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Two Questions:

The following questions are connected with certain error-analyses of

the computed eigenvalues of the symmetric tri-diagonal NXN matrix

/

8 By
Py 8 by
J= Py
Py_1
Py-1 N

Our notation is very much like Householder's (1964); we write
_ . 1/2 - - 3
lubS(A) = (max. eigenvalue of ath) and lubE(A) = max, Zj lAijl = lubE(|A| ),

where hlij = Ixijl . The questions are

1: What bounds can be found for lubS(J)/lubE(J)?

2: What bounds can be found for lubSCU/lubS(Lﬂ) ?

We shall see that the answers are respectively

1: “Vé;; lubS(J)/lubE(J) g]me(J)/lubS(lJl)

2: ﬁw/%jg 1ubS(J)/1ubS(|J|) <1

The only new results here are the lower bounds

and Wv@;g the other

inequalities are well known and will not be proved here. (For proofs see

Householder's book, $§2.2 to 2.4, with which the reader must be assumed

to have extensive acquaintance.) Part of the interest in the constants

’\/%- and.'WJ%; arises because they are best possible, and much larger
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than the lower bound 7\/1/N which would be required if J were replaced

by an arbitrary (symmetric) matrix in the inequalities above. A brief
survey of such more general (and therefore weaker) bounds is given by

Mrs. B. J. Stone (1962).

Proof of 1:
The results which we wish to prove are insensitive to diagonal simi-
larity transformations and to the replacement of J by -J . Therefore

we may assume without loss of generality that all bi > 0 . We shall write

Hence
lubE(J) = lubE( |g]) = maxi(lai|+ ri)
= byl * 7y

for some k defined (perhaps not uniquely) by the last equation. No

generality is lost by assuming that 8y >0, so

a, +

k¥ T = 1ubE(J) > |ai| + r; for all i

Now, lubS(J) is the largest of the magnitudes of the eigenvalues

of J, so the minimax characterization of those eigenvalues (see



Householder's book, § 3.3.1) implies that

lubS(J) > lubs(K)

for any principal submatrix K of J . It is particularly convenient

here to take

8.1 b1 0
K = b _q a, b, )
0 oy 8+l

ak+l bk 0
K = b b
K 8 k-1 .
’ 1 %1

\

This reflection changes no eigenvalue, so

A 1 D
Lubg (xK) = .lubS(K) > -élubS(K + K)

Consequently

lubS(J)/lubE(J) > lubS(X)

where

X = %(K + ﬁ)/(ak + rk) .




It is convenient now to define

o]
1l

1
= Erk/(ak + rk) and

y=(a,_; +2a,,) (e +1)

Obviously 0 < x < Also -1< y < 1 because

1] Nl

81+ Fel S ol e |21 |

The matrix X can be expressed simply in terms of x and y thus:

y-xy X 0
X = X 1-2x X
0 X y-Xy

A further simplification is achieved by the use of the orthogonal matrix

o o

7§$ﬂ o :ﬁéﬂ
1

iiéﬂ o Tf&ﬂ



and the 2X2 matrix

1-2x  \a2x
Vex  y=xy |

which are connected to X by the eigenvalue-preserving similarity trans-—

formation

0

T
QXQ = )
0o y=xy

Since y-xy separates the two eigenvalues of Z , these two eigenvalues
must be the algebraically greatest and least eigenvalues of X , Therefore

our progress so far can be summarized by the inequality
>
lubS(J)/lubE(J) > lubS(Z) s

and our result no. 1 will be proved when we have shown that

11
lubg(z) > 55

This last inequality is obtained below from a demonstration that

o

'\/g= min.lubS(Z) over (0 < x <3 and -1<y< 1)

Let the eigenvalues of Z be regarded now as functions of y for a

fixed x . They are both monotonic non-decreasing functions of y because




any increase in y is tantamount to adding to 7 some positive multiple

of the positive semi-definite matrix

0 0]
0 1-x ’
The wvalue
v, = -(1-2x)/(1 - x)
satisfies -1 < Yo < 0 ; and when y = Yy the eigenvalues of Z are

just +zo and -zo , Where

z E‘\/'6x2--l#x+l .
o

The wvalues Yo and z, are significant because for any other value of y
the matrix Z has either a positive eigenvalue > z
or a negative eigenvalue < bz

In other words,
Z = min lubS(Z) ove-l < y < 1

for any fixed x in 0 < x <

el Il

And zo's minimum value \/%‘-_ 1s taken

i

3 also points to an

i

when x = = .
3
The foregoing proof that lubS(J)/lubE(J) > 'V

example




. _ _ a. 1
with lubS(J) =13 and lubE(J) = 3 ; therefore the lower bound -\/;-

cannot be increased.

