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ABSTRACT

A theory 1s devloped to account for the convergence properties

of certain relaxation iterations which have been widely used to solve

the eilgenproblem

(A-M)x=0, x#0,

with large symmetric matrices A and B and positive definite B .

These iterations always converge, and almost always converge to

the right answer. Asymptotically, the theory is essentially that

of the relaxation iteration applied to a semi-definite linear

system discussed in the author's previous report (1966).
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Relaxation Methods for an Eigenproblem

Given are two real symmetric N xN matrices A and B with

positive definite B and very large § ( > 500 ). Required are the

minimum value A of the Rayleigh Quotient

_ T T | |
Ax) =x" Ax/x Bx for x#0 ,

and a vector 25 at which the minimum is achieved. In other words, a

solution 1s required for the symmetric eigenproblem

h =A - ](A-r B) x = 0

The numerical solution of this last equation 1s complicated by the size

of N ; the matrices A and B occupy so much storage that few of

to-day's electronic computers could allow access to more than a few rows

at a time. It 1s natural to'‘consider a relaxation iteration that approxi-

mates 'X via a converging sequence X, 7 Xp,eee, X eee 1D which

X differs from X_ in Just one component, because such a process can
-n+l -0

~ meke do with restricted access to the matrices A and B . But some

questions arise. How best should a specified component of x be changed,

and what will the consequences be? Does the iteration necessarily converge

to the right answer?’

Surprisingly, these convergence questions have not yet been

discussed in print, although a variety of relaxation methods have been

widely used for a long time. For example, see Shaw (1953) Ch. VIII and
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Nesbet (1965). The object of this report 1s to shed some theoretical light

upon the convergence questions. Since practical applications motivated

this work, the hypotheses are only as weak as are likely to fit methods

currently in use. Consequently, the conclusions are not as general as

those of A. Ostrowski (1965), with whose independent work there 1s some

overlap.

1.) Preliminaries

First, some convenient abbreviations. Since B is positive definite,

it can be used to define an inner product

~ JT
(x, y) =x By

and & norm

xl =\/(x , x)="\/x"B x

with the usual properties. Hence

CT 2
A(x) = x A x/[x]I® .

It 1s also useful to have the residual vector function

r(x) = (A - h(x) B) x

because r(x) has the same direction as grad A(x) ;

T 2
a(x) = 2 x(x)" ax/[x|®



This shows that A(x) is minimized when

r(x ) = 0 for x # 0, and

A= A(x) is minimized .
0) —0

Incidentally, the relation x’ g(x) = 0 will be used without comment.

The next step 1s to replace the infinitesimal dx with a finite

increment & . Starting with some arbitrary x # 0 , and the

corresponding

= N= A(x) and

r=r(x) |,

we consider the consequences of changing x to x + X . One consequence

is that MA changes to

JE VAY A(x + Ax) :

T 2 2
on = [2scr + (aoe) - 2) lx) llx + ax”

We are 1ncline&to prefer (x + Ax ) to x 'whenever OM < 0 .

Suppose now that Ax is restricted to the form

where Pp 1s a given direction and § 1s a scalar which we hope to choose
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in such a way that & < 0 . We shall abbreviate

x = Ap)

and assume, without loss of generality, that

T> AN.

(Otherwise x and Pp should be exchanged.) It 1s convenient to assume

further that

T> A

for two reasons; first because much of what follows can be extended to

the case n = AM via a suitable limiting process with x =A + . Second,

the vector p will range over coordinate vectors like

T

eg; =(0,0,..., 0, 1,0, 0 ,.00,0) ,

with a 1 1n the ; OR position, so the value =n will range over the

quotients 8,4/by4 of diagonal elements of A and B ; and an

infinitesimal increase 1n 844 Can be of little practical importance.

Now setting &x = gp produces

2 2

Mh = (nt - 2) Ee - 21) |plI*/llx + gpl

2 2
= (x - M)(1-2n/¢) |lx|I”/ Ix + ax]

where 1 1s another abbreviation;
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n=-pz/l(x-Mgpl1 .

The last few equations, together with the inequality nm =A > 0 ,

imply that & < 0 for any value of € strictly between 0 and 27 .

Unless n = 0 , there will be some latitude in the choice of §,

and 1t 1s natural to look for the best choice.

The "locally best" value for §€ is defined now as that value

t = t for which & is a non-positive minimum. That value § always

exists, even when =n = A, and satisfies the equation

T 4.2 2 _

pir/|plF + (x - ME + [(x - A)p , x) = pxI¢/|xI° = 0.

