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Having established tight bounds for the quotient of two different

lub—norms of the same tri-diagonal matrix J , the author observes that

these bounds could be of use in an error-analysis provided a suitable

algorithm were found, Such an algorithm is exhibted, and 1ts errors are

thoroughly accounted for, including the effects of scaling, over/under-

flow and roundoff. A typical result is that, on a computer using rounded

floating point binary arithmetic, the biggest eigenvalue of J can be

computed easily to within 2.5 units 1n 1ts last place, and the smaller

eigenvalues will suffer absolute errors which are no larger, These

results are somewhat stronger than had been known before,
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Two Questions:

The following questions are connected with certain error-analyses of

the computed eigenvalues of the symmetric tri-diagonal NXN matrix

21 Py

by a by

J = Po ) } | .
\

a

bey N J

Our notation 1s very much like Householder's (1964); we write

Lub (A) = (max. eigenvalue of AR) and lub, (A) max; J. A; 1 = Lub, (|Al ) ,
where N i = byl . The questions are

1: What bounds can be found for Lube (3)/ Lub, (J) ?

2: What bounds can be found for Lubg (3)/ ub (||) ?

We shall see that the answers are respectively

a: = J1: Es Lubg (3)/1ub(3) < Lub(3)/1ung(| I1)

2: <2 (3) wo (|3]) < 1.
2 — S S

1 1

The only new results here are the lower bounds 5 and 5 3 the other

inequalities are well known and will not be proved here. (For proofs see

Householder's book, 882.2 to 2.4, with which the reader must be assumed

to have extensive acquaintance.) Part of the interest in the constants

\/% and 2 arises because they are best possible, and much larger
1



1 than the lower bound \/1/N which would be required if J were replaced

by an arbitrary (symmetric) matrix in the inequalities above. A brief

survey of such more general (and therefore weaker) bounds 1s given by

Mrs. B. J. Stone (1962).

Proof of 1:

The results which we wish to prove are insensitive to diagonal simi-

| larity transformations and to the replacement of J by -J . Therefore

we may assume without loss of generality that all b. > 0 . We shall write

b_ = by = 0 and

_ r, = b, + b, 1

Hence

lub, (J) = Lub, ( | 7]) = max, (|a, | + r,)

= byl +7,

for some k defined (perhaps not uniquely) by the last equation. No

generality is lost by assuming that a >0, so

+ = . + . .a, +r, = luby(J) > EN r, for all i

Now, lub (J) 1s the largest of the magnitudes of the eigenvalues

of J, so the minimax characterization of those eigenvalues (see
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Householder's book, § 3.3.1) implies that

>lube (J) > lub (K)

for any principal submatrix K of J . It is particularly convenient

here to take

“k-1 Po ©

K = by 1 a, b, .

0 Py Bpt+1

A related matrix K is obtained by reflecting K in 1ts skew-diagonal;

a ob, 0
K = b bk i" k-1

: Opp By1

\

This reflection changes no eigenvalue, so

A 1 A

Lub, (K) = lub (K) > Sub, (K + XK)

Consequently

>Lube (7)/ 1ubg (J) > lub (X)
where

X = 5(K " K)/ (a +r).

3



| It is convenient now to define

x=: /(a +r) and2 k k

y=(a,_, +a.) (2a +r) .

Obviously 0 < x < , . Also =-1< y< 1 because

lags + al Slaggl + lag,

<(a, + rT 1) + (a, + ry = Ty)

<a +m = bg) F(a +r Dy)

= ca, + Ty

The matrix X can be expressed simply in terms of x and y thus:

y-Xy X 0

X —- X 1l=-2x X 0

0 X y=-Xy

A further simplification 1s achieved by the use of the orthogonal matrix

1 1

o EE
Q = 1 0 co

1 1

4



and the 2X2 matrix

7 =

| V 2X y-Xy ’

which are connected to X by the eigenvalue-preserving similarity trans-—

formation

Z
T
QQ - J

0 y-Xy .

Since y—-xy separates the two eigenvalues of Z , these two eigenvalues

must be the algebraically greatest and least eigenvalues of X , Therefore

our progress so far can be summarized by the inequality

>Lubg (7)/ Lub, (J) > Lub (2) ,

and our result no. 1 will be proved when we have shown that

11
1 Zz) > == .wg (2) 2 VE

This last inequality 1s obtained below from a demonstration that

1 . 1

VE - min. lub, (Z) over (0 < x < 2) and -l<y< 1) .

Let the eigenvalues of Z be regarded now as functions of y for a

fixed x . They are both monotonic non-decreasing functions of y because

)



any increase 1n y is tantamount to adding to 27 some positive multiple

of the positive semi-definite matrix

0 0

0 1-x

The value

Yo = -(1 - 2x)/(1 - x)

satisfies -1< Yo < 0 ; and when y = y, the eigenvalues of Z are

just +z_ and -z_ , where
0 ®

_ 2

z = fex - hx +10

The values Yq and z, are significant because for any other value of y

the matrix Z has either a positive eigenvalue > Z,

or a negative eigenvalue< 7 .

In other words,

z, = min lub, (Z) ove-l < y < 1

for any fixed x in 0 £ x < 7. And z's minimum value 5 1s taken
when x = > o

The foregoing proof that Lubg (J)/ Tub, (J) > 3 also points to an
example

6



11 0

J = 1 1 1

0) 1 -1

_ _ a. 1with lub (J) = \/3 and Luby (J) = 3: therefore the lower bound VE
cannot be increased.

Proof of 2:

] 1

We wish to show that tag (3)/ ung (|) 2% As before, we
assume without loss of generality that all b, > 0 . It 1s convenient to

begin with some definitions. First let

p= lub (||)

= max. eigenvalue of |J] .