Proof of 2:
. : 1
We wish to show that lubS(J)/lubs(lJl)Z 5 . As before, we
assume without loss of generality that all bi > 0 . It is convenient to

begin with some definitions. First let

=
il

Lubg ({71)

= max. eigenvalue of |J|
Second, define
=1
M= 5] - )

Evidently M is a non-negative diagonal matrix whose positive elements
are just the positive diagonal elements of -J . For the sake of symmetry
we should like to have a similar definition for the non-negative diagonal
matrix P whose positive elements are just the positive diagonal elements

of +J . Such a definition is provided in stages as follows. We define

E = diag(-1, +1, -1,..., (1)),




and use it in an eigenvalue-preserving similarity transformation to define

the matrix

whose eigenvalues and diagonal elements are just the negatives of those

of J . But J has the same off-diagonal elements as J and.IJI.

Therefore the matrix

p=2(lg] - 7)

is defined in much the same way as was M

Note'that PM = 0 Finally,
because J2 and 32 have the same eigenvalues,

A E 1ubS(J) = 1ubs(3) .

2
According to the theory of non-negative matrices outlined in §2.4

Now we may proceed to demonstrate that Az p > 1

of Householder's book, there must exist some non-negative vector V. gych
that

|71y = wv > 0 and vy = 1

Since (lu‘bS(J))2 - mex.x J%x over x'x = 1,

2 > TPy = V(g - ey

= p2 - thTM! + thMEX .




Similarly,

]

2 .
" -hugFP!-ﬁhx E;2! .

Adding and using the fact that PM = 0 yields

A2 > 208 - l+1T(M +P)(uI - M - P)v

But M+ P = diag(lai|) , and

lail(u = |all) S, U-E/l* .

Therefore

bT(M + P)(uI - M - P)v < pTy = P

and so

as desired. Result no. 2 is proved.
This proof points less directly than did the proof of result no. 1

to an example J for which the second bound is achieved, i.e. for which

Lub,(9) =\/§1ubs( I5]) .



In fact, the foregoing proof was motivated by a foreknowledge of the fol-

lowing example.

o) Lo
-

Let a; = (-1)1Xf0rl$i_<_N,andbi= for 1<i<N.
The value of x will be chosen later to be the same as 4 defined above,

but first we observe that now

1 1
P+ M EXI’P_M EXE,
and
_ 1. .1
c= |l - SxI = J - ZxE

1
is an NXN matrix with zero on the diagonal and 2_or1 the subdiagonal and

superdiagonal. The eigenvalues of C are well-known; they are just the

numbers
7, = cos nn/ (N + 1) for n =12, .., N

(See Householder's book, p. 34 ex. 50. His matrix J is defined on p. 2
and differs from ours. His K= 2C .) In particular, since

la] = C+—-xI,

1
W=7 F X

2 2 .
Next let us compute the largest eigenvalue » ©f J . The computation

is considerably shortened by Jim Varah's observation that

7=y %xel .

10




2 2, 1.
Therefore A~ = 7y + EXZ . The ratio Mp takes on its minimum value

1
5 WwWhen x =pu = 2y, This example shows that the lower bound 1
2 1 1/2_

cannot be increased.

Application:

Let the eigenvalues Ki of J be ordered thus:

M Shy e SN SN

and suppose the eigenvalues (ki + Ski) of (J + 8J) are ordered simi-
larly; Kii-ﬁki ﬁ—AH&l + 6x1+l . Here the matrix &J is a perturbation
attributed, possibly, to rounding errors in a numerical calculation. We

shall assume that ®J is tri-diagonal with elements bounded by, say,
|oa;| < ala;| ana |ev.| < Blb,|

where @ and B are small positive constants. Given @ and B , how

big can Ski be ?

The easiest bound for . Bki uses the fact that, if the eigenvalues of

dJ are

then 5, < bki < B

11




A proof of this relation can be found in Householder% book (1964) p. 79

Consequently
|5in < lubg(s7) < lubs(|6J|) < Lubp(87)
In particular, if @ = B then |&I|< alJl elementwise, so
lon, | < Vea 1u(J) = \/Eumalele

for all i by virtue of the inequality no. 2. More generally, inequality
no. 2 can be extended without any difficulty to the case that @ f B and

yields the bound

eng | < 1y (laa]) \j0F + % mwy(a)

Though pessimistic, these bounds are slightly stronger than the best bounds
available in terms of lubE(J) . But are there any practical circumstances

where such bounds may be of use? They rely upon the inequalities
|2a,] < ala,| ana |ev,| < gl ,

whereas the typical rounding error analyses of the past have contained

weaker constraints like

|5ai| < alubfJ) and |5bi| < plubg(J)

12




(cf. Wilkinson's book (1965) p. 304). Thus we are faced with the follgwing

problem:

Given a set of error-bounds, find a numerical algorithm to which
they are applicable.

This problem has an elegant solution which is described below.

