
CS33

A PROGRAMMING LANGUAGE FOR THE 360 COMPUTERS

BY

- NIKLAUS WIRTH

TECHNICAL REPORT CS33

DECEMBER 24, 1965

COMPUTER SC IENCE DEPARTMENT
Schoo! of Humanities and Sciences

STANFORD UN IVERS ITY

ER

(5)
Steins

The PL360 compiler on the B5500 computer. or

The compiler 1s a syntax directed one pass compiler designed according

to the principles outlined in Technical Report C520. The following rules

and restrictions apply to the version-of Dec. 1, 1965:

1. The length of the significant part of identifiers is 6 characters,

2. No real numbers and no strings are availlable.

5. Base register assignment 1s fixed: Registers RA - RF are used as

base address registers and should therefore not be used within the

program.

L. Every program must be terminated by an @ character.

5. Composite basic symbols, such as begin, end, etc., are written as

BEGIN, END, etc., 1.e., have the form of identifiers and may therefore

not be used as such. Note: goto 1s written as GOTO without space

between GO and TO.

6. No blank spaces may occur within numbers and identifiers.

7" The compiler 1s on the USE tape and 1s called by the ALGOL statement

7zIP("-PL360-", "MCP-USE")

8. The following function identifiers are defined in the compiler:

IA, EX, CVB, CVD, STM, LM, MVI, MVC, TR, ED,

: IC, STC, SRDA, SRDL, SLDA, SLDL, SVC, SPM

A Programming Language for the 360 Computers

Table of Contents

INnEroduCtion viii ii iit ii tiie iti einer nnnasansannnsees 1

1. Definitions, NOLALION ..eececccascoscesssssossg seeeannes?

2. Basic SYmMDOLS tuviiiiiiienenrereesosnsossossssssnsnasassas D

3. He 1=3 okws= ofJEN

4. Quantities, Values, and TYPES uuu nnnnnnnnnnnnnn

BLL. NUNES titi titties... O

L.2., Strings coecececesssssescsosossassssscsscssneocsasd

>. DeclarationsPN0

5.1. Variable Declarations . . csceecoccossssososaseessa10

5.2. Procedure Declarations . . ceeoeseossosneasensascssall

6. Variables and Primaries%.i.iiiii®iii. 12

7. Simple SLAtEMENLTS toeeeseereonccocesessasssescassaseaseLJ

7.1. Assignment Statements © . iieeiiinioniiineaesDD

7.2. Branch Statements eeeececsoeesreersecoanscansonsesLJ

723+» BLOCKS cvocconoonesssssasoscsscesnsssoncsnssonnnco16

7.4, Procedure Statements .eieececssecesseoseoscasena18

7.5. FUNCEI10N Statements voeeooeseoseoscsosnsncesssssld

8. StAtementS + v.oveceessreassseasnsensoncaassossoaansnsse0

8.1. If Statements e.ecceeceoeescnoescssoasscsocnsosed20

8.0. Case SLALEMENTS ove eseenenonenonosnsnonsannossssll

8.3. Iterative Statements coceesesceocosesossacoossssll

| -

A Programming Language for the 360 Computerst

by

Niklaus Wirth

Introduction

This paper 1s a preliminary definition of a programming language

which is specifically designed for use on IBM 360 computers, and is

therefore appropriately called PL360.

The intention 1s to present a programming tool which (a) closely

reflects the particular structure of the 360 computer, and (b) is a

superior notation to present Assembly Codes with respect to presentation

and documentation of algorithms. As a consequence of (a), it enables

a programmer to design programs mentioning explicitly features of this

machine 1n a degree impossible in "higher level" languages.

It 1s also felt that a highly structured language 1s most appro-

priate (a) to promote the intelligibility of texts for the human user

and (b) to encourage this user to properly structure his algorithms

not on paper only, but in his mind as well. The language is therefore

a phrase structure language containing many constructions which quite

. obviously correspond to a single 360 machine instruction (cf. [1]).

Moreover, 1t 1s hoped that through certain conventions (not men-

tioned1n this preliminary paper) concerning the use of general registers

as base address registers, programs written in PI360 can be efficiently

run under a time-sharing monitor without requiring the presence of ad-

ditional sophisticated relocation hardware (Model 67).

