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1. INTRODUCTION

We study a class of new methods for the calculation of zeros.

In Sections 2 to 8 we treat the case of a polynomial with all distinct
zeros and one zero of largest modulus. We studied this case in detail
in [16]. Here we give a simplified treatment and also obtain some new
results. In Sections 9 and 10 we treat the case of a zero of smallest
modulus.

In the remaining sections we discuss the calculation of multi-
ple zeros and equimodular dominant zeros of polynomials and zeros of anal-
ytic functions. Detailed analysis of these matters as well as material
concerning the calculation of subdominant zeros will appear elsewhere.

2. DESCRIPTION OF THE BASIC ALGORITHM FOR

THE DOMINANT ZERO OF A POLYNOMIAL

Let
(2.1) P(t) = } ajtn"j ,a =1
be a polynomial with complex coefficients and with zeros pl, pe,..., I
In Sections 2 to 8 we assume the zeros are distinct and |pll > ]pil ,
i > 1 . We generate a sequence of polynomials as follows. Let B(t) be
an arbitrary polynomial of degree at most n-1 such that B(pl) £ O
Define
G(0,t) = B(t) ,
(2.2)
G(A+1,t) = tG(A,t) - aO(A)P(t) s
where aO(K) is the leading coefficient of G(A,t) . Then all the

G{»,t) are polynomials of degree at most n-1 .
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We generate the G(Mt) wuntil we have calculated, say, G(A,t).
We use G(A,t) to construct an iteration function. (In the remainder of
this paper we do not distinguish between the running index M. and a fixed
value of A equal to A ) We choose an initial approximation to and

generate a sequence [ti} by

(2.5)} iy = o(0t)
where

@ (M)P(t)
(2.4) Cp(ht) =t - —G(}\—’g)— .

The ti form the approximating sequence for pl .
We have described a two-stage algorithm.
a. Preprocessing stage: This is specified by the recursion.

for the G polynomials given by (2.2).

b. Tteration stage. This is specified by (2.3) and (2.14).
5. A _NUMERICAL EXAMPLE

For illustration we calculate the dominant zero of
: 3 .2
P(t) = (t+1)(t-2)(t+3) = t° + 2t° - 5t - 6

We choose

3

G(0,t) = t7 - P(t) = -2t° + 5t + €

(The reason for this choice of G(0,t) is explained in Section 4.) Then

G(1,t) 9t2 - 4t - 12

It

il

G(9,t) 55&17t2 - 52052t - 105468 .



We now iterate using

a_(9)
9(9,8) = t - B(t) 5Tty

and choosing to = 100000 as our initial approximation. We calculate
the sequence of approximations exhibited in Table 1. The sequence is
converging alternatingly towards the zero at -3 which is the largest
zero in modulus. In the righthand column we exhibit the ratios of suc-
cessive errors. After the first iteration these ratios are constant.
This is as expected because the method used here is first order. (The
extension to higher order is described in Section 4.) Observe that all
the ratios are small and that the initial ratio is particularly small.
These facts are characteristic of the method and are quantitatively

explained in Section 7.



IMANTS

TABLE 1. SEQUENCE OF APPROX

100000.
-2 . 97
-3.0001

-2.999999

-3, 000000003

~2.99999999998

-3 . 0000000000009

2.6x1077
_5.2X1070
-5.1X10™
-5.1X10"
-5.1X107

-5.1)(10'5



Note that the rate of convergence of the iteration "looks"
numerically quadratic over the entire range of the iteration even though
it is asymptotically a first order process. The explanation for this lies
in that the error at each step is the product of two small errors, one
of which is the error at the previous step. See Section 7. This should
be contrasted with the behavior of, say, the Newton-Raphson iteration
which is asymptotically quadratic but which behaves linearly when the
approximations are far from the zeros. (The reader is referred to
Forsythe [6] for an example of this.) |

L, COMMENTS ON AND EXTENSIONS OF THE

BASIC ALGORITHM

Note that the recursion for the G polynomials defined by (2.2)
is easily performed by hand or machine. The multiplication by t is only
a shift. ALl that is then required is a scalar-vector multiplication at
each step; Another method for generating the G(A,t) which calculates
G(en,t) diiectly from G(N\,t) , G(M1,t),..., G(M+n-1,t) is described
in Traub [16, pp. 126-129].

