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MINIMUM MULTIPLICATION FOURIER ANALYSIS

BY

R. W. Hockney ‘

Abstract: Fourier analysis and synthesis 1s a frequently used tool in

applied mathematics but is found to be a time consuming process to

apply on a digital computer and this fact may prevent the practical

application of the technique. This paper describes an algorithm

which uses the symmetries of the sine and cosine functions to

reduce the number of arithmetic operations by a factor between

10 and 30. The algorithm is applicable to a finite fourier (or

harmonic) analysis on 12 & 24 values, where q 1s any 1nteger

> 0 and is applicable to a variety-of end conditions. A complete

and tested B5000 Algol program known as FOURIER12 is included.

During the period of this research the author collaborated closely with personnel
of Triservice Contract Nonr=-225(2h) and part of his salary was paid by this contract.
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1. FOURIER ANALYSIS

Suppose we are given a sequence of (n+l) numbers

Pps PysenesPyseess® oo (1)

then these may be expressed exactly by a finite Fourier series

k=nmax _

oy =) Vis,k)o (2)
k=nmin |

po th x th
where Pr 1s the amplitude of the k harmonic and V(s,k) is the k

harmonic function. This is the process of Fourier synthesis.

To obtain the values of the ?, from the ¢, we form a summation

over ¢_ with a second set of harmonic functions W(k,s)

_ s=nmax

P=) Wks) (3)
s=nmin

This inverse transformation 1s made possible because the functions

V(k,s) and W(s,k) satisfy the biorthogonality relations.

nmax

2.Wk,s) V(s,k') = 8, |s=rmin

(4)

nmax

and )} V(s,k) W(k,s') = &
k=nmin 58

Thus far we have not specified the extent of the summation (Le.,

value of nmax) nor explicitly stated the functions V(k,s) and

W(s,k), because these depend on the boundary conditions which are imposed
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on the sequence (1). We shall consider various cases which are

distinguished in the Algol procedure FOURIER12 (BC,Q,X,Y) by the value

of the input parameter BC (meaning boundary condition).

1.1 The periodic case BC =3 and 4

This 1s the usual situation that is meant when the term Fourier

or Harmonic analysis is used. In this case the values 0 to Ph-1

are repeated periodically such that Ps+on = ? for any 1nteger bp.
Thus we want an expression for the infinite sequence

I'd

BEE JARRE NE FL / PAR 12%" NNER TABATA EF

In this case the harmonic functions are

NE 21s k : Cn A

v( 8,k) = Ti(k,s) = (5)

2ns(k- 5)
I V2 sin —— =. ° _.nf2<k<nl, 0<s<n-ln n - - =

1/V2 if k = 0 or j

where P (J) = {= 1 otherwise

and

The procedure call

FOURIER12(3,Q,X,Y);

2



performs a periodic Fourier analysis on n = 12 X , 0 points

XgoXqs. 0% 4 as follows:

n-1

Y, = y W(k,s)X, -- 0<k,s<n-l
S=0

The Fourier synthesis 1s performed by the call

FOURIER12(4,Q,Y,X); .

which synthesises .the harmon components Xgs¥yseees¥ q into the point

values XgsXy,-«+»X 3 according to

n-1

X, =) V(s,k)Y, . 0< k,'8 < n-1
k=0

1.2 Sine expansion or zero value case BC = 1

BE 4

In this case we insist that the value of @ at the two ends is

zero, and there are only (n-1) active points @PysPps.ees®@y_q 1.6

= =0. 6Pp =®, =0 (6)

This 1s achieved by the image conditions

$b =-9
ne % *p

and "n-p ~Paep

As a result, if the origin 1s taken at s = 0, only sine terms

appear 1n the series expansion and we get
!
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, _nsk

V(s,k) = W(k,s) = sin ~— I1<k<n-1l,"'1<s<n-l
(7)

and nmin = 1, nmax = n-1.