This equation 1s derived from the condition

d = 0= Mx + Ep) = at &=20,dé —

T

i.e. p r(x + tp) =o .

The last equation 1s similar to one satisfied by 1 in which A(x + tp)

"is replaced by A = A(x) :

T

p (A -2B)(x + mp) = 0.

The resemblance 1s also apparent in the formula

2 2t = 2n/[1 YA + bn(nlell® + (2, VII" 1,

which shows that { and n differ by a relatively small amount whenever
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n is small or, more precisely, whenever |n|< < [x|l/lle]l . . This

condition is satisfied when x is a sufficiently good approximation to

X, » SO there is some justification for simply choosing & = 1 as

is so often done in practice (e.g., by.Nesbet(1965)). But when 7

is large then the choice & = { is much to be preferred. (Incidentally,

Le< xl/lll>

When &€ = £ the change AM satisfies

T (2 2 2
M<-(pz)/(3 sllpll” xlI) where

8s = max(A(u) - A(v)) overall u # O and v # 0 .

(i.e. s is the spread in the field of values of A .) A brief proof

of the last inequality 1s given in Appendix I. That proof suggests that

the choice of &¢€ is not very critical. In what follows, we shall assume

only that & approximates € roughly, but well enough that

T 2 21.112
ax <=) /Clel®lxl®)

for some positive constant C which 1s independent of p and x . The

last inequality, weak though it is, suffices to establish convergence

of the iterations described in the next section.

It 1s of considerable practical importance that the theory not

restrict & to be either n or £ , even though the latter value is

the best value to use for any single step. Experience with relaxation processes

suggests strongly that the best strategy for choosing values of & to be

used 1n each of a long sequence of steps may well require that each value

of &¢ differ in some systematic way from the corresponding value of {
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in each step. For example, a policy of overrelaxation, in which

t/¢ 1s kept roughly constant and greater than 1 in each step,

sometimes produces faster convergence than the policy of keeping t/t = 1.

Unfortunately, the theory of overrelaxation 1s not as well developed

for the eigenproblem as it is for solving linear systems (cf. Varga (1962)).

2.) The Iteration

Let 23 denote the 5th coordinate vector,
T

€5 = (0,0 5.005 0,1, 0 yee, 0) for 1<J<<N ,

. th _
with a 1 in the J position. Let

2» Po yee Ln eo 0

be a sequence constructed by choosing p, = &; for some J = J(n) .
Later, in section J, more will be said about the way in which J(n) should

behave. For the present, the notation for the sequence Py 1s used

merely to avoid a notation like

Es 5 €. se00y Ei 5 eso
J Jo TE | |

with subscripted subscripts.

Now we define the relaxation iteration to solve Axx = A B 2.

for x # 0 and the smallest possible value af A = Ax) . Beginning

with an arbitrary Xx, with Ix 1° = x> Bx, >0 andY 1 =1 "=
T 2

M = A(x) =X Ax [lx | , we define for n =1, 2 , 3 yee.

/



r =x(x)= (a-xBkx ,

iL = Mp, ) ’

n, =-p r/l(x -2)plI"1 , | oo
R | wo? 4 oT 2
= + J HX |6, = en/I1 +7\f1 + hn(nlp7 + my Be)le 17 0

En 1s an acceptable approximation to C, (see section 1) ’

Zbl TEX fF Sa By | BN |

2 2 T 2 2

lal” = loll” + 2 6) py Bx) + 8 loo” 5

Mo = (n-ne (en =e)IP lk, IF, andn n n’ °n' 'n n’ En +14?

Mol = A + aN .

This computation 1s simpler than 1t seems because Bn 1s just one of the

co-ordinate vectors gy . Therefore 2. A= 8 is the 5th row of A,
and 2, B = by similarly. There is no.need to compute x explicitly,

T T T 2 th
=. - | . T = b,, . Jmerely PB I, ==33% - My BX he number |p,|| yy - is the J

diagonal element of B , and Tn 1a [pb Whenever

My < < lke, 11/1, 1 - need not be computed but can be approximated by

M, 5 This will happen for all sufficiently large n. Since the bulk of
T T

= > d
the work is concentrated in the computation of P, A X, 3 =n an

D B x = 5 X the work required to go from xX, to AY is
roughly 2N multiplications and 2N additions, possibly much less if

A and B are sparse. (If RB, were not a coordinate vector, the work
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T T

would be N times larger unless p A and p, B were already

known. )

