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I. Description of procedure STDQR

STDQR finds all N eigenvalues E[1],E[2],...,E[N] of the symmetric
tridiagonal matrix with A[1],A[2],%...,A[N] on the diagonal and
B[1],B[2], ® o=rB[N-1] on the superdiagonal. The eigenvalues are not
found in any particular order. The input data A and B are not

changed.

Accuracy:

In our experience, the absolute error in each value E[i] has not
exceeded a few units in the last place of max |E[j]l- The larger

1<j<N

is N , the larger the error can be. But our best rigorous error bounds
are far larger than the error observed in practice. Turning the matrix
end-for-end (by exchanging A[i] with A[N+1-i] and B[i] with
B[N-i]) can change the errors significantly because the eigenvalues
nearest the elements at the bottom of the matrix tend to be found first.
For best results when the matrix contains significant elements A[i]
and B[i] of very different magnitudes, the smaller elements should
appear at the bottom, in which case the errors in their corresponding
eigenvalues may be as much as 100 times smaller than if the matrix were
. reversed.

The program contains provisions for scaling to prevent trouble with
premature over/underflow. It assumes that the computer replaces under-
flowed arithmetic results by zero. Then each computed eigenvalue E[i]

will be correct to the accuracy described above unless it overflows or

underflows.




Roughly proportional to N2 . This is the fastest program known to
date for computing all the eigenvalues E[i].If only a few eigenvalues
are wanted, then our RECURSECTION program may be faster. Because the QR
iteration used here is cubically convergent, little time can be saved by
relaxing the accuracy requirement. In our experience, the time required
for the whole program corresponds to roughly N2 circuits of the inner

loop (see label LOOP in ALGOL 60 program).

Method:
The QR iteration used here is based upon a square-root free version
of the criginal Francis algorithm [4], published by Ortega and Kaiser
[5]1. However, the algorithm described by the latter authors, and pub-
lished in ALGOL 60 by Businger [2], is numerically unstable. (See example
1 of our test results and Welsch [7].) Revisions proposed by Rutishauser
(6] and wilkinson ([10], pg. 567) do not cure the problem. Our version
appears to be stable. We are indebted to J.H. Wilkinson for a 2 X 2
example containing the first intelligible evidence that the Ortega-Kaiser,
and also the Wilkinson-Rutishauser version, might be numerically unstable.
The origin-shift strategy (the choice of LAMBDA) is an important
contributor to the rapid convergence of the algorithm. We set LAMBDA to
that eigenvalue of the bottom 2 X 2 principal submatrix which is closer
to the last diagonal element, except when this choice is not unique, in
which case the eigenvalue of smaller magnitude is selected.
The criteria for deciding when an off-diagonal element B[i] is

negligible are discussed in reference [13].



R( D STDQR(AsBsESN)}
N7 INTEGER N3 AHRAY A»B,E3}

K&GIN COMMENTS STOWR FINDS ALL N EIGENVALUES EC(1)2EL2)24042EIN]} OF THE
SYMMETRIC TRIDIAGUNAL MATRIX WTH A[1),AC2)s,402AIN} ON THE DI AGONAL
AND Bl1J,Bl2)seeesBIN=1] UN THE SUPER-DIAGONAL, THE EIGENVALUES ARE
FUUND IN NU PARTICULAR URVER,}

COMMENT S NWR IS A GLUBAL INTEGER VARIABLEs USED TO COUNT THE NUMBER OF
QR STEPS MADE .S

COMMENTS Wt ASSumE GIVEN THE FOLLOWING MACHINE QUANTI TIES:
RASE = NUMBER BASE OF THE MACHINE
MACHI NF = LARGEST £XACT POWER (IF THE BASE LESS THAN 1/4 OF THE
MACHINE UVERFLOW LIMT

SMALLEST NUKMALIZED POSITIVE NUMBER HEPRESENTABLE ON
THE MACHI NE

MACHPREC = FLOATING=POUINT RELATIVE MACHINE PRECISION,}

MACHNEGL

INTEGER I»KoM;
REAL RsSslsCrG,PsWsSCALESEPS,NDELTASLAMBDALEKL S
ARRAY HBBLOINI]S

CUMMENT s FIRST SCALE MATRIX SO THAT ACIlt2 aw BC11t2 DO NOT OVERFLOW
AND ACLIT(=2) AND 8L1J%(=2) DO NOT UNDERFLOW FIRST FIND MAXI MUM
ELEMENI OF THE MATR1IXe3

R1I=ABSCAILNIJ);

FOK I$=N=1 STEP =1 UNILL 1 DU

BEGIN S8=AbS(A[1))3 1F S>R THEN R3=S3
S$=ABS(6(I1)s 1F S>x THEN R#=S

[F R=0 THEWN

EGIN COMMENTS$ MATRIX IS ZERU,3

FUR I$=1 STEP 1 UNTIL N QU ECIYt1=03
GO 10 KETURN

]

JUMMENT$ FUR SCALING, WE ASSUME GIVEN THE MACHINE QUANTITIES
- MACHNU1l = MINCMACHINF»1/MACHNEGL) (EXACT POWER UOF THE BASE)
MACHNU?Z SMALL&ST EXACT POWER OF THE BASE LARGER THAN
SQRT(MACHNUL) /MACHINF
THUS MACHNO2 = BASEY (ENTIERCCOSXLN(MACHNOL)=LNC(MACHINF))/LN(BASE))
+1),5