Second, define

_ 1

Evidently M 1s a non-negative diagonal matrix whose positive elements

are just the positive diagonal elements of -J . For the sake of symmetry

we should like to have a similar definition for the non-negative diagonal

matrix P whose positive elements are just the positive diagonal elements

of +J. Such a definition 1s provided in stages as follows. We define

— qs N

I)



and use 1t 1n an eigenvalue-preserving similarity transformation to define

the matrix

J = -EJE

whose eigenvalues and diagonal elements are just the negatives of those

of J . But J has the same off-diagonal elements as J and |] .

Therefore the matrix

_ 1, I

p= 3(|g| - J)

1s defined in much the same way as was M . |Note'that PM = 0 . Finally,

because 3° and J° have the same eigenvalues,

N= lub, (J) = lub (J) .

Now we may proceed to demonstrate that Au 3
According to the theory of non-negative matrices outlined in §2.k

of Householder's book, there must exist some non-negative vector V  gych

that

T

lv = wv> 0 and vv = 1.

Since (Luby (7))° — max.x1d°x over xix = 1,

2

A > viv = vi(|J] - 2M)

2

=u - hyv My + hviMEy

8



=

Similarly,

AE > vigy = vi(|J]| - oP)

2

Adding and using the fact that PM = 0 yields

NG > one - by (M + P)(uI - M - P)v .

But M+ P = diag(|a, |) , and

2

Therefore

hy (M + P)(uI - M - P)v < pvy = ue

and so

22 > ou 3 K _ 1°

as desired. Result no. 2 is proved.

This proof points less directly than did the proof of result no. 1

to an example J for which the second bound 1s achieved, 1.e. for which

Lub, (J) =1\ /Z1wb.. (3)S 27778 ’

9



In fact, the foregoing proof was motivated by a foreknowledge of the fol-

lowing example.

Lip) 2 for 1<i<N
Let a; = 5(-1)"x for 1< 1 < N, and b, =3 or 1<1i .

The value of x will be chosen later to be the same as H defined above,

but first we observe that now

| 1 1

P+M=72xl, P-M=ZxE ,

and

= 1 - 1
C= 7] -xL=4J XE

[] [] [] 1 []
1s an NXN matrix with zero on the diagonal and 5 On the subdiagonal and

superdiagonal. The eigenvalues of C are well-known; they are just the

numbers

Yn = cos nt/(N + 1) for n =1,2, ..,4 N .

(See Householder's book, p. 34 ex. 50. His matrix J is defined on p. 2

and differs from ours. His K= 2C .) In particular, since

1

1

ho=7 FX

2 2 hNext let us compute the largest eigenvalue » ©f J . Ihe computation

1s considerably shortened by Jim Varah's observation that

J° = c? + BCT .

10



2 2 , L.2 _
Therefore A= AT x - The ratio Mu takes on its minimum value

1

= When Xx =p = 2y_., This example shows that the lower bound 1
2 1 IT /2

cannot be increased.

Application:

Let the eigenvalues As of J be ordered thus:

AM SA, < a S Nop SM ;

and suppose the eigenvalues (Nn, + BN, ) of (J + SJ) are ordered simi-

larly; Ng + BA. Ag + Ohiiq . Here the matrix ©®J is a perturbation

attributed, possibly, to rounding errors 1n a numerical calculation. We

shall assume that ®J is tri-diagonal with elements bounded by, say,

2a,| < ala,| ana Job| < Blo,|

where @ and B are small positive constants. Given & and B , how

big can SU be ?

The easiest bound for . ON, uses the fact that, if the eigenvalues of

oJ are |

d, <5, <. : $0 |

then 5, < ON. < Oy .

11



A proof of this relation can be found in Householder% book (1964)p. 79.

Consequently

Ion.| < Lub, (87) < wb. (|83]|) < 1wb_(5J)i! = S - S — E

In particular, if @ = B then |8J] < al J] elementwise, sO

on,| < Veo und) = faxmax |x,|1° = J J

for all 1 by virtue of the inequality no. 2. More generally, 1nequality

no. 2 can be extended without any difficulty to the case that « # B and

yields the bound

2 2

an, | < Lub, (|87]) <\f&© + 87 wb(J) .

Though pessimistic, these bounds are slightly stronger than the best bounds

avallable in terms of luby(J) . But are there any practical circumstances

where such bounds may be of use? They rely upon the inequalities

a,| < ala,| ana |eb.]| < lv],

whereas the typical rounding error analyses of the past have contained

weaker constraints like

5a. | < a lub (J) and | 8b. | < B lub (J)

12



-_—

| (cf. Wilkinson's book (1965) p. 304). Thus we are faced with the follqgwing

problem:

Given a set of error-bounds, find a numerical algorithm to which

they are applicable.

This problem has an elegant solution which 1s described below.

13



The Algorithm:

We shall now exhibit and completely error-analyze a simple and effec-,

tive method for computing any eigenvalue Me of J. The basic method

was first put forth in Dr. Boris Davison's numerical analysis lectures at

the University of Toronto in 19359, and begins with

Sylvester's Law of Inertia:

Suppose A = al 1s symmetric

LL is non-singular, and

D = haat is diagonal.

Then the numbers of positive, negative and zero

diagonal elements of D are the same respectively

as the numbers of positive, negative and zero eigen-

values of A .

A proof may be found in any standard text on matrices; e.g. 1n Gantmacher

(1959) vol. I p. 297. We shall apply this Law to the triangular factori-

zation of

J - XI = IU = IDL?

into triangular bi-diagonal matrices L and U obtainedby Gaussian

elimination without pivotal interchanges. It is unnecessary to compute

any but the diagonal elements u_ of u . They are obtained from the

simple recurrence

a _ 8, -X and
2

u =a - x -b_ Ju forn = 2,3,..., N .