In this case we note that V(s,k) = W(s,k) and the processes of

Fourier analysis and synthesis are identical. Both Fourler analysis

and synthesis are performed by the same procedure call

FOURIER12(1,Q,X,Y)

according to

s=n-1
2 nsk | _

XY, = ’N VS sin — X_ l<s, k<n-1
s=1

1.3 Cosine expansion or zero slope case BC = 2

If we have a mathematical problem with the boundary condition of

zero slope, the finite difference form leads to the end conditions

¢_=9
=P iY

(8)

and Pop = Pn-p

In this case the Fourier expansion with origin at s = 0 contains

only cosine terms and the harmonic functions are:

sk

V(s,k) 2 Fn) cos —
(9)

2 sk

W(k,s) =f = P-(n) cos —



Here again V(s,k) = W(s,k) and the process of Fourier analysis and

synthesis is identical. There are however (n+l) active points since

there are now two end values to include and nmin = 0, nmax = n.

Both Fourier analysis and synthesis are performed by the same

procedure call namely

FOURIER12(2,Q,X,Y);

according to

s=n

Y, = )) ES: cos IE x~. k n s n S
s=0

20 SOLUTION OF EQUATIONS USING EIGENVECTORS

Consider the set of linear equation

AQ =D (10)

; Let the eigenvectors of A be u, with eigenvalue Ajo Then

Au, = Au, (11)
~1 11

= andIf Q (0 soseeest oo) is the matrix of eigenvectors and A is

diagonalisable then we know

Qlag = a
(12)

-1
and QAQ =A

where A 1s the diagonal matrix Ag = A Be
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Substituting (12) into (10)

1

QaAQTe =p

(13)

- 1 -

or Ql =a

If we define the transform of a vector a to be

a = Qa

with the inverse relation

2 =Q

then (13) becomes

a) (14)

The equations (10) may therefore be solved in 3 stages

1) 'Fourier' analysis of the right hand side into its transform

= -1

b =Qb (15)

2) Solution by simple division for the transform of

P = AE (16)

3) 'Fourier synthesis' of the transformof @ into ©

9 =qQ (17)

If Q 1s a full (nxn) matrix without symmetry stages 1) and

3) require on° arithmetic -operations and stage 2) n operations giving

a total of



4n° + n arithmetic operations (18)

If (10) had been solved by Gauss elimination 1t would have required

about

n> 2
5 + 2n” arithmetic operations. (19)

This suggests that 1f Q 1s full and the eigenvectors are known they

should be used. On the other hand for a band matrix with m diagonals

Gauss elimination requires

- :

eh + 2mn arithmetic operations (20)

and there will be some m below which Gauss elimination is advantageous

and above which the eigenfunction method should be used.

Of course in the general case the eigenvectors of A will not

be known and it would be a more difficult job to find them than to solve

the equation (10) by Gauss elimination.

In certain cases however where the matrix A 1s the finite difference

approximation to a linear differential equation the eigenvectors are

known and the method of solution by eigenvectors becomes attractive.

Furthermore 1f the eigenvectors are sines and cosines the symmetry

of these functions can be used to reduce further the numbers of operations

required in steps 1) and 2) of the solution of equation (10).

|



3. SPECIAL CASES WITH KNOWN EIGENVECTORS

Consider the linear differential operator

£=p PE

L(x) = py a, , —=— (21)24 ax?

which has constant coefficients and in which derivatives only appear

to an even order.

Then the finite difference form of

L (x) . b(x) (22)

th
at the s = point on a uniform mesh will be expressable as

5 (23)g, =D
R s+ SJ=-D J J

where €, = 93 due to the even condition on the derivatives, and the

gs are the same for'all points s on the mesh.
In conventional matrix form equations (23) would be written in

the form of equation (10) as

AQ =" (24)

with |

&o ] &y. * % () Po bo
5. 0A= L-7 Re P = b= | . (25)
. “» - ' g id . ~ ?

’ . g :

&n To» '® . 1 . ji

O &, «+ 8 & hn a
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To solve equation (24) by the eigenvector technique we must first

determine the eigenvectors of the matrix A, as these constitute the

columns of the transformation matrix Q.

To determine these vectors 1t 1s more convenient to return to the

equations 1n the form given 1n (23).

If the elgenvector is u and the elgenvalue MA then we need to

solve:

] =p
= 26» 85 gry = M Ug (26)

J==P

= if, s
k

Let us try the complex function e which by taking real, or

imaginary parts can be used to cover both the case of u, = Cos 0) 8

and u = sin 0,8

J=tp 16, (s+J) igs Dp 6, (s+)  16,(s-J)
3 g.e — g.e + g.{e + e }3 0 Ce CJ

J=-p J=

p 16, J -16, J 10, s
~ J

J=

p 10,8

— (gg + 2 2 8; cos 6,3} eJ=

Therefore

3 (27)
Mc = 80 FZ 2 &; cos Oy; fJ=

and the corresponding eigenvector 1s

Ug = A sin 0, 8 or DB cos 0,8

9



where A, B, and Ol are determined from the boundary conditions. We

consider the same cases as 1n section 1.