SCALES$=]F KSMACHNUZ2 THEN MACHI NF
ELSE BASET(ENTIERCCO,5XLNCMACHNO1)=LNC(R))/
LNCBASE)))3

COMMENTS SCALE 1S THE LARGWEST EXACT POWER OF THE BASE REPRESENTABLE
SUCH THAT (RXSCALE)Y 2<MACHINF AND (RxSCALE)" (=2)>MACHNEGL»
THIS CUMPUTATION SHUULU BE DONE IN MACHI NE CODE,
IT IS PUSSIBLE THAT SCALE COULDUNDERFLOW IF THE MACHINE IS SUCH
THAT MACHINFXMACHNEGL > SWURT(MACHNO1) BUT WE KNow OF NU MACHI NE
WHEKE IHIS IS TRUE.

ECNIISAINIXSCALE)



=N - N 1]

BRI Ay
BB[IJ:- BLI}xSCALE)T2

END

BB£013=83[N13=0)

DELTAt=RXSCALEXMACHPREC/(100%N )} cDMMENTleDELTA Is SMALL
COMPARED WITH 1HE EXPECTED ERROR OF A UNIT IN THE (AS§T PLACE OF
THE LARGEST EIGENVALUE (SCALED) .S

EPS:;?%LFAtZ} CUMMENT® EPS IS USED TO TEST FUR THE NEGLIGIBILITY oOf
8 Tod

KI=NJ

FOR Ms=K wHILE M>0 QU

BEGIN COMMENT: SCAN FOR NEGLIGIBLE BBLK) IN ROWS AND CULUMNS M BACK

TO 13
: ggﬁ Ki=h=1 WHILE TRUE DO }F BBIKI<EPS THEN GO YO NEXT}

NEXT?S
I1FK=M=1 THEN B#[Kl}i=zQ ELSE
BEGIN CUMMENT® DEAL WTH BOTTOM 2x2 BLOCK ;

ThOBY2

TtselMI=E(M=1])
RisBE[M=11}
K<M=2 THEN
BEGIN COMMEN]? WEAKER TEsT FUR NEGLIGIBLEBBCM=1],}
Wi=gB(M=21);
Cs=Tt23 St=R/Z(C+W)3
LIb Sx(wW+SxCI<tPS THEN BEGIN Mi=zM=t}
BB(M]t=03
GO T0 TwWoBYZ2
END

[

END NEGLIGIBLE BY3

IF ABS(T)<DELTA ITHEN S#=SQRT(R)

ELSE BEGIN wi=2/1;
SISWXR/(SQRT(WT ZxR+1)+1)

END3

IF K=M=2 THEN

BEGIN COMMENTS A 2%2 BLOCK HAS BEEN SEPARATED, SO WE STORE THE

EIGENVALUES +

ELMItI=ECMI+SS

EIM=1)3=E(M=1]=§}

BE(KI3=0

BEGIN COMMENTS DU A QR STEP UN ROWS ANO COLUMNS K+i THROUGH M»
USING K AS THE [INCREMENT VARIABLE, IN THE NOTATION OF
URTEGA AND KAISER, C = CCKIt 2, S = S(KIt2, P = PLK],
G = GAMMALK]), T = P{KI'T2+B(KI?T2, W= WORK SPACE, :

NOGRIZINQR+M=K 3
CUMMENTt FIRS|I CHOOSE THE SHIFT PARAMETER LAMBDA,)
LAMBDAI=E(M]+S;
If ABSCT)<VELIA THEN
BEGIN WisE[M=1]=$}
IF ABS(W)<ABSC(LAMBDA) THEN LAMBDAi1=W
END
Si=03 G=E[(K+1]=LAMBDAS Ci=1}




?
LCOP Si=W/15 wi=Gs
Gt=Cx(EKI=LAMBDA) = SxW}
ECKISS(W=G)+EKL} ‘
ENTRYS IF ABSCU)<UELVA IHEN
G3=G+(It G20 THEN C ELSE <C)I)XDELTAS
P1=G12/7C3
KizsK+1s
Wi=BBLK]S}
li=w+P i3
BBLK=118=SxT;
1F K<M THEN GU TU COUP;
ELK)T=G+LAMBOA
END WR STEP
END OF CONDI TI ONAL
END, M)
EOR Ts=1 $IEP 1 UNTIL N DUECTIs=ECI)1/SCALES
NAR$=NQR/N’ COMMENTS NOR GIVES THE NUMBER OF EQUI VALENT FULL QR STEPS,
KRETURNS -
END STUQRS




II* Description of procedure RECURSECTION

RECURSECTION finds

if K > 0 then the greatest K _eigenvalues E[1] > E[2] > .x. > E[K]
else if K < 0 then the least -K eigenvalues E[1] < E[2] <.** < E[-K]
of the given N X N symmetric tridiagonal matrix with A[1],A[2],...,A[N]
on the diagonal and B[1],B[2],...,B[N-1] on the superdiagonal. The

input data A and B are not changed.