13



The Algorithm:

We shall now exhibit and completely error-analyze a simple and effec-,
tive method for computing any eigenvalue Kk of J . The basic method
was first put forth in Dr. Boris Davison's numerical analysis lectures at
the University of Toronto in 1959, and begins with

Sylvester's Law of Inertia:

Suppose A = AT is symmetric

L is non-singular, and

D = L-lA(L-l)T is diagonal.
Then the numbers of positive, negative and zero
diagonal elements of D are the same respectively

as the numbers of positive, negative and zero eigen-

values of A . ,
A proof may be found in any standard text on matrices; e.g. in Gantmacher

(1959) vol. I p. 297. We shall apply this Law to the triangular factori-

zation of

J - XI = LU = LDL

i

into triangular bi-diagonal matrices L and U obtained by Gaussian
elimination without pivotal interchanges. It is unnecessary to compute
any but the diagonal elements u, of u . They are obtained from the

simple recurrence

ul _ al - X and
u =a —x-—b2 /u forn = 2,3
n n n-1 "n-1 A A4 N

14



This recurrence breaks down if and only if some value nn = 0 , but such
a thing can happen only if x takes on one of at most %N(N + 1) excep-

tional values. Indeed, it is easy to see that

u = w (x) =9 (x)/o _,(x)

where cpn(x) is the characteristic polynomial of the first nXn principal

submatrix of J . 1In particular,

cpN(x) = det(J - xI) ,
Consequently, the recurrence can break down only if x coincides with
one of the eigenvalues of one of the leading principal submatrices of J .

Let us postpone the discussion of these exceptional values of x ; suppose

for now that the recurrence is successful, and compute
v(x) = (the number of values un(x) < 0)
Sylvester's Law implies that
V(X) = (the number of J's eigenvalues )x.i < x)

Therefore any selected eigenvalue hk can be computed as the limit of a

sequence of nested intervals [x_'m , ;m] with

V(Em) <k < v(;m) for all m ,

15




S; for all m ,

<X
- m

<
-mtl —

el

Zn
and . xm-lc_m—)O as m-o®
The mechanism by which the successive wvalues X and ;m are chosen 1is
of no consequence here; a bisection method could be used (cf. Wilkinson
(1962)), though that is slow. A faster algorithm has been produced by the
author and Jim Varah (1966). But the error-analysis is independent of the
way in which the wvalues 2.9 and ;m are chosen g;;:o'vided they have the
properties listed above.

So far we have not seen anything very new. Indeed, the function

v(x) 1s just the number of variations of sign in the Sturm sequence

3

o = 1, cPl(x) ’ CPQ(X) PR CPN(X)

which has been in use for over a decade to compute the eigenvalues of '
symmetric tri-diagonal matrices. (See Wilkinson's book (1965) p. 299-312.
Also see Householder's book (1964) p. 86-7 ex. 10 and 11, and p. 175 ex. 1lk;

his ¢~ differs from ours by a factor of (-1)* .) However, the T-recurrence
; . 2
Py = (an 4- x)ch_l - bn-lq)n-e

takes more time on most machines than does the u-recurrence; and over/

underflow is an inescapable complication in the g-recurrence whereas the
i

u-recurrence can be rendered almost immune to over/underflow. These are

the reasons Davison gave for his preference of the u-recurrence. Unfor-

tunately, he died before he had the chance to show how well behaved his

method could be. The task of analysis is now ours.

16



Over/Underflow on the machine

Over/underflow in the u-recurrence can easily be rendered insignificant
by a proper preliminary scaling of the data a.i and bi , The description

of the scaling process begins with a definition of certain machine constants:

Q is the greatest floating point number normally
represented directly in the machine.

M is the smallest positive (non-zero) floating point
number normally represented directly.

€ is the smallest positive floating point number
such that the computed value of 1.0 + e differs
from 1.0 after it is rounded or truncated to the

precision being carried.

The following table lists typical values for these parameters:

17
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We must also make certain assumptions about the treatment of arithmetic
oven/underflows, because they will occur. First, we assume that whenever
any floating point arithmetic operation (+ , -, X, /) underflows its
result will be cleared to zero. Second, we assume that whenever any opera-
tion overflows its result will be set to +0 or - with the correct sign.
The preservation of sign after overflow is essential. Fortunately, these,
conventions for the treatment of over/underflow are widely used on many
machines, including the IBM 709% and, possibly, the Burroughs B5500.
Unfortunately, the new IBM 360 series hardware forgets the sign after over-
flow, but presumably that oversight will soon be corrected. It is possible
to prevent the u-recurrence from overflowing at all, but to do so costs
a noticeable retardation on most computers, as we shall see.

If over/underflow is treated as described above, any over/underflow
occurring in the u-recurrence will be practically inconsequential for
reasons to be given later. Therefore we must make a third assumption; we
assume that the program can inhibit the production of diagnostic over/underflow
messages and can ignore any over/
underflow indicators that might otherwise serve as superfluous distractions
during the computation of the u's . (This is not meant to imply that
those indicators are superfluous in any other context. Quite the contrary:)

If all three assumptions about the treatment of over/underflow are
valid then they cope with the problem far more simply, elegantly and econ-
omically than any other scheme known to the author. There is reason to

doubt that any comparable scheme could ever be devised for the g-recurrence,

19




Scaling:
Now let the scale factor o be defined as the largest power of the

machine's arithmetic base which satisfies

olail < 10 and clbii < 10 for all i ,

where

.= Tl1/1+Q-1/2

The significance of this constant t 1s that over/underflow will later be
shown to contribute an absolute error no larger in magnitude than about

ht . th(J)to the computed eigenvalues. The values of v tabulated

above show how small' 1 usually is compared with the rounding error level €.
Evidently over/underflow will hardly ever restrict the range of magnitudes

spanned by the accurately computed eigenvalues of J nearly as much as do

rounding errors.