By induction, vo= Ax) for all n « We can assume that

T > Ay for the reasons given in section1, and hence prove by

induction that a < 0 . Therefore there must exist a limiting value

A =1lim A as now
| co n

such that

M2 hg 2 >A >A 02 eZ A, 2A

Because of the way € was chosen, there 1s a constant C >» 0 such that

T 2 2 2 oo

(8 2,07, PlieyIP1 < - 0 Jc 20 8s noe

Therefore ny lip, 1/1, | — 0 and hence lip, [1/11 | 40 as n =x,
Consequently

oq = x l/lll =O

However, there 1s no reason yet to conclude that xX or the normalized
A

= . absenceLW x [lx || approaches any limit In the absence of further information

about the sequence 2, > the best that can be said is that the normalized
A

sequence X, has at least one point of condensation; and 1f there are

more than one then these points of condensation form a continuum with

no 1solated points.
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Example1: N=5, B=1,

oo 1 <1 © | 1000 \

| A= -1 1 =-1 ’ Xy = 1000 ’
oO <1 1 -1

and all pare chosen from the pair g, and e, Each of g, and

& 1s assumed to appear infinitely often in the sequence P, - Now

it can be shown that AN A =0, and

Fa
T

x, =x /lx)l »(Vi/2, Vije, 0)" .

But x diverges towards (+o, +0, =1) and

Example 2: Here N = 6 and B =I and A is a diagonal sum of two

matrices A from example 1 . Similarly,

X = (L000 , 1000 , -1 , 1000 , 1000 , -1 ) 1

and all p are chosen from the set {ey » 7 Bs Es |
members of that set are assumed to occur infinitely often in the sequence

P « NOW

AS A = 0 > A
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as before, but neither Xx, nor - need converge. Instead, the
points of condensation of the sequence x constitute some arc of
the curve traced by

(w,u,0,v,v,00 Ce

when u > 0, v>0 and & + = 1/2,

’ Example 5: N , Aand B are as in example 1, but now xX, = (L , Oy nt
and the sequence P, 1s arbitrary. In this case all M = M = 1 , and

a ll X, =X Here 1s a case of convergence to a wrong answer that 1s

not obviously wrong. Fortunately, the limit xy is unstable. xq lies

on the intersection of two planes which separate all space into four dis-

joint regions 1n which alternately A(x) > 1 and A(x) <1 . In any open

spherical neighborhood of X, 5 DO matter how small the sphere, there

exist vectors x with A(x) < 1, and if one of these is used to start

the iteration then the iteration will converge to a new limit A <1.

Example 4: B is almost a unit matrix, in that all elements of B = 1

are very small; and A's diagonal terms 844 differ by amounts that are

very large compared with A's off-diagonal terms. i.e., each element of

A - diag(A) is small compared with any difference fq - 31 with
#3.

X= &; for some J , and the sequence RP, consists of those

coordinate vectors €; with j # J repeated infinitely often. Now

x, converges to an eigenvector whose eigenvalue 1s very near a7 - I f

81g 1s the algebraically least diagonal element, then that eigenvalue 1is

the desired As .
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The foregoing examples show how necessary it is te .specify

appropriate choices for Xy and the sequence J in order to secure

convergence to the desired answer. In the following sections of this

report, some assumptions are made regarding those choices. The

assumptions are intended to be weak enough to be practical, yet strong

enough to guarantee convergence to an answer which, 1f it 1s not the

desired answer, can usually be checked and corrected.

3.) ‘The Complete Iteration

This section discusses the consequences of choosing PD from the

set of N coordinate vectors &; in such a way that each set of M

consecutive vectors PB, > Poty 2°02 PoaM-1 includes each coordinate

vector &5 at least once. M is some fixed integer no smaller than N.

In the previous section it was shown that MN A, > A as n =o,
\

and that the sequence of normalized vectors Xn = x [lx | possessed a

continuum of points of condensation. Let x be any one of these points

of accumulation; it-will be the limit of some subsequence of x, Say

n n

Xo as n, - for k=1,2,53,... .

Evidently Ix = 1 . Furthermore, because

x, 4 - x [1/1 | - 0 (see section:2) ,

n N

lx. = xl 20 too ,

PN A

and therefore Xn 1 =X as k =» . Indeed,
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\ /\ |

hom Eo 88 koe

for any fixed m , but we shall use this fact only for values of

m<M.