Accuracy:

Each computed E[i] differs by a unit or two in its last place
from the 1i-th eigenvalue of some tridiagonal matrix which differs
from that given by a few units in the last place of each off-diagonal
element. All told, no computed E[i] can be in error by more than a
few units in the last place of the largest eigenvalue of the given matrix.
The error bound depends upon the details of the machine arithmetic units,
but is independent of N and K .

The program contains provisions for scaling to prevent trouble with
premature over/underflow. It assumes the computer replaces underflowed
arithmetic results by zero. The program is such that any underflows
which do occur in intermediate results do not cause serious errors in

‘the final results E[i] . 1In fact, intermediate over/underflows can

contribute an absolute error no larger than
(3%(MACHNEGL 1 0.25 )/ (MACHINF T 0.5 ) )XNORM

where MACHNEGL and MACHINF are, respectively, the smallest and largest

positive numbers normally representable on the machine, and




NORM = max, max.(|A[1]] , IB[1]]) .

Such an error is smaller than 10_10 units in the last double precision
digit of the biggest eigenvalue of the matrix on any computer we know.
This is in marked contrast with the Wilkinson Sturm sequence - bisection
algorithm [9], where premature over/underflow can cause disastrous errors
in the results. Then the user may be unaware of those errors if underflows
are replaced by zero with no message output from the machine telling him
of the underflow. For examples of thisﬁ see our test results. But for
our program, each computed eigenvalue will be correct to the accuracy
described above unless it overflows or underflows. The program also
assumes that each arithmetic operation (+,-,x,/) is monotonic in

its two operands despite roundoff, which is the case on most machines

in single precision arithmetic  For a detailed error analysis, see

reference [12].

Timing:

Roughly proportional to |K|x.N. This program is the fastest known
to date when 1< hd << N. When lKlg N , our QR program is several
times faster in some cases. In particular, RECURSECTION is slowest to
- find those eigenvalues of the matrix which remain almost unchanged when
the last row and column of the matrix are deleted, because a binary chop
technique is used to find those eigenvalues. The other (and normally
most) eigenvalues are found more quickly by a superlinearly convergent
iteration. For this reason, RECURSECTION sometimes works faster after
the matrix is turned end-for-end via the replacement of A[i] by A[N+1-i]
and B[i] by B[N-i] .- Also, if any B{1] = 0 , time can be saved by

feeding the matrix to RECURSECTION in two or more bites, although one




must subsequently sort the eigenvalues of each bite to obtain the desired
ordering of the eigenwalues of the :whole matrix.

In any case, RECURSECTION 1is- substantially faster-than programs
which apply a binary chop technique to a Sturm sequence,, and;is intended

to supersede such programs.

Method:

The basic idea was first put: forth at the University. of Toronto
by Dr. Boris Davison in 1959, and follow6 from Sylvester's inertia
theorem:

If A is a ;;meetric matrix,, D is diagonal, and L, is non-

singular, and if

A-xT = EDﬁr »

then the number of A's eigenvalues less than or equal to x is the
same as the number of negative or zero elements of D.

We apply this theorem in procedure SYLVESTER to our symmetric
tridiagonal matrix A by performing Gaussian elimination without inter-
change6 on A-xI , obtaining

A-xI = 1U = L]

However, since we do not need L explicitly, we only compute the diagonal

elements Uy of D and record the number of uy < 0. The recurrence

relation for these uy is particularly simple:

u, =a.-x

1

2
ug = (a3-by o/uy 4)-x 5 1=2,.. N




Provided the time required for a single precision division is not appreci-
ably longer than that for a single precision multiplication, this takes
about 1/5 as long as the usual Sturm sequence recurrence, partly because
no serious scaling problems are encountered in SYLVESTER. Also, provided
the machine arithmetic is monotone,”the recurrence for the [ui] is such
that the number m(x) = of uy < _0 is a monotone non-decreasing function

of x despite roundoff. This simplifies the logic of the program: For

a similar reason, we compute u, as shown rather than from

2
uy = (a;=x) - by ,/u s

to preserve the strict monotonicity of uN(x) near its zeros.

Procedure SECTION chooses a sequence of values x to feed to
SYLVESTER in order to find the eigenvalues of A. This procedure 1is
always entered with two abscissa LO and HI which are known to bracket
the eigenvalues we are seeking. We then proceed to find points x be-
tween LO and HI , using a method described below, in order to converge
to the eigenvalues. Whenever a value x 1s found which separates
(10, HI] into two subintervals (LO,x] and (x,HI] , each known to
contain at least one eigenvalue, SECTION calls itself recursively to
deal with each subinterval separately. Mr. Michael D. Green suggested
this recursive calling of SECTION, and this seems to be ;he simplest way
‘of coding the program so that the best bounds are used for each eigenvalue,
though stack-overflow may be encountered in some cases if too many
recursive calls are made. The depth of recursion cannot exceed hd.

To form the sequence of values x , a binary chop method would work

in principle, but in practice that can be slow. To accelerate convergence

of the iterates x to the eigenvalues, we use a modified secant iteration,




patterned after D. J. Wheeler's program F2 (see [8], pg. 84 and 130).
This iteration is applied to the function u.N(x) »y Where \JN is

the last element of D defined above. Now,

det (A-xT) (N-1)

det(A(N'l)-xI)

, Where A is the (N-1)X(N-1) mtrix

uN(x) =

formed from the first (N-1) rows and columns of A. Thus uN(x) is

a rational function with slope < -1 at all points, whose zeros are the
zeros of det (A-x1) , except for those zeros which are also zero6 of the
denominator to an equal or greater multiplicity. These zero6 are called
"hidden eigenvalues".