Normally o 1s approximately
TQ/max.(maxilai‘ , maxi|bil);

but there are exceptional cases-where that expression would overflow, so ¢
must be set instead to the largest power of the machines arithmetic base. '
These cases are ignored in what follows because they are susceptible to a
simpler analysis with the same results as are demonstrated below.

After o is known, the matrix J is scaled by being replaced by dJ .
Since o 1is a power of the base there are no rounding errors., But under-

flows may occur. These underflows result in the annihilation of at most

20



those elements a, and bi which satisfy
2 . . 2 NS
|ai| < nl/ a. lubS(J) or|biJ < nl/ T lubs(J) -

These perturbations are negligible compared with what follows, so they may

be ignored. Later the computed eigenvalues Ki will be unscaled by dividing
them all by o . Any over/underflow which occurs here is fully deserved

and must be reported by the diagnostic machinery mentioned above to indicate
that some eigenvalues (just the ones that over/underflow) cannot be repre-
sented in the normal way without over/underflow. Nothing more need 'be, said

about scaling: we merely assume henceforth that

™ < lubg (J) <370
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Two programs:

Now is the time to write out the u-recurrence explicitly in, say,
FORTRAN. There are two versions, according as overflow is prevented or

allowed. Both versions begin by constructing the arrays BB and A con-

taining

BB(I) = b'i_l
. for I =1,2,..., N
A(I) = 8y

If |bI-l| < WJn then BB (I) will underflow to zero, but this amounts to

a perturbation of no more than

\/ﬁ'= T . (10) < T.lubS(J)

in the given matrix J , and is included in the error analysis given later.

Note that BB(l) = 0.0 by definition, and that we can assume that
x| < 1w, (9) < 310
is satisfied by any number X which might usefully be considered as an

estimate of an eigenvalue.

Here is the segment of code which prevents any overflow in the u-recur-

rence; the constant RTETA has the value

RTETA = .1

22




The FORTRAN symbol ".GT." stands for ">"

DO 3 I=1,N
U = (A(1) - BB(I)/U) - X

IF {U .GT. RTETA) GO TO3

1 IF (U .GT. =~ RTETA) U = - RTETA
'2 NU=NU+ 1 ... when U <0
3 CONTINUE

Now NU = v (X)

Whenever the computed value of Ug lies between -'\fn and +‘Vn , it
is replaced in statement 1 by -'\[q_. Consequently the quotient b%/ul

never exceeds

()% =9 ,

so overflow is impossible. Of course, up may have been decreased in
statement 1 by as much as . 2\/1\ » but this too is no larger than might

have been caused by decreasing a; by the allowable perturbation

2q/m < 21 . b () .

Here is a simpler and faster program segment which is useable whenever
overflow is treated according to the conventions described above. The

constant ETA = 1
23




DO 3 I=1,N

U (A(1) - BB(I)/U) - X

1

IF (U) 2, 1,3

1 u= - ETA . . . 1if U was O .
2 NU= Nu+ 1 .. 1f U was < O
3 CONTINUE

. Now NU = v(X) .

Note that whenever any U vanishes it is replaced in statement 1 by

u, = -1 to forestall a subsequent division by zero. Whenever (rarely)

I

any ug overflows, its sign remains unchanged so that NU is treated
2.

correctly; then U is in error because the computed value of bI/uI

must be larger in magnitude than it should be. But the error in Uryq

is no worse than might have been caused by perturbing a by at worst

I+1

(®)%0 = (w2) < 7. 1lubg(9)

And underflow, if it occurs, causes no more perturbation than n , which
is negligible.

All told, these subterfuges for circumventing the ill effects of over/
underflow cause the computed value NU to be, instead of v(X) , some

value that would have been obtained ha-d J first been changed in each

element by at most

21 .lubS(J) (in the first program) or

2h




T .lubS(J) (in the second program)

before v(X) was computed without any intervention on behalf of over/under-
flow. These perturbations will be shown later to affect the computed
eigenvalues by no more than MT.lubs(J) . First we should consider one
last programming detail.
th . . th | . .
The k eigenvalue xk is the k jump-point of the integer valued

function v(x) ;

lim v(x) < k < lim, v(x)
XM= XA\ +

k k

(The multiplicity of the jump-point Kk is just the difference between
the upper and lower limits.) Can a similar statement be made about the
computed approximation NU(X) 2 If so, any algorithm that works properly
for the exact function v(X) will work properly for its approximation
NU(X) . If not, if NU(X) could have more than N jump-points, then
great care would be required to design the algorithm in such a way that
it could not be confused by spurious jumps down. As it happens, no such
care is required on most machines.

