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ABSTRACT

Two tested programs are supplied to find the eigenvalues of a

symmetric tridiagonal matrix. One program uses a square-root-free

version of the>QR algorithm. The other uses a compact kind of Sturm

sequence algorithm. These programs are faster and more accurate than

the other comparable programs published previously with which they have

been compared.
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I. Description of procedure STDQR

STDQR finds all N eigenvalues E[1l],E[2],...,E[N]of the symmetric

tridiagonal matrix with A[1],A[2],...,A[N] on the diagonal and

B{1],B[2], ® o=rB[N-1] on the superdiagonal. The eigenvalues are not

found in any particular order. The input data A and B are not

changed.

Accuracy: |

In our experience, the absolute error in each value E[i] has not

exceeded a few units in the last place of max |E[j]l. The larger
1<J<N

1s N , the larger the error can be. But our best rigorous error bounds

are far larger than the error observed in practice. Turning the matrix

end-for-end (by exchanging A[i] with A[N+1-i] and B[i] with

B[N-1]) can change the errors significantly because the eigenvalues

nearest the elements at the bottom of the matrix tend to be found first.

For best results when the matrix contains significant elements A[i]

and B[i]of very different magnitudes, the smaller elements should

appear at the bottom, in which case the errors in their corresponding

eigenvalues may be as much as 100 times smaller than 1f the matrix were

~ reversed.

The program contains provisions for scaling to prevent trouble with

premature over/underflow. It assumes that the computer replaces under-

flowed arithmetic results by zero. Then each computed eigenvalue E[i]

will be correct to the accuracy described above unless 1t overflows or

underflows.
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Timing:

Roughly proportional to N° . This 1s the fastest program known to

date for computing all the eigenvalues E[1].If only a few eigenvalues

are wanted, then our RECURSECTION program may be faster. Because the OR

iteration used here is cubically convergent, little time can be saved by

relaxing the accuracy requirement. In our experience, the time required

for the whole program corresponds to roughly N° circuits of the inner

loop (see label LOOP in ALGOL 60 program).

Method:

The QR iteration used here 1s based upon a square-root free version

of the criginal Francis algorithm [4], published by Ortega and Kaiser

[5]. However, the algorithm described by the latter authors, and pub-

lished in ALGOL 60 by Businger [2], is numerically unstable. (See example

1 of our test results and Welsch [7].) Revisions proposed by Rutishauser

[6] and Wilkinson ([10], pg. 567) do not cure the problem. Our version

appears to be stable. We are indebted to J.H. Wilkinson for a 2 X 2

example containing the first intelligible evidence that the Ortega-Kaiser,

and also the Wilkinson-Rutishauser version, might be numerically unstable.

The origin-shift strategy (the choice of LAMBDA) is an important

contributor to the rapid convergence of the algorithm. We set LAMBDA to .

that eigenvalue of the bottom 2 X 2 principal submatrix which is closer

to the last diagonal element, except when this choice 1s not unique, 1n

which case the eigenvalue of smaller magnitude 1s selected.

The criteria for deciding when an off-diagonal element B[i] is

negligible are discussed in reference [13].
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ROCEDURE STDQR(AsBsEs»iN)jTAN: Ns INTEGER N3 AHRAY AsB,E}
K&GIN COMMENTS STOUR FINDS ALL N EIGENVALUES F[1)r2E[2)reee2ELN])} OF THE

SYMMETRIC TRIDIAGWUNAL MATRIX WTH A[1),AC2)s,+,02AIN] ON THE DI AGONAL

AND BllJoB[2lsreeerBIN=1)UN THE SUPER-DIAGONAL, THE EIGENVALUES ARE

FUUND IN NU PARTICULAR URVER,}S

COMMENTNWR IS A GLUBAL INIEGER VARIABLE», USED TO COUNT THE NUMBER OF
QR STEPS MADES$

COMMENTS We ASSuME GIVEN THE FOLLOWING MACHINE QUANTITIES:
BASE = NUMBER BASE OF THE MACHINE

MACHINF = LARGEST XACT POWER (FF THE BASE LESS THAN 1/4 OF THE
MACHINE UVERKFLOW LIMT

MACHNEGWL = SMALLEST NUKMALIZED POSITIVE NUMBER HEPRESENTABLE ON

THE MACHINE

MACHPREC = FLOATING=POINT RELATIVE MACHINE PRECISION}

INTEGER IsoRKoM;

REAL RsSsl»CrGoPrWsSCALELEPSHNDELTASLAMBDALEK]LS
ARRAY HBB[OIN]S

CUMMENTs FIRST SCALE MATRIX SO THAT ACIJ)t2 ao BCI1Jt2 DO NOT OVERFLOW
AND ALL11T(=2)AND 8L11%(=2) DO NOT UNDERFLOW FIRST FIND MAXI MM
ELEMENI OF THE MATRIX}

RiI=ABSCAINJ)}

FOK It$=N=1 STEP =1 UNTIL 1 DU
BEGIN St=AbS(A[I]1)3 1F S>R THEN R3$=S3}

St=ABS(6(I}))} IF S>r THEN R3=S
END3
If R=0 THEN
BEGIN COMMENTS MATRIX IS ZERU,3

FUR I¢=1 STEP 1 UNTIL N DU ECIYt=03
GO 10 RETURN

END;