We use the modified secant iteration on uN(x) when our current
bounds LO and HI are such that uN(LO) > 0 and uN(HI) < 0 . Because
of the nature of the function UN(X) » this ensures that there is at least
one zero of uN(X) between LO and HI . Otherwise we use binary chop
to find the next point x = (LO + HI)/2 . Thus for cluster6 of eigenvalues
and the "hidden eigenvalues" mentioned above, the binary chop strategy will
be used a large part of the time. But once a zero of Uy is isolated, the
secant strategy will be used from then on, giving superlinear convergence

Y3 21

to this eigenvalue, with average asymptotic order

10




PROCEDURE RECURSECTIUNCA»B,EsNsK)3

‘——%ItU?'N,Ki INTEGER NoKj3 AKRRAY A»B,E3

BEGIN COMMENT?® RECUKRSECTION FINDS
IF K>0 IHEN THE GREATEST K EIGENVALUES EL1])2E{2)24eeE(K]
ELSE It K<Q THEN THE LEASI (=K) EIGENVALUES E[11SEL2)S.seeSEL=K]
OF THE NXN SYMMETRIC TRIDIAGONAL MATRIX W TH A[1)s5A02)sesesALN] ON
THE DIAGONAL AND BL1)sBL2)seqesBIN=1) UN THE SUPER- DI AGONAL. THE
INPUT UATA A AND B ARE NOT CHANGED, ;

COMMENI: Wt ASSUME GIVEN THE FULLOWING MACHINE QUANTI TIES;
BASE NUMBER BASt OF THE MACHI NE
MACHINF LARGLST LXACT PCWER OF THE BASE LESS THAN 1/4 OF THE
MACHINE UVERFLOW LIMT
MACHNEGL = SMALLEST NUKMALIZED POSITIVE NUMRER REPRESENTABLE ON
THE MACHI NE. ;

INTEGER Ti
LUOpHLI»LUsHU»CsRsRL»S»T»SCALES
ARRAY AA,HB[1IN]S

PROCEDURE SYLVESTER(X»Up»M);
VALUE X3 INTEGER M3 REAL A,U3
BEGIN COMMENT® SYLVESTER SETS M T THE MUMBER 0OF EIGENVALUES OF THE
NXN SYMME TRIC IRIUIAGONAL MATRIX W TH DIAGONAL AA[L1lseeesAAIN]» AND
SUPER=ULAGONAL SURT(BB(2]24.42BBINI)» WHICH ARE € Xe¢ U IS SET TO THE
VALUE UF THE LAST PlVUIT IN THE GAUSSIAN ELIMINATION OF ((THE MATRIX)
“XX])» wITH THE CUNSTRAINT THAT XL=XH € U(X) € XH=XL» WHERE XL AND
XH ARE (Ht BEST BOUNDS WE HAVE FOR THE LEAST AND GREATEST
EIGENVALUES,)
INTEGER Ii OWN REAL XLsXH3 DBAL
Us=AAL1)=~r; Mi=zQ3 13=15 GU TU L3
LCoPs
Is=I+15 Us=sCAALIL )=BBL{IJ/U)=X3}
L3 IF USO- |HEN BEGIN M3=M+1}
IF U=0 THEN U3==MACHNEGL
ENDS
COMMEN! ¢ THIS CODE ASSUMES OVERFLOWS ARE ALLOWD, AND THAT WHEN
IHe.Y OCCUR, THE ARGUMENT 1S REPLACED BY THE LARGEST MAGNI TUDE
- WITH THE SAME SIUNe IF THIS IS NOT AVAILABLE TO THE USERs HE CAN
REPILLACE THE CUDE AF TER LABEL L$ BY THE FOLLOWING» MORE TIME "
CONSUM NG CODES
Lt LF U < RTMACHNEGL THEN BEGIN M3=M+1
IF U>=RTMACHNEGL THEN U#==RTMACHNEGL
END
"WHEKE RTMACHNEGL = SQRT(MACHNEGL) ¢}

IF L<N IHEN GO JU LUUP)
IF MEN THEN XHi=X
LSE IF M=0 THEN XL3=

tLSE EGIN D3$=XH=XL 3
LF ABS(U)>D THEN U3=sOXSIGNCU)
END CUNSTRAINING U
END SYLVESIERS

REAL PROCEUURE NEXT(X»Y)J
VALUE X»Yj REAL X»Y)




BEGIN COMMENTS NEXTCX»Y) IS THE NEXT VALUE AFTER X BETWEEN X AND Y
- %ﬁtwﬁ}s VE "THAT VUIFFERS FROM XX BY AN AMOUNT WHICH 1S AT LEAST

AS LARGE AS 1 UNITIN THE LAST PLACE OF Y-X o  THIS
PRUCELDURE SHUULD BE WRITTEN IN MACHINE CODE, THE (COOING

GIVEN HERE IS JUST AN tXAMPLE»s» AND CANNOT BE EXPECTED TO BgE
OPTIMAL FUR ALL MACHINELS. THE MACHINE QUANTITY ULP IS ASSUMEO
GIVEN TO BE THE SMALLEST POSITIVE NUMBER SUCH THAT
1,0+LULPXBASE # 140 IN IHE MACHINE, ;

