CS33

A PROGRAMMING LANGUAGE FOR THE 360 COMPUTERS

BY
- NIKLAUS WIRTH

TECHNICAL REPORT CS33
DECEMBER 24, 1965

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

e

The PI360 compiler on the B5500 computer.

The compiler is a syntax directed one pass compiler designed according
to the principles outlined in Technical Report C820. The following rules

and restrictions apply to the version-of Dec. 1, 1965:

1. The length of the significant part of identifiers is 6 characters,

2. No real numbers and no strings are available.

3. Base register assignment is fixed: Registers RA - RF are used as
base address registers and should therefore not be used within the
program.

L. Every prograﬁ must be terminated by an @ character.

5. Composite basic symbols, such as begin, end, etc., are written as
BEGIN, END, etc., i.e., have the form of identifiers and may therefore
not be used as such. Note: goto is written as GOTO without space
between GO and TO.

6. No blank spaces may occur within numbers and identifiers.

7" The compiler is on the USE tape and is called by the ALGOL statement

ZIP("-PL360-", "MCP-USE")

8. The following function identifiers are defined in the compiler:

IA, EX, CVB, CVD, SIM, LM, MvI, MvC, TR, ED,

IC, STC, SRDA, SRDL, SLDA, SLDL, SVC, SPM

A Programming Language for the 360 Computers

Table of Contents

155 e Yo 1 ¥ s o) o R

1. Definitions, NoOtation .. eeeeececcosoorocencnag eeeennnns

2. BasSiC SYMDOLS vt iiiiiit et iiiiite e enniteerennaneeens

3. Tdentifiers tivii it ittt ittt e i i e

L, Quantities, Values, and TYPES +.eveerrrrrnenenennenennns .

h.1. L0110 Y=k

4.2, Strings cereessasanaens ceeeeescssscenasanon

5. DECLlATAtiONS cooeesooeeoooasonsoseansassnsssesssossanss

5.1. Variable Declarations . . ceceescoosssssssssansssn

5.2. Procedure Declarations . . teeeseesssssceccsacss

6. Variables and Primaries*........ Lo D

7. Simple Statements coeeveserseessostesssssssssscsnnnns

7.1, Assignment Statements tiiieiiseottinienens

7.2. Branch Statements seeececseseeessoseonosensanees LD

7.3« Blocks «vovs oo C it cessaseetsetenooneanes

7.4, Procedure Statements .eeeeeceseeeeceroorsoseonns

7.5. Function Statements seeeooes ceessescotenecenneas

8, SLALEMENTS + veoeeeeeeoreeasnneoeaansoeoaososennsnns

8.1. If SLALEMENTS teveseeovonnrenoonsssoassoosensonea0

8.2. CASE SLALEMENTS o e e s onocnoneenosnneonoonansos

8.3. Iterative Statements ceeeeeseerennoecanans

A Programming Language for the 360 Computers*

by

Niklaus Wirth

Introduction

This paper is a preliminary definition of a programming language
which is specifically designed for use on IBM 360 computers, and is
therefore appropriately called PL360.

The intention is to present a programming tool which (a) closely
reflects the ﬁarticular structure of the 360 computer, and (b) is a
superior notation to present Assembly Codes with respect to presentation
and documentation of algorithms. As a consequence of (a), it enables
a programmer to design programs mentioning explicitly features of this
machine in a degree impossible in "higher level" languages.

It is also felt that a highly structured language is most appro-
priate (a) to promote the intelligibility of texts for the human user
and (b) to encourage this user to properly structure his algorithms
not on paper only, but in his mind as well. The language is therefore
a phrase structure language containing many constructions which quite
- obviously correspond to a single 360 machine instruction (cf. [1]).

Moreover, it is hoped that through certain conventions (not men-
tioned in this preliminary paper) concerning the use of general registers
as base address registers, programs written in PL360 can be efficiently
run under a time-sharing monitor without requiring the presence of ad-

ditional sophisticated relocation hardware (Model 67).

