®)

for some positive constant C which is independent of p and x . The
last inequality, weak though it is, suffices to establish convergence
of the iterations described in the next section.
It is of considerable practical importance that the theory not
restrict & to be either n or £ , even though the latter value is
the best value to use for any single step. Experience with relaxation processes
suggests strongly that the best strategy for choosing values of & to be
used in each of a long sequence of steps may well require that each value

of ¢ differ in some systematic way from the corresponding value of §




in each step. For example, a policy of overrelaxation, in which

g/g is kept roughly constant and greater than 1 in each step,

sometimes produces faster convergence than the policy of keeping §/§ =1.
Unfortunately, the theory of overrelaxation is not as well developed

for the eigenproblem as it is for solving linear systems (cf. Varga(1962)).

2.) The Iteration

Let e, denote the jth coordinate vector,

=J

S = (O ) 0 geeey, 0 ’l » 0 gecey O)T for lsj SN ’
. . .th L

with a 1 in the j position. Let

El,-—?g 200, En’ s e

be a sequence constructed by choosing R, = gﬂ for some j = J(n)
Later, in section 3, more will be said about the way in which J(n) should
behave. For the present, the notation for the sequence P, is used

merely to avoid a notation like

E ,E ,’.-’E , LN
3,7 s 3,7

with subscripted subscripts.

Now we define the relaxation iteration to solve Axx = xo B 50

for X, # 0 and the smallest possible value ocf').O = A(Eo) . Beginning

2
with an arbitrary X with lB;” = fi B x> 0 and

Mo=A(x) =3<_$ Azc_l/lhc_lll2 , we define for n=1, 2, 3 ,...




2

2 .’.ISH
]
2
A°
~

=
]

L=/l - ) 1P,
=2/l +'\/:[ + 1mn(nnll}.n_mll2 + pg Bx_)/ Ilznlle‘] ,

§n is an acceptable approximation to §n (see section 1) ,

v
[}

R N
lL,,,,lII = P+ 2 s 2 g 1P,
M == (g - 0) gpeny - e gy I/l 1P, ane
n n n’ 5n‘“n n’ 1By +1 ’
A = A + 0 .
n n
This computation is simpler than it seems because B, is just one of the

. th
co-ordinate vectors E-,j . Therefore Ei A= g§ is the J row of A,

and BE, B = PT similarly. There is no.need to compute I, explicitly,

T 2 , th
merely BTn T ..31_% n _3_x . The number “P-n" = bJJ . is the J—
diagonal element of B , and m, ='a /o Whenever

M, < < uﬁn"/"Rn"’ gn need not be computed but can be approximated by

Tjn 3 this will happen for all sufficiently large n. Since the bulk of

T
the work is concentrated in the computation of Pn A x =3 u and
T
Bn B En = _’QJ X the work required to go from . to X+l is

roughly 2N multiplications and 2N additions, possibly much less if

A and B are sparse. (If R, wvere not a coordinate vector, the work




would be N times larger unless Eg A and EE B were already
known. )

By induction, Xn = A(En) for all n . We can assume that
T > ll for the reasons given in section 1, and hence prove by

induction that Amn < 0 . Therefore there must exist a limiting value

>
[l

lim xn as n oo
such that

A > A

l_ QZo.QZX >k >o¢ozx ZX .

Because of the Q;y ﬁn was chosen, there is a constant C > 0 such that
T 2 2 2
(2, z,)7/ [, 2 IF1 < - &\ /C >0 a8 now .
Therefore nn“BnH/HEn" — 0 and hence §n|'2n||/||§n|| 40 as n -« ,

Consequently
4 = X/l »0

However, there is no reason yet to conclude that En or the normalized

Xy = En/lkn“ approaches any limit. In the absence of further information

about the sequence Rn , the best that can be said is that the normalized
A
sequence X, has at least one point of condensation; and if there are

more than one then these points of condensation form a continuum with

no isolated points.