Urb,sF3

E3=ABS(Y=X)} FI=ABS(X)J

Fi=01=ClF E>F [HEN & ELSE F)IXULPXSIGNCY=X)}

IF D#0 IHEN FOR E3=X+D WHILE E=X DU D$=D+F

tLSE E3sX+(Y=X)/23
NEXT 8=t
END NEXT;

PROGEDURE SECTIUNCLAHsLUSHUSLCHHIsLMpHM)}
L2H2LUsHUS LU2HISLMsHM}
INTEGER LsH3 HUHULLUSHTI,ILMsHMS
BEGIN COMMENT? SECTIUN IS A RECURSIVE PROCEDWRE WHICH SEEKS EIGENVALUES
ECLY)SKELL+1)SesesStlH) UF THE NXN SYMMETRIC TRIDIAGONAL MATRIX W TH
DI AGONAL AA[1)seee,AAIN] AND SUPER-DI AGONAL SQRT(BB(2]),s4esBBIN]),
WHEN CaLLED» 1T IS ASSUMED ITHAT LO < ALL DESIRED EIGENVALUES <Kl
AND THAJ UCLO)/LU > 1 AND y(HI)/Hu > 1, WHERE U(X) IS THE OUTPUT OF
SYLVESIER(XsUsM), LM AND HM ARE ACCELERATION PARAMETERS, ;
REAL X»U3 LINTEGER M3
START ¢
IF LUSO V HU20 THEN
BEGIN COMMENT: DO A BLISECTION STEP.3
XK3=LO+(H]I=L0) /25 COMMENTS: THIS SHOULD HE DONE IN SUCH A WAY THAT
THE CONSEQUENCES UF UNDERFLUW TO ZERO IN (HI=L0)/2 UR IN X ARE
CONSUNANT WL IH THE IREATMENT OF UNDERFLOW IN NEXTC(LO»HI)e}

i
>
I

X3=Lu+t(LU/CLU~HU))IX(H]=LG)} COMMENT: DO A SECANT STEP,;

COMMENTS THE NEXT SIX LINES GUARANTEE THAT LO < X < Hls3
UISNEXT(LUPHI)S LF X<U JHEN X3=y3
USENEXT(HLsLU)3 JF _X>U THEN X3=y3}
1F x=HI V X=L0O THEN
BEGIN COMMENTS THERE ARE (H=L+1) EIGENVALUES AT X3
FUR M3s=L STEP 1 UNIIL_ H DU E[M)i=X

|

END

LLSE

BEGIN SYLVESTER(XsUsM)j
IF m<L IHEN

x

HEGIN CUMMENT$ INCREASE LUWER BUUND.;
LOt=A7 Lui=Us LMi=2;
HM3 =USXHMS HUSZHUXHM}
GO Tu START
ENDS
[F M2H [ty
BEGIN CUMMENT ¢ WECREASE TUPPER HOUND, ;
HI3=A3 HUB=U; HM3=2;
LM3=U,5%XLMS LUS=LUXLM}
60 Lu START

12




ND 3
EEEMENIJ AT THIS POINT LSMcH SO WE CAN FIND EI GENVALUES L THROUGH M
AND »+1 THRUUGH H SLPARATELY .’
SECTIUNCLsM,LU»UsLUSXsLM»2)}
SECTIUNCM+1,H)UsHUS A HI»2sHM)Y}
EAD
END SECTIUNG

COMMENT S NUW BEGIN MAIN PROCEDURE RECURSECTION,.S
1F K=0 THEN GO 10 RETURNS
IF ABSCKI>N THEN K:=NXSI1GN(K)3}

CCMMENTS: NUW SCALE MATIRIX SO THAT EACH SCALED ABSCA[LI]) AND ABS(B(I})
IS LESS THAN MACHNUs» A MACHINE QUANTITY DEFINED BELUWe FIRST FIND
MAXI MUM ELEMENT UF [Ht MAIRIX,.$

K3=ABSCAINI);

FOR. Is=N=1 STEP -1 UNIIL. 1 DY

BEGIN $S:=ABSCA[11)5 IF S>R THEN R$=S3
S1=ABS(BLI1); LF S>K THEN FRt=$

END3

IF R=0 THEN

BEGIN COMMENT: MATRIX 15 LLRO,;
FUR Is#=1 STEP 1 UNTLL ABS(K) DO E[fI)s=03
GU 10 KETURN

END S

COMMENTT FUR SCALING» WE ASSUME GIVEN THE MACHINE QUANTITY
AACHNU = LARGEST EXACT POWER OF THE BASE SMALLER THAN
SQRT(MACHINFXSQRT(MACHNEGL) ),
THUS MACHNDO = BASET CENTIERC(QoSXLNCMACHINF )*0+s25XLNCMACHNEGL))
JLNCBASE))),.;

SCALES=SIGN(=K)X(CIFr R S MACHNO/MACHINF THEN MACHINF
ELSt JASEYCENTIERCCLNCMACHNO)=LNCR))/LN(BASE))))}

COMMENTs ABS(SCALE) [S NUW THE LARGEST EXACT POWER OF THE BASE
REPRESENTABLE SUCH THAT ABSC SCALE )XR<MACHNO., THIS COMPUTATI ON
SHOULD BE DONE IN MACHINE CODE.’