14



This recurrence breaks down if and only if some value uy, = 0, but such

a thing can happen only 1f x takes on one of at most ZN (N + 1) excep-
tional values. Indeed, it is easy to see that

u =u (x) =9 (x)o (x)

where 9, (x) is the characteristic polynomial of the first nxn principal

submatrix of J . In particular,

Consequently, the recurrence can break down only 1f x coincides with |

one of the eigenvalues of one of the leading principal submatrices of J .

Let us postpone the discussion of these exceptional values of x ; suppose

for now that the recurrence 1s successful, and compute

v(x) = (the number of values u (x) < 0) |

Sylvester's Law implies that

V(X) = (the number of J's eigenvalues MN <x) .

Therefore any selected eigenvalue Me can be computed as the limit of a

sequence of nested intervals [x , x ] with

< — \2Wx) < k < v(x) for all m ,

15



| < < x
Xn SX) S¥p1 S x for all m ,

and X =X »-0 as moo |

m -m | ) | | |

The mechanism by which the successive values x and x are chosen 1s
of no consequence here; a bisection method could be used (cf. Wilkinson

(1962)), though that is slow. A faster algorithm has been produced by the

author and Jim Varah (1966). But the error-analysis 1s independent of the

way 1n which the values xX and x are chosen provided they have the
properties listed above.

So far we have not seen anything very new. Indeed, the function

v(x) 1s just the number of variations of sign in the Sturm sequence

®s =1, Pp, (x) ’ P, (x) gece Py (x)

which has been in use for over a decade to compute the eigenvalues of |

symmetric tri-diagonal matrices. (See Wilkinson's book (1965)p. 299-312.

Also see Householder's book (1964) p. 86-7 ex. 10 and 11, and p. 175 ex. 1k;

his @ differs from ours by a factor of (-1)" .) However,the T-recurrence

2

Pn = (a, - xX), 1 i Ph1%n-2 |

takes more time on most machines than does the u-recurrence; and over/

underflow 1s an 1nescapable complication in the g-recurrence whereas the
J

u-recurrence can be rendered almost immune to over/underflow. These are

the reasons Davison gave for his preference of the u-recurrence. Unfor-

tunately, he died before he had the chance to show how well behaved his

method could be. The task of analysis 1s now ours.

16



Over/Underflow on the machine

Over/underflow in the u-recurrence can easily be rendered insignificant

by a proper preliminary scaling of the data a. and b, , The description

of the scaling process begins with a definition of certain machine constants:

Q is the greatest floating point number normally

represented directly in the machine.

n 1s the smallest positive (non-zero) floating point

| number normally represented directly.

€ 1s the smallest positive floating point number

such that the computed value of 1.0 + e€ differs

from 1.0 after it 1s rounded or truncated to the

precision being carried.

) The following table lists typical values for these parameters:

17
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We must also make certain assumptions about the treatment of arithmetic

over/underflows, because they will occur. First, we assume that whenever

any floating point arithmetic operation (+ , - , X , 7) underflows its

result will be cleared to zero. Second, we assume that whenever any opera-

tion overflows its result will be set to +0 or -@ with the correct sign.

The preservation of sign after overflow 1s essential. Fortunately, these,

conventions for the treatment of over/underflow are widely used on many

machines, including the IBM 709% and, possibly, the Burroughs B5500.

Unfortunately, the new IBM 360 series hardware forgets the sign after over-

flow, but presumably that oversight will soon be corrected. It 1s possible

to prevent the u-recurrence from overflowing at all, but to do so costs

a noticeable retardation on most computers, as we shall see.

If over/underflow is treated as described above, any over/underflow

occurring 1n the u-recurrence will be practically inconsequential for

reasons to be given later. Therefore we must make a third assumption; we

assume that the program can inhibit the production of diagnostic over/underflow

messages and can ignore any over/
underflow indicators that might otherwise serve as superfluous distractions

during the computation of the u's . (This 1s not meant to imply that

those indicators are superfluous 1n any other context. Quite the contrary:)

If all three assumptions about the treatment of over/underflow are

valid then they cope with the problem far more simply, elegantly and econ-

omically than any other scheme known to the author. There 1s reason to

doubt that any comparable scheme could ever be devised for the g-recurrence,

19



Scaling:

Now let the scale factor o¢ be defined as the largest power of the

machine's arithmetic base which satisfies

oa, | < 10 and alo, | < 10 for all i ,
where

= JH Hg-1/2 |

The significance of this constant t 1s that over/underflow will later be

shown to contribute an absolute error no larger in magnitude than about

ht Lube (J) to the computed eigenvalues. The values of 1 tabulated

above show how small' 1 usually is compared with the rounding error level €,

Evidently over/underflow will hardly ever restrict the range of magnitudes

spanned by the accurately computed eigenvalues of J nearly as much as do

rounding errors.

Normally ¢ 1s approximately

t0/ max. (max, |a. | , max. |b, |) ;

but there are exceptional cases-where that expression would overflow, so ©

must be set instead to the largest power of the machines arithmetic base.

These cases are ignored 1n what follows because they are susceptible to a

simpler analysis with the same results as are demonstrated below.

Aftero is known,the matrix J 1s scaled by being replaced by daJ.