A

Now let r, = r [lx | for all n ;

n A A

r = r(x) = (A = A Bx where

| \

Mom Mx)

Because of continuity,

nm —»r = r(x ) as Kk — oo .

n

The next objective 1s to deduce that r, = 0 by showing that

T NN T \
&; r =0 for J=1,2, .... and N . The fact that px, 0 p

\

proved 1n section 2, is exploited to prove e; r, = 0 as follows.
Let j be fixed. Given k , it must be possible to solve

for m = mo between 0 and M-1 , because 25 appears at least once
‘in the sequence

En 2 Bn +1 7000 Bo aMel |

Therefore e, r = or -0 as =>® , and hence
i
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m /\

&4 r, = 0 as required.
A | A

Since r = r(x ) =0, x mst be an eigenvector and A

the corresponding eigenvalue of A with respect to B . This 1s so for
~

every limit point X in that continuum of limtpoints possessed by
AN AN

the sequence x If A, 1s a simple eigenvalue, then x must be

one of the two normalized eigenvectors differing from each other only
A

in sign, so 1n this case the normalized sequence X, must converge. But
A

if A ls a multiple eigenvalue, the convergence of 2. 1s a more

difficult question which, together with the convergence of the unnormalized

sequence X , 'will be elaborated in the next section.

There 1s another question. Does Ass = AT It 1s remotely possible

that A > Mo , but in this case ho, cannot be a numerically stable

limit. The next three paragraphs explain why.

Let C be the region containing all vectors v such that

My) <r = Ax).

C 1s easiest to describe with the aid of a coordinate system for

T

in which B is represented by a unit matrix and A is represented by a

. diagonal matrix of 1ts eigenvalues Oy , Oy sees, Uy . The eigenvectors

of A with respect to B yield just such a coordinate system. Then

A(v)<A_ means

y (a; - Mo )V < 2 (A - a) vi , |
a, > A a, < A
i 00 i 00
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which describesthe interior of a cone in that subspace complementary

to the invariant subspace spanned by the coordinate vector(s) corres-

ponding to the eigenveliue(s) Gy = A . The region C 1s the interior

of the cylinder swept out by the cone as its vertex 1s translated

throughout the invariant subspace.

Any open sphere 4 centered at y intersects C 1n an open region

: Cc. N Pi whose volume 1s a constant fraction f of the volume of of no
| matter how small « may be. And 1f attention 1s confined to the sphere

7 of normalized vectors T= v/|lvl » then the area of C Nd ne
1s still the same fraction f of the area A N #.. (I have used the

words sphere”, "volume" and "area", as if the vectors v formed a three-

dimensional space, with the intention that they apply to the corresponding

N-dimensional generalizations.)

Instability, when A, > hg p stems from the situation of all limit

points x on the boundary of C . Since Ak) > A , each member
of the sequence % must aweid the region C . But x 1s at least
as close to C as it 1s to any limit-point % , and h (0) decreases

A A A

faster when Xx 1s moved towards C than when X is moved towards X, 7

except possibly when Xx lies in the subspace complementary to that

spanned by those eigenvectors corresponding to eigenvalues ay < A .

Therefore, it seems easy to ¥magine a force of attraction pulling each

x into C , and hard #0 imagine how the sequence can avoid succumbing |
to. that attraction. The matter will be discussed further in the next

section of this report.

Of course, the foregoing argument cannot be used to prove that A = A ,

because this 1s not necessarily so. The argument merely indicates how
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unlikely 1t 1s that A, > A . The risk 1s greater according as the

second-least stationary value is closer to A's minimum value Ay ,

because when A, 1s very close to Mo then the region C is very

narrow. This risk 1s not peculiar to the relaxation process. Given

A A

A, B, x and AM such that (A = A B)x = 0, and no other
==00 00 co 00

information, the only infallible algorithms known so far to decide

whether A= Ao or not all cost at least as much time as the triangular

resolution

T

(A-XB) =LDL ,

where L is a unit lower triangular matrix and D is diagonal.

(A = Ao if and only if no diagonal element of D is negative, however

Mo may have been obtained.) Fortunately for many applications, special

information 1s frequently available to help avoid the risk. For example,

one may know that Xx, 1s the only eigenvector whose elements do not

change sign (cf. boundary value problems with "pillow-shaped" eigenfunctions).

Or one may know how to start the iteration with an Xq whose Ax; ) 1s
less than A's second-least stationary value.

| The last task of this sectionis to prove that

A

xr, =r /lx | »0 as n ow .

Let XL. be the invariant subspace of eigenvectors V satisfying

(A =X B)v =0,

and let P. be the B-orthogonal projector into that subspace; i.e.

16



(A — A BJP x = 0 for every x , and

(I - P )t BP = 0 .
0 0

One way to construct P_ 1s to assemble all the normalized eigenvectors
n

Vy sat isfying
\ N \ Am \

| (A -M B)v, = 0 and (v4 , vy) =v, B Vy = B, ;

into a sum

| P= Ll, vv, B.