1 -1 o0 1000
A=[-1 1 - , % = | 1000 s
0 -1 1 -1

and all B, are chosen from the pair & 5 . Each of & and

is assumed to appear infinitely often in the sequence B, - Now

and e

S

it can be shown that Xn\\ Xm =0, and

N\
x, =x/lell »(Vi/2, Vajz, 0)F .
But -}En diverges towards ( + o gy t 0, = 1) and

x;>x°=1-v'§ .

Example 2: Here N = 6 and B = I and A is a diagonal sum of two

matrices A from example 1 . Similarly,
X = (1000 , 1000 , -1 , 1000 , 1000 , -1 ) E
and all p are chosen from the set [_e_l » &0 &5 &5 }. e e

members of that set are assumed to occur infinitely often in the sequence

Bn' Now
Xn\Xm=O>XO

10




as before, but neither én nor x. need converge. Instead, the
A
points of condensation of the sequence X constitute some arc of

the curve traced by
T
(u,u:O:V:V;Q)

when u > 0, v>0 and 3+«?‘=1/2.

Exemple 3: N, Aand B are as in example 1, but now X = (1,0, _1)T
and the sequence En is arbitrary. In this case all xn = Xl =1, and

all X, =X Here is a case of convergence to a wrong answer that is

Lo
not obviously wrong. Fortunately, the limit X is unstable. 51 lies

on the intersection of two planes which separate all space into four dis-
joint regions in which alternately A(x) > 1 and A(x) < 1 . In any open

spherical neighborhood of x no matter how small the sphere, there

£
exist vectors x with A(_}g) < 1, and if one of these is used to start

the iteration then the iteration will converge to a new limit Xm <1l.

Example 4. B is almost a unit matrix, in that all elements of B = 1
are very small; and A's diagonal terms 844 differ by amounts that are
very large compared with A's off-diagonal terms. i.e., each element of
A - diag(A) is small compared with any difference f4q - a33 with
149,
=%

coordinate vectors EJ with 7 fJ repeated infinitely often. Now

for some J , and the sequence 2n consists of those

X, converges to an eigenvector whose eigenvalue 1is very near arg - I f

813

the desired )‘o

is the algebraically least diagonal element, then that eigenvalue is

11




The foregoing examples show how necessary it is te .specify
appropriate choices for X and the sequence B, in order to secure
convergence to the desired answer. In the following sections of this
report, some assumptions are made regarding those choices. The
assumptions are intended to be weak enough to be practical, yet strong
enough to guarantee convergence to an answer which, if it is not the

desired answer, can usually be checked and corrected.

3.) ‘The Complete Iteration

This sectlon discusses the consequences of choosing Bn from the
set of N coordinate vectors f:_j in such a way that each set of M
consecutive vectors By > Bot1 20702 Bramel includes each coordinate
vector E:] at least once. M is some fixed integer no smaller than N.

In the previous section it was shown that )\.n\ A.w > Xo as n =w ,

N

and that the sequence of normalized vectors X, = E-n/nin" possessed a

A
continuum of points of condensation. Let X Dbe any one of these points

of accumulation; it'will be the limit of some subsequence of X, - Say
n n
X 4 X as n, - for k=1,2,3,

X

n
Evidently "_}_cm" = 1 . Furthermore, because

"’_‘nﬂ_ - x——n"/hn” -0 (see section.2) ,

n A
an+l_}-(n"—)O too ,

A ~
and therefore X + X, as k =»® | Indeed,

12




x>

/\
.—) )
X as k s

5

for any fixed m , but we shall use this fact only for values of

m<M.

A
Now let r, = £n/||§n“ for all n ;

n A A

= —(Z{-n) = (A = )"nB)?En where
\

Mo = A,)

Because of continuity,

-~

n N
-»>r =r(x) as K — o
=00

n
“n, +m

n
The next objective is to deduce that r = 0 by showing that
T N
g L%
AN

proved in section 2, is exploited to prove 3?; r, = 0 as follows.