We shall demonstrate below that,- despite rounding errors and over/
underflow, the computed function NU(X) is a monotonic non-decreasing
integer valued function of X with just N jumps. The only assumption
is that each arithmetic operation executed by the machine is a monotonic
function of its arguments despite rounding. For example, if A , B and
C are all positive numbers represented in the machine, and if the FORTRAN

program




X2= A-B
Y2= (A +C) -B
X3 = A*B

X4 = A/ B
Y» = (A +cC) /B
x5= B/ (A+2C)
Y5 = B/ A

is executed, then XI < YI for all I = 1,2,3,4 or 5. This assumption
is certainly valid for single precision computations on all of the machines
listed in the table above. 1Indeed, the builder of any machine which failed

to satisfy this assumption should be ashamed of himself.

26



The Monotonicity of NU(X):

The monotonicity of NU(X) will be derived as a consequence of the
properties of the successive values of U , for which some notation is
required. Given any argument X , a number representable in the machine,
either program above will produce a sequence of values Un(X) and NUn(X) s
the values taken by U and NU respectively after statement 3 has been

executed for the nth time. In particular,

UO(X) = 1.0 and NUO(X) =0 ;
Ul(X)==[A(1)- X] -rounded etc. and
MU, (X) = 0 if X < A(L) -6

1 if X > A(1) - 6,

where 0 = +/n in the first program

= n in the second program

Note that no Uh(X) can lie closer to zero than +8 or -6 . At the end

of the DO-loop,
U = UN(X) and NU = NU(X) = NUN(X) )

The interesting values of X are those where some Uh(X) changes
sign. These points shall be identified precisely with the aid of a notation
X’ for the successor of X i 1f X is a number representable in the ma-

chine and eligible to be an argument for the programs above, then X' is

the next larger eligible argument. Normally X' will exceed X by one

a1



unit in their last place being carried in the computation.

A "zero" z of Un(X) is now defined to be any argument Z which

satisfies both
’
> - .
Un(Z) > 6 and -6 > U (Z°)
A "pole" Y of Un(X) is any argument Y which satisfies
!
Un(Y) < Un(Y ) .
Un(X) can change sign only at a zero or a pole, though Uh(X) may fail
to change sign at some poles. Between any two zeros of Uﬁ(X) must lie
at least one pole where Uh(X) changes sign, and possibly some other

poles where Uh(X) does not change sign. Let us examine these poles more

closely.

If Y is a pole of Uh(X) then
[BB(n)/U__ (¥)] > [BB(n)/U__, (¥)]
because the contrary relation would prevent
U () = [[A(n) - [BB(0)/U_ ()] T - x1,
where each pair of brackets means

"round [...] and take care of over/underflow, if any" }

28




from increasing when X moves from Y to Y' . (Note that the over/
underflow subterfuges do not destroy the monotonicity of the arithmetic ’
operations even if Uh(x) has to be replaced by -#.) Therefore either
Y is a pole of Un l(X) where Un 1 does not change sign, or Y is a

zero of Un_l(X) . A backward induction yields the following statement:

If Y is a pole of Un(X) , then there exists

some positive integer m < n such that
> /
Um(Y) >0 Um(Y )

and for all integers i (if any) strictly between

m and n
!
Ui(Y) < Ui(Y )
with no change of sign,

We abserve that Ul(X) has no poles and just one zero, Therefore,
as U2(X) is carried from Ug(-Q) =Q to U2(Q) = -0, it can have at
most two zeros separated by one pole where U2 changes sign, or one zero
and one pole where U, does not change sign, or one zero and no poles if
BB(2) 1is very tiny, 1In all cases one can verify with ease that NUE(X)
is a monotonic non-decreasing function of X with at most two distinct
jumps from NUQ(-Q) = 0 to NUQ(Q) = 2 .. Rather than extend this desired

property to NUn(X) for all n by a long constructive argument, we shall

show that a failure of I\TUn(X) to be monotonic would create a contradiction,,
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Let n be the smallest integer for which NUh(X) is not a monotonic
function. Obviously n > 1 . Suppose NUn(X) fails to be monotonic at Y ;

since

= - = Q
0= NU_(-0) < NU_(X) < n N (@) ,
the failure must take the form
/
NUn(Y) > NUn(Y )

However, our hypothesis about n implies that NU_ l(X) is monotonic,

which means

/
- n o (Y) <N (Y) .
Also,

MU (X) - NU . (X) =0 if U (X) >0

=1ifUn(X)<O,

SO

0> Nu (Y') - NU_(Y)

(v, (¥) - Nu__ (¥)]
+ {w,_, €9 - N, (V)]
+ {nu__, (¥) - NU_(Y))

{o} + {0} + {-1} = -1 .

v
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But this implies, (term) by (term} , that

i 7 /
NUn(Y ) = NUn l(Y) and Un(Y)> o,

/
N, (¥7) - MU _,(Y) =0 , and

NU (Y) = NU _(Y) + 1 and U (Y) < 0.