From (2.2) it follows that @(A\,t), which is defined by

a ()

(.1) e(Nt) =t - P(t) 0o%)

may also be written as.

G(M+1,t
(4.2) o) = Srlat)



»Since, as we verify in Section 6, ao(x) does not vanish for A suf-
 ficiently large, (4.2) exhibits the iteration function as the ratio of

» ﬁolynomials of degree exactly . n-1 . This form is used when t is large.
Equation (%.1) exhibits ¢@{(X\,t) in incremental form.
. It may be shown that if any of the zeros of P have magnitude
greater than unity, then the coefficients of G(A,t) increase without
limit. On the other hand, if all the zeros lie within the unit circle,
G(\,t) converges to the zero polynomial. This difficulty is taken care
of as follows: Let h(t) denote a polynomial h(t) divided by its

leading coefficient. We show in Section 6 that

lim G(A,t) = fiﬂ
A—® -pl

Hence G(A,t) has well-behaved coefficients. The G(A,t) satisfy the

recursion

G(M1,t)

]

tG(N,t) - P(t), if a (r) £ o

(%.3) —
G(M1,t)

1

tG(n,t) if a (A) =o

We can write the iteration function as

(4.4) P(nt) = & - g(’{f—gy _

We turn to the question of choosing the arbitrary polynomial
B(t) that appears in (2.2). Recall that B(t) can be any polynomial

of degree at most n-1 such that B(pl) ﬁ 0 . Two natural choices




for B(t) are B(t) =P'(t) and B(t) =1 . If B(t) =G(0,t) =1,
it is easy to show that G(n,t) = t? - P(t) . Hence we might as well
take B(t) = G(O,t)‘= +® - P(t) and this was done in the numerical ex-
ample of Section 3. Additional discussion of the choice of B(t) may
be found in Section 11.

The iteration function @(A,t) 1is first order. From g(\,t)
and its derivatives and P(t) and its derivatives one may construct
iteration functions of arbitrarily high order. A general treatment is
presented in Traub [16, pp. 116-119].

Because of the rapidity of convergence of this type of method

we would generally not use an iteration function of order greater the

two. The second order iteration function is given by

P(t)G(N,t)
Pp(t) =t - P’ (£)G(N,t) - P(t)G (h,t)

We give a simple numerical example of a second order iteration.

N

et P(t) =1t - L6t + 528t2 - 1090t + 2175 . The zeros are Py =29,

oy = 15, Pz 1 = 1+2i . We take B(t) =1, A = 16 and choose our ini-
2

tial approximation as to = 100000 . We calculate

c
I

1 28.9996

ct
1]

5 = 28.9999999999997

The other iteration functions discussed in later sections of
this paper could also be made of arbitrary order. For the sake of sim-

plicity of exposition we shall confine ourselves to the first order case.
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5. GLOBAL CONVERGENCE

We state without proof the theorem of global convergence for the
iteration functions @(A\,t) . A proof of this theorem in a form which
covers the extension to iteration functions of arbitrary order may be

found in Traub [16, pp. 121-122].

THEOREM. Let the zeros Py of the polynomial P be distinct with-

lpll'> Ipil’ i=2,3,..., n. Let to be an arbitrary point in the

extended complex plane such that to F Pps pi,..., Pp and let

£ = m(x,ti) . Then for all sufficiently large but fixed A, the

i+l

sequence t, is defined for all 1 and ts =Py

The phrase "global convergence" is used in the following sense..
For any polynomial whose zeros are distinct and which possesses a largest
zero and for any choice of to which does not coincide with a subdominant
zero,“wé can conclude that for all sufficiently large A the sequence ti'
defined by t,,. = Q(K,ti) exists and converges to p,- The size of A
depends on P and too It is determined primarily by the ratio of the

magnitudé of the largest subdominant zero to the magnitude of the dominant

zero.