¥/ This work was partially supported by the National Science Foundation
(GP 4053) and the Computation Center of Stanford University.,

Presently, a compiler for PI360 is available on the B5500 computer.

This compiler 1s mainly intended to serve as a temporary tool for a boot- }

strapping process: The compiler is being rewritten in its own language

and then becomes automatically available on the 360 computer. Indeed,

the primary purpose of this project is to obtain a convenient tool for

the development of other compilers (in particular ALGOL X) and monitor

systems, where a considerable degree of machine-orientation and -dependence

1s desirable, 'but where an adequate standard of program documentation 1s

of no less importance.

Reference:

[1] IBMSystem/360 Principles of operation. IBM Systems Reference
Library, A22-6821-1.

2

1. Definitions, Notation

The structure of the language PI360 is defined by a phrase structure

system. Its productions have the general form

(A) ::= X1X) 4 1X

which 1s an abbreviation for the set of productions

(A) ::= x)

(A) EE X,

- (A) ::= x

and where (A) is a single nonterminal symbol, and Xo 1s a string
of terminal and nonterminal symbols.

Terminal symbols of the phrase structure system are either so-called

basic symbols or character strings. Basic symbols may consist of one or

more characters, 1.e., typographical entities of a lower order than basic

symbols; the set of characters and the decompositions of basic symbols

into characters are not defined here, and may depend on the hardware

avallable to a particular implementation. Character strings are se-

quences of characters delineated by string quotes.

: The set of basic symbols 1s defined in section 2.

Nonterminal symbols, sometimes also called "syntactic entities",

are denoted by letter strings enclosed by the brackets (and) .

In addition to these letter strings, the script letters J, U, and U

may occur; a production containing one or more of these letters stands

for the set of productions in each of which this letter has been replaced

by a terminal word produced from this letter according to the following

syntax: 3

Vv ::= Ulbyte

W ::= integer |long integer |real|long real

J::= general|floating|floating double

If the same letter occurs more than once in the production, then all

occurrences of the letter have to be replaced by the same terminal word.

Example:

The production

(0 variable) ::= (U variable identifier)

(cf. section 6) stands for the five productions

(Integer variable) ::= (integer variable identifier)

(long integer variable) :i= (long integer variable identifier)

(real variable)::= (real variable identifier)

(long real variable) ::= (long real variable identifier)

(byte variable) ::= (byte variable identifier)

In order to provide explanations for the meaning (semantics) of PL360

texts, the letter sequences denoting syntactic entities (nonterminal

symbols) have been chosen to be English words describing approximately

the nature of that entity. Where words which have appeared in this

manner are used elsewhere in the text, they refer to the corresponding

syntactic definition.

Definition: A sequence of basic symbols (and character strings) is a

PI360 program, if and only if it can be produced from the symbol

(block) by the productions listed in sections 3-8, and a meaning can

be attributed to it by the accompanying semantic explanations.

2. Basic Svmbols

alB|c|ple|F|c|u|z|slk|L|M|N|o]|plq|Rr|s|T|U|V|W|X|¥]|Z]

alvlclafelt]|g|nli]slxl1imin)oll dIF| S| t | vIwlx]y] 2]

ol1]e|3|x|s]|6]7]8]9]

+] -]*|/|and|ar|xor|sh1|shr|shil|shrl|

<|<l=|£>]>] : =| neg abs]

goto|if|then|else|uhile|do|for|step|until|case|of]

beginlend|(|)] ,|.|;]:|

integer|real|byte|long|array|procedure|

overflow |#|

3. Identifiers

5.1. Syntax

(letter) ::= A|Blc|p|E|F|c|a|z|aik|L|M|N|o|P|q|r|s|T|U|VIW|x|Y|Z]

alblclaleltlglnlilslxlrlmbb b bt § Ehivivlxlylz

(identifier) ::= (letter)|(identifier)(letter)| (identifier) (digit)

(0 identifier) ::= (identifier)

(T register) ::= (identifier)

(procedure identifier)::= (identifier)

(function identifier) ::= (identifier)

3,2. Semantics

Identifiers have no inherent meaning, but serve for the identification

of registers, variables, procedures and labels. They may be chosen

freely, with the exception of

RO, R1,R2,R3,R4,R5,R6,R7,R8,R9,RA, RB, RC, RD, RE, RF

which designate the 16 general registers, and

FO,F2,F4,F6,F01,F23,Fh5,FET

which designate the floating- and floating double registers respectively.