Evidently Y is a pole of Uh<X)° Therefore there exists some positive

integer m < n for which Y is a zero of Uﬁ(X) ; we shall have

Um(Y) >0 > Um(Y’) .

Therefore NU (Y/) NU (Y/) + 1 because U (Y') < 0 ,
m m 1 m

v

NUm l(Y') + 1 by monotonicity ,

NU (Y) + 1 because U (Y) > o .
m m

Also, if there are any integers i strictly between m and n-1

14

NUi(Y') - NU,

1 (YD) = W (Y) - wu,(7)

because Y is a pole of Ui with no change in sign, Therefore

NU_ L (Y') - U

per (0 =n-g (Y) - wu_(v) > 1,

whereas we saw a'bove that

NU_ l(Y") - N ,(Y) = 0.
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This contradiction proves that NJ(X) 1is a monotonic non-decreasing function
of x, as desired.

It seems surprising that so strong a result can be proved with no
appeal to the continuum, nor any estimate for the errors in the values Un(X)
On the contrary, the values of Un(X) can be completely different from the
mathematically exact values uy that would have been obtained without
rounding errors nor over/underflow, even to the extent of having the wrong
signs. Fortunately, the errors in the intermediate results Un(X) are
of no interest beyond an assurance that the errors are not haphazard. And

the behaviour of NU(X) provides Jjust that assurance.
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Bounding Rounding Errors:

The next step is to show that if [X| < lubE(J) then NU(X) 1is pre-
cisely the value that v(X) would have taken if J had been replaced by
some nearby matrix J(X) and all computations had been carried out in-
finitely precisely with neither rounding errors nor over/underflow subter-
fuges. The principles behind the analysis that follows are very much like
those to be found in Wilkinson's books (1965,1965L.We shall try to describe
the elements of J(X) in terms of the numbers that actually appear in the
arithmetic registers of the machine during the computation, and in terms of
the rounding error bound € tabulated above for several machines The
ideas involved are best illustrated by the following examples,

The FORTRAN assignment statement

will not replace C by the product of A and B , but will instead set

C toavalue
C=(1+ 7)AB
in which {71 1is normally bounded by, say,
7l <e .

Note that A, B and the new value C are defined quite precisely, and

satisfy the previous equation exactly. The only unknown quantity is 7 ,
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but |7| is bounded by a known value € except when over/underflow inter-

venes. Similarly, the assignment statement ’

C =A/B
actually stores a value
C = (1 +PB)A/B
where lgl < e

As a matter of fact, the situation is not always as described above.
In double-precision the values of B and y can be as large as %€ on a
709%, 5¢ on a B5500, and 16e on a 360. These unnecessarily large
errors are so repugnant to the author that he takes the liberty of passing
them directly from the machines' manufacturers to the reader, who may ac-
commodate them by multiplying € in the bounds given below by whichever
factor is appropriate for his machine. For a similar reason, the author

chooses to presume that the FORTRAN statement

C =A+B

causes C to take precisely the value

C= (A +B)/(1+a)

with |1| < € . Only in double-precision, and then only on some machines,

is it necessary to replace the last two relations by

C= (1 +aA+ (1 +B)B
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with kﬂ < € and |B| < €, Dbut this will weaken the error bounds to

be given below by a factor no larger than two.

The Construction of J(X) near J:

The first step in the construction of J(X) is the definition of

certain values AI and BI corresponding respectively to a. and bI .

I
Let us set

os]
1

T bI if B% does not underflow ,

o if |b]< VT

In either event, BI - bI|< jﬁ}.And

- 1 _ I\ 2
BBI = BB(I) (1 + BI)BI 17

where ﬁé is the relative error due to multiplication and satisfies
|B£| < €. (The primes used during the construction of J(X) do not de-

note successors.)

The value of AI depends upon X , and differs from a; only to the

extent required to compensate for the effects of over/underflow. Reasons
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have already been given why we should, expect that

A; - aI| < 2 \n in the first program ,
ﬁ'\/q in the second program ,
execpt for an ignorable contribution no larger than n . Let us stay with

the second program from now on, and ignore not only the scaling underflow

error Tm by setting

A(1)

i1}
o

but also agree to ignore the comparable error induced by underflow or state-

ment 1 during the computation of UI

The dissection of the FORTRAN statement

U= ((A(1) - BB(I)/U) - X)

to find its rounding errors is an inductive process. For I = 1 we define
Ap = A) = a; and
v, = Al - X precisely, and

U, (A1) - 0.1 -X] = vl/(l + a’i) ,

where Ia'i|< € . Evidently sign(vl) = sign(Ul)
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Wealsoseta'EeilEOandv‘—'l