Since o is a power of the base there are no rounding errors. But under-

flows may occur. These underflows result in the annihilation of at most

20



those elements a. and b, which satisfy )

la, | < nY a. Tub, (J) or Ib. | < 1 / T lub. (J) : .
i S 1 Co

These perturbations are negligible compared with what follows, so they may

be ignored. Later the computed eigenvalues A will be unscaled by dividing

them all by 0 . Any over/underflow which occurs here is fully deserved

and must be reported by the diagnostic machinery mentioned above to indicate

that some eigenvalues (just the ones that over/underflow) cannot be repre-

sented in the normal way without over/underflow. Nothing more need 'be, said

about scaling: we merely assume henceforth that

0 < lub (J) <310

21



Two programs:

| Now 1s the time to write out the u-recurrence explicitly in, say,

| FORTRAN. There are two versions, according as overflow 1s prevented or

| allowed. Both versions begin by constructing the arrays BB and A con-

| taining

| BB(I) = b5_,
| A(I) = ar

If {by | < Vn thenBB (I) will underflow to zero, but this amounts to
a perturbation of no more than

| Vvn=1 . (10) < 7. lub (J)

in the given matrix J , and 1s included in the error analysis given later.

| Note that BB(l) = 0.0 by definition, and that we can assume that

| |x| < lub,(J) < 370

| is satisfied by any number X which might usefully be considered as an

| estimate of an eigenvalue.

Here 1s the segment of code which prevents any overflow 1n the u-recur-

rence; the constant RTETA has the value

| RTETA =_,7_.



The FORTRAN symbol ".GT." stands for ">" .

U = (A(l) - BB(I)/U) -X

IF {U .GT. RIETA) GO TO3

1 IF (U .GT. = RTETA) U = - RTETA

'2 NU = NU + 1 ... whenU < 0 .

5 CONTINUE

... NowNU = v(X) . . .

Whenever the computed value of Ug lies between -\n and +3[1 , 1t

1s replaced in statement 1 by =n . Consequently the quotient bu
never exceeds

(12) aE =a ,

so overflow 1s impossible. Of course, Up may have been decreased in

statement 1 by as much as 2/1 5 but this too 1s no larger than might

have been caused by decreasing ar by the allowable perturbation

2q/n < 21 lub, (J) :

Here 1s a simpler and faster program segment which 1s useable whenever

overflow 1s treated according to the conventions described above. The

constant ETA = 7 .

25



U=1.0

NU = O

DO 3 I =1,N

U= (A(1l) - BB(I)/U) =X

IF (U) 2, 1,3

1 u= - ETA . . . if U was 0.

2 NU= Nu+ 1 ... 1f U was < 0 .

bo CONTINUE

. . . Now NU = v(X). . .

Note that whenever any ur vanishes it 1s replaced in statement 1 by

Ur = = to forestall a subsequent division by zero. Whenever (rarely)

any ug overflows, 1ts sign remains unchanged so that NU is treated

correctly; then Urq 1s 1n error because the computed value of by/u,

must be larger in magnitude than it should be. But the error in Urq

1s no worse than might have been caused by perturbing 81.1 by at worst

(10)%/a= (12) < Tub(J)

And underflow, 1f it occurs, causes no more perturbation than ©, which

1s negligible.

All told, these subterfuges for circumventing the ill effects of over/

underflow cause the computed value NU to be, instead of v(X) , some

value that would have been obtained ha-d J first been changed 1n each

element by at most

21 lub (J) (in the first program) or

2h



| T lub (J) (in the second program)

before v(X) was computed without any intervention on behalf of over/under-

flow. These perturbations will be shown later to affect the computed

eigenvalues by no more than hr.lub (J) . First we should consider one

last programming detail.

The KP eigenvalue Me 1s the xh jump-point of the integer valued
function v(x) ;

lim v(x) < k < lim, v(x) .
XA Xa, +

(The multiplicity of the jump-point Me is just the difference between

_ the upper and lower limits.) Can a similar statement be made about the

computed approximation NU(X) 2? If so, any algorithm that works properly

for the exact function v(X) will work properly for its approximation

NU(X) . If not, if NU(X) could have more than N jump-points, then

great care would be required to design the algorithm in such a way that

it could not be confused by spurious jumps down. As it happens, no such

care 1s required on most machines.

We shall demonstrate below that,- despite rounding errors and over/

underflow, the computed function NU(X) 1s a monotonic non-decreasing

integer valued function of X with just N jumps. The only assumption

1s that each arithmetic operation executed by the machine is a monotonic

function of 1ts arguments despite rounding. For example, 1f A , B and

C are all positive numbers represented in the machine, and if the FORTRAN

program

25%



X1 = A+B

Y1=(A+C) +B

X2= A-B

Y2 = (A+ C) -B

X3 = A*B

3 = (A+C) *B

X4 = A/ B

Yo = (A + C) /B

x5= B/ (A+ 0C)

v5 = B/ A

is executed, then XI < YI for all I = 1,2,3,4% or 5. This assumption

1s certainly valid for single precision computations on all of the machines

listed in the table above. Indeed, the builder of any machine which failed

to satisfy this assumption should be ashamed of himself.

26



The Monotonicity of NU(X):

The monotonicity of NU(X) will be derived as a consequence of the

properties of the successive values of U , for which some notation is

required. Given any argument X , a number representable in the machine,

either program above will produce a sequence of values U(X) and NU_(X) ,
the values taken by U and NU respectively after statement 3 has been

executed for the nth time. In particular,

U(X) = 1.0 and NU_(X) = 0 ;

U, (x) = [A(1) - X] -rounded etc. and

NU, (X) = 0 if X < A(1l) - 6
= 1 if X > A(1)- 6 ,

where 0 = +/nin the first program

= 1 1n the second program .