Note that I(T - P xl represents the distance from X to £

We already know that every limit x  of' a convergent subsequence

n ¥ aNX lies in &_ . This implies that (I ~- P )x 0 as n sow ;
k n

otherwise there would exist an infinite subsequence Zn for which .
FAN FAN

I(T - P) X | > € > O . This subsequence would contain a convergent
Tk " ~

sub-subsequence, say x itself, whose limit X_ would have to

satisfy

\ ;

HT -2)x li>e

too, contrary to what has already been proved. Finally,

n A

In = BA MB) Zn
A SEA

=A-AB)( TI - RB) x + (a-MBR, X
A A

—-0 as now .
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4.) The Iteration Converges like a Geometric Series

In this section of the report, the previous section's conclusion,
n

that My =A and r, — 0 as n —>o , 1s replaced by a stronger

deduction: the sequence X ~~ converges at least as quickly as a geometric

series to an eigenvector X, corresponding to A's smallest stationary

value Mo , except in those rare and unstable cases when A, ; Ao .

This deduction stems from the observation that

\ 2 n

Mm, = 0(x)” as rr-0.

(A more precise statement of the last equation is proved in Appendix II.)

The natural thing to do 1s find out whether replacing My by A in the

iteration formula for X, causes a significant change in the convergence

properties of the iteration.

It 1s convenient to begin with an examination of Ny, C. and € o
We have

ng l/l, = l"2 /00r, = 3) gy I)oo n'’ "=n =n -n' n n/ En

Afr 10 |
< Vr Br [lm -2)lpll

— 0 as n-—o0o .

Therefore, £ /n, -1 except for those values of n when { =1n_=0.

The value En must be so chosen that there exists a positive constant

C such that

T 2 2

Mh < - cp, r) / le, | for all n

18



(cf. the second-last paragraph of section 1); this implies, by virtue

of the last paragraph of Appendix I, that there exists some positive

constant d < 1 such that

] £/n, - 1] <d for all sufficiently large n

except when € =n, TO. The last inequality plays an important role
in what follows.

Now let us replace M in the x-iteration by an independent |

variable hy - To diminish the possibility of confusion, we shall replace

the letter x by y and re-define the iteration thus:

Given A , B, p. and nm = Alp) as before, replace x by a
new sequence y defined with the aid of independent variables W, as

follows. The residual r, = (A- A Bx is replaced by

s, = (A -nBly .

The value nN. = - _ ne - 2) 1°] in - =n =n n n/ Bn +8

replaced by oO. ==0D T S [[(x =H )|| IF)n =n -n n n’ Bn )

| The value En 1s replaced by Ty = 0 &/n ’ except that

Ty = 0, when & =n =0 . Finally,

n+1 + In - "n Pn -

Each vector NA is an analytic function of Ho for m < n

whose only singularities occur when = nt , but we shall restrictm

Hy to the interval

19



from which i has already been excluded. Clearly, if Y, = X,
— A = —

and Hoy m for all m > n , then Ln xX and 5. In for all

m>n.. On the other hand, if ¥, =X, and Wy = A for all m > n ,

then the relations

A =A =0(r [|x 1)? and |
m 00 —m’ "=m

(xy = 2) ltl 50 asm > a

imply that as n — x

(g, - xxl = 0 (x /lx 1D? ena
“m =m "=n =n’ Y=n

(5, - £)/ lx) = 0 (x/lx II)?-m =m ~n’ '-n

provided m - n is bounded as n =o . We shall be interested mainly

in m=n+M. (M was introduced near the beginning of section 3.)

What 1s the special significance of setting hy = A? When

this 1s done, the sequence Yin for m > n coincides with what one

© would get if he used a relaxation iteration to solve the linear system

(A = A B) vy = 0

for a non-zero vector y , starting the iteration from y, =X -

Something 1s known about the convergence of that iteration.
l

Consider first the stable case A = Ay , with hy = Ms for all

m>n. Now (A - AB) is a positive semidefinite matrix, for which

20



the theory of the relaxation iteration has already been developed

in the author's previous report (1966). There it was shown that

there exists a constant XK < 1 , dependent only upon (A - AB) , M

and the constant d , such that =

ls oll < KlisIl

where |||=a ||| represents a certain vector norm whose definition

now requires a small digression.