Every identifier in a program must be defined. If it designates

a register, definition 1s implied; if it designates a variable or a

procedure, then this occurs through appropriate declarations (cf. sec-

tion 5), or if it designates a label, then it occurs through a label

definition (cf. T7.3.).

The applicability of the rules given in the syntax (cf. 3.1.) de-

pends upon the definition of the identifier under consideration as

follows:

”

(a) If the identifier 1s Rn, where n is either 0,1,2,..., 9,

Ay..., Fy, it designates the n'th general register (the letters

A ... F have to be understood as numbers in hexadecimal notation,

i.e., 10 . . . 15). Otherwise,

(b) if the identifier is Fn, where n = 0,2,4, or 6, then it

designates the n'th floating register. Otherwise,

(c) if the identifier is Fnm, where n = 0,2,4, or 6, and m = n+l,

then it designates the n'th floating double register. Otherwise,

(d) if the identifier has been defined in a W¥ variable declaration

in the smallest block embracing the given occurrence, then it

identifies thatVW variable and is said to be a 1variable iden-

tifier; otherwise, if it has been defined in a procedure heading

in that block, then 1t identifies that procedure and 1s said to be

a procedure identifier; otherwise, the rules under (d) are applied

considering the smallest block embracing the previously considered

block, 1f there exists one. Otherwise,

(e) 1f the 1dentifier occurs 1n the listing of function identifiers

(cf. 7.5.), then it identifies that function.

5.5. Examples:

: P

cat

RO

7

4. Quantities, values, and types.

The following kinds of quantities are distinguished: registers,

variables, and constants. Every quantity is said to possess a value.

The value of a constant is determined by 1ts denotation. (cf. 4.1.-4.2.).
The value of a register or a variable 1s the one most recently assigned

to it. Every value is said to be of a certain type. The following types

are distinguished:

integer , long integer : the value 1s an integer,

real , long real : the value 1s a real number,

byte * the value 1s a character.

In the computer, every value is represented by a number of binary digits

in a suitably encoded manner (cf. [1]). The number of bits used in the

representation of the different types of values 1s given as follows:

integer 16 (half word)

long eger 32 (word)

real 32 (word)

long a 1 6h (double word)
byte 8 (byte)

Subsequently, the denotation of constants 1s defined.

4.1. Numbers

© 4.1.1. Syntax

(digit) ::= o|1|2|3|4|5]|6]7]8]9

(unsigned integer) ::= (digit) | (unsigned integer) (digit)

(decimal integer) ::= (unsigned integer)| _ (unsigned integer)

(hexadecimal digit) ::= (digit)|a|B|c|p|E|F

(hexadecimal integer) ::= # (hexadecimal digit)

(hexadecimal integer)(hexadecimal digit)

8

(integer number) ::= (decimal integer) | (hexadecimal integer)

(fraction) ::= .(unsigned integer)

(unscaled real) ::= (unsigned integer) (fraction)| (fraction)

(scale factor 1) ::= E(decimal integer)

(unsigned real) ::= (unscaled real)|(unscaled real)(scale factor 1)|

(unsigned integer) (scale factor 1)

(real number)::= (unsigned real) | __ {unsigned real)

(scale factor 2) ::= D(decimal integer)

(long unsigned real) ::= (unscaled real) | (unscaled real) (scale factor 2) |

(unsigned integer) (scale factor 2)

(long real-number) ::= (long unsigned real) | (long unsigned real)

4.1.2. Semantics

Integers have either decimal or hexadecimal notation. Real and

long real numbers use decimal notation only._ denotes a monadic minus

sign. The scale factor is expressed as an integral power of 10.