¥/ This work was partially supported by the National Science Foundation
(GP 405%3) and the Computation Center of Stanford University.,

Presently, a compiler for PI360 is available on the B5500 computer.
This compiler is mainly intended to serve as a temporary tool for a boot-
strapping process: The compiler is being rewritten in its own language
and then becomes automatically avaiiéble on the 360 computer. Indeed,
the primary purpose of this project is to obtain a convenient tool for
the development of other compilers (in particular ALGOL X) and monitor
systems, where a considerable degree of machine-orientation and -dependence
is desirable, 'but where an adequate standard of program documentation is

of no less importance.

Reference:

[1] IBM System/360 Principles of operation. IBM Systems Reference
Library, A22-6821-1.

1. Definitions, Notation

The structure of the language PL360 is defined by a phrase structure

system. Its productions have the general form
(a) ::= X1 TX) 4y 1%

which is an abbreviation for the set of productions

1
(a) ::= X,
- (A) ::= Xn

and where (A) 1is a single nonterminal symbol, and Xy is a string
of terminal and nonterminal symbols.

Terminal symbols of the phrase structure system are either so-called
basic symbols or character strings. Basic symbols may consist of one or
more characters, i.e., typographical entities of a lower order than basic
symbols; the set of characters and the decompositions of basic symbols
into characters are not defined here, and may depend on the hardware
available to a particular implementation. Character strings are se-
quences of characters delineated by string quotes.

The set of basic symbols is defined in section 2.

Nonterminal symbols, sometimes also called "syntactic entities",
are denoted by letter strings enclosed by the brackets (and) .

In addition to these letter strings, the script letters 3, U, and VU
may occur; a production containing one or more of these letters stands
for the set of productions in each of which this letter has been replaced
by a terminal word produced from this letter according to the following

syntax:

U byte

integerllong integerlrealllong real

v
u ::
g ::= general|floating|floating double

If the same letter occurs more than once in the production, then all

occurrences of the letter have to be replaced by the same terminal word.

Example:

The production
(U variable) ::= (W variable identifier)

(ef. section 6) stands for the five productions
(integer variable) ::= (integer variable identifier)

(long integer variable) :i= (long integer variable identifier)

(real variable) ::= (real variable identifier)
(long real variable) ::= (long real variable identifier)
(byte variable) ::= (byte variable identifier)

In order to provide explanations for the meaning (semantics) of PL360
texts, the letter sequences denoting syntactic entities (nonterminal

symbols) have been chosen to be English words describing approximately
the nature of that entity. Where words which have appeared in this
manner are used elsewhere in the text, they refer to the corresponding
syntactic definition.

Definition: A sequence of basic symbols (and character strings) is a
PI360 program, if and only if it can be produced from the symbol

(block) by the productions listed in sections 3-8, and a meaning can

be attributed to it by the accompanying semantic explanations.

Basic Svmbols

alBlc|ple|r|e|u|1|s|k|LiM|v|o]plalrls|T|Ulv|W|X| Y| 2]
ol1l2}3|x|s|6]7|8]9]

+|-|*|/|and|£|xorl§hl|s_n_1;|shl_l|shri_l

<|<l=l£l21>]:=| neg|abs]

gotoliﬁjthen[elselwhile[gglfor]stepluntillcase|9§|

beginlendl(l)' :l-‘il:l

integerl real l byte | long| arrayl}lrocedure I

overflow | #_I_

3. Identifiers

3.1. Syntax

(letter) ::= A|B|c|p|E|F|a|u|z|olx|L|M|N|o|p|q|R|s|T|Ulv|w]|x]|¥|zZ]
alo|claleltleglnlilslkliimmb b bt b kv wlxlylz

(identifier) ::= (letter)|(identifier)(letter)| (identifier) (digit)
(¥ identifier) ::= (identifier)
(T register) ::= (identifier)
(procedure identifier) ::= (identifier)
(function identifier) ::= (identifier)

3.2. Semantics
Identifiers have no inherent meaning, but serve for the identification
of registers, variables, procedures and labels. They may be chosen
freely, with the exception of
RO,R1,R2,R3,R4,R5,R6,R7,R8,R9, RA, RB, RC, RD, RE, RF
which designate the 16 general registers, and
FO,F2,F4,F6,F01,F23,F45,F67
which designate the floating~- and floating double registers respectively.
Every identifier in a program must be defined. If it designates
a register, definition is implied; if it designates a variable or a
procedure, then this occurs through appropriate declarations (cf. sec-
tion 5), or if it designates a label, then it occurs through a label
definition (cf. T7.3.).
The applicability of the rules given in the syntax (cf. 3.1.) de-
pends upon the definition of the identifier under consideration as

follows:

(a)

(b)

(c)

(d)

(e)

3.3,

If the identifier is Rn, where n 1s either 0,1,2,..., 9,
BAy..., F, it designates the n'th general register (the letters
A ... F have to be understood as numbers in hexadecimal notation,
i.e., 10 . . . 15). Otherwise,

if the identifier is Fn, where n = 0,2,4, or 6, then it
designates the n'th floating register. Otherwise,

if the identifier is Fnm, where n = 0,2,4, or 6, and m = n+l,
then it designates the n'th floating double register. Otherwise,
if the identifier has been defined in a W variable declaration

in the smallest block embracing the given occurrence, then it
identifi;s that ¥ variable and is said to be a W variable iden-
tifier; otherwise, if it has been defined in a procedure heading
in that block, then it identifies that procedure and is said to be
a procedure identifier; otherwise, the rules under (d) are applied
considering the smallest block embracing the previously considered
block, if there exists one. Otherwise,

if the identifier occurs in the listing of function identifiers

(cf. 7.5.), then it identifies that function.

Examples:

cat

RO

4. Quantities, wvalues, and types.

The following kinds of quantities are distinguished: registers,
variables, and constants. Every quantity is said to possess a value.
The value of a constant is determined by its denotation. (cf. b.1.-4.2.).
The value of a register or a variable is the one most recently assigned
to it. Every value is said to be of a certain type. The following types
are distinguished:

integer , long integer : the value is an integer,

real , long real : the value is a real number,

byte * the value is a character.
In the computer, every value is represented by a number of binary digits
in a suitably encoded manner (cf. [1]). The number of bits used in the

representation of the different types of values is given as follows:

integer 16 (half word)
long- eger 32 (word)

real 32 (word)

long a 1 64 (double word)
byte 8 (byte)

Subsequently, the denotation of constants is defined.

4.1. Numbers

%.1.1. Syntax

{digit) ::= o]1|2|3|4]5]6]7]8]9

(unsigned integer) ::= (digit) | (unsigned integer) (digit)
(decimal integer) ::= (unsigned integerﬂ _ (unsigned integer)
(hexadecimal digit) ::= (digit)|A|B|c|p|E|F

(hexadecimal integer) ::= #(hexadecimal digit)]

(hexadecimal integer)ﬂmxadecimal digit)

8

(integer number) ::= (decimal integer)|(hexadecimal integer)

(fraction) ::= .(unsigned integer)

(unscaled real) ::= (unsigned integer)(fraction)|(fraction)

(scale factor 1) ::= E(decimal integer)

(unsigned real) ::= (unscaled real)|(unscaled real)(scale factor 1)|
(unsigned integer)(scale factor 1)

(real number) ::= (unsigned real)| _ {unsigned real)

(scale factor 2) ::= D(decimal integer)

(long unsigned real) ::= (unscaled real)|(unscaled real) (scale factor 2)]
(unsigned integer)(scale factor 2)

(long real-number) ::= (long unsigned real)| (long unsigned real)

4.1.2. Semantics
Integers have either decimal or hexadecimal notation. Real and
long real numbers use decimal notation only. _ denotes a monadic minus

sign. The scale factor is expressed as an integral power of 10.

4.1.5. Examples:
0 1E8
1066 5.37861289001D0
3.1416 #7AB3

L.2. Strings
h.,2.1, Syntax

(string) ::= (sequencé of characters enclosed by string quotes)

5. Declarations

5.1. Variable Declarations

5.1.1. Syntax

v simple type) ::= integerlloné integerlrealllong reallbyte

(U type) ::= (U simple type)|
array ((unsigned integer)) (¥ simple type)
(0 variable declaration) ::= (¥ type)(identifier)
(V variable declaration) , (identifier)|
@variable declaration) ({W number))
(U variable declaration)((string))
5.1.2. Semantics
A variable declaration associates an identifier and a type with
one or several quantities. If the type of the declaration is a simple
type, then one quantity is declared, otherwise the unsigned integer
between parentheses following the symbol array indicates the number of
declared quantities of the specified simple type. The individual quan-
tities can then be identified by subscripts (cf. 6.2.). The ensemble
of the quantities is called an array. If a declaration is followed by
one or several parenthesized numbers, then this implies that the de-
clared quantity be initialized with the given number(s). The type of
. these numbers must be identical to the type of the declaration, This
initial assignment of values is understood to take place only upon the

first time the block in which the declaration occurs 1is entered.