1 = The induction hypothesis is that

for n = 1,2,..., I-1 we may write

" " ’ ’
vo= A - (L4p) (el )1+ o )BB /Y g o- 1+ al)X,

|An - anl S \/T\ })

|f3;,1|< € , Ialfll < e, a;l <€, and
either v = (1 +d ) + a')u or
n n n’ n

|U|=Qand0<Ur/v <landa =d =0
n n n
In any case, sign(vn) = sign(Un) EF O

The hypothesis is obviously true for n =1 , since BBl = 0 . Note that
Un represents what was earlier referred to as Un(X) , and is a number

actually stored in the computer. The values BBn and a, are also stored

in the computer, but A will not be stored if it differs from a and

n |l

v is a figment of the imagination except, for'its sign.
Now for the advance to n =1 The first value to be inspected is
R "
[BB(1)/U}]rounded = (1 + p1)BB/U; . ,
where |{3&|< € unless overflow occurs. (Underflow is being ignored.)

If this quotient overflows then the remaining arithmetic operations are

irrelevant because the scaling has ensured that neither A(l) nor X can

be bigger than
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310 << €

therefore overflow will cause UI to be given the value

-0 sign(UI_l) ,

and we may define

T
—
n
®
X
1]
~
2

and

vy = (AI - BBI/UI-l) - X

These values satisfy the induction hypothesis.

If the quotient [BBI/UI_l] does not overflow, there is still the

possibility that the previous quotient [BBI-l/UI—2] overflowed to be

considered. In this case lU

I-l‘ = Q and 0 < UI l/v

71 <1, andwe
define

AT = A1) - [BB(T)/Uy 1+ (1 + B1)BB/v, |

Evidently
"
|AI = aII = (l + BI)BB]:']-/UI_]_ - l/vI-lI
< (1 + e)(TQ)2|l/Q| = (1 + E) \/rT .

The factor

1 + € is unimportant and shall be dropped.+ Note too that ,

A(T) - [BB(I)/Up_ ;] = A - (1 + B])BB,/v, |

V4 " 1
=ar - (1 + BI)(l + o l)(l + aI—l)BBI/vI-l
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The last relation is satisfied too if neither [BB(I)/UIl]- nor

[BB(I-l)/UI_Q] overflowed, in which case we set AT = A(I) = a
- " 4

then vy, = (L+of )1 ap )U; .,

Continuing, if [BB(I)/UI_l] does not overflow then the value stored

for UI will be

u = tia, - (1T +6)@+of D@ +af B v, 1-x]
= ((Ap - @+ e + o7 IO+ ap BB/ v )/ (1 + af)
- X)/ (1 + of)

= v/ (1 + D)1+ al))
_ where the rounding errors of addition are bounded by’|a£|< € and
) |a§|< € . This result advances the induction from n =1 - 1 to n =
as desired, and lays a firm foundation for an error bound for the eigen-
values.
Let the matrix J(X) be defined now to have

/ .
An - anX in place of N and

4 " /" /
+ i
"\/1 Bn)(l + Bn)(l + o) l)(:L + l) B , in place of b4

o, colooe Lo Lo

Certainly J(X) 1is close to' J ; more precisely, ,but neglecting terms
S oD e e Dl

S
of order € and n ,

l3(x) - 3| < 2¢|7 - diag J| + €|x|T +/n E

elementwise, where

39
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J - diag J = only the off-diagonal termsnb in J
H = the tri-diagonal matrix with all elements =1 .

Denote the eigenvalues of J(X) by

M) S A(X) < v (XD

to correspond with the eigenvalues ki of J .
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The Absolute Error in kk:

The reason for constructing J(X) was that NU(X) 'would be the number

of J(X)'s eigenvalues hi(X) < X, and now this can be proved. * For

NU(X) = the number of values Uh(X) <0

the number of values vh <0,

and the v are to J(X) what the uncontaminated values u are-to J .
n

And each eigenvalue Ki(X) differs from the corresponding Xi by no more

than
Lub  (3(X) - 9) < 2¢ g (|7 - diag I+ elx|
+\/m lubS(H)
Here
A/ lubS(H) < 5\/11 = 31(tQ) < 371 lubS(J) ’
and

2¢ lubS(IJ - diag J|) < 2e Lub (7)

by virtue of the more general form of our earlier result no. 2 with

\/a2+-52 =j/é=+(2e)2 . Finally, the only values of X that will

concern us below are those which approximate some 'eigenvalue ), , so
i
we can certainly assume that e|X| < é max4|x4| =& 1ubS(J) to within
a negligible extra error of the order of <-:2|X|° For those values of X

we have

Ixi(x) - kil <r=3(ec+ T)malele
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as a bound for the difference between the corresponding eigenvalues of
J(X) and of J . This means that, as X varies over the allowable

arguments, each eigenvalue hi(X) remains confined to some fixed interval

We have already seen that for any given k there is precisely one value Xk

which, with its successor X{{ » satisfies
/
NU(X, ) < k < NU(X,)

these values can easily be computed. And the relationship between NU(X)

and the hi(X) tells us that

X, < hk(xk) SN *T and

7 '
Nt T S N(X) <X
Since
' ' '
0< Xk - Xk < 2¢ maxil)sil on a rounding machine
< e m-ilxil on a truncating machine
(we might as well assume now that arithmetic is rounded), we can accept

either Xk or X{{ as an approximation to )\‘k and commit an error no

larger than
r + Eemale}s.jl = (5¢ + BT)maxJ.lkJ. |
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This bound compares favourably with that obtained by Wilkinson (1965,

p.304-5) for the Sturm-sequence (g-recurrence) algorithm in the absence
of over/underflow, 1In our notation 'his bound is 1Te malele, although
the use of our more refined methods reduces this to 8575e1mmJ|Aj|.