COMMENTS$ FUR SCALING, WE ASSUME GIVEN THE MACHINE QUANTI TIES
- MACHNUL = MINC(MACHINF»1/MACHNEGL) (EXACT POWER U0F THE BASE)

MACHNUZ = SMALL&ST EXACT POWER OF THE BASE LARGER THAN

SQRT(MACHNUL) /MACHINF »

THUS MACHNO2 = BASEY (ENTIERC(CO«SXLNC(MACHNOL)=LN(MACHINF))/LN(BASE))
+1),}

SCALE$=]F RSMACHNUZ2 THEN MACHI NF
ELSE BASE TCENTIERCCO,S5XLNC(MACHNOL)=LNCR))/

LNCBASE))3

CUMMENT: SCALE 1S THE LARGEST EXACT POWER OF THE BASE REPRESENTABLE
SUCH THAT (RXSCALE)IT2<MACHINF AND (RxSCALE)T (=2)>MACHNEGL»
THIS CUmMPUTATION SHUULD BE DONE IN MACHINE CODE,
IT IS PUSSIBLE THAT SCALE COULDUNDERFLOW I{F THE MACHINE IS SUCH
THAT MACHINFXMACHNEGUL > SWURT(MACHNOL) BUT WE Know OF NU MACHI NE

WHEKE IHIS IS TRUE,’

ECN)JI=SAINJIJXSCALE)



H I$8=N=1 STEP =1 UNTILL 1 DU

Loe Let) 115A] Isc ARLES be
BBLIJls=(BII}xSCALE)?T?

END}
B8L01t=BBIN])t=0) .
DELTAS=RXSCALEXMACHPREC/C100%N )} COMMENT SNXDELTA Is SMALL

COMPAREU WITH THE EXPECTED ERROR OF A UNIT IN THE {AST PLACE OF
THE LARGEST EIGENVALUE (SCALED)+S

EPSt=DELTAY2) CUMMENTY EPS IS USED TO TEST FUR THE NEGLIGIBILITY Of
BBL].

KE=N3J

FOR Ms=K WHILE M>0 QU
BEGIN COMMENTS: SCAN FOr NEGLIGIBLE BBLK] IN ROWS AND CULUMNS M BACK

TO 1.43

FOR Ki=rh=1 WHILE TRUE DO IF RBLKI<EPS THEN GO TO NEXTJ
NEXTS

IF K=M=1 THEN Bt#[KJ}¥=0 ELSE
BEGIN CUMMENT?S® DEAL WTH BOTTOM 2x2 BLOCK;

ThOgBY23

TtseEIMI=E(M=11])

Res=HOo[M=1]}

IF K<M=2 THEN
BEGIN COMMENT? WEAKER TEsT FUR NEGLIGIBLEBBC(M=11).}

Wi=z=BB[(M=21]/
Cs=Tt23 S1=R/Z(C+W)}

db Sx(W+SxCI<tPS THEN BEGIN MizM=1}
BB(M]}:=03}

GO TO TWOBY2
END

END NEGLIGIBLE HO}

IF ABS(T)<DELTA THEN S¢=SQRT(R)
ELSE BEGIN wi=2/1;

SISWXR/(OQRT(Wt ZXxR+1)+1)
ENDS

[F K=M=2 THEN
BEGIN COMMENT: A 2x2 BLOCK HAS BEEN SEPARATED, SO WE STORE THE

| ELGENVALUES«3

EilMIt=E[(MI+S)

EIM=1])isE(M=11=§}

BE[(K])t=0

. END
. ELSE

BEGIN COMMENTSDU A QR STEP UN ROWS ANO COLUMNS K+i THROUGH Ms
USING K AS THE INCREMENT VARIABLE, IN THE NOTATION OF
URTEGA AND KAISER, C = C[K]t2, § = S(K1t2, P = P[K],
G= GAMMALK), T = P{K1T2+B({K112, W=a WORK SPACE,:

NURIZSNQR+M=KJ}

CUMMENTI$ FIRS! CHOOSE THE SHIFT PARAMETER LAMBOA,)
LAMBDAI=E(M]+)

Lf ABSCT)<UVELIA THEN
BEGIN Wi=E[M=1]=3}

IF ABS(W)I<ABS(LAMBOA) THEN LAMBDA1=W

END)
3¢=0) GI=E(K+1]=LAMBDAS Ci=1}
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| GU TO ENTRY
LCOP Ci=P/13 Si=W/13 nN3=Gs

EK13=b(K+1i;

Gs=Cx(LKI=LAMBDA) = SXW}

ECKIt=(H=G)+EK1}

ENTRY? IF ABSCGI<UELVA LHEN
G:=G+(]1F G20 1HEN C ELSE =C)HYxXDELTAS

Pi1=Gt2/7C3}

Kiz=K+1)

Wei=BBLK]S

ls=W+P3j

BB{K=1138=Sx%xT3;

IF K<M THEN GU TU COUP;
ELK)3=G+LAMBOA

END WR STEP
END OF CONDI TI ONAL

END, MS
EOR Tt=1 SIEP 1 UNTIL N PUECTIs=ELI)/SCALE}
NARS$=NQR/NJ COMMENTS NUK GIVES THE NUMBER OF EQUI VALENT FULL OR STEPS,
KE TURNS -

END STUQKRS



II* Description of procedure RECURSECTION

RECURSECTION finds

if K > 0 then the greatest K _eigenvalues E[1] > E[2] > .*. > E[K]

else if K < 0 then the least -K eigenvalues E[1l] < E[2] <.** < E[K]

of the given N X N symmetric tridiagonal matrix with Af{1],A[2],...,A[N]

on the diagonal and B[1],B[2],...,B[N-1] on the superdiagonal. The

input data A and B are not changed.