Let W = (wy r Mp seca, wy) be the orthogonal matrix (WoW = TI)

which diagonalizes A = AB 5 say

_ T TA-AB =u diag(e, JW = L, oy Ww, wo,

Since A - AB 1s positive semi-definite, all 9; > 0 . Then for any

vector v define

2 T -1
Nell® =x CL of wu + L wu wvi —-1 =i -] =i -

8, . oo ee, = 0i

In the special case where s 1s a residual vector

| T

s= (a-AB =) 6 HY Yo

2 T

hell = y (a -2B)y ,

but this formula is of no use when 8 is a general vector.

The next step is from ll sill S Klis, ll to

Nz, ll <x lz ll,

21



where Ky < 1 and Ky 1s independent of n if n is sufficiently

large. The step 1s valid because

2

Iz yl lll <M sgl / ell 0 C2 Jl 1)

2

< KillMl /lx,ll + 0 (x, /lx I)

2

< Kllz l/l fll + 0 (x /lk 0D?

(Recall that lx, yell Tix, | —»1 as n =»® .) It is necessary for n to

be sufficiently large that the term o(z, /_)° be small compared
vith (1 - Kzlll /lkx ql -

Thus do we see that r = 0 at least as quickly as the terms of

some geometric progression with common ratio cM < 1l . And because

xq = x 0 = le lc leyll < 2ln |. lip,
PS—

T =-1

=< AVES SOE /(x, } An)

—-» 0 at least as quickly as 2M ,

the sequence X must converge to its limit X, at least as quickly as

some geometric series with common ratio /M <1,
This 1s just the result we want, especially since it shows that

n

there is no need to compute the normalized sequence Xx, = x [lx | .

Furthermore, the result 1s valid whether or not No 1s a repeated eigen-

value with several linearly independent eigenvectors. But the method

of proof conceals the closeness with which KX can approach 1 when A

22
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1s merely the smallest of a cluster of nearly equal eigenvalues, in

which case n may have to be exceedingly large before AM 1s

closer to A than to the next largest eigenvalue. Besides, when

several eigenvalues are clustered near J there 1s an enhanced risk

that the limit of the sequence M will be an eigenvalue A > A .

Consider now the unstable case A > A . The linear equation

(A -M Bly =0

now has an indefinite matrix (A - A B) , so the relaxation iteration

1s almost certain to produce a sequence of vectors Yn which diverge

exponentially in such a way that

y (A - 0:)) —> = oo exponentially as m= ,

Some justification for claiming that divergence 1s almost certain can

be found in section 4% of the author's previous report (1966). There 1it

was shown that if the sequences RP, and ©/% are chosen 1n advance

of any knowledge about In 7 then the sequence I must diverge

| exponentially unless the initial vector NA 1s placed into a certain

hyperplane i which depends upon (A = A _B) and the sequences Pn

and (7_/o ) in a practically undecipherable way. And since

(%, - x lx | = 0 (x, / lx, I)? , there is good reason to conclude that
Mo 1s most unlikely to converge to a limit A > A unless the sequences

P and En are correlated with x in some way designed to achieve

what would otherwise be a rare event.
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5.) Variations

At the cost of minor modification, the foregoing analysis can be

extended to cope with two variations of the relaxation iteration which

will be mentioned here.

One variation 1s 'block relaxation", in which each step

X41 ~ x =&p 1s a suitable linear combination of some specified

subset of the basis vectors €; . If the subset contains L vectors,,
& CLthen the vector x + C2 which minimizes Ax + € 3) 1s obtained

by solving an (L + 1) X (L + 1) eigenproblem. Subject to this

complication, the results in the foregoing sections can be applied to

block relaxation-with no important changes. Regrettably, the techniques

used in this report do not indicate when block relaxation is more efficient

than the simpler iteration.

Another variation seems to have been motivated by the fear that

xX might diverge to infinity or converge to zero even though the
n

normalized sequence x ~~ converges to the desired eigenvector. The

discussion 1n the previous section of this report should put such a

fear to rest, but 1n the absence of that discussion the natural thing to

© do is find some simple way to normalize the sequence Xn, The simplest
th

way is to fix some component, say the N= , = of all vectors x, at

some constant value, say 1 . This normalization 1s maintained by

restricting each member of the sequence Pp, to the subset

(8) 7» &p sever gal) | oo

of which each element should appear at least once in each set of M
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consecutive vectors

Bo» Bpaa 2 Boao 20002 Bama 0

The analysis of sections 3 and 4 now requires some small modification

to yield results which are outlined below.