This bound is not appreciably increased if Wilkinson's 1962 program is
amended to cope with over/underflow, but then the (p-recurrence becomes

much slower than the u-recurrence. Therefore the u-recurrence has all the
advantages of speed, simplicity and accuracy over the v-recurrence.. On a
computer using rounded binary floating point arithmetic, the biggest eigen-
value can be computed to within a guaranteed relative error of 2.5 units
in its last place, and no eigenvalue will suffer a larger absolute error.
For chopped arithmetic the guarantee is 4 wunits in the last place. These
bounds are impressively small; but they are substantially larger than most

of the errors observed in practice.

Why?
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The Class Q of neighbours of J

A nicer appreciation of the accuracy of the u-recurrence can be achieved

through the consideration of the class » of symmetric tri-diagonal matrices

J which satisfy
17 - 3| < 2e|J - diag J

For example, on the rounding binary computer mentioned above the class 1
consists of those matrices J obtained from J by changing each off-
diagonal element of J by at most one unit in its last place. The set

9 is a convex set in the sense that if J0 and J, are members of

1 9
then so are all matrices of the form
£, + (1 - t) for 0 <t <1
lying "between" jo and 51 . Each matrix J in 9 has a set of eigen-

values

(4 I
and as J varies over 9 each eigenvalue Kk varies over some set l\k

which can also be shown to be a closed convex set. In other words, associa-

ted with the class 8 of matrices j is the set of N intervals

Ak-=- the set of all x = ;\k for some 5 in 9
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Some of these intervals may overlap, but it is soon seen that no Ak can
be containedstrictly inside another. Therefore.the intervals, A,, share
: n

the same ordering as the eigenvalues kk . Obviously. Ak is contained in
N - 2emax A < x < a4 2e max ||,
. Jv3d - — k J

but the interval Ak hardly ever occupieé& more than a small fraction of
that latter interval.

* The significance of the interval Ak is that for most practical pur-
poses any number in Ak is as acceptable an approximation to kk as any
other. Such might be the case,, for example, if each off-diagonal element
bi of J were independently in error by as much as 2€|bi| because of
previous rounding errors. The independence of the errors is essential;

correlations among the errors in the b.1 could conceivably cause the

eigenvalues of J not to be in error at all, as would be the case if

0O 1+e O 0 1l-€ 0
I+te 0 1-E were erroneously computed as 1l-€ 0 1l+e
0 1-¢ O 0O 1+e O

As long as the errors in the bi are independent, the width of the inter-

val Ak is an indication of the extent to which A, must be regarded as

k
inescapably uncertain And that the error introduced by the programs
analyzed here contributes negligibly to this inescapable uncertainty shall

now be demonstrated.
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Let J(X) be defined to have elements 'an = a  and

L] s " 14 / N
N -\/(1 PO+ B +d D2+ o) b, where the Greek
letters were defined during the construction of J(X) . Except for terms

of order 62 which shall be ignored,

|‘E’n-l - bn-l.l < 2€Ibn—lI

so J(X) belongs to 8 and each eigenvalue Xk(X) of J(X) lies in its

corresponding interval Ak . Also,
15(x) - 3(x)| < elx|T +/n &
except for ignorable terms of order 1, so
|>tk(x) - ‘xk(x)i < r(x) = elx| + 37 maxi‘)\.].'_l
And if Xk and its successor Xé are defined, as before, by

NU(X, ) < k < NU(Xy)

then
X < N(X) < K (x) + r(X) end

* 14 / 7/ Vs
If arithmetic is rounded, then

X, - X <2e max. (x|, |x])
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(except possibly when %; - §:= N, which is ignored). Putting all the
facts together shows that either X or Xé differs from X(Xé) or

X(Xk) respectively by no more than
7
56 max'( |Xk| 2 IXKI) + BTmaxil}"il

On a binary machine with rounded floating point arithmetic we may summarize
this result as follows:
‘ . . th ,

The computed approximation to the k elgenvalue Kk of J need

. 1 . L
not differ by more than 1 3 units in 1its last place from the kth eigen-
value ik of some matrix jk each element of which differs from the cor-
responding element of J by at most one unit in its last place, plus an

absolute error of
3T maxi|xi|

from over/underflow subterfuges.

In other words, if J is already uncertain in each element by several

units in its last place, and if
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