6. PROPERTIES OF THE G POLYNOMIALS

We obtain the principle properties of the G polynomials from

the defining recursion

B(t)

61) 6(0,%)

G(A+ 1,t)

il

G - a (h) B(t),

where ao(h) is the leading coefficient of G(A,t) .
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The G polynomials can be introduced in a number of different
ways. In [16, p. 114], we define- G(M,t) as the remainder of the diviéion‘
of B(t)th by P(t). The G polynomials can also be defined as tﬁe
sequence generated by a Bernoulli recurrence with initial conditions which
depend on the choice of B(t),

From (6.1) it follows that G(A + 1, pi) = piG(x,pi).
Hence

(6-2) G(r,p,) = QQG(O,Di) = sz(pi) .

Since G(Mt) 1is a polynomial of degree at most n-1, we conclude from

Langrange's interpolation formula that

: B(p.)
(6.3)  G(At) = f;cip;‘{i_%_l, dle U

. i ’

Since B(pl) £ O by hypothesis, ¢, £ oL

Let B(M) Dbe the weighted power sum

(6.4) BOY - T eid
" From (6.3)
(6.5) ) =80

Hence for A sufficiently large, ao(K) £O.
From (6.5), (6.4) and (6.5) we obtain immediately the most
important property of G{Mt), namely

(6.6) 1im G(A,t) = 1im G t) =v_2LEl

Ao A0 ao(h) t - pl

2

for all finite +t.
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Furthermore the rate of convergence depends on the ratio of the magni-
tude of the largest subdominant zero to the magnitude of the dominant
ZETYO0.

To see the importance of (6.6), consider a general iteration

function,

where V(t) 1is some function which is yet to be specified. If

: P{t
(6.7) v(t) = ti—l
: =P
1
then C¥(t) = Py and we always - obtain

the answer in one step. In the Newton-Raphson method, V(t) = P’(t)

and (6.7) is satisfied only at t = p Equation (6.6) shows that

L
when V(t) = G(A\,t) , then (6.7) is satisfied for all finite t as X
goes to infinity and is satisfied arbitrarily closely for A sufficiently
large.

We obtain an interesting interpretation of the recursion for ,
the G polynomials by considering the Laurent expansion of G(\,t)/P(t).
Let

ant) | o fgffl

(6.8) =
P(t) =5 tk+1

Clearly, do(x) = aO(K) = B(N) . Write the recurrence for G(\,t) as

GO, t)  tG(A,t)
(6.9) P(t) =~ P(t)

- a (A)
‘Then we conclude that

(6.10)

dk+l(k) = dk(x+1)
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Hence the right side of (6.9) may be viewed as the operation of performing

a left shift upon the vector of coefficients of the Laurent expansion.

From (6.10),
3,00) = 4 (v - B0wK)

a result which could also have been obtained directly from the partial
fraction expansion of G(A,t)/P(t) .
Hence
a(ht)  A[BG) N B
ot [y 5 e
| k=0 ¢
Thus, except for a factor of £ , G(Nt)/P(t) is just the remainder of
the series for G(0,t)/P(t) after A terms.

Finally we mention that the recursion for the G polynomials
may be cast as a matrix-vector multiplication where the matrix is the
companion matrix of P . We do not pursue this here. The interested
reader is refered to the papers by Bauer in the bibliography.

7. THE BEHAVIOR OF THE ERROR

In the numerical example of Sectioﬂ 3 we noted that the ratios
of successive errors were small, and that the initial retio was particu-
larly small when to was large. We now study the behavior of the error
quantitatively.