Accuracy:

Each computed E[i] differs by a unit or two in its last place

from the 1-th oigenvalue of some tridiagonal matrix which differs

from that given by a few units in the last place of each off-diagonal

element. All told, no computed E[i] can be in error by more than a

few units 1n the last place of the largest eigenvalue of the given matrix.

The error bound depends upon the details of the machine arithmetic units,

but 1s independent of N and K .

The program contains provisions for scaling to prevent trouble with

premature over/underflow. It assumes the computer replaces underflowed

arithmetic results by zero. The program 1s such that any underflows

which do occur in intermediate results do not cause serious errors 1n

‘the final results E[i] . In fact, intermediate over/underflows can

contribute an absolute error no larger than

(3X(MACHNEGL 1 0.25 )/ (MACHINF 1 0.5) )XNORM |

where MACHNEGL and MACHINF are, respectively, the smallest and largest

positive numbers normally representable on the machine, and
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NORM = max, max. (|al1]] , |B[11]) .

Such an error 1s smaller than 10710 units in the last double precision

digit of the biggest eigenvalue of the matrix on any computer we know.

This 1s 1n marked contrast with the Wilkinson Sturm sequence - bisection

algorithm [9], where premature over/underflow can cause disastrous errors

in the results. Then the user may be unaware of those errors if underflows

are replaced by zero with no message output from the machine telling him

of the underflow. For examples of this, see our test results. But for

our program, each computed eigenvalue will be correct to the accuracy

described above unless it overflows or underflows. The program also

assumes that each arithmetic operation (+,-, X, /) 1s monotonic 1n

its two operands despite roundoff, which 1s the case on most machines

in single precision arithmetic For a detailed error analysis, see

reference [12].

Timing:

Roughly proportional to |X| x N. This program 1s the fastest known

) to date when 1 < |x| << N. When IK] = N , our QR program 1s several

times faster in some cases. In particular, RECURSECTION is slowest to

+ find those eigenvalues of the matrix which remain almost unchanged when

the last row and column of the matrix are deleted, because a binary chop

technique 1s used to find those eigenvalues. The other (and normally

most) eigenvalues are found more quickly by a superlinearly convergent

iteration. For this reason, RECURSECTION sometimes works faster after

the matrix is turned end-for-end via the replacement of Ali]by A[N+1-i]

and B[i] by B[N-i]}.- Also, if any B[{i]l= 0 , time can be saved by

feeding the matrix to RECURSECTION 1n two or more bites, although one
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must subsequently sort the eigenvalues of each bite to obtain the desired

ordering of the eigenvalues of the whole matrix.

In any case, RECURSECTION issubstantiallyfaster.than programs

which apply a binary chop technique to aSturm sequence,, and|is intended

to supersede such programs.

Method:

The basic idea was first put: forth at the University. of Toronto

by Dr. Boris Davison in 1959, and follow6 from Sylvester's inertia

theorem:

If A 1s a symmetric matrix,, D 1s diagonal, and L is non-

singular, and 1if

A-xT = DL »

then the number of A's eigenvalues less than or equal to x 1s the

same as the number of negative or zero elements of D.

We apply this theorem in procedure SYLVESTER to our symmetric

tridiagonal matrix A by performing Gaussian elimination without inter-

| change6 on A-xI , obtaining

AI = LU = IDL

However, since we do not need L explicitly, we only compute the diagonal

elements Uy of D and record the number of uy < 0. The recurrence

relation for these uy 1s particularly simple:

uy, =a,x

u, = (a,-b% Ju, 1)-x , i=2,...,N .
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Provided the time required for a single precision division 1s not appreci-

ably longer than that for a single precision multiplication, this takes

about 1/3 as long as the usual Sturm sequence recurrence, partly because

no serious scaling problems are encountered in SYLVESTER. Also, provided

the machine arithmetic 1s tonotone, the recurrence for the (u,] 1s such
that the number m(x) ' of u, <0 1s a monotone non-decreasing function

of x despite roundoff. This simplifies the logic of the program: For

a similar reason, we compute u, as shown rather than from

uy = (ax) - og TATE

to preserve the strict monotonicity of u(x) near its zeros.

Procedure SECTION chooses a sequence of values x to feed to

SYLVESTER in order to find the eigenvalues of A. This procedure 1s

always entered with two abscissa LO and HI which are known to bracket

the eigenvalues we are seeking. We then proceed to find points x be-

tweenLO and HI , using a method described below, 1n order to converge

to the eigenvalues. Whenever a value x 1s found which separates

(LO, HI] into two subintervals (L.O,x] and (x,HI] , each known to

contain at least one eigenvalue, SECTION calls itself recursively to

deal with each subinterval separately. Mr. Michael D. Green suggested

this recursive calling of SECTION, and this seems to be the simplest way

cof coding the program so that the best bounds are used for each eigenvalue,

though stack-overflow may be encountered 1n some cases 1f too many

recursive calls are made. The depth of recursion cannot exceed x].