10

5.1.3. Examples:

integer 1i,j

long integer m,n,q

real x,y

long real z,w
integer 1i(1)
array (100) integer a

array'(S) integer I (21)(0)(8)(17)(39)

5.2. Procedure Declarations

5.2.1. Syntax'

(procedure heading) ::= procedure (identifier) ((general register));
(procedure declaration) ::= (procedure heading) (statement)

5.2.2. Semantics
Execution of the statement following a procedure heading is invoked
by procedure statements (cf. 7.k.). The procedure identifier defined by

the procedure heading is assumed to be unknown within the procedure

declaration. Moreover, the value of the register designated in the pro-

cedure heading must not be altered during the execution of the statement

- following the procedure heading.

5.2.3. Examples
procedure P (RO); Rl := Rltx

procedure swap02 (RF);

begin long real t; t := FOl; FOL := F23; F23 := t; end

11

6. Variables and Primaries

6.1. Syntax
(V variable) ::= (U variable identifier)|
(U variable identifier) ((unsigned integer))
(U variable identifier) ((general register))
(W primary) ::= (W variable)| (U number)

6.2. Semantics

@ variable) designates a declared quantity of type . If the
variable identifier is followed by an unsigned integer or a general
register withi; parentheses, called a subscript, then the identifier
must designate an array, and the integer or the current value of the
register identify the individual element of the array. The subscript
values designating the elements must be

(a) positive multiples of 2, if the array is of type integer,

(b) positive multiples of 4, if the array is of type long integer

or real,
(c) positive multiples of 8, if the array is of type long real,
(d) positive integers, if the array is of type byte.
The first element of any array is designated by a subscript value 0.
. Register RO must not be used as a subscript. The values of variables
may be changed by means of assignment statements (cf. 7.1.).

A primary denotes a quantity, either a variable, or a constant.

6.3. Examples:
Variables: i
1(3)
a(R5)

12

7. Simple Statements

Syntax

(simple statement)

(assignment statement)l (branch statement)|
(block)| (procedure statement)l(function statement)

7.1, Assignment Statements

7 .1.1. Syntax
(simple ¥ register assignment) ::= (§ register) := (W primary)|

= (¥ register)| (¥ register) := neg (9 register)|

(9" register)

(§ register) := abs (J register)

e e VAT B
+:=_and|or|xor

(arithmetic operator)
{logical operator)

(shift operator) shllshrlshll]shrl

(T register assignment)

(simple ¥ register assignment)]

(¥ register assignment) (arithmetic operator)ﬁi;uimary)l

(9 register assignment)(arithmetic operator)(¥ register)|
(general register assignment)

(general register assignment)(logical operator){long integer primary)|
(general register assignment)(logical operator)(general register)|
(general register assignment) (shift operator){unsigned integer)/

(general register assignment)(shift operator)(general register)
(variable assignment)

It

(W variable) := (T register)
(assignment statement)

(T register assigmnment)|(variable assignment)

7.1.2. Semantics

Execution of an assignment statement causes a new value to be assigned

to the quantity designated on the left of the assignment operator (:=).

13

In the case of a simple register assignment, this value is the current
value of a primary, a register, or the negative or the absolute value of
a register. The types W of primaries which may be assigned to a register

of type § are marked in the following Table 1:

W long

T integer integer real long real

* * * *
general

* *
floating
floating * *
double
Table 1

The arithmetic, logical and shift operators +, -, *,/, ++, ——, and,
or, xor (exclusive or), shl, shr (shift left/right), shll, shrl (shift
left/right logical) designate operations which are described in detail
in Reference [l]. The operators ++ and -- designate unnormalized
addition and subtraction if applied to floating registers, "logical'
addition/subtraction if applied to general registers (cf. also [1]).