Let

From (4.2) and (6.3),

& N
.};2 a,(p./p1 )" (py-05)
t-pi
(7.1) E(N,t) = - d, = ci/cl

. A
1+ 2 d, (p,/py) " (t=p7)
i=o _
t-pi
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This result is exact. We draw a number of conclusions.
. N . .

"E{\,t) is of order (pe/pl) and can be made arbitrarily small.

For the remainder of this section we strangthen our assumption to

e, > lo,l > lpi]l , 3>2 . Then
1 2 J

- . (\,t) (0,-p,)
(7.2) iﬁﬂ; St x =9 i-pl
, (py/py) , o

The asymptotic error constant (Traub [14%, p. 9]) is defined by

c(\) = 1im E(n,t) .
baqq
We conclude
E(,t)  Pi7Pp

c(n) ~ t-p2 )

1lim
Ay

(7.3)

This result explains why the initial error ratio in the example of

Section 3 is so small. For that example, Py = =3, =2, t = 100000

Po
and the initial ratio should be smaller than the asymptotic ratio by about

-5XILO"5 . This is indeed the case in the example.

If B=P we can draw an additional conclusion from (7.2).

In this case d2 =1. Let P(t) and Q(t) be two polynomials with

the same dominant zefos and Py We calculate tﬁo approximating

by
sequences for Py both starting at to but with one sequence calcu-~
lated from P and the other from Q. Ona computer; for A suf- |
ficiently large, the two sequences are essentially identical. To ;

put it andther way, the sequence of approximents depends bnly on the two

dominant zeros of P and is essentially independent of the remaining

Zeros.
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8. TWO VARIATIONS OF THE BASIC ALGORITHM
ﬁ——'—'——'——————_—"——_'—'_'———ﬁ__—_—

In the following two variations the same sequence of approximants

ti » except for roundoff, is calculated as in the basic method described

in Section 2.

However the way in which the ti

are obtained is different.

Both variations are based on the following analysis. In Section 6

we showed that

(8.1)

Let B(t) = } . . b.t

that for

(8.2)

G(0,t) _ B(t
P(t) ~ Pt

n-1 n-1-i

i=0 "i

)

e tk+l

B(t) given, B(O) 3 B(l)’“') B(n"l)

i- a p(i-r) =1

r=0

For j>n the B(j) satisfy

(8.3)

n

r

a
-0 T

J- 2

B(j-r)

. By comparing coefficients in (8.1), we conclude

are determined by

J=01..., n-1 .,

1
(@]
0

We can now associate B(0) , (1), ..., B(n-1) with B(t) in either of

two ways.

We can choose either the set B(0) , 8(1),..., B(n-1) or B(t)

arbitrarily and determine the other by (8.2) .

is calculated using (8.3).

(We might add parenthetically that if B = P’

In either case B(j), j>n,

s

then (8.2) are Newton relations for the power sums B(N).)

We now turn to variation one. Define aj(x) by

a{x,t)

It follows from (6.3) that

(8.4)

a.(N)

n

n-1

Y

3=0

$

r=0

<:1zJ.(>\)1;n-l"J

aj_rﬁ(h+r)
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This variation may now be described as follows. Compute the B(j) wup to
B(A+n-1) using (8.2) and (8.3) and compute aj(k) using (8.4). This
gives an explicit formula for G(A\,t) and hence for p(n,t) .

Observe that this variation consists of a Bernoulli . calculation

followed by ilteration.