To form the sequence of values x , a binary chop method would work

in principle, but in practice that can be slow. To accelerate convergence

of the iterates x to the eigenvalues, we use a modified secant iteration,

9



patterned after D. J. Wheeler's program F2 (see [8], pg. 8% and 130).

This iteration 1s applied to the function Wy (x) y Where Uy is
the last element of D defined “bove. Now,

a(x) = Shem , where A(N-1) is the (N-1)X(N-1) matrix
det (A -xI)

formed from the first (N-1) rows and columns of A. Thus uy (x) 1s
a rational function with slope < -1 at all points, whose zeros are the

zeros of det (A-x1) , except for those zeros which are also zero6 of the

denominator toan equal or greater multiplicity. These zero6 are called

"hidden eigenvalues".

We use the modified secant iteration on uy (x) when our current

bounds LO and HI are such that u (10) > 0 and uy (HI) < 0 . Because

of the nature of the function uy (x) y this ensures that there is at least

one zero of uy (x) between LO and HI . Otherwise we use binary chop
to find the next point x = (LO + HI)/2 . Thus for cluster6 of eigenvalues

and the "hidden eigenvalues" mentioned above, the binary chop strategy will

| be used a large part of the time. But once a zero of Uy 1s 1solated, the

secant strategy will be used from then on, giving superlinear convergence

to this eigenvalue, with average asymptotic order 343 =1.44 |
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PROCEDURE RECURSECTIUNCAsBsEsNsK)3
Vv E NsK; INTEGER NyK’3 ARRAY A»B,ES

BEGIN COMMENT? RECUKSECTION FINDS
IF K>0 HEN THE GREATEST K EIGENVALUES E[1J2E[2124e¢E[(K]
ELSE [ft K<Q THEN THE LEAST (=K) EIGENVALUES E(11SE[2)Ss0eSEL[=K]

OF THE NXN SYMMETRIC THRIDIAGONAL MATRIX W TH A[11,Al2)seeesALN) ON
THE DIAGONAL AND BU1)sBL2)seeesBIN=1) UN THE SUPER-DI AGONAL. THE

INPUT UATA A AND B ARE NOT CHANGED,:

COMMEN|: Wk ASSUME GIVEN THE FOLLOWING MACHINE QUANTITIES;
BASE = NUMBER BASE OF THE MACHINE

‘ MACHINF = LARGLST LXACT PCWER OF THE BASE LESS THAN 1/4 OF THE

MACHINE UVERFLOW LIMT

MACHNEGL = SMALLEST NURKMALIZED POSITIVE NUMRER REPRESENTABLE ON

THE MACHI NE. ;

INTEGER Ti

LOpHLO»LU»HU»CsrRo R1»S»T» SCALES

ARRAY AABUBL[1IN)J

PROCEDURE OYLVESTER(X»UsM);

VALUE XJ INTEGER M3 REAL A,U3
BEGIN COMMENT?! SYLVESTER SETS M TOO THE MUMBER OF EIGENVALUES OF THE

NXN SYMMETRIC IRIUIAGONAL MATRIX W TH DIAGONAL AA[1lsesesAAIN]Is» AND
SUPELR=ULAGONAL SURT(BB(Z2]24442oBBIN])» WHICH ARE $ Xe U IS SET TO THE

VALUE Ut THE LAST PLlVUT IN THE GAUSSIAN ELIMINATION OF ((THE MATRIX)
wXX])» WITH THE CUNDTRAIN] THAT XL*XH € U(X) € XH=XL» WHERE XL AND
XH ARE (Ht BEST BOUNDS WE HAVE FOR THE LEAST AND GREATEST

EIGENVALUES.)

INTEGER Ti OWN REAL XLsXH3 D3AL
Us=AAL1])=r; MizQ} 18=1} GU JU L3
LCOP?

[t=s]+15 Us=s(AALTJ=BBL{I J1/U)=X3}

L$ IF USO IHEN BEGIN Mi=M+1}
IF 1=0 THEN U$==MACHNEGL

END
COMMENI$ THIS CODE ASSUMES OVERFLOWS ARE ALLOWED, AND THAT WHEN
HeY OCCUR,» THE ARGUMENT 1S REPLACED BY THE LARGEST MAGNI TUDE

. WITH THE SAME SIUNe IF THIS IS NOT AVAILABLE TO THE USER» HE CAN

REPLLACE THE CUVDE AF IER LABEL L$ BY THE FOLLOWING, MORE TIME"

CONSUMNG CODES

Ls lF U < RTMACHNEGL THEN _ BEGIN M3=M+1
IF U>=RTMACHNEGL THEN U$=x=RTMACHNEGL

END

"WHERE RTMACHNEGL = SQRT(MACHNEGL),}

IF I<N IHEN GO JU LUUP}
IF M=N THEN XH3=X
ELSE IF M=0 THEN XL3=X
ELSE BEGIN D¢=XH=XL}

IF ABS(U)>D THEN U3=UXSIGN(U)
END CUNSTRAINING U

END SYLVESIERS

REAL PROCEUUKE NEXT(XsY)}
VALUE X»Y3 REAL X»Y3)
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BEGIN COMMENTS NEXTCX»Y) IS THE N |SIVE "THAT DIFFERS PREM EA BY AN AMOUNT Xp BE TREEN X | AND. ¥ |
AS LARGE AS 1 UNITIN THE LAST PLACE OF Y-X + . THIS
PRUCEDURE SHUULO BE WRITTEN IN MACHINE CODE, THE COOI NG