4.1.5. Examples:

0 1E8

1066 5.37861289001D0

3.1416 #TAB3

L.2. Strings

4.2.1. Syntax

(string) ::= (sequenceof characters enclosed by string quotes)

9

oo oo | -

5. Declarations

5.1. Variable Declarations

5.1.1. Syntax

(J simple type) ::= integer |long integer|real|long real |byte

(U type) ::= (V¥ simple type)|

array ((unsigned integer)) (V simple type)

(W variable declaration) ::= (¥ type) (identifier)|

(V variable declaration) , (identifier)|

@variable declaration) ({W number))

(Ur variable declaration)((string))

5.1.2. Semantics

A variable declaration associates an identifier and a type with

one or several quantities. If the type of the declaration is a simple

type, then one quantity 1s declared, otherwise the unsigned integer

between parentheses following the symbol array indicates the number of

declared quantities of the specified simple type. The individual quan-

tities can then be identified by subscripts (cf. 6.2.). The ensemble

of the quantities 1s called an array. If a declaration 1s followed by

one or several parenthesized numbers, then this implies that the de-

clared quantity be initialized with the given number(s). The type of

. these numbers must be identical to the type of the declaration, This

initial assignment of values 1s understood to take place only upon the

first time the block in which the declaration occurs 1s entered.

10

EE ie

5.1.5. Examples:

integer 1i,J

long integer m,n,q

real x,y

long real z,w

integer 1(1)

array (100) integer a

array (5) integer 1 (21)(0)(8)(17)(39)

5.2, Procedure Declarations

5.2.1. Syntax’

(procedure heading) ::= procedure (identifier) ((general register));

(procedure declaration) ::= (procedure heading) (statement)

5.2.2. Semantics

Execution of the statement following a procedure heading 1s invoked

by procedure statements (cf. 7.4.). The procedure identifier defined by

the procedure heading 1s assumed to be unknown within the procedure

declaration. Moreover, the value of the register designated in the pro-

cedure heading must not be altered during the execution of the statement

+ following the procedure heading.

5.2.3. Examples

procedure P (RO); Rl := Rltx

procedure swap0z2 (RF);

begin long real t; t := FOl; FOL := F253; F25 := t; end

11

6. Variables and Primaries

6.1. Syntax

(V variable) ::= (V variable identifier)|

(U variable identifier) ((unsigned integer))

(V variable identifier) ((general register))

‘u primary) c= (WU variable) | (U number)

6.2. Semantics

(VU variable) designates a declared quantity of type TT. If the

variable identifier 1s followed by an unsigned integer or a general

register within parentheses, called a subscript, then the identifier

must designate an array, and the integer or the current value of the

register identify the individual element of the array. The subscript

values designating the elements must be

(a) positive multiples of 2, if the array is of type integer,

(b) positive multiples of 4, if the array is of type long integer

or real,

(c) positive multiples of 8, if the array is of type long real,

(d) positive integers, if the array is of type byte.

The first element of any array 1s designated by a subscript value 0.

. Register RO must not be used as a subscript. The values of variables

may be changed by means of assignment statements (cf. 7.l.).

A primary denotes a quantity, either a variable, or a constant.

6.3. Examples:

Variables: 1

I(3)

a(R5)

12

f. Simple Statements

syntax

(simple statement) ::= (assignment statement)| (branch statement) |

(block) | (procedure statement) | (function statement)

T.1l. Assignment Statements

7.1.1. Syntax

(simple ¥ register assignment) ::= (J register) := (W primary) |

(I” register) := (I register) | (I register) := neg (J register) |

(§ register) := abs (J register)

(arithmetic operator) ::= +|=]*|/ [++] --

{logical operator) ::=_and|or|xor

(shift operator) ::= shl|shr|shll|shrl

(7 register assignment) ::= (simple ¥ register assignment) |

(I register assignment) (arithmetic operator)(WU primary) |

(9 register assignment) (arithmetic operator)(¥ register)|

(general register assignment) : :=

(general register assignment) (logical operator) (long integer primary) |

(general register assignment) (logical operator) (general register) |

(general register assignment) (shift operator)(unsigned integer)/

(general register assignment)(shift operator) (general register)

(variable assignment) ::= (U variable) := (J register)

(assignment statement) ::= (J register assigmment)| (variable assignment)

T.1l.2. Semantics

Execution of an assignment statement causes a new value to be assigned

to the quantity designated on the left of the assignment operator (:=).

15

In the case of a simple register assignment, this value 1s the current

value of a primary, a register, or the negative or the absolute value of

a register. The types W of primaries which may be assigned to a register

of type J are marked in the following Table 1:

~~BD integer integer real long real
* * * *PEEE

* WEE I
floating x x

Table 1

The arithmetic, logical and shift operators +, -, *, /, ++, —, and,

or, xor (exclusive or), shl, shr (shift left/right),shll, shrl (shift

left/right logical) designate operations which are described in detail

in Reference [1]. The operators ++ and -- designate unnormalized

addition and subtraction 1f applied to floating registers, "logical'

! addition/subtraction if applied to general registers (cf. also [1]).