COMMENT: ~UW SCALE MATRIX AND FIND UPPER AND LOWER GERSCHGORIN BOUNDS
FOR THt EIGENVALUES«;
=AL1 IXSCALES
K1¢t=ABS(BL1IXSCALE)S
LCs=C=R1s HIt=C+R1J
Ci=AACN]S=A[NIXSCALE} Ke=0}
FCR lt=N=1 STEP =1 UNTLL 1 QU
UXSCALE) RABS(BII
R18=R+S)
Ti=C=R13 IF LO>! IHEN LOt=T3
Ti=C+nr1l) JF HI<T THEN HIt=T}
Cs=AALLJi=AL]}xSCALL}
Ri1=S$3
Bull+l)i=S 2

C

ENDS
RE=ABSCLU)+ABS(HI) S

13




LCI=NEXT(LU»LO=R)3 HIS=SNEXT(HI»HI+R)3 COMMENTS TO INCLUDE KOUNOOFF
- ERRUR IN GERSCHGUKIN BUUNUS.3

COMMENT s NUW MAKE THE INITIAL CALL CF PROCEDURE SECTION, THIS INITIAL
CALL 18 SET UP Ty FINU THE GREATEST 0OR LEAST ABS(K) EIGENVALUES. IF
SOME UTHER CONFIUURATIUN UF EIGENVALUES IS DESIRED» THE USER CAN
CHANGE IHIS INITLAL CALL ACCORDINGLY .}

BBC111=0;

SYLVESTER(LOSLUS 1)

SYLVESTER(HI»HU»I)3

SECTIUNCL2ABS(K)sLUSHUSLUSHI»2,2)3

CCMMENTS NUW UNSCALE THEEIGENVALUES,.S

EQR Te=g SIEP 1 UNTIL ABSC(K) (U ECI)s=ECI)/SCALES

RETURN

END RECURSECTIONS

14




ITII. Test Results

Several tridiagonal matrices were fed to RECURSECTION and STDQR,
and the results produced compared with those from some other programs,
as shown below. Except in a few cases where the eigenvalues could be
computed in closed form or were otherwise known, we were unable to verify
our claims to accuracy because RECURSECTION is the most accurate program
we have. The differences between RECURSECTION's results and those from
the other programs were never in excess of the known error bounds for the
other programs.

The other programs compared were:

-

"WBIS2" — Wilkinson's binary chop Sturm sequence algorithm [9].
"OKBQR' — Ortega and Kaiser's QR method, published by Businger [2].
(The version proposed by Rutishauser and Wilkinson was
also tested).
"FJLLT" ~— Sturm sequence - it algorithm proposed by Fox and Johnson

[3]

In the results listed below, we let

T = time in seconds to produce |K| eigenvalues (K given) . However
the actual time taken depends on the machine used, so we also let

F = (number of full passes (i.e. N times) through the inner

loop(s))/ [x| P

and tabulate "T sec."/"F passes/eigenvalue" .

However a direct comparison of the numbers F is still unfair
because the inner loop for each program requires a different number of
operations. For convenience, we give here a table listing the number

of operations in each inner loop.
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additions - array
divisions  multiplications subtractions references comparisons

STDQR 3 4 ) 5 4 1
OKBQR 2 3 7 L 1
Wilkinson-
Rutishauser 3 3 b L 1.
version
RECURSECTION 1 0 2 2 12
WBIS2 0 2 2 2 3
FJLLT #1 1 0 2 L 1

#o LD 2 1 L 0

The FJLLT program really has two separate inner loops, each of
which is described separately above. In the counting of inner loops
executed, each was counted separately and then the results were added.
Note that we count the number of "full passes" through the inner loop.

In the QR methods, this is not the same as the number of QR steps
made, since we do not always work with the full matrix. A similar con-
sideration affects FJLLT. For RECURSECTION, the count is just the number
of calls of procedure SYLVESTER per eigenvalue, and for WBIS2 just the
number of calls of procedure sturms sequence per eigenvalue.

All results were obtained on a Burroughs' B5500 with 13 octal digits
of significance in floating-point (i.e. about 11 decimal digits). Division
on this machine takes twice or thrice as long as multiplication, so the
procedure RECURSECTION appears in its least favourable light compared

with WBIS2. Timing on this machine is unreliable because of multiprocessing,

16



so the times tabulated below should be regarded merely as rough indica-
tions.

To assure as fair a comparison as possible, all programs were set
up to yield results of comparable accﬁracy. The following adjustments
were required:

In WBIS2 , the user is expected to state how many binary chops (t)
he wants done for each eigenvalue. This means that each eigenvalue will
be in absolute error by at most about 2-%<|largest eigenvalue' .I £
t is chosen just large enough to yield a desired relative accuracy in
the larger eigenvalues, the smaller eigenvalues may suffer unacceptable
relative errors. Therefore we set t = 50 even though our machine uses
only 39 binary digits of significance. To save time, we also modified

Wilkinson's program to stop chopping as soon as the computed bounds for

an eigenvalue differed by no more than a unit or two in their last place.