Note that no U(X) can lie closer to zero than +6 or -6 . At the end

of the DO-loop,

U = Uy (X) and NU = NU(X) = NU (X) :

The interesting values of X are those where some u(x) changes

sign. These points shall be identified precisely with the aid of a notation

XxX’ for the successor of X ; if X is a number representable in the ma-

chine and eligible to be an argument for the programs above, then X' is

the next larger eligible argument. Normally X' will exceed X by one
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unit in their last place being carried in the computation.

A "zero" =z of U(X) is now defined to be any argument Z which

satisfies both

]

> -u (2) > 6 and -6 > u (Z )

A "pole" Y of U(X) is any argument Y which satisfies

/

u (Y) < u (Y )

U(X) can change sign only at a zero or a pole, though U(X) may fail

to change sign at some poles. Between any two zeros of U(X) must lie

at least one pole where U(X) changes sign, and possibly some other

poles where U(X) does not change sign. Let us examine these poles more

closely.

If Y is a pole of U(X) then

[4

[BB(n)/U__,(Y)] > [BB(n)/U__,(¥")]

because the contrary relation would prevent

u(x) = [[A(n)- [BB(n)/U_.(x)] 1 - x1,
n nl

where each pair of brackets means

"round [...] and take care of over/underflow, if any"
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from increasing when X moves from Y to Y' . (Note that the over/

underflow subterfuges do not destroy the monotonicity of the arithmetic’

operations even if U(X) has to be replaced by -%€.) Therefore either

Y is a pole of Uy , (X) where u, 1 does not change sign, or Y 1s a

zero of UX) . A backward induction yields the following statement:

If Y is a pole of u, (X) , then there exists

some positive integer m < n such that

/

> >vu (Y)>0>1(¥Y),

and for all integers 1 (if any) strictly between

m and n

/

u, (Y) < u.(Y )

with no change of sign,

We abserve that U, (X) has no poles and just one zero, Therefore,

as U,(X) is carried from U,(-0) = Q to u, (2) = -Q0 , it can have at

most two zeros separated by one pole where Us changes sign, Or one zero

and one pole where U, does not change sign, or one zero and no poles if

BB(2) is very tiny, In all cases one can verify with ease that NU, (X)
1s a monotonic non-decreasing function of X with at most two distinct

jumps from NU, (-2) = 0 to NU, (2) = 2 .. Rather than extend this desired

property to wu, (X) for all n by a long constructive argument, we shall

show that a failure of n_(X) to be monotonic would create a contradiction,,
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Let n be the smallest integer for which NU (X) 1s not a monotonic

function. Obviously n > 1 . Suppose NU (X) fails to be monotonic at Y ;
since

= - < = NU (Q0 = NU _(-0) < NU_(X)<n .(2)

the failure must take the form

/

NU_(Y) > NU (Y y

However, our hypothesis about n implies that NU, 1 (X) is monotonic,
which means

/

- NU, (Y) < nu, (Y )

Also,

NU(X) - NU, (X) = 0 if U (X) > 0

= 1 if U(X) <0 ,
SO

!

0 > NU (Y ) - NU (Y)

/ /

+ {vo 69 - wu ())

+ -(vu(¥) - NU_(1))

> {0} + {0} + {-1} = -1 .
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But this implies, (term) by (term} , that

/ / /

Nu_(Y ) = NU_ he: }) and u (Y Yy> 0 ,

Co |

NU _,(Y) - NU_,(Y) = 0 , and

NU (Y) = No _,(Y) + 1 and u (Y) < 0 ,

EvidentlyY 1s a pole of U(X). Therefore there exists some positive

integer m < n for which Y 1s a zero of u,(X) ; we shall have
If

u (Y) > 0 > u (Y )

Therefore NU (Y") = NU (Y") + 1 because U (Y') < 0 ,
m m 1 m

> NU L(Y) + 1 by monotonicity ,

= NU (Y) + 1 because U (Y) > 0 ,
m m

Also, 1f there are any integers 1 strictly between m and n-1 ,

a vy’ = vy’ —_ xwo, (v7) - wu, L(Y) = WU (Y) = nu, (7)

because Y 1s a pole of u, with no change in sign, Therefore

/ ;

Nu L(Y) - NuL(Y) = N-u (Y7) - NU_(Y) > 1,

whereas we saw a'bove that

2

nu ((Y) - NU (Y) = 0.
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This contradiction proves that NJ(X) 1s a monotonic non-decreasing function

of x, as desired.

It seems surprising that so strong a result can be proved with no

appeal to the continuum, nor any estimate for the errors in the values U(X) .

On the contrary, the values of u(x) can be completely different from the

mathematically exact values uy that would have been obtained without

rounding errors nor over/underflow, even to the extent of having the wrong

signs. Fortunately, the errors in the intermediate results U(X) are

of no interest beyond an assurance that the errors are not haphazard. And

the behaviour of NU(X) provides just that assurance.
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Bounding Rounding Errors:

The next step 1s to show that if bd < Lub, (J) then NU(X) 1s pre-
cisely the value that vv (X) would have taken if J had been replaced by

| some nearby matrix J(X) and all computations had been carried out 1in-

finitely precisely with neither rounding errors nor over/underflow subter-

fuges. The principles behind the analysis that follows are very much like

those to be found in Wilkinson's books (1963,1965). We shall try to describe

the elements of J(X) 1n terms of the numbers that actually appear in the

arithmetic registers of the machine during the computation, and in terms of

the rounding error bound e€ tabulated above for several machines The

ideas involved are best 1llustrated by the following examples,

The FORTRAN assignment statement

- C =A %B

will not replace C by the product of A and B , but will instead set

C toavalue

C= (1+ 7)AB

| in which7/1 1s normally bounded by, say,

7 <e

Note that A, B and the new value C are defined quite precisely, and

satisfy the previous equation exactly. The only unknown quantity is 7 ,
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but || is bounded by a known value € except when over/underflow inter-

venes. Similarly, the assignment statement

C =A/B

actually stores a value

C= (1 + B)A/B

where le] <€ .