GIVEN HERE 1S JUST AN tXAMPLE» AND CANNOT BE EXPECTED TO BgE
OPTIMAL FUR ALL MACHINES. THE MACHINE QUANTITY ULP IS ASSUMEO
GIVEN TO BE THE SMALLEST POSITIVE NUMBER SUCH THAT
1,0+LULPXHASE # 1¢0 IN IKE MACHINE,;

Vek oF}

E3=ABS(Y=X)3 Fi1=ABS(X)J

Fi=0t=ClF E>F JHEN & ELSE FIXULPXSIGNCY=X)}
IF D#0 IHEN FOR E3=X+D WHILE E=X DU D:=0D+F

ELSE E3=sX+(Y=X)/2}
NEXT s=t

END NEXT;

PROCEDURE SECTIUNCLAHsLUSHUSLCIHIsLMsHM)}
CoHoLU»HU LUP HI» LMasHM}

INTEGEN LoH3 HUHUSLUSHTI»LLMpHM}
GEGIN COMMENTS? SECTIUN IS A RECURSIVE PROCEDURE WHICH SEEKS EIGENVALUES

ELL)SELL+1)SoeesStlH)UF THE NXN SYMMETRIC TRIDIAGONAL MATRIX W TH
DI AGONAL AA[1 )sseeAALN] AND SUPER-DI AGONAL SQRT(BBL2J,eee¢sBBINI).
WHEN CALLED» IT 15 ASSUMED THAT LO < ALL DESIRED EIGENVALUES €$HKI,
AND THA UuCLO)/7LU > 1 AND yYyC(HIY/Hu > 1, WHERE U(X) 1S THE OUTPUT OF

SYLVESILR(XsUsM), LM AND HM ARE ACCELERATION PARAMETERS,;

REAL X»U3 INTEGER M3
START¢-

IF LUSO V HU20 THEN

BEGIN COMMENTS DO A BLISECTLION STEP.
X1=LO+(HI~LO)/25 COMMENTS THIS SHOULD HE DONE IN SUCH A WAY THAT

THE CONSEQUENCESUF UNUERFLUW TO ZERO IN(HI=L0)/2 UR IN X ARE
CONSUNANT WL IH THE |REATMENT OF UNDERFLOW IN NEXTC(LOsHI)3

EAD

ELSE Xs=LU+(LU/C(LU=HU)IX(H]=L0)3 COMMENT: DO A SECANT STEP,

COMMENTS THE NEXT SIX LINES GUARANTEE THAT LO < X < Hl}

Ut=NEXT(LUPHI)S LF X<U THEN X3=y3
UIESNEXT(HLIsLU)3 JF X>U THEN Xi=U}
IF xsHI Vv X=L0 THEN
BEGIN COMMENTS THERE AKE (H=L+1) EIGENVALUES AT X.3

FOR Mi=L STEP 1 UNTIL H DU E[M)i=X
END
ELSE

BEGIN SYLVESTER(XsUsM)j
IF M<L |HEN
HEGIN CUMMENT?: INCREASE LUWER BUUND}

LOs=4A3 Lys=Us; LMI=2;

HM: =U ,S5xHM3 HUSSHUXHM}

GO TU START
END
[F m2H [ti tN
BEGIN CUMMENT8 DECREASE UPPER HOUND,;

HI3=A3 HUI=U; HMI=2;

LMI=U,95%XILM} LUS=LUXLM}

GO lu START

12
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ELEN | AT THIS PUINT L€M<r SO WE CAN FIND EIGENVALUES L THROUGH M
AND v+1 THRUUGH H SLPARATELY.J

SECTIUNCLsMsLUs»UsLUSXsLM»2);

SECTIUNC(M+1,HsUs HU» Xs HIS» 22HM)}
END
END SECTIun;

COMMENTS NUW BEGIN MAIN PRUCEDURE RECURSECTION,S
1F K=0 THEN GO 10 KETUKNS

IF ABS(KI>N THEN Ke:=NXS1GN(K)}

COMMENTS:NUW SCALE MAIRIX SO THAT EACH SCALED ABSCA[LIl) AND ABS(B(I)
IS LESS THAN MACHNU» A MACHINE QUANTITY DEFINED B8ELUWe FIRST FIND
MAXI MUM ELEMENT UF [HE MAIRIX3

KI=ABSCAINI))S

FOR. Is=N=1STEP -1 UNIIL. 1 Dy
BEGIN S:=AB8SCA[CI))3 1F S>R THEN R3$=S}

S1=ABS(BLI])3 LF S>K THEN FRi=S$

END; }
IF R=0 THEN
BEGIN COMMENT: MATRIX 15 LERO.;

FOR I's=1 STEP 1 UNTILL ABS(K) DO E[I1):=03
GO TO RETURN

ENDS

COMMENTS FUR SCALING»WE ASSUME GIVEN THE MACHINE QUANTITY
MACHNU = LARGEST EXACT POWER OF THE BASE SMALLER THAN

SART(MACHINFXSQRT(MACHNEGL)),
THUS MACHNO = BASETCENTIERCCO¢SXLNCMACHINF )*0425xLNCMACHNEGL))

/LNCBASE))),.;

SCALES=SIGN(=K)X(IFR S MACHNC/MACHINF THEN MACHINF

ELSt HASEYC(ENTIERCCLNCMACHNO)=LNCR))/LN(BASE)))))