The second variation is based on the fact that in the iteration

ti+l = q) (%’,ti)

only the numbers G(h,ti) , not G(h\,t) itself, are required. We form
the B(3) up to B(A-1) wusing (8.2) and (8.3). Then form the sequence

of numbers
(8.5)  &(3*1,t ) = £.G(3,t,) - BIIP(t ) 5 § = OLyeeey A1,

and use G(k,to) to calculate t, . Then use (8.5) with t, replaced

by tl s and so on.
9, AN ITERATION FUNCTION FOR THE SMALLEST ZERO
The iteration function @(A,t) is used to calculate the largest
zero of P . To calculate the smallest zero, we could calculate the largest

zero of tnP(%)-.

which may be used to construct iteration functions for the smallest zero

We introduce a sequence of polynomials H(A,t)

directly.
It is convenient in this section to assume that p(t) , the poly-
nomial whose smallest zero we seek to calculate, is normalized so that

p(0) =1 . ILet the zeros of p(t) be a Ay y eeey @ with

1’ 72
lall < |ai| , 1i>1 . ' Iet b(t) be an arbitrary

polynomial of degree at most n-1 such that b(al) £ O
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Define
H(O,t) = b(t)
(9-1) H(A, £)-5_ (Mo (t)
H(M1,t) =
‘tA
where
~ ao(x) = H(A,0) .
An approximating sequence is defined by
where _
‘ t
(9.3) o(n,t) = =IO
| H(x,t)
with

HONt) = HOLE)/3 (V)

From (9.1), we also have

(9.4) o(A,t) = ﬁé%

10. PROPERTIES OF THE H POLYNOMIALS

From the defining recusion for the H polynomials,

H(0,t) = b(t)

(10.1) ,
H(x, )-8, (\)p(t)
H(M1,t) = - ' 7 s
t !
we obtain the representation
 n N b(ai)
(10.2) H(N,t) = i);,l CHEN Et_(;E . m.

1
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It follows that

. 2 A-1
(10.3) 5. (\) = - igl a0

and hence that BO(K) does not vanish for A sufficiently large.

From (10.2) and (10.3) we conclude that

(10.4) lim H(\,t) = lim B(At) _ p(t)
5 (\) t

A A ©o 1-—

el

for all finite *t .
The H polynomials possess a property which is analogous to
a G polynomial property discussed in Section 6. We expand H(X\,t)/p(t)

into a Taylor series around the origin. Let

@
H(A,t k
(10.5) = 2 e (Mt
plt k=0 k
Let
‘n
-\

Clearly, eo(h) = Bo(k) = -y(M+1) . Write the recurrence for H(\,t)

as

H(x+1,t 1 TH A, t

Then we conclude that

(10.7) ek+l(x) = ek(x+1)

Hence the right side of (10.6) may be viewed as the operation of performing

a _left shift upon the vector of coefficients of the Taylor series.
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From (10.7)
ek(k) = eo(k¥k) = -7(N+k+1) .

Hence
%—h—? = g™ [%%} + :}:‘,cl)y(ku)tk] .
Thus, except for a factor of t-x , H(\,t)/p(t) is just the remainder
of the series for H(O,t)/p{(t) after A terms.
}11. CALCUILATION OF MULTIPLE ZEROS
Until now we have restricted ourselves to polynomials all of
whose zeros are simple. We turn to the case where the polynomiasl has
multiple zeros. There are no essenﬁial difficulties. If the ddminant
zero is multiple, P(t) can only be evaluated to a certain accuracy but
this is common to all iterative methods which require the evaluation of
P(t) .
We first prove a fundamental

THEOREM. Let P have n distinct zeros Py where the multiplicity

of Py is m, . Then for all A

A
i

n m,.pe.
Gn,t) i
(11.1) ATLYZP i :'El oy

1

PROOF. We proceed by induction on A . If A =0, thé result is well
known. Assuming it holds for A and substituting (11.1) into the re-
cursion formula for the G polynomials yields the result immediately. ‘

Observe that (11.1) implies that for all A , G(A,t) has zeros
of multiplicity m, - 1 at p, . Furthermbr'e,

lim G(r,t) = £(&)

Ao t-py
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Hence, for A sufficiently large, the remaining ﬁ-l zeros of E(k,t)
lie arbitrarily close to the subdominant zeros of P . Thus the iteration
function will have no poles in the neighborhood of ey

Observe that the theorem is based on the choice B(t) = P'(t) .
. This shows that the restriction B(pl) £ O is not the sppropriate con-
dition in the case of a multiple zero. The reason for this is apparent if
one compares the partial fraction expansion of G(A\,t)/P(t) in the simple
and multiple zero cases.