As a matter of fact, the situation 1s not always as described above.

In double-precision the values ofB and y can be as large as %€ on a

7094, 5¢ on a B5500, and l6e ona 360. These unnecessarily large

errors are so repugnant to the author that he takes the liberty of passing

them directly from the machines' manufacturers to the reader, who may ac-

commodate them by multiplying € 1n the bounds given below by whichever

factor 1s appropriate for his machine. For a similar reason, the author

chooses to presume that the FORTRAN statement

C =A +B

causes C to take precisely the value

C= (a+ B)/(1+a

with lr] < € . Only in double-precision, and then only on some machines,

1s 1t necessary to replace the last two relations by

C= (1 +aA+ (1 +B)B
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with lo] < e€ and |g] < € , but this will weaken the error bounds to

be given below by a factor no larger than two.

The Construction of J(X) near J:

The first step in the construction of J(X) 1s the definition of

certain values A and B. corresponding respectively to a; and b_ o
Let us set

Br = bo. if B4 does not underflow ,

if |b, | < Vil

In either event, |B, - bl < 3/1 -And

BB. = BB(I) = (1 + Sh) ,
I IT 1

where Bug 1s the relative error due to multiplication and satisfies

EM < € . (The primes used during the construction of J(X) do not de-
note successors.)

The value of AI depends upon X , and differs from a only to the

extent required to compensate for the effects of over/underflow. Reasons

35
)



have already been given why we should, expect that

A; - all < 2 V1 in the first program ,

<n in the second program ,

execpt for an 1gnorable contribution no larger than n . Let us stay with

the second program from now on, and ignore not only the scaling underflow

error nN by setting

A(l) = ar ,

but also agree to ignore the comparable error induced by underflow or state-

ment 1 during the computation of UI .

The dissection of the FORTRAN statement

U = ((A(1) - BB(I)/U) - X)

to find its rounding errors 1s an inductive process. For I = 1 we define

Aj = A(l) = ay and

v, E Ay - X precisely, and

| : 1 Xi

U, = [[A(1) - 0.] - X] = v,/ (1 + a, ) ,

where lof | < € . Evidently sign(v, ) = sign(U, ) oo.

36



We also set a = py = 0 and v= l . The induction hypothesis 1s that
for n = 1,2,..., I-1 we may write

4 i / /

= - \s -vos A = (14g) +a J+ )BB fv o- 1+ 2X,

A - a | < V 1 ’

gl < e lf] < oe, lo] <e, and

either v = (1 + a(1 + ou or
n n nn

lu | = Q and 0 <u /v <1landa =a =0.n n n n

. In any case, sign(v_) = sign(U_) £0.

The hypothesis 1s obviously true for n = 1 , since BB, = 0 . Note that

UN represents what was earlier referred to as U(X) , and 1s a number

actually stored in the computer. The values BB and a are also stored

in the computer, but A will not be stored if it differs from a and

v is a figment of the imagination except, for'its sign.

Now for the advance to n = I . The first value to be inspected 1is

. d — ”[BB(I)/U, Jrounde (1 + £7)BB/U_

where |B37l< € unless overflow occurs. (Underflow 1s being ignored.)
If this quotient overflows then the remaining arithmetic operations are

irrelevant because the scaling has ensured that neither A(l) nor X can

be bigger than
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310 << el

therefore overflow will cause UI to be given the value

Up = -0 sign(U;_;) ,

and we may define

- "oo / = V4 . ,
Al = ar Br = a Oy 0 and

vp = (Ap 7 BBYUpy) =X

These values satisfy the induction hypothesis.

If the quotient [(BB/U;_;] does not overflow, there 1s still the

possibility that the previous quotient [BB; ,/Ur_,] overflowed to be

considered. In this case lu, _, | = and 0 < UI TAL 1 <1, and we
define

n

Evidently

”

A, -arl = (14 B7)BBL|1/UL1 - 1/v_|

2

< (1+ e)(m)Yel= 1 +E) Vn .

The factor 1 + € 1s unimportant and shall be dropped.+ Note too that ,

i

AI) - [BB(I)/Up_;) = Ap — (1 + BL)BBY/vy L
” Nn Fi

= aT - (1 + Bp) (1 + Op (1 + ar_;)BBy/ Vy; .
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The last relation 1s satisfied too 1f neither [BB(I)/U; 1" nor

[BB(I-1)/U;_,] overflowed, in which case we set AT =A(I) = a; , because
[1/4 I'd

= +then Vig (1 dr (1 } ar 107 4 .

Continuing, if [BB(I)/U;_,] does not overflow then the value stored
for UI will be

— - " / + / ed - XUp = [A (1 +e.) +0; )Q +a; | )BB/vy ]- XI]

= (A; -(L+p)(1 + Of ! /(Ap = (XL + pp) + 0JQ + og (IBvy 1) (1 + of)

- X)/(1 + of)

= 1 ! + ofvf (( + ar) (1 ar)

_ where the rounding errors of addition are bounded by [4 < e¢ and

of] < € . This result advances the induction from n =I - 1 ton = 1

as desired, and lays a firm foundation for an error bound for the eigen-

values.

Let the matrix J(X) be defined now to have

/ .

A - a X in place of an and |

AL +e +p) +d (+ al) B in place of bn n n 1 nl’ n-l n—1

Certainly J(X) 1s close to' J ; more precisely, ,but neglecting terms

of order e€ and n ,

|3(x) - J] < 2¢|ld - diag J] + €|x|T +n HE

elementwise, where
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J- diag J = only the off-diagonal terms b in J

H = the tri-diagonal matrix with all elements =1 .