COMMENT: ABS(SCALE) IS NUW THE LARGEST EXACT POWER OF THE BASE

©REPRESENTABLE SUCH THAT A8SC SCALE)XR<MACHNO, THIS COMPUTATION
. SHOULD BE DONE IN MACHINE CODE,.}

COMMENT: NUW SCALE MATRIX AND FIND UPPER AND LOWER GERSCHGORIN BOUNDS
FOR THt EIGENVALUES3

Ct=A{1 JxSCALL

R18zABS(B(1IXSCALE);

LCs¢=C=RY13 HI$=C+R1;

Ci=AA{N]IS=A[NIXSCALL} Ki=Q;

PCR le=N=1 STEP =1 UNTILL 1 QU
XSCALE) RABS(B(I

RISSR+S

Ti=C=R1} IF LO>I THEN LOt=T3
Ti=C4nl} JF HIST THEN HIS=T3
Cs=AALLJi=A[]IXSCALL}
R$=S}

Bull+1)s=S 2

ENDS
REZABS(LO)YABS(HI)
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LCI=NEXTC(LUsLO=R)S HISSNEXTC(HI»HI+R)} COMMENTS TO INCLUDE KOUNOOFF
- ERKRUR IN GERSCHGURIN BUUNUS.3 -

COMMENTss NUW MAKE THE INITIAL CALL CF PROCEDURE SECTION, THIS INITIAL
CALL 1S SET UP Ty FINU THE GREATEST OR LEAST ABSC(K) EIGENVALUES. If
SUME UTHER CONF LUURATIUN UF EIGENVALUESIS NESIREDs» THE USER CAN

CHANGE IHIS INITIALCALL ACCORDINGLY.
BE(118=0;

SYLVESTER(LOsLUS1)

SYLVESTER(HI»HU»I)J

SECTIUN(CL»ABS(K)sLUsHU»LUSHI»252)3

CCMMENTS NUW UNSCALE THEEIGENVALUES,.S
EUR Ts=1 SIEP 1 UNTIL ABSC(K) CU ECI)s=ECI)/SCALES
RETURN?

END RECURSECTIONS

14



|
ITI. Test Results

Several tridiagonal matrices were fed to RECURSECTION and STDQR,

and the results produced compared with those from some other programs,

as shown below. Except 1n a few cases where the eigenvalues could be

computed 1n closed form or were otherwise known, we were unable to verify

our claims to accuracy because RECURSECTION 1s the most accurate program

we have. The differences between RECURSECTION's results and those from

the other programs were never in excess of the known error bounds for the

other programs.

The other programs compared were:

"WBIS2" — Wilkinson's binary chop Sturm sequence algorithm [9].

"OKBQR' — Ortega and Kaiser's OR method, published by Businger [2].

(The version proposed by Rutishauser and Wilkinson was

also tested).

"FJLLT' — Sturm sequence - Ln algorithm proposed by Fox and Johnson

[3] .

In the results listed below, we let

; T = time 1n seconds to produce x] eigenvalues (K given). However

the actual time taken depends on the machine used, so we also let

F = (number of full passes (i.e. N times) through the inner

100p(s))/|x| ,

and tabulate "T sec."/"F passes/eigenvalue".

However a direct comparison of the numbers F 1s still unfair

because the inner loop for each program requires a different number of

operations. For convenience, we give here a table listing the number

of operations in each inner loop.

15



additions = array
divisions multiplications subtractions references comparisons

STDQR 3 4 ) 5 } 1

OKBQR 2 3 7 L 1

Wilkinson-

Rutishauser 3 5 0 4 1.
version

RECURSECTION 1 0) 2 2 V2
WBIS2 0 2 2 2 3

FJLLT #1 1 0 2 4 1

#2 J 2 1 4 0

The FJLLT program really has two separate inner loops, each of

which 1s described separately above. In the counting of inner loops

executed, each was counted separately and then the results were added.

Note that we count the number of "full passes" through the inner loop.

In the QR methods, this 1s not the same as the number of QR steps

made, since we do not always work with the full matrix. A similar con-

sideration affects FJLLT. For RECURSECTION, the count is just the number

of calls of procedure SYLVESTER per eigenvalue, and for WBISZ just the

number of calls of procedure sturms sequence per eigenvalue.

All results were obtained on a Burroughs' BS500 with 13 octal digits

of significance in floating-point (i.e. about 11 decimal digits). Division

on this machine takes twice or thrice as long as multiplication, so the

procedure RECURSECTION appears in its least favourable light compared

with WBISZ2. Timing on this machine 1s unreliable because of multiprocessing,

16
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|
so the times tabulated below should be regarded merely as rough indica-

tions.

To assure as fair a comparison as possible, all programs were set

up to yield results of comparable accuracy. The following adjustments

were required:

In WBIS2 , the user is expected to state how many binary chops (t)

he wants done for each eigenvalue. This means that each eigenvalue will

be 1n absolute error by at most about 27% | Largest eigenvalue] I f

t is chosen just large enough to yield a desired relative accuracy 1n

the larger eigenvalues, the smaller eigenvalues may suffer unacceptable

relative errors. Therefore we set t = 50 even though our machine uses

only 39 binary digits of significance. To save time, we also modified

Wilkinson's program to stop chopping as soon as the computed bounds for

an eigenvalue differed by no more than a unit or two in their last place.