A detailed analysis of the multiple zero case will .appear = °
elsewhere.

12, CALCUIATION OF COMPLEX CONJUGATE ZEROS

So far we have dealt with polynomials which ha#e a zero of largest
modulus or a zero of smallest modulus. We turn to the case of equimodular
dominant zeros. Fortunately in the case of polynomial zeros it is suf-
ficient to consider the case of either one zero of largést modulus or of
a pair of complex conjugate zeros of largest modulus for the following
reason.

A translation in the 't plane replaces zeros of equal modulus
by zeros of unequal modulus. In the case of a polynomial with real coef-
ficients, a real translafion will remove all zeros of equal modulus except
for a pair of complex conjugate zeros. Hence only the two cases mentioned
need be considered.

A discussion of how to effect the translation so as not to
damage the zeros of P will appear elsewhere.

We turn to the caiculation of a pair of complex conjugate zeros.
In [17] we recently announced a theorem on global convergence of an iterative

method for calculating complex zeros. In this section we describe one
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method for calculating complex zeros and state the theorem of global con-
vergence. Variations on and extensions of this method as well as proofs
of our results will be published in a forthcoming paper.

The theory hblds no matter what the relation between Py and Po
requiring only |pl| > |pi| and lpel > ]pil , i>2 . Here we restrict
ourselves to Py and Po complex conjugate.

If Ipll = lpal , then the normalized G polynomials do not

converge. Let

I(n,t) = e(Ne(1,t) - BOM1IG(A,t)

(12.1)
Jn,t) = pMG(M2,t) - B(M2)G(N,t)
Then
- P(t)
L) = empy)
3(?\.,1:.) - P(t)

Gop, ) (b))

Recursions involving only the I and J polynomials and not
depending on the G polynomials have been developed. These recursions
may be of advantage in numerical calculations.

From the I and J polynomials an iteration function may be
constructed as follows. We define a polynomial which is quadrétic in u

and has coefficients which are polynomials in t of degree at most n-2,
2
F2(u,h,t) = I\t = JOnt)u + I(A+1,t)

Let N be a fixed integer and let to be an arbitrary point in the
extended complex plane not equal to a subdominant zero. Define an iteration

by
o, ti) =0 |,
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It can be shown that for all ti , and for A sufficiently large, this
quadratic has a zero in the upper half plane and a zero in the lower half

plane. Chhose ti+1 as the zero in the upper half plane and define ¥

by ti+l = W(h,ti)A. Label p., as the zerc in the upper half plane.

1
Then we have the following.

THEOREM. Let the zeros o, of the polynomial P be distinct with p

1

and P complex conjugate and Ipll > |pi| s, 1>2 . Let to be an

arbitrary point in the extended complex plane such that to A pj,..., ey

and let t,. . = w(k,ti) . Then for all A sufficiently large but fixed,

1

the sequence ti is defined for all i and ti =Py -

13. A _NUMERICAL EXAMPLE
For illustration of the method discribed in the previous section

we calculate the dominant zero of

L

P(t) =t - h.2t5 + 8.71251;2 - 9.025t + 4.625 .

Its zeros are

pl =1.1 + 1,051
pp = 1.1 - 1.051
=1+

Pz

p]+ =1 -1

Note that the zeros are pairwise quite close together.