Denote the eilgenvalues of J(X) by

A (X) < A(X) < ... < A(X)

to correspond with the eigenvalues As of J .
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The Absolute Error in At

The reason for constructing J(X) was that NU(X) 'would be the number

of J(X)'s eigenvalues A, (X) < X, and now this can be proved. For

NU(X) = the number of values U(X) <0

= the number of values va < 0,

and the Vv, ~oare to J(X) what the uncontaminated values u are-to J

And each eigenvalue A (X) differs from the corresponding A by no more
than

lub (J(X) - J) < Ze Lub, (|g — diag J|) + elx]

+\/n lub (H) .

Here

VE Lub, (H) < 3Vn = 31(1Q) < 371 Lub, (J) )
and

2¢ Luby (|J - diag J|) < 2e lub (J)

by virtue of the more general form of our earlier result no. 2 with

\ [of * 8° ="\ [0 + (2¢)? . Finally, the only values of X that will

concern us below are those which approximate some 'eigenvalue A. , so
i

we can certainly assume that e|x| < 6 max, In, | = € lub, (J) to within
a negligible extra error of the order of ¢° |x| » For those valuesof X

we have

[A (x) - A | <r=3(e+ Tmax |
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as a bound for the difference between the corresponding eigenvalues of

J(X) and of J . This means that, as X varies over the allowable

arguments, each eigenvalue A; (X) remains confined to some fixed interval

Ay -r < A (X) Not

We have already seen that for any given Kk there 1s precisely one value xy

which, with its successor X, , satisfies

FE

NU(X,) < k < NU(X,)

these values can easily be computed. And the relationship between NU(X)

and the A(X) tells us that

< +X, SANK) SA +r and

/ /

MN mT SAX) < XL

Since

/ : '

0< Xe - x < 2e¢ max, |X, | on a rounding machine

< € max, [A | on a truncating machine
(we might as well assume now that arithmetic 1s rounded), we can accept

either x) or X, as an approximation to Ne and commit an error no
larger than

+ Al= (5¢ 37 )max, |n, | .r 2e max, | 5 (5¢ + ) 51 3
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This bound compares favourably with that obtained by Wilkinson (1965,

p.304-5) for the Sturm-sequence (g—recurrence) algorithm in the I

of over/underflow, In our notation 'his bound is 17e max, [A] although
the use of our more refined methods reduces this to 8.75¢ max [A | .
This bound is not appreciably increased if Wilkinson's 1962 program is

amended to cope with over/underflow, but then the (p-recurrence becomes

much slower than the u-recurrence. Therefore the u-recurrence has all the

advantages of speed, simplicity and accuracy over the v-recurrence.. On a

computer using rounded binary floating point arithmetic, the biggest eigen-

value can be computed to within a guaranteed relative error of 2.5 units

in 1ts last place, and no eigenvalue will suffer a larger absolute error. |

For chopped arithmetic the guarantee is 4 units in the last place. These

bounds are impressively small; but they are substantially larger than most

of the errors observed in practice.

| Why?
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The Class J) of neighbours of J :

A nicer appreciation of the accuracy of the u-recurrence can be achieved

through the consideration of the class ) of symmetric tri-diagonal matrices
J which satisfy

|J ~ J < oe|J ~- diag J| .

For example, on the rounding binary computer mentioned above the class

consists of those matrices J obtained from J by changing each off-

diagonal element of J by at most one unit in its last place. The set

J 1s a convex set 1n the sense that 1if Iq and Jy are members of 9 :
then so are all matrices of the form

td, + (1 -t)J_ for 0<t<1

lying "between" J and Jy . Each matrix J in 9 has a set of eigen-
values

ASK, Mal Shy

. Id ,

and as J varies over 5 each eigenvalue A, varies over some set A
which can also be shown to be a closed convex set. In other words, associa-

ted with the class | of matrices J 1s the set of N intervals

AE the set of all x = Xe for some J in )
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Some of these intervals may overlap, but it 1s soon seen that no A can

be contalnedstrictly inside another. Therefore.the intervals, Bry share

the same ordering as the elgenvalues Me . Obviously A 1s contained in

Ng Tee max [A] <x <A + 26 max [1 | ,

but the interval A, hardly ever occupied more than a small fraction of

that latter interval.

- The significance of the interval A 1s that for most practical pur-

poses any number 1n A 1s as acceptable an approximation to A as any

other. Such might be the case,, for example, if each off-diagonal element

b. of J were independently in error by as much as 2ep, | because of
previous rounding errors. The independence of the errors is essential;

~ correlations among the errors in the b. could conceivably cause the

eigenvalues of J not to be in error at all, as would be the case if

O 1l+te O 0 1l-¢ 0 |

+e 0 1-E were erroneously computed as l-¢ 0 l+e o

\ 0 1l-¢ © 0 1l+te ©

As long as the errors in the b. are independent, the width of the inter-

val A 1s an indication of the extent to which A must be regarded as

inescapably uncertain And that the error introduced by the programs

analyzed here contributes negligibly to this inescapable uncertainty shall

now be demonstrated.
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Let J(X) be defined to have elements a = a and
o | ’ " Vi /

b 1 = /( +8 )(1 +8) +d JQ + a)b , , where the Greek
letters were defined during the construction of J(X) . Except for terms

of order e’ which shall be ignored,

LI i bl < Be LI

so J(X) belongs to 8 and each eigenvalue A(X) of J(X) lies in its
corresponding interval A . Also,