~
=0 for J=1,2, .... and N . The fact that E:_I:n—-)O,

Let j be fixed. Given k , it must be possible to solve

B ™5

for m = mk between 0 and M-1 , because e,;j appears at least once

‘in the sequence

R A

Therefore eT

N 3 T ?
=) Fnyom, T Enemy Inomy

-0 as k=, 454 hence

13




T /N
-e-,j r, = 0 as required.

A S
Since r = .:E'.(.)_(m) =0, x, mst be an eigenvector and M _
the corresponding eigenvalue of A with respect to B . This is so for

P
every limit point X in that continuum of limitpoints possessed by

N ~
the sequence X - If A, 1is a simple eigenvalue, then x must be
one of the two normalized eigenvectors differing from each other only

S
in sign, so in this case the normalized sequence X, must converge. But

if )»m is a multiple eigenvalue, the convergence of /-}-:-n is a more
difficult question which, together with the convergence of the unnormalized
sequence X, 'will be elaborated in the next section.

There is another question. Does Xco = Xo? It is remotely possible
that )\.m > )»o , but in this case A= cannot be a numerically stable

limit. The next three paragraphs explain why.

Let C be the region containing all vectors v such that

M) < A, = Ax,) -

C is easiest to describe with the aid of a coordinate system for
_ T
V"‘(Vl: Vo seeey VN)

in which B is represented by a unit matrix and A is represented by a
diagonal matrix of its eigenvalues Ctl , Ot2 seesy O&‘I . The eigenvectors
of A with respect to B yield just such a coordinate system. Then
A(¥)<:r_ means

2 2
5_; (Ot:L - Xw)vi < 9 (n, - Oti_) vy o

1 )\,oo Oti < )»m

14




which desctfbes.the interior of a cone in that subspace complementary
to the invarient' subspace spanned by the coordinate vector(s) corres-
ponding to the eigenvalue(s) 0, = A . The region C is the interior
of the cylinder swept out by the cone as its vertex is translated

throughout the invariant subspace.

A
Any open sphere 4 centered at x  intersects C in an open region

i N Pl whose volume is a constant fraction f of the volume of z{/ no
«matter how small J may be. And if attention is confined to the sphere
77 of normalized vectors /_\;= v/lvll , then the area of C ndnrz
is still the same fraction f of the area xf; N 2. (I have used the
words "sphere", “volume" and "area", as if the vectors v formed a three-
dimensional space, with the intention that they apply to the corresponding
N-dimensional generalizations.)

Instability, when )»m >-)»o , stems from the situation of all limit
points ;t_:o on the boundery of C . Since A(gn) > Km , each member

N\ N
of the sequence X must awoid the region C . But X is at least

A A
as close to C as it is to any limit-point X and h(x) decreases

faster when ;(\ is moved towards C than when g{_\ is moved towards g_:\m ’
except possibly when X lies in the subspace complementary to that
spanned by those eilgenvectors corresponding to eigenvalues Oti < Xm .
Therefore, it seems easy to Imagine a force of attraction pulling each

: _J_cn into C , and hard to imagine how the sequence can avoid succumbing '

to. that attraction. The matter will be discussed further in the next

section of this report.

Of course, the foregoing argument cannot be used to prove that )».m = )"o

because this is not necessarily so. The argument merely indicates how

15
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unlikely it is that Xw > ho . The risk is greater according as the
second-least stationary velue is closer to A's minimum value ko ,
because when &m is very close to X°‘ then the region C is very
narrow. This risk is not peculiar to the relaxation process. Given

A A
A, B, x and 7\.00 such that (A = )\.m B)}_cm =0, and no other
information, the only infallible algorithms known so far to decide
whether A ‘= ko or not all cost at least as much time as the triangular
resolution

T
(A-X B) =LDL ,

where L is a unit lower triangular matrix and D is diagonal.
(Xw = Xo if and only if no diagonal element of D is negative, however
X% may have been obtained.) Fortunately for many applications, special

information is frequently available to help avoid the risk. For example,

one may know that X, is the only eigenvector whose elements do not

change sign (cf. boundary value problems with "pillow-shaped" eigenfunctions).