We choose B(t) = P'(t), A = 96, and choose our initial ap-
proximation as to = 1000 . We obtain the sequence of approximations
exhibited in Table 2. In the right hand column we exhibit the ratios of

the moduli of the errors. As in the example of Section 3 we observe
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TABLE 2. SEQUENCE OF APPROXIMANTS

®y ltg41mpy 1/ 18470y |
1000,
1.10009 + 1,049974 | 9.5><1o'8
1.10000003 + 1.049999921 9.ox10"‘
1.09999999997 + 1.04999999992i 9-0"10"lL
= 1.1+ 1.051

Py
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that all the ratios are small and that the initial ratio is particularly
small. Again this can be quantitatively explained.

4. CALCULATION OF ZEROS OF ANALYTIC FUNCTIONS

Let

«©
_ J -
£(t) = ¥ at? , e =1
J=0

be a power series which converges in a circle about the origin. Suppose
that £(t) has a zero of smallest magnitude. Then we can define
analytic functions H{(A,t) by the recursion of (9.1). Results analogous
to those in the polynomial case can be developed here.

Since we cannot actually form the analytic functions H(\,t) ,
we cannot use the basic method. There are a number of other possibilities
and we merely sketch two of them.

The first takes a section of the power series of degree n and
uses it instead of f 1itself. A section of degree 1000 would offer
no difficulties. The size of A which is needed to separate out the
effect of the dominant zero depends on the ratio of dominant to subdominant
zero and not on the degree of the section one takes,‘ Hence quite a modest
choice of A , much smaller than the degree of the section, should be
sufficient. Since G(A,t) can be formed in An multiplications and
since each iteration takes about 2n multiplications, the process is
reasonably economical even for large values of n .

A'second possibility is ﬁo use the second variation of the
basic method as described in Section 8. The variation is used with the
H recursion rather than the G recursion. The constants appearing in
the H recursion can be precomputed by an appropriate generalization of

(8.2) and (8.3) which amounts to calculating the coefficients of the
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Taylor series for H(0,t)/f(t) . This last mentioned process is just

the computation required for the application of Konig's method [10].

15. COMPUTER IMPLEMENTATION

In the computer implementation of the type of methods described
here, the program should decide automatically on the value of A at which
to start iteration, and as to whether or not there is a zero of largest
modulus. Buch decisions should be made by monitoring the numbers produced
during the calculation of the G polynomials. A number of strategies are
available and will be discussed elsewhere.

16. BIBLIOGRAPHIC REMARKS

Schroder [12]) in his classic 1870 paper introduéed certain sym-
metric functions of zeros. These symmetric functions are just the deri-
vatives of the rational functions G(\,t)/P(t) . He derived a number of
the properties of these functions. Since Schroder restricted himself to
low values of A for which explicit formulas could be obtained,he did not
find globally convergent iteration functions.

In 1941, Sebastiao e Silva [13] defined G polynomials as the
remainder of the division of tk by P(t) and gave a long proof that the
normalized G polynomials converge to P(t)/(t-pl) . His work has been
continued by Aparo [1], [2].

G polynomials are used by Bauwer [3], [4] in an important series
of papers which appeared in the mid-1950's. H polynomials appear in a
paper by Bauer and Samelson [5].

Sebastiao e Silva, Aparo, and Bauer are concerned with quad-
ratically convergent versions of Berhoulli—Jacobi-Aitken type methods
for the factorization of polynomials. Thus they continue the first

state of our two-stage process to the limit.
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Underlying many of the methods for calculating zeros are theoréms
concerning the coefficients of a function which has poles on its circle
of convergence. Papers by Konig [10] and Hadamard [7] are classic. A
perceptive account is given by Householder [9, Chapter 3]. The method
we have discussed here may be incorporated in this framework.

Our work has links with the QD algorithm (Rutishauser [11],
Henrici [8]) which will be explored elsewhere.

Finally we note a different application of G polynomials.
Traub [15] uses G polynomials with the variable t replaced by the
translation operator E , to give a new derivation of the formula for
the general solution of a linear inhomogeneous difference equation with
constant coefficients.

Additional bibliographic references may be found in Traub [16]

and in the papers by Bauer.
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