3x) - 3(X)| < elX|T +n H

except for ignorable terms of order 1, so

|X, (X) - (Rg r(x) = e|x| + 37 max, || |

And 1f Xx, and 1ts successor X, are defined, as before, by

I's

NU(X, ) < k < NU(X,)
then

X, < A(X) < A(X) + r(X,) and

J / / / /
- A []MN (XL) r(X,) < (XL) <Xo

If arithmetic 1s rounded, then

/ r

X, - X, <2e max.( 1x| 1x1)
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(except possibly when Z - X= nN , which 1s ignored). Putting all the

facts together shows that either X or X, differs from X(X,) or

A(X) respectively by no more than

/

3e max.( 1x, | , 1x1) + 3tmax, |X, |

On a binary machine with rounded floating point arithmetic we may summarize

this result as follows:

th

" The computed approximation to the k elgenvalue Me ofJ need
1 C

not differ by more than 1 5 units 1n its last place from the x U1 eigen-

value A of some matrix J each element of which differs from the cor-
responding element of J by at most one unit in its last place, plus an

absolute error of

31 max, |, |

from over/underflow subterfuges.

In other words, if J 1s already uncertain in each element by several

units 1n its last place, and if

>In max | 31) €

CL -10
(which is not often a restriction since 31/e < 10 on each of the machines

tabulated, even in double-precision), then the additional uncertainty intro-

duced by the computation of Me will be insignificant when compared with

the intrinsic uncertainty in Me caused by uncertainty in J . If Me
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is intrinsically uncertain by only a few units in its last place, then the

approximation to Ne will be accurate to within a few units in its last

place too despite the fact that Me 1s much smaller than “max, |x, | . This
partially explains why some of the very small eigenvalues of symmetric tri-

diagonal matrices have been computed to such unexpectedly fine relative

precision by the u-recurrence.
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Insensitive Eigenvalues:

But why are the smaller eigenvalues of J so frequently (but not

always) so much less sensitive to small relative perturbations in J than

might be suggested by simple examples like the following?

1 l-¢

l-¢ 1 1 2

Unlike this example are many others where even the tiniest eigenvalues suffer

relative (rather than absolute) displacements which are of a comparable order

of magnitude with the relative changes in the off-diagonal elements 'of J ,

(Although not always easy to explain, it is oftenobserved that J's eigen-

values are less sensitive to relative perturbations in the off-diagonal

elements than to comparable relative perturbations in the diagonal elements.)

An extreme example of this phenomenon 1s provided by those matrices J

whose diagonal elements all vanish. These matrices turn up during certain

computations of singular values; see Golub and Kahan (1965) p. 213. The

methods used above can be exploited to prove that

If J 1s an NXN symmetric tri-diagonal matrix,

if diag J = 0 , and if |5J] < e|J| ,

then the ordered eigenvalues As of J and

Ns + OA of J + &J satisfy

an, | < nen, |/ (2 - Ne) ,

provided Ne < 1 .
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An outline of the proof follows. Write

+ = Db, i :b, + 8b, = b (1 + B,) with |B;| <e

Without loss of generality we may assume

b, £0 for 1<i<N .

Corresponding to the u-recurrence applied to J =- xI 1s the corresponding

v-recurrence, say, that belongs to (J + SJ) - x1 ; they can best be compared

when written side by side thus:

Wy =X, Vi _ TX,

2 o
== = - = == LL) + °up = =x = byJus go, vy =x = (1 By1) D3 1/ vy)

It is well known and easy to show that both J and J + &J have only sim-

ple eigenvalues Me and Me + OA, respectively, and that Uy = 0 1f and

only if x 1s an eigenvalue of J , and that Vy = 0 if and only if x

is an eigenvalue of J + &J . (cf. Wilkinson (1965)p. 300.)

th

Our object now 1s to show that each Me 1s the k elgenvalue of

some matrix which differs from J + ®J by terms of order eA rather

than el|J| . There are two cases according as N 1s odd or even.

If N = 2n-1 we define the factors (1 + 7s) via

+ =

1 ’n 1 ,
lL, 754 F (1 rT 7) if i > n
L +7; F (1 + Bs at + ys) if < n .
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Then we set

LA = (1 + ys uy and x1 = 7X ,

and observe that

wy =X; -X

w. =x. -x =-(1+ B Cw .
i i i-17 i-1 i-1

This is just the w-recurrence, say, belonging to the matrix

J(x) -xI = J + 8J + diag(x, ) - xT .

_ Since |J + &J - J(x)| = |x|diag|y. |

-2n+

< |x| aseg{(1 - &)™F - 1}

< Ne|x|1/(1 - We)

if Ne< 1 , the Ko0 eigenvalue Me + OA, of J + 8J differs from the
th th
k eigenvalue of J(x) by no more than Ne|x|/ (1 - Ne) . But the Kk

eigenvalue of In) 1s just Me since sign(w,) = sign(u, ) for all x

and w= Uy = 0 for x = Me . Therefore

- < 1 -n+ Bh = A |< Mela1/ (1 - Ne)

as claimed.
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A similar scheme works when N 1s even. Thus, one can hardly be

surprised in this case when each computed eigenvalue of such a matrix J

1s correct to within N units in its last place despite a wide variation

in the orders of magnitudes of the eigenvalues.

The possible persistence of high relative precision in many of the

tiny eigenvalues of wider classes of matrices J awaits a systematic

explanation with predictive powers, 1n the absence of which it is hard to

say when a small computed eigenvalue has higher relative precision than 1is

implied by the absolute error bound

€ + Bt )max_.{A.]| .(5¢ + 3)max,|n,|

Conclusion:

There are faster programs than those described here, but none more

elegant nor more accurate.
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