Execution of a register assignment containing one of the arithmetic

or logical operators causes the designated operation to be performed on

two operands and the result to be assigned to the first operand. The

first operand is the register which occurs to the left of the assign-

ment operator, and the second operand 1s the primary or register fol-

lowing the operator. In the case of a (unary) shifting operation, the

operand 1s the designated first operand, and the number of bit positions

it has to be shifted 1s determined either by the number, or by the current

1h

value of the general register following the shift operator.

The types of a register(¥) and of a primary (W) which may si-

multaneously be operands of an arithmetic operator are defined in the

following Table 2 (the type of a register assignment 1s said to be the

type of the register occurring to the left of its assignment operator):

T= integer | tmiagerinteger integer real long real

* *PEE EC EE I
esting | | | ow |.
floating
double * *

Table 2

Note (1): The combination of general register and integer primary 1s only

permissible in the connection with the operators +,-, and * .

Execution of a variable assignment causes the current value of the

designated register to be assigned to a variable. The types of the

. variable (W) to which the value of a register of type J may be

assigned, are designated in Table 1.

7.1.5. Examples

Register assignments:

R1 = R%

RL = 5

RF := i+j-mta(R1l)

R9 := R9 and R10 shll 8 or RL

- F2 c= F3 + 3.1416

FOL = z*wtw

15

Variable assignments:

i := RO

x := FO

w i= F253

a(RL) := RF -

f.2. Branch Statements

7.2.1. Syntax

(branch statement) ::= goto (identifier)

7.2.2. Semantics

A branching statement determines that execution of the program be

continued at the place of the definition of the identifier following

the symbol goto . This definition is identified by the following rules:

(1) If some label definition (ef. 7.3 .) within the smallest block

embracing the branch statement contains that identifier, then this

label definition designates the place where execution has to be

continued. Otherwise,

(2) Rule (1) is applied considering the smallest block embracing the

| previously considered block.

7.3. Blocks

T.5.1. Syntax

(block heading) ::= begin| (block heading)(\Y variable declaration);

(block heading) (procedure declaration);

(label definition) ::= (identifier):

(block body) ::= (block heading)| (block heading) (statement); |

(block heading) (label definition) (statement);

(block) ::= {block body) end| (block body)(label definition) end

16

7.35.2. Semantics

A block introduces a new levelof nomenclature: 1dentifiers defined

in variable declarations or procedure headings in the block heading or

in label definitions in the block body are said to be local to that

block.

Execution of a block begins with the execution of the first statement

following the block heading. Upon termination of the execution of a

statement, the next statement in textual sequence 1s executed (except

in the case of a goto statement).

7.5.5. Examples

Innerproduct program with summation in double precision:

begin long real s; array (100) real x, y;

FO1 := ODO;

for RL := 0 step 4 until 396do

begin F23 := x(R1) * y(Rl); FOL := FOL + F23;

end;

s := FOL

end

Bubble sorting program:

begin array (100) real a;

for RL := 396 step -4 until 0 do

begin R5 := Rl= 4;

for R2 := 0 step 4 until RS do

Begin 6 := R2th; FO := a(R2); F2 := a(R6);
if FO > Fo6 then

begin a(R2) := F2; a(R6) := FO;

end;

end;

end;

end

17

T.%, Procedure Statements

7.4.1. Syntax

(procedure statement) ::= (procedure identifier)

7.4.2. Semantics

Execution of a procedure statement consists of the execution of the

: statement which, together with the procedure heading in which the pro-

cedure identifier 1s defined, consititutes a procedure declaration

(ef. 5.2.). The value of the general register specified in that proce-

dure heading 1s altered by the procedure statement.

7.5. Functions

7.5.1. Syntax

{function) ::= (function identifier)]

(function) ((integer number))| (function) ({(T register))]

(function) (@'varilable))

7.5.2. Semantics

The instruction set of the system/360 processor contains instructions

which cannot be expressed by any of the statements of this language

(except the function statement). In order that the language be able to

express the individual functions corresponding to these instructions in

one single simple statement, the function statement is introduced. The

individual instructions falling into this class are listed below, They

are described in Reference [1].