Or one may know how to start the iteration with an X whose A(El) is
less than A's second-least stationary value.

The last task of this sectionis to prove that
/N
I, = _gn/l[_)gnll-éo as n-—owo .
Let }:m be the invariant subspace of eigenvectors ¥V satisfying
(A -\ Bjv=0,

and let P_ Dbe the B-orthogonal projector into that subspace; i.e.

16



(A - )»wB)ngc_ =0 for every x , and

T
(I—Poo) BP_ =0

One way to construct P is to assemble all the normalized eigenvectors
n
Yy sat isfying
e} N N _ /\T N
A-AB)v, = 0 and (v , ¥y) =¥ By =05y,

into a sum

/\AT
Pm=21311’-i B

Note that [[(I - Pw)gt_“ represents the distance from X to £

0

We already know that every limit X, of' a convergent subsequence

n

~
X lies in Xm . This implies that (I = Pm)_gn -0 a8 n »w ;

n
otherwise there would exist an infinite subsequence X, for which

/N "
"(I - Pm) X ll >€>0 . This subsequence would contain a convergent
'k n ~
sub-subsequence, say Xx itself, whose limit X, would have to
satisfy

A
Mz -2 )x Ml > e
too, contrary to what has already been proved. Finally,

n N
I, = - )"nB) X
A A
=A-AB)( I -PB)x, *+ (- M BP, X,
A N
= (& -ABNI - B,) x, + (&, - M BB, Xy

-0 as n=—->o .

17



4) The Iteration Converges like a Geometric Series

In this section of the report, the previous section's conclusion,
that Xn =\ and gh'—>0 as n = , 1is replaced by a stronger
deduction: the sequence X, converges at least as quickly as a geometric
series to an eigenvector X corresponding to A's smallest stationary
value XO ; except in those rare and unstable cases when %m . ho .

This deduction stems from the observation that

(A more precise statement of the last equation is proved in Appendix II.)
The natural thiﬁg to do is find out whether replacing Xn by A, in the
iteration formula for En causes a significant change in the convergence
properties of the iteration.

It is convenient to begin with an examination of N, §n and_gn.

We have

In 1/l = 1g," = 1/0Cx = 2 )lip, IP]

<VET BT /iy - )yl

-0 as n-oo .,

Therefore, m. =1 except for those values of n when = =0
n T‘n

The value §n must be so chosen that there exists a positive constant

C such that
N\
M < - C(BnT zh)2/“2n“2 for all n

18



(cf. the second-last paragraph of section 1); this implies, by virtue

of the last paragraph of Appendix I, that there exists some positive

constant d < 1 :such that

lgn/Tln -1 <a for all sufficiently large n

except when En =N, =0. The last inequality plays an important role
in what follows.

Now let us replace A~ in the x-iteration by an independent
variable by, - To diminish the possibility of confusion, we shall replace
the letter x by y and re-define the iteration thus:

GivenaA , B, p, and = A(En) as before, replace x by a

new sequence y. defined with the aid of independent variables K, as

follows. The residual r = (A - )"nB)En is replaced by

By (4 - ”nB)Xn

The value n, = - %Tzn/[(nn - )\.n)]|2n||2] is
replaced by o = - gnT En/[(zrn - “n)”EnHQJ .