Let A' and B' be obtained from A and B by deleting their

3 respective last rows and columns, and let

| A(v') =17 AVY BY v' and

A = min AY(v') over v' #0 .

| There is some risk that the restricted relaxation iteration will converge
to A > AS , but that risk 1s as negligible as before. The most

likely event is that A = AR as before, and that xX, -X_ with Xx
T : |

| normalized by the condition ey %, = l.. There 1s also a non-
negligible risk that the iteration may converge to A, = A > A , in

A

| which case X will diverge to infinity although x x [lx |
n T

converge to a vector X, such that eg X = 0 . The first N = 1
. n

| components of X_ will provide an elgenvector v' # 0 satisfying

| (A' =A B')v' =0

Example 1 of section 2 illustrates this possibility. The possibility

that A oo Mo > Ay can easily be detected by performing a final
n | A

relaxation Xt] = Xo E ey since A < Ax 4) < Ax) = AM,

unless A= A . Therefore, the restricted and unrestricted relaxation
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iterations can differ in only one important respect; one iterative method

may converge faster than the other. The author's limited experience

with both methods indicates that the unresté&ted iteration should

normally be preferred despite the existence of rare examples (like that

in section J of his earlier report (1966) )where the restricted iteration

seems to be faster.

6.) Final Remarks

So far, the relaxation iteration for solving

- (A - ABIX = 0

has been discussed without reference to rounding errors. Their most

noticeable effect will appear in the sequences A and Ie JI whose
computed'values are obtained indirectly during the iteration defined in

section 2. Roundoff will prevent the computed values

Mal = A + aN (rounded) and

la I= lel? + 2 6 pT Bx + £2 fp IPn+l nll t+ 2 8, By PX, t+ 5 1 (rounded)

from precisely satisfying the equations

Mol _ Mx 4) and

2 T

pialI” = X40 Bop

The remedy 1s simply to recompute the values Mo and I II directly
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from their definitions once or twice during the course of the iteration.

For example, one good time to recompute A and Ix I 1s when
(Mn - Mia) has first remained no larger than about 1lOn units in

the last place of Mol for M consecutive values of n .Another

good time to recompute M and r, = (A = A Bx is just before accepting

X, as an adequate approximation to X, 7 the smallness of r, is a .

useful indication of the accuracy of X, provided one has some information

about the separation between A and the next larger stationary value

of A, and a bound for the size of pL . (See Appendix II, part (111).)

Ultimately the iteration index n will become large enough that

(A =A 4g) is negligible although lx, 1 - x | is not negligible yet.
This occurs because

A =A =0 (zr /lx |)? while
n lo] ~n’ "=n

Xx =x =0(r)
-n =O =n

as 1s shown in Appendix II. For all subsequent values of n it may

be worthwhile to skip those parts of the calculation which up-date

lx, gq and M1 . The time saved is noticeable when A and B are

such sparse matrices that the computation of

oo T_T, oo
Bn r, = (p, (4 - AB))x, Co

consumes fewer than a dozen arithmetic operations. A can be held con-

stant for several iterations, and recomputed from the definition

A = Ax) sufficiently infrequently that the time spent upon
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recomputation 1s a small fraction of the time saved by not updating

A at each iteration. The conclusions in section 4 remain valid

however A may be defined provided that

hy = al = 0 (lx IDn o —n’ "=n )

But the definition of M given in section 2 (based upon the scheme

used by Nesbet (1965)) is the nicest that the author has seen.
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Appendix 1

Here is an outline of the proof that when ¢& = { ,

ov <= (F/Ge Il el?)

where s = max(A(u) - A(v)) over u # O and v # Oo.

For the sake of simplicity, and without loss of generality, it 1s

assumed that

lll = lxll =1 and a>r=0

Now we abbreviate;

@ = p'r and B= (p, x) = p Bx :

The numbers & , B and n can be bounded;

8° = (2, 2) < Ipl Il” = 2

oF = (p'r)° < (p"Bp)(r'B x) by the Schwartz inequality,

_ (Tgl/2 (51/2, p-1/2 Pe/2y fx TEx < 2

t= Mp) <s .

Now let us express O&A as a function of £& :

Mh o= mn E(E + 20/n)/(1 + 2 BE + £2) :

This is minimized when &¢ = € , at which point dan dt = 0 . Therefore,
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A = |

which may be combined with the former equation to yield

a, = af(p+1/t) and

(1 - a)t’ +nt +a =0.

Solving the last equation and substituting into the former yields

t = - 2af(x fi -por + a ) and

Ah in = 20° /( - 2pC fA - Leon + ho ) .

An application of the bounds

2

t<s, =-B<<s and ao < s

yields

’ as was claimed.