Thus the actual code changed was the j-loop in the procedure tridibi-

section 2:

for Jj :=1 step 1 until t do

begin lambda := h + (g-h)/2 ;

if lambda = h or lambda = g then go to continue;

sturms sequence ;

if al » d thenh := lambda else g := lambda

end J;

continue: ml = ml + 1 ;

wlml]:=h + (g-h)/2 ;

This modification can only improve the program.

17



The Businger version of Ortega and Kaiser's QR method was found

to be numerically unstable in certain cases. We modified the loop in

the way suggested by Rutishauser and Wilkinson without curing the instabi-

lity. (See example 1.) Even when the'answers were correct, the program

usually took somewhat longer than our STDQR despite the fact that our

program has an extra multiplication in its inner loop. (See example 2.)

We attributethe speed of our program to a better strategy for choosing

the acceleration parameter lambda than was used by Businger.

The Fox and Johnson program was amended slightly, mainly to correct

a few syntactic errors in the ALGOL listing and to add a scaling block.

This program combines a Sturm sequency-binary chop method witha secant

iteration applied to the characteristic polynomial of the matrix, and

uses the Q-D transformation, organized like Ortega and Kaiser's hie

algorithm, to deflate successive eigenvalues out of the matrix. In |

order to guarantee accuracy comparable to that of our STDQR, we found

1t necessary to set eps2 = 10” and epsl. = 10 4! in this program.

18



TEST NO. 1

X 1

Matrix: 1 1

1 =x 1 .

1 -1

This matrix was run with different small values of x to test: the

QR programs. The results for x = 107 and x = 10714 were particularly

interesting. We believe the true eigenvalues are as follows to 10 figures,

since our most accurate programs gave results agreeing to 10 significant

figures: -~

x=107: A = 2.061498246 x = 107: = 2.061498851
hy = 00 ZuiEwuDE \, HB 0 .3965385310
“3 = 0 .695817167k M5 = -0.6938224565

NM, = -1.764018050 A, = -1.764014925

T sec./F. passes/eigenvalue

STDQR 0.05/1.5

- OKBQR 0.05/1.8

RECURSECTION  0.13/1k

WBIS2 0.42/11

FJLLT 0.10/6.0

With x = 107, the original Ortega-Kaiser QR, as published by Businger,

gave results accurate to only 2 decimal places. And with x = 10714, the

Rutishauser-Wilkinson amendment to this gave results accurate to at best

one decimal place. For both matrices, our STDQR gave results accurate

to 10 figures. 19



TEST NO. 2.

X 1

: N ) Me = [x + 4 cos? (1%) 1/2
1 -x 1 | Milk = Me 7 k=1,...,[N/2].

Matrix: ) ‘ * |

; a 0 (if N is odd).
1 x 1

| | Ix J ouxn
forx = 1

, T sec./F passes/ eigenvalue

K = N=30 K = +5 ‘K= 5

STDQR 1.2/1.3

OKBQR 1.6/1.9

RECURSECTION  3.8/12 0.8/16 0.8/16

WBIS2 13/38 2 .3/39 2.6/39

FJLLT 3.0/7.2

The timing was nearly the same for each xX tried, except as noted below.

The errors in RECURSECTION and WBIS2 were at most 2 units in the

last place and for STDQR and the other programs at most 2 units in the

last place of the largest eigenvalue.

With x = 107, OKBQR again gave very bad results, with errors in

the third decimal place. For x = 0 , that program gave acceptable results,

but took 11 seconds to find them.

With x = 10,000, no results were obtained from WBIS2 because floating-

point overflow occurred, causing the program to be terminated. Also, we

obtained no results from FJLLT for x = 10000 , even after allowing it

to run for 4 minutes, because that program is very slow to find near-repeated

eigenvalues, especially when underflows intervene.

20



TEST NO. 3.

Zeros of the Bessel Functions J (x)

Because of the three-term recurrence relation satisfied by the Bessel

functions, the non-trivial zeros 1 - (k = 1,2,...,m > 0) of J (x)J

are given by

= > > sesSn 2 Yi , where Hy Hy vs >

are the eigenvalues of the following infinite symmetric tridiagonal matrix:

/

a b a = Z
1 1 n (n+2n-1) (m+2n+1)

b a, b.

! 2 2 with .
. . . (m+2n+1 )V(mt2n) (m+2n+2)

Furthermore, the first several bh are closely approximated by the eigen-

values of the matrix formed by taking the first N (say) rows and columns

of the above matrix, provided N 1s large enough.

In particular, we took N = 50 to obtain approximations to the

first 20 zeros of J (x) (and J,(x)) , using both the matrix as given

above (matrix A) , then flipped end-for-end (matrix B).

T sec./F passes eigenvalue

matrix A (50X50) matrix B (50X50)

K = 50 K = 20 K=51]K-= 50 K = 20 K=>5

STDQR 2.2/0.9 2.9/1.2

OKBQR 2.7/1.2 3.1/1.4

RECURSECTION 10/37 2.6/39 4.2/15 0.9/15%

WBIS2 22/43 | 5.2/k2 20/43 | 4.5/42

FJLLT 12/10 8/16

21



—_ —

To examine the accuracy, we compared the results with the tables

given in [1], pg. 409-411. The results from RECURSECTION for both

matrices A and B agreed with the tables to the machine limit of 11

decimal digits. The results from WBIS? agreed to 11 digits for the

first two zeros, but the others were progressively more 1inacurrate, with

some incorrect 1n every digit, because of machine underflow.