The value §n is replaced by Tn = Ungn/nn r  except that

Tn = 0'n when ‘E‘n = nn = 0 . Finally,

Zn+l : Zn “ n =n

Each vector I, is an analytic function of M for m < n

whose only singularities occur when T ﬂm , but we shall restrict

P to the interval

19



from which L has already been excluded. Clearly, if ¥, = X,

and s = -‘?-m for all

and p,m=Xm for all m > n , then n

Im = I

m>n .. On the other hand, if Y, = X and by = )»00 for allm > n ,

then the relations
A =X =0 (r/|x H)2 and
m 0 =m’ "=m
(g - 2/l >0 asm =

Imply that as n -«

(g, - 5/l
(s, - £/l |

0 (x,/le ) ana

i

0 (x, /I 1)?

provided m - n is bounded as n =»® . We shall be interested mainly

in m=n+M. (M was introduced near the beginning of section 3.)
What is the special significance of setting By = Xw? When

this is done, the sequence N for m > n coincides with what one

would get if he used a relaxation iteration to solve the linear system

(A-A B) y=0
for a non-zero vector y , starting the iteration from y, =% -

Something is known about the convergence of that iteration.
I

Consider first the stable case A = >"o ; with By = ko for all

m>n. Now (A - XOB) is a positive semidefinite matrix, for which

20




the theory of the relaxation iteration has already been developed
in the author's previous report (1966). There it was shown that
there exists a constant K < 1 , dependent only upon (A = XOB) , M

and the constant d , such that

s ol < Xlls il

where |||=a ||| represents a certain vector norm whose definition
now requires a small digression.
Let W = (El ; My seeey }_JN) be the orthogonal matrix (WTW = 1)

which diagonalizes A = XOB ; say

_ _ T
A-AB =W diag(@i)wT - 21 o, W, ¥,

Since A - A.OB is positive semi-definite, all Oi > 0 . Then for any

vector v define

2 _

lell® -2 ¥ gil B E1T + L w W)y

e, . . e, =0
i i

In the special case where s is a residual vector
T
s= (B-MB)y =), 8 ¥ ¥ ¥,
2 T
IHall® = y%a - » )y ,

but this formula is of no use when 8 is a general vector.

The next step is from || §-n+Mm-<-'K"|-§-n“I to

ezl < KMzl

21




where Kl < 1 and Kl is independent of n if n is sufficiently

large. The step is valid because
0z gl 1/ gl < W syl / Mgl + 0 (2, /M 1D
< Klll Il /lbe ol + 0 (2 /e 1)

< Kz 1/l + 0 (2 /e 1)

(Recall that "3c-n+M"/”5n" -1 as n -~ .) It is necessary for n to

be sufficiently large that the term 0(£n/|l3c_n+M||)2 be small compared
with (1 - Kz lll /lix, el -
Thus do we see that o -0 at least as quickly as the terms of

some geometric progression with common ratio K%_/M <1l . And because

ey -2l = D5l - Bl < 2ln |l
—_—
= 2V£rlT B_lzn /(“n - )"n)

-0 at least as quickly as Kg/M s

the sequence X must converge to its limit X, at least as quickly as
some geometric series with common ratio Q/M <1,

This is just the result we want, especially since it shows that
there is no need to compute the normalized sequence r%'n = En/llgnﬂ .
Furthermore, the result is valid whether or not )”o is a repeated eigen-

value with several linearly independent eigenvectors. But the method

of proof conceals the closeness with which K1 can approach 1 when Xo

22




is merely the smallest of a cluster of nearly equal eigenvalues, in
which case n may have to be exceedingly large before Xn is
closer to Xo than to the next largest eigenvalue. Besides, when
several eigenvalues are clustered near & there is an enhanced risk
that the limit of the sequence Xn will be an eigenvalue Xw > xo .

Consider now the unstable case A > Xo . The linear equation
(A -\ By =0

now has an indefinite matrix (A - &wB) , so the relaxation iteration

is almost certain to produce a sequence of vectors ¥ which diverge

exponentially in such a way that
*
Yo (A - XwB)zm -» - o exponentially as m —o .