18

-__

Fixed or Floating Point Arithmetic: Logical and Branching:

Load Negative Compare .

Load and Test Load Address

Halve Insert Character

Convert to Binary Store Character

Convert to Decimal

Load Multiple

Store Multiple

Furthermore, all instructions with SI and SS format belong to this

category, as well as all status switching instructions.

The parameters of the function statement correspond in the order from

left to right to the operand fields of an instruction.

It is suggested that the mnemonic instruction codes as defined in [1]

be used as function identifiers.

7.5.5. Examples:

svc (0) SPM(RS)

IC(RO)(A(RL)) CVB(RF)(N)

EX (0) (instruction) SLDL(R4)(16)

MVI@#1F) (code) MVC (255)(a)(b)

19

-

8. Statements

oyntax

(statement) ::= (simple statement) | (1f statement) |

(case statement)| (iterative statement)

8.1. If Statements

8.1.1. Syntax:

(relational operator) ::= <|<|=|A|>]>

(condition) ::= (¥ register) {rel ational operator)(WU primary)|

(Iregister)(relational operator)(J register)|overflow

(1f clause) i= 1f (condition) then

(true part) ::= (simple statement) else

(Lf statement) ::= (if clause) (statement) |

(if clause) (true part) (statement)

8.1.2. Semantics:

A condition 1s sald to be met, if the relation indicated by the

relational operator holds between the two operands. The types § and

W of the operands which may simultaneously be operands of relational

operators are defined in Table 2 of section 7.1.2.

The symbol overflow designates a condition which may be met after

the occurrence of a result of arithmetic operations which cannot be

accepted by the computer.

The 1f statement expresses that execution of certain statements be

dependent on certain conditions. In the construction

(1f clause) (statement)

20

the statement 1s executed only 1f the condition contained in the 1f clause

1s met. In the construction

(if clause) (true part) (statement)

the simple statement of the true part 1s executed and the statement

following the true part 1s skipped, 1f the condition specified by the

1f clause 1s met. Otherwise, the true part is skipped, and the state-

ment following it 1s executed.

8.1.3. Examples

if RO > 5 then goto L

1f FO < FI then FO := FO + 1.5

if RA = RB then RO := RO or Rl else RO := RO and Rl

ifRO = 1 then FOl := w+z else

if RO = 3 then F4 := x+y else goto L

8.2. Case Statements

8.2.1. Syntax

(case clause) ::= case (general register) of

(case sequence) ::= (case clause) begin] (case sequence) (statement);

(case statement, ::= (case sequence) end

+ 8.2.2. Semantics

Execution of the case statement

case (register-k) of

begin {statement-1); . . . ; (statement-i); . . . ; (statement-n); end

consists of the execution of the 1-th statement 1n the case sequence,

where 1 1s the current value of the general register specified by the

21

case clause. This value is supposed to be the ordinal number of some

statement in the case sequence. The general register of the case clause

must not be RO, and its value becomes undefined through the execution

of the case statement.

8.2.3. Example:

case Rl of begin RO := 100; F2 := x; P; goto L; end

8.3. Iterative Statements

8.3.1. Syntax

(while clause) ::= while (condition) do
(step until) ::= step(integer number) until (general register)!

step (integer number) until (integer primary)

(for clause) ::= for (general register assignment) (step until) do

(iterative statement-) ::= (while clause) {statement)]
(for clause) (statement)

8.3.2. Semantics

a. An iterative statement of the form

while (condition) do (statement)

1s equivalent to

L: if (condition) then begin (statement); goto L; end

b. An iterative statement of the form

for (general register) := (initial value) step (increment)

until (limit) do (statement)

1s equivalent to

22

(general register) := (initial value);

K: 1f (general register) < (limit) then goto L;
(st at ement) ;

(general register) := (general register) + (increment);

goto K;)

L:

The > sign applies, if (increment) is a positive integer, <

applies, 1f it 1s a negative integer.

8.3.3. Examples

while Rl £ a(R1) do Rl := RL + 1;

for RL := 0 step 4 until n do RO := RO + a(Rl);

for R3 :=:1 step 1 until k do

begin R2 := R1/R3; Rl := RL - 1;

end

25