Thus the actual code changed was the j-loop in the procedure tridibi-
section 2:

for j :=1 step 1 until t do

begin lambda := h + (g-h)/2 ;
if lambda = h or lambda = g then go to continue;
sturms sequence ;
if al > d then h := lambda else g := lambda
end Jj ;
continue: ml :=ml + 1 ;

wlml]:= h + (g-h)/2 ;

This modification can only improve the program.
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The Businger version of Ortega and Kaiser's QR method was found
to be numerically unstable in certain cases. We modified the loop in
the way suggested by Rutishauser and Wilkinson without curing the instabi-
lity. (See example 1.) Even when the'answers were correct, the program
usually took somewhat longer than our STDQR despite the fact that our
program has an extra multiplication in its inner loop. (See example 2.)
We attribute the speed of our program to a better strategy for choosing
the acceleration parameter lambda than was used by Businger.

The Fox and Johnson program was amended slightly, mainly to correct
a few syntactic errors in the ALGOL listing and to add a scaling block.
This program combines a Sturm sequency-binary chop method with a secant
iteration applied to the characteristic polynomial of the matrix, and
uses the Q-D transformation, organized like Ortega and Kaiser's LL
algorithm, to deflate successive eigenvalues out of the matrix. In
order to guarantee accuracy comparable to that of our STDQR, we found

it necessary to set eps2 = 10-11' and -epsl. = 10_21 in this program.
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TEST NO. 1
X 1
Matrix: 1 1
1 == 1

This matrix was run with different small values of x to test:the
QR programs. The results for x = 10_5 and x = 10_12 were particularly
interesting. We believe the true eigenvalues are as follows to 10 figures,

since our most accurate programs gave results agreeing to 10 significant

figures: ~

x = 10 xl = 2.061498246 x =10 Xl = 2.061498851

My = 00 uElwelE v, B0 3963385310
»5 = -0 6938171674 5 - -0.6938224565
M, = -1.764018050 M, = -1.764014925

T sec./F. passes/eigenvalue

STDQR 0.05/1.5

OKBQR 0.05/1.8

RECURSECTION  0.13/1k

WBIS2 0.42/lh1

FJLLT 0.10/6.0

With x = 10_% the original Ortega-Kaiser QR, as published by Businger,

gave results accurate to only 2 decimal places. And with x = 10_12, the

Rutishauser-Wilkinson amendment to this gave results accurate to at best

one decimal place. For both matrices, our STDQR gave results accurate

to 10 figures. _
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Matrix:

TEST NO. 2.

X 1

! ;x i . - (Xk = [x2 + 4 cosz(ﬁggall/e

-x 1 < Mitlok = M k=1,...,[N/2].
] _ xiz'q'=0(ifNisodd).
1 1
T/ nxn
for x = 1:
T sec./F passes/eigenvalue
K = N=30 K =45 ‘K = -5

STDQR 1.2/1.3
OKBQR 1.6/1.9
RECURSECTION  3.8/12 0.8/16 0.8/16
WBIS2 15/38 2 .3/39 2.6/39
FJLLT 3.0/7.2

The timing was nearly the same for each x tried, except as noted below.
The errors in RECURSECTION and WBIS2 were at most 2 units in the
last place and for STDQR and the other programs at most 2 units in the
last place of the largest eigenvalue.
With x = 10_5, OKBQR again gave very bad results, with errors in
the third decimal place. For x = 0 , that program gave acceptable results,
but took 11 seconds to find them.
With x = 10,000, no results were obtained from WBIS2 because floating-

point overflow occurred, causing the program to be terminated. Also, we

obtained no results from FJLLT for x = 10000 , even after allowing it
to run for 4 minutes, because that program is very slow to find near-repeated

eigenvalues, especially when underflows intervene.
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TEST NO. 3.
Zeros of the Bessel Functions Jﬁ(x)

Because of the three-term recurrence relation satisfied by the Bessel
functions, the non-trivial zeros gk n (k = 1,2,...,m > 0) of Jﬁ(x)
2

are given by

€ = Z/JE; , where My > Uy > “3 > e

. k)m

are the eigenvalues of the following infinite symmetric tridiagonal matrix:

/ 2
8 bl % T Tw*on-1)(m+on+1)
b a, b.
1 2 with 1
b2 3.5 b5 bn = — , n=1,2,... .
. . . (m+2n+1 )Y (m+2n) (m+2n+2)

Furthermore, the first several b are closely approximated by the eigen-
values of the matrix formed by taking the first N (say) rows and columns
of the above matrix, provided N is large enough.

In particular, we took N = 50 to obtain approximations to the
first 20 zeros of Jo(x) (and Ji(x)) , using both the matrix as given

above (matrix A) , then flipped end-for-end (matrix B).

T sec./F passes eigenvalue

matrix A (50X50) matrix B (50%X50)
X =50 K = 20 K=51]K= 50 K = 20 K=5
STDQR 2.2/0.9 2.9/1.2
OKBQR 2.7/1.2 3.1/1.k
RECURSECTION 10/ 37 2.6/39 4.2/15 0.9/153
WBIS2 22/k3 | 5.2/h2 20/43 | 4.5/k2
FJLIT 12/ 10 18/16
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To examine the accuracy, we compared the results with the tables
given in [1], pg.#09-411. The results from RECURSECTION for both
matrices A and B agreed with the tables to the machine limit of 11
decimal digits. The results from WBIS2 agreed to 11 digits for the
first two zeros, but the others were progressively more inacurrate, with
some incorrect in every digit, because of machine underflow.