Some justification for claiming that divergence is almost certain can
be found in section 4 of the author's previous report (1966). There it
was shown that if the sequences Py and Tm/cm are chosen in advance
of any knowledge about Ly 7 then the sequence I must diverge
exponentially unless the initial vector ¥ is placed into a certain
hyperplane 79;‘which depends upon (A - %;B) and the sequences Pn
and (ﬂﬁhﬁ) in a practically undecipherable way. And since

(Zﬁ - zm)/nzm" =0 (En/nzn")e , there is good reason to conclude that

Xm is most unlikely to converge to a limit A > ko unless the sequences

B and gm are correlated with P in some way designed to achieve

what would otherwise be a rare event.

23



5.) Variations

At the cost of minor modification, the foregoing analysis can be
extended to cope with two variations of the relaxation iteration which
will be mentioned here.

One variation is 'block relaxation", in which each step
X "X T %J% is a suitable linear combination of some specified
subset of the basis vectors Sﬁ . If the subset contains L vectors,,
then the vector x  + ann which minimizes A(_)_c_n + & En) is obtained
by solving an (L + 1) X (L + 1) eigenproblem. Subject to this
complication, the results in the foregoing sections can be applied to
block relaxation-with no important changes. Regrettably, the techniques
used in this report do not indicate when block relaxation is more efficient
than the simpler iteration.

Another variation seems to have been motivated by the fear that
X, might diverge to infinity or converge to zero even though the
normalized sequence gn converges to the desired eigenvector. The
discussion in the previous section of this report should put such a

fear to rest, but in the absence of that discussion the natural thing to

do is find some simple way to normalize the sequence X, - The simplest

th
way is to fix some component, say the N~ , - of all vectors x, &t
some constant value, say 1 . This normalization is maintained by

restricting each member of the sequence P, to the subset
[31 » € seees sN-l] s

of which each element should appear at least once in each set of M
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consecutive vectors

oo Bpay 2 Bpeo 2ttt Bpamel 0

The analysis of sections 3 and 4 now requires some small modification
to yield results which are outlined below.
Let A' and B' be obtained from A and B by deleting their

respective 1last rows and columns, and let
A(v') =% _.f\'z",q;:r_ B' v' and

)..(') = min A'(v') over v! #0

There is some risk that the restricted relaxation iteration will converge
to )\.m > xé , but that risk is as negligible as before. The most
likely event is that A = )"o as before, and that X, DX with X,

T .
normalized by the condition &y X = 1.. There is also a non-
negligible risk that the iteration may converge to Xw = Xé > Xo , in
hich 111 di fo infinity although x. = %/l [ will
which case x wi iverge to nity a ough x = X

n T N
converge to a vector X, such that & X, =0 . The first N« 1

n
components of x_~ will provide an eigenvector 1';‘ 0 satisfying

f = .
(o' =2 B')y' =0

Example 1 of section 2 illustrates this possibility. The possibility
that )\,w = Xé > )“o can easily be detected by performing a final

n ~
relaxation X4 = Xt € ey since Xo < A(}_cw_'.l) < A(g_cm) = Xw

unless A.00= 7\.0 . Therefore, the restricted and unrestricted relaxation
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iterations can differ in only one important respect; -one dterative method
may converge faster than the other. The author's limited experience
with both methods indicates that the unrest&ted iteration should
normally be preferred despite the existence of rare examples (like that
in section 3 of his earlier report (1966))where the restricted iteration

seems to be faster.

6.) Final Remarks

So far, the relaxation iteration for solving
- (A - XOB)EO =0

has been discussed without reference to rounding errors. Their most
noticeable effect will appear in the sequences )‘n and Ilz_(le whose
computed'values are obtained indirectly during the iteration defined in

section 2. Roundoff will prevent the computed values

)"n-l-l = Xn + Mn (rounded) and

2. .2
1" ILnll v 28 gn Bx, + & llp I° (roundeq)

from precisely satisfying the equations

xnﬂ = A(E-n+l) and
T
lx +1II X1 B

The remedy is simply to recompute the values A and ||3c_n||2 directly
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from their definitions once or twice during the course of the iteration.
For example, one good time to recompute Xn and "En”2 is when

(A - Xn+l) has first remained no larger than about 10n units in

n
the last place of Xnﬂ. for M consecutive values of n .Another

good time to recompute Xn and r, = (A = hﬂBk&l is just before accepting
X, as an adequate approximation to X, i the smallness of I, is a
useful indication of the accuracy of X, provided one has some information
about the separation between Xo and the next larger stationary value

of A, and a bound for the size of B_1 . (See Appendix II, part (iii).)