Execution of a register assignment containing one of the arithmetic

or logical operators causes the designated operation to be performed on
two operands and the result to be assigned to the first operand. The
first operand is the register which occurs to the left of the assign-
ment operator, and the second operand is the primary or register fol-
lowing the operator. In the case of a (unary) shifting operation, the
operand 1is the designated first operand, and the number of bit positions

it has to be shifted is determined either by the number, or by the current

1k

value of the general register following the shift operator.

The types of a register(ﬂ? and of a primary (W) which may si-
multaneously be operands of an arithmetic operator are defined in the
following Table 2 (the type of a reéister assignment is said to be the

type of the register occurring to the left of its assignment operator):

WU long
g integer integer real long real
* *
general (1)
floating * *
floating
double * *
Table 2
Note (1): The combination of general register and integer primary is only

permissible in the connection with the operators +, -, and *

Execution of a variable assignment causes the current value of the

designated register to be assigned to a variable. The types of the

variable (W) to which the value of a register of type I may be

assigned, are designated in Table 1.

7.1.5. Examples

Register assignments:

Rl := R

R1 =5

RF = i+j-mta(RL)

R9 := R9 and RO shll 8 or Rl
- F2 = F5 + 3.1416

FOL := z¥wtw

15

Variable assignments:

i := RO
x := FO
w = F23
a(Rl) := RF -
7.2. Branch Statements
7-.2.1. Syntax
(branch statement) ::= goto (identifier)

T7.2.2. Semantics
A branching statement determinesthat execution of the program be

continued at the place of the definition of the identifier following

the symbol goto . This definition is identified by the following rules:

(1) If some label definition (ef. 7.3 .) within the smallest block
embracing the branch statement contains that identifier, then this
label definition designates the place where execution has to be
continued. Otherwise,

(2) Rule (1) is applied considering the smallest block embracing the

previously considered block.

7.3. Blocks
T.3.1. Syntax

{(block heading) ::= begin|(block heading)(\y variable declaration);|
(block heading)(procedure declaration);

(label definition) ::= (identifier):

(block body) ::= (block heading)| (block heading)(statement);]
(block heading)(label definition)(statement);

(block) ::= (block body) end|(block body)(label definition) end

16

7.3.2. Semantics

A block introduces a new level of nomenclature: identifiers defined
in variable declarations or procedure headings in the block heading or
in label definitions in the block body are said to be local to that
block.

Execution of a block begins with the execution of the first statement
following the block heading. Upon termination of the execution of a
statement, the next statement in textual sequence is executed (except

in the case of a goto statement).

-

7 .3 .3 Examples

Innerproduct program with summation in double precision:

begin long real s; array (100) real x, y;
FO1 := ODO;

for RL := 0 step 4 until 396 do
begin F23% := x(R1) * y(Rl); FOL := FOL + F23;

end;
s 1= FOL

end

Bubble sorting program:

begin array (100) real a;
for RL := 396 step -4 until 0 do
begin R5 := Rl - 4;

for R2 := 0 step 4 until R5 do

Begin 6 := R2tk; FO := a(R2); F2 := a(R6);
if FO > F6 then
begin a(R2) := F2; a(Re) := FO;

end;

17

7.4. Procedure Statements

7.%.1. Syntax

(procedure statement) ::= (procedure identifier)

7.4.2. Semantics

Execution of a procedure statement consists of the execution of the
statement which, together with the procedure heading in which the pro-
cedure identifier is defined, consititutes a procedure declaration
(cf. 5.2.). The value of the general register specified in that proce-
dure heading is altered by the procedure statement.
7.5. Functions

7.5.1. Syntax

{function) ::= (function identifier)]
(function) ((integer number))|(function)((T register)ﬂ
(function) (Q@'variable))

7.5.2. Semantics

The instruction set of the system/360 processor contains instructions
which cannot be expressed by any of the statements of this language
(except the function statement). 1In order that the language be able to
express the individual functions corresponding to these instructions in
one single simple statement, the function statement is introduced. The
individual instructions falling into this class are listed below, They

are described in Reference [1].