Incidentally, 1if t/¢ is held constarit as { -0,
2

- - . i AA approximates AAOND -»1 = (&/t - 1)" . in general, PPTox es Oh, with

a relative error that is smaller than that with which & approximates

£ .
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Appendix II

For the sake of completeness, here 1s a short proof of the

classical result that as_r(x)/lx|| = 0 "and A(x) =A, a

stationary value of A(x) ,

A(x) = ay, = 0 (zx) oo

To be more precise, given real symmetric matrices A and B with B

positive definite, and any vector X , we define

M= A(x) = xAx/xBx

r=1(x) = (A=-AB)X,

A= A(x) for some eigenvector X_ #0

such that (A = A _B)x_ = ( 3

and we prove that

(1) The functional A(x) has at least one stationary value

A between A - e and A + e inclusive.

(ii) If A 1s the only stationary value 1n the aforementioned

closed interval [A-e , Ate] , and oy are the other

stationary values, then A lies 1n the smaller interval

2 2 () ][A - e/ min (oy = 2), A» + e“/ min (=a),
a; > A a, < A
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provided that, for example, when all Q; > A then

e”/ min (M - a, ) = 0 by definition .
a, < A
i [0]

(111) If for © > e we define 2 to be the subspace spanned
by all the eigenvectors corresponding to elgenvalues

(stationary values of A ) in the interval [M5 , A+B],

and if © is the angle between x and Log , Then

sin© < e¢/ min I» =a]
A =a] >8

(The angle © is defined by

cos” © = max | (xB v)/(x'B X vB v) ,

v#0

and can be viewed as the smallest non-negative angle between_x and

a vector v in the hyperplane A . When the interval [A=8 , A+8]
contains only one eigenvalue, sin ® 1s a measure of the error with

~~ which x approximates a corresponding eigenvector, even when the eigen- ,

value 1s repeated.)

The proof is essentially due to Kato (1949) with a few

modifications. In particular, the results obtained here are valid even

if A is a “degenerate eigenvalue" whose eigenvectors span a subspace

of dimension greater than 1 . Also, result (iii) is simpler than Kato's.

First, the positive definite symmetric matrix B can be

used to replace B by I,
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A by A'= p-1/2 A p=1/2 ,

xbyx'=pY2 x, and

r by rt = 32 ¢ ,

with no other changes. Therefore, there is no loss in generality if

B 1s assumed to be I at the outset.

Now suppose the interval [p , v] contains no eigenvalue @ of

A. This means that (=-p)(ax=- v)>0 if & isaneigenvalueof A,

so (A - uI)A - vI) 1s positive definite. Therefore

T

X (A - pI)(A - vI)x > 0 or

2
e“ + (A-p)r=-v)> 0 .

Conversely, if A + (A = p)(A =v) = 0, then [pn , v] contains |

at least one eigenvalue. Thevalues WH =A =-e and Vv =A + e

satisfy this equation and prove (i).

If the closed interval [A=-e , Ate] contains only one eigenvalue

A , though A may be a repeated eigenvalue, let Q, be the other

eigenvalues and let

ML —> max Q, + , or =o if all CQ,> A.
a. < A i 1 oo
i 00

As pu decreases to its limit, it becomes less than A = e .Now set

& 2
| v=A+e/(M-pu)D A+ e/ min (A -0a,)1

a, < A
i 00
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For the same reason as before, we conclude that [p , v] contains

at least one eigenvalue. But because

max CQ, <p<A-e<A<V<A+e
i

a, < A
i 00

1f Bp 1s close enough to 1ts limiting value, there can be only one

elgenvalue 1n (un, vl , and that is NE This proves part of (i1i1i),,

and a similar limiting process in reverse proves the rest of (ii).

L 4

Finally, write x = w +_u where w € Ks and u € Ly . (Ly 1s
1

the orthogonal complement of Ks .) Since Kg and Xe are both

invariant subspacés of A , in the sense that Al, C & and
<£ Ad

alc Xk, ,

r= (A-AM)x=(A-MW+ (A -2A)u

L 4where (A = AI yw € dvg and (A = AI Du € L « Therefore,

21,2. T

e = [w(A - AT)%+ uw (A - AI)7ul/x x

> [u'(a - M)w/uulluy/xx]

Now, uw u/x x =sin’ © ; and

2

ul (A - AM) w/uiy > min CA - A)°
a, - Al >8

CL r+because the restriction of A to 5 has no eigenvalues in the

interval [A=8 , MB] . This proves (iii).

It 1s possible to show with examples that each of the bounds
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implied by (1), (11) and (i111) can be achieved, though not

necessarily simultaneously. These results provide satisfactory error

bounds except when the separation between adjacent eigenvalues 1s not

much larger than the residual e , for which case see section J of

Kato's paper (1949).
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