The results from STDQR for matrix A were in error by at most 30
units in the last place (for the larger zeros), and by at most 300 units
in the last place for matrix B with the small elements at the top of the
matrix. However, these errors in the zeros € were reflections of
absolute errors™in the eigenvalues W of only a few units in the last
place of the largest eigenvalue. The results from OKBQR were comparable,
and those from FJLLT were somewhat more in error in all cases.

The results for Jl(x) were comparable. The errors did not change
when the matrix size was increased from N = 50 to N = 100 , but times
were about doubled for RECURSECTION and WBIS2 and quadrupled for STDQR,
OKBQR, and FJLLT, since all 100 eigenvalues p were found in the latter

cases.
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TEST NO. 4.

0191 1
1 8 1
1 -9 1
Matrix: 1 -10 1
1-9 1
1 9
1 10 N =141
T sec./F passes/eigenvalue
K-N= 41 K = +5 K = -5
YTDOR 1.7/1.0
OKBQR 2.8/1.8
KECURSECTION 12/23 0.5/7.0 2.0/35
’ WILKINSON 23/41 2.5/38 2.7/39
PJILLT 6.7/9.1

The results from all methods differed by at most 2 unitsin the last
place of the largest eigenvalue. We do not know the eigenvalues exactly,
but we list here the results obtained for some of the eigenvalues. Because
of the agreement among the methods, we feel these results are correct to

the 10 figures given.
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The computed eigenvalues are:

10. 74619418 (twice)

@
.

9.210678647 (twice)

@

8.038941119 (twice) -7.869790761
7.003952003 (twice) -8.2106 78647
6.000225680 (twice) -9.052465632
) -9.746194183
-11.12544152

This matrix is interesting for two reasons. First, its twenty
algebraically larger eigenvalues occur in almost indistinguishable pairs,
while its ten lesser eigenvalues are well separated. ©None the less, the
well separated eigenvalues are "hidden" to RECURSECTION, which must there-
fore use the slow binary chop to find them (see under K = -5). The nearly
double eigenvalues look like simple zeros of uN(x)to RECURSECTION, which
therefore converges to them superlinearly (see under K = +5).

Second, the nearly double eigenvalues do not retard the convergence
of the QR algorithms at all. But this is not surprising in view of the
known theoretical results about QR (see Wilkinson [1l]). What is
surprising is that the theoretically nettlesome phenomenon of "disordered
latent roots", exhibited by this example, seems to have no more practical
significance than that the eigenvalues are not computed in any predictable

order.
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TEST NO. 5.

12wt
yboooy oy
-

Matrix:

-~

This matrix was input first as above (matrix A), then turned end-for-

end (matrix B).

T sec./F passes/ eigenvalue

Matrix A Matrix B
K=N= 30 K=35 K=N=30 K=5
STDQR 0.2/0.2 0.8/0.8
OKBQR 0.2/0.2 0.4/0.k4
RECURSECTION 11/39 1.9/39 7.7/25 0.6/12
WBIS2 30/ 47 5.0/42 27.2/47 5.5/45
FJILLT 0.7/1.6 1.3/2.7

For matrix B, no results were obtained for RECURSECTION at first,
because stack overflow caused the program to be terminated. However,
when the stack length was doubled, RECURSECTION ran as usual.

Although we do not know the exact eigenvalues of this matrix, the
results from RECURSECTION agree except for the last place in both modes

of input. The results from WBIS2 agree comparably only for the largest
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two eigenvalues, the error in the others presumably due to underflow.

The results from STDQR, OKBQR, and FJLLT differed from those of

RECURSECTION by at most 2 units in the last place of the largest eigenvalue.
Changing each element of the matrix by a unit in its last place

causes a change in each eigenvalue of at most a few units in its last

place, except that the eigenvalue zero may change by an absolute amount

comparable to the change in the smaller elements. Only RECURSECTION

computed the eigenvalues as accurately as they are determined by the data.
We list here some of the eigenvalues computed by RECURSECTION. Be-

cause of the agreement of these results in the two modes of input, we

feel these eigerivalues are correct to the 10 places given.

6.56343370 X 107% :
1.346533638 X 107+ ;
5.187715678 X 1072 b 440892099 x 1071
7.852609156 X 1072 1.110222890 x 10 -°
3 17

2.77431319% x 10
f oDt X8

0.0

1.955655725 X 10"

s s s
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Conclusions:

Our analyses and test results indicate that STDQR is the fastest
program known to date for finding all the eigenvalues of a symmetric tri-
diagonal matrix. The absolute error in each eigenvalue has never exceeded
a few units in the last place of the largest. Conceivably, the program
could be speeded up, in those cases where only a few eigenvalues are
wanted, if some way were found to force the desired eigenvalues to come
out first. Until that is accomplished, RECURSECTION is the fastest
method known to date for computing a few specified eigenvalues of a very
large matrix. This program is also at least as accurate as any general
purpose program can be expected to be. With very few changes RECURSECTION

can be generalized to cope with the more general eigenproblem

det (A - AB)

with symmetric tridiagonal matrices A and B, and positive definite B.
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