Ultimately the iteration index n will become large enough that

(r

n'xn+1) is negligible although "§n+l - En” is not negligible yet.

This occurs because

2 .
A=A =0 (En/IBn") while
I "% < Q.(In)

as 1s shown in Appendix II. For all subsequent values of n it may
be worthwhile to skip those parts of the calculation which up-date
2 . .
"§n+l" and Xn+l . The time saved is noticeable when A and B are

such sparse matrices that the computation of
T _ T '
By In = (g (A - AR,

consumes fewer than a dozen arithmetic operations. kh can be held con-
stant for several iterations, and recomputed from the definition
A = A(En) sufficiently infrequently that the time spent upon

n
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recomputation is a small fraction of the time saved by not updating
Xn at each iteration. The conclusions in section 4 remain valid

however Ah may be defined provided that

Dy - Al =0 (/I D7 .

ol

But the definition of kn given in section 2 (based upon the scheme

used by Nesbet (1965)) is the nicest that the author has seen.
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Appendix 1

Here is an outline of the proof that when & =¢§ ,
T 270 2 2
M < - (pr)/Gs [plI” )

where s = max(A(u) - A(v)) over u#0 and ¥ #0 .

For the sake of simplicity, and without loss of generality, it is

assumed that

lell = Ilxll = 1 and A> A =0

Now we abbreviate;

@=pzr and P=(p, x)=pB .

The numbers @ , B and n can be bounded;

2 2 2 2

B” = (2, x)° < [l” =" = 1.

o = (BTE_)Q < (ETBB)(ETB-]'E) by the Schwartz inequality,
_ L Igl/2 (B-l/2 ) p-1/2 )2Bl/2!}_</£TB£_ < 52

= A(p) < s

Now let us express &\ as a function of £ :
2
O o= m (e + 20fxn)/(1 + 2 BE + E7) .

This is minimized when ¢ = ¢ , at which point dA)\/dg = 0 . Therefore,
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oy, = (2t + @)/(L 4)

which may be combined with the former equation to yield
By = /(B +1/¢)  and
(n - a)t’ +xt + @ =0 .

Solving the last equation and substituting into the former yields

¢ = - 20/(x +—\/n2 - LWpan + hof ) and

oo (n - 200+ - g+ P )

AAmin

An application of the bounds

2
t<s, ~-B<s and o? <s

yields
Mmin Sb- de/(js) ’

as was claimed.
Incidentally, if &/6 is held constarit as { -0,
2 . .
y - - . Javy imates A\ i
Ahﬁ&%dn -1 - (&/t-1) . in general, approx es with

a relative error that is smaller than that with which & approximates

¢ .
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Aggendix II

For the sake of completeness, here is a short proof of the
classical result that as_;'_(?ﬁ)/llﬁ" -0 'and A(gc_) — Xm , a

stationary value of A(x) ,

A(x) - &, =0 (x(x)/Ixl)® -

To be more precise, given real symmetric matrices A and B with B

positive definite, and any vector X , we define

» = Ax) =

;:
&
IR
%

I =I(x = (A-M)x,

e =-\/;t'_T B_lr_ﬁlB_g_t ’ and

A, = A(x_) for some eigenvector X_ #0

such that (A = AB)X =0  ;

and we prove that

(1) The functional A(x) has at least one stationary value

A, between A - e and A + e inclusive.