The results from STDQR for matrix A were in error by at most 30

units in the last place (for the larger zeros), andby at most 300 units

in the last place for matrix B with the small elements at the top of the

matrix. However, these errors in the zeros & were reflections of

absolute errorsin the eigenvalues uy of only a few units in the last

place of the largest eigenvalue. The results from OKBQR were comparable,

and those from FJLLT were somewhat more in error 1n all cases.

The results for J, (x) were comparable. The errors did not change

when the matrix size was increased from N = 50 to N = 100 , but times

were about doubled for RECURSECTION and WBISZ and quadrupled for STDQR,

OKBQR, and FJLLT, since all 100 eigenvalues up were found in the latter

cases.
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TEST NO. 4.

/ 0191 1 |
1 8 1

1 -9 1

Matrix: 1-10 1

1-9 1

1 9 1

] | 1 10 N = 41,

T sec./F passes/eigenvalue

K-N= 41 K = +5 K = -5

YTDOR 1.7/1.0

OKBQR 2.8/1.8

KECURSECTION 12/23 0.5/7.0 2.0/35

WILKINSON 23/41 2.5/38 2.7/39

PJLLT 6.7/9.1

| The results from all methods differed by at most 2 units in the last

place of the largest eigenvalue. We do not know the eigenvalues exactly,

but we list here the results obtained for some of the eigenvalues. Because

of the agreement among the methods, we feel these results are correct to

the 10 figures given.
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The computed eigenvalues are:

10. 7h619418 (twice) :

9.210678647 (twice)

8.038941119 (twice) -7.869790781

7.003952003 (twice) -8.21067864T

6.000225680 (twice) -9.052465632

-9. 746194183

-11.12544152

This matrix 1s interesting for two reasons. First, its twenty

algebraically larger eigenvalues occur 1n almost 1indistinguishable pairs,

while 1ts ten lesser eigenvalues are well separated. None the less, the

well separated eigenvalues are "hidden" to RECURSECTION, which must there-

fore use the slow binary chop to find them (see under K = -5). The nearly

double eigenvalues look like simple zeros of uy (x) to RECURSECTION, which
© therefore converges to them superlinearly (see under K = 45).

Second, the nearly double eigenvalues do not retard the convergence

of the QR algorithms at all. But this is not surprising in view of the

known theoretical results about QR (see Wilkinson [11]). What is

surprising is that the theoretically nettlesome phenomenon of "disordered

latent roots", exhibited by this example, seems to have no more practical

significance than that the eigenvalues are not computed in any predictable

order.
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TEST NO. 5.

1/2 yt

Matrix: *

ye-N K ye-N y1=N

El N = 30

This matrix was input first as above (matrix A), then turned end-for-

end (matrix B).

T sec./F passes/eigenvalue

Matrix A | Matrix BK=N= 30 K=5 K=N-= 350 K=5

STDQR 0.2/0.2 0.8/0.8

OKBQR 0.2/0.2 0.4/0.4

RECURSECT ION 11/39 1.9/39 7.7/25 0.6/12

| WBIS2 30/47 5.0/k42 27.2/47 3.5/43

FJLLT 0.7/1.6 1.3/2.7

For matrix B, no results were obtained for RECURSECTION at first,

because stack overflow caused the program to be terminated. However,

when the stack length was doubled, RECURSECTION ran as usual.

Although we do not know the exact eigenvalues of this matrix, the

results from RECURSECTION agree except for the last place in both modes

of input. The results from WBIS2 agree comparably only for the largest
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two eigenvalues, the error in the others presumably due to underflow.

The results from STDQR, OKBQR, and FJLLT differed from those of

RECURSECTION by at most 2 units in the last place of the largest eigenvalue.

Changing each element of the matrix by a unit in its last place

causes a change in each eigenvalue of at most a few units in its last

place, except that the eigenvalue zero may change by an absolute amount

comparable to the change in the smaller elements. Only RECURSECTION

computed the eigenvalues as accurately as they are determined by the data.

We list here some of the eigenvalues computed by RECURSECTION. Be-

cause of the agreement of these results in the two modes of input, we

feel these eigerivalues are correct to the 10 places given.

6.56343370 X 107 :
1.346533638 x 107+
3.187715678 X 10™° 4.440892099 x 10710

7.852609156 X 10 1.110222890 X 10 °°

1.955655725 Xx 10° 2.7T4313194 Xx 10”

foo Ze ® 0
: 0.0
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Conclusions:

Our analyses and test results indicate that STDQR is the fastest

program known to date for finding all the eigenvalues of a symmetric tri-

diagonal matrix. The absolute error 1n each eigenvalue has never exceeded

a few units in the last place of the largest. Conceivably, the program

, could be speeded up, 1n those cases where only a few eigenvalues are

wanted, 1f some way were found to force the desired eigenvalues to come

out first. Until that 1s accomplished, RECURSECTION 1s the fastest

method known to date for computing a few specified eigenvalues of a very

large matrix. This program 1s also at least as accurate as any general

purpose program can be expected to be. With very few changes RECURSECTION

can be generalized to cope with the more general eigenproblem

det (A - AB)

with symmetric tridiagonal matrices A and B, and positive definite B.
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