18

Fixed or Floating Point Arithmetic:

Load Negative

Load and Test
Halve

Convert to Binary
Convert to Decimal
Load Multiple
Store Multiple

Furthermore, all instructions with

Logical and Branching:

Compare
Load Address
Insert Character

Store Character

SI and SS format belong to this

category, as well as all status switching instructions.

The parameters of the function statement correspond in the order from

left to right to the operand fields of an instruction.

It is suggested that the mnemonic instruction codes as defined in [1]

be used as function identifiers.

7.5.32. Examples:
svc(o)

IC(RO)(A(RL))

SPM(R5)

CVB(RF) (N)

EX (0) (instruction) SLDL(RL)(16)

MVIE#1F) (code)

MvC(255)(a)(b)

19

8. Statements
Syntax
(statement) ::= (simple statement)| (if statement)]

(case statement>| (iterative statement)

8.1. If Statements

8.1.1. Syntax:
(relational operator) ::= <|<|=|A|>|>
(condition) ::= (¥ register) {rel ational operator){W primary)|

(T register)(relational operator)(¥ register)|overflow

(if clause) ::= if (condition) then
(true part) ::= (simple §tatement) else
(if statement) ::= (if clause)(statement)l

(if clause){true part)(statement)

8.1.2. Semantics:

A condition is said to be met, if the relation indicated by the
relational operator holds between the two operands. The types ¥ and
W of the operands which may simultaneously be operands of relational
operators are defined in Table 2 of section 7.1.2.

The symbol overflow designates a condition which may be met after
the occurrence of a result of arithmetic operations which cannot be
accepted by the computer.

The if statement expresses that execution of certain statements be
dependent on certain conditions. In the construction

(1f clause) (statement)

20

the statement is executed only if the condition contained in the if clause
is met. In the construction

(1f clause)(true part)(statement)
the simple statement of the true part is executed and the statement
following the true part is skipped, if the condition specified by the
if clause is met. Otherwise, the true part is skipped, and the state-

ment following it is executed.

8.1.3. Examples

if RO > 5 then goto L
if FO < FI then FO := FO + 1.5

if RA = RB then RO := RO _or Rl else RO := RO and Rl
if RO = 1 then FOL := wtz else
if RO = 3 then Ft := x+y else goto L

8.2. Case Statements

8.2.1. Syntax

(case clause) ::= case (general register) of
(case sequence) ::= (case clause) beginl (case sequence)({statement);
(case statement, ::= (case sequence) end

8.2.2. Semantics

Execution of the case statement

case (register-k) of

begin {statement-1); . . . ; (statement-i); . . . ; (statement-n); end
consists of the execution of the 1i-th statement in the case sequence,

where i 1is the current value of the general register specified by the

21

case clause. This value is supposed to be the ordinal number of some
statement in the case sequence. The general register of the case clause
must not be RO, and its value becomes undefined through the execution

of the case statement.

8.2.3. Example:

case Rl of begin RO := 100; F2 := x; P; goto L; end

8.3. 1Iterative Statements

8.3.1. syntax

(while clause) ::= while (condition) do

(step until) ::= step{integer number) until (general register)!
step (integer number) until (integer primary)

(for clause) ::= for (general register assignment) (step until) do

(iterative statement-) ::= (while clause)(statement)|

(for clause) (statement)

8.3.2. Semantics
a. An iterative statement of the form

while (condition) do (statement)

is equivalent to
L: if (condition) then begin (statement); goto L; gpng

b. An iterative statement of the form

for (general register) := (initial value) step (increment)

until (limit) do (statement)

is equivalent to

22

(general register) := (initial value);

. , > -
K: if (general register) < (limit) then goto L;
(st at ement) ;
(general register) := (general register) + (increment);
goto K; i

The > sign applies, if

(increment)

applies, if it is a negative integer.

8.3.3. Examples

while Rl £ a(R1) do Rl := Rl + 1;
for RL := 0 step 4 until n do RO := RO + a(R1);

for R3 :=:1 step 1 until k do

begin R2

end

:= RL/R3; R1

:= Rl - 1;

23

is a positive integer,