(ii) If Kw is the only stationary value in the aforementioned
closed interval [A-e , Ate] , and ai are the other
stationary values, then Xw lies in the smaller interval

» - e2/ min (Oti - ), A+ ee/ min (M - Oti)] ’

Oli>7\.°° ai<7\.°°
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provided that, for example, when all Oti > )»w then

e2/ min (A - ai) = 0 by definition

ai<>~w

(iii) If for ® > e we define O\CS to be the subspace spanned
by all the eigenvectors corresponding to eigenvalues
(stationary values of A ) in the interval [A=8 , A+8] ,
and if @ is the angle between x and 085 , then

sin € <e/ min -af .
v -ol >3

(The angle © is -defined by

cos® 6 = max (ETB 1)2/(§_TB x !TB v) ,

€£8
#0

I< i<

and can be viewed as the smallest non-negative angle between_x and

a vector v in the hyperplane xs .  When the interval [A=8 , A+8]
contains only one eigenvalue, sin € is a measure of the error with
which x approximates a corresponding eigenvector, even when the eigen- ,
value is repeated.)

The proof is essentially due to Kato (1949) with a few
modifications. In particular, the results obtained here are valid even
if M is a “degenerate eigenvalue" whose eigenvectors span a subspace
of dimension greater than 1 . Also, result (iii) is simpler than Kato's.

First, the positive definite symmetric matrix 31/2 can be

used to replace B by I,
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A by A'= B'1/2A B'l/z ,

xbyx'-=

|
oy
W
)
o}
Q.

r by r' = B:'l/g

with no other changes. Therefore, there is no loss in generality if

B is assumed to be I at the outset.
Now suppose the interval [p , v] contains no eigenvalue & of
A. This means that (@ =-p)(a- v)>0 if isaneigenvalueof A,

so (A = uI)(A - vI) is positive definite. Therefore
T
X (A - uI)(A - vI)x > 0 or

e2+(k-u)(>«.-v) > 0

Conversely, if 2e + (M =p)X=v) =0, then [p, v] contains
at least one eigenvalue. Thevalues pu=A~-e and v =\ + €
satisfy this equation and prove (i)
If the closed interval [MA-e , Mte] contains only one eigenvalue

A_ , though A, may be a repeated eigenvalue, let o, be the other

eigenvalues and let

M- max Oli+,or - ifa.lla>)\.w

1
ai<)\.°°

As p decreases to its limit, it becomes less than M = e .Now set

v=X+e2/()‘.-u)\Ax+e2/ min (x-ai)

(11<>».m
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For the same reason as before, we conclude that [u , v] contains
at least one eigenvalue. But because

max O, <p<A-e<A<V<<A+e

i
ai<)~°°

if W is close enough to its limiting value, there can be only one
eigenvalue in [u , vl , and that is m)». This proves part of (ii),,
and a similar limiting process in reverse proves the rest of (ii).

L 4

Finally, write x = w +_u where w € )86 and u € Ls . ("fs is
4

the orthogonal complement of I’B .) Since Jfa and fa are both
invariant subspacgs of A , in the sense that A.Cag:xa and

L 4
sl e’ ,

r= (A-M=(A-MW+ (A=-Mu

41
where (A - M )w € J35 and (A = AIJu € ‘tb « Therefore,

e = [wi(a - A1)% + u (A - AD)?ul/x'x
> (s - A1) Pu/ulu) lue/x ]

Now, BTy_{T§ =sir12 e ; and

ET(A - )\.I)Ql_l/E_TE_ min (a, - X.)2

|ai->q>a

v

1

L
because the restriction of A to xa has no eigenvalues in the

interval [M=8 , A8] . This proves (iii).
It is possible to show with examples that each of the bounds
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implied by (i), (ii) and (iii) can be achieved, though not
necessarily simultaneously. These results provide satisfactory error
bounds except when the separation between adjacent eigenvalues is not

much larger than the residual e , for which case see section 3 of

Kato's paper (1949).
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