3.1 The periodic case

Us+pn = u Pp an integer

_2nk
The vector has a period equal ton . . . Of = where Kk 1s an integer.

The value at s = 0 is arbitrary therefore both sine and cosine vectors

are permissible

.  2nks 21ks

. Us = A sin —/— or B COS ——=— k = 0512+ ++ 0/2

when suitably ordered and normalized these functions are identical with

V(s,k) defined in section 1.1.

3.2 Sine case

u. =u = 0 andu = =u u =_U
0 n -D 2 n+p n-p

| Ug = 0, therefore only the sine vector 1s permissible. us 0 there-

fore the sine must go through an integral number of =n as s runs

nk

from 0 to n and Ol = =

When normalized these are the functions V(s,k) of section 1.2.

3.3 Cosine case

u_ =u

-P bp

9 +p = Yh-p

10
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By the symmetry of the end condition only the cosine vector exists

and furthermore an integral number of n must be covered as s runs

1

from 0 to n. Therefore O) _ =. and the functions when normalized
are the V(s,k) of section 1.3.

We therefore conclude that the eigenvectors of the matrix A are

the functions V(s,k) previously defined, with the ‘choice of the

V(s,k) being determined by the particular boundary conditions imposed

at s =0 and s = n.

Forming the transformation matrix Q from the elgenvectors

th
V(s,k) we have for the s,k element

0, = V(s,k) (28)

Recalling (17) Fourier synthesis of the function 0 is the operation

©=a7 (29)

or in terms of the V(s,k)

0, =X V(s,k)P, (30)
k

To find the inverse of Q we make use of the orthogonality

relations (4) when it 1s clear that

-1

(@7) = Wks)

because then the relations (4) become in matrix form

11



-1
QQ =1I

(31)

Q Q t= I”

as required.

Recalling (15) we have that Fourier analysis is the operation

- -1

?=Q © (32)

or alternatively

9, = L W(k,s)o, (33)

4, SOME COMMON CASES

4°
Let L(x) = 2) (34)

dx

then the usual 3 point finite difference approximation is

_ fl

L(x)o(x) = fu 8 Poss = Por = 2% + Pn

The matrix form of L(x) has the following forms according to

the boundary conditions

12



4.1 Periodic

2 1 0 . 0 1 d5

1 O 0 o

0 | , : := = 5A | 5 d | 35)
0 ON 1

; 1 0 01 -2 d

Eigenvector or transformation matrix 1s defined by

( p A[2 cos 278K 03x42, 0<s<n-l |k Vn n =F =

= 6Qy (36)

+2 sin =r bs: 2 ‘nf2 < k'<n-1l, 0<s <n-l

A 1s symmetric therefore the inverse of Q 1s its transpose 1i.e.,

-1

(Q Jk, 8 = Ux

This may also be seen directly from (5). Note that Qe # (Qh),
and analysis and synthesis are different operations. The elgenvalues are

Jd 25k
Mo= 8p 1 2) g cos By , 6 = 5°

J=1

= =2 + 2 cos 2k = =2(1l-cos 2h)
n n

= 4 gin” X=
n

Thus the diagonal matrix of eigenvalues A 1s defined by

13



, 2 Tk

A, = -4 sin = B15 (37)

With these definitions I

A= QAQT and A = Q7TAQ

i 4.2 Sine case

21 O 4

1 NO
A = RN 1 d= (38)

O 1-2 a

QQ. = CE = [2 sin Tks l1<k<n-l1l, 1<s<n-1sk ks n Tn - = - =

ot is symmetric .'. Occ = (@) and the operations of Fourier
synthesis and analysis are identical

] , 2 nk

A, = -4 sin = 8, (39)

4.3 Cosine case

— d

1 2 1

1 2 1

O 2 a
n

14



-1 _ [2 2 nskOgi = (Q Dak = on Tx ©0843 (b1)

note that (1) 1s not symmetric because of the Py .:.. However,
Ogg = (Qh), and analysis and synthesis are identical.

- 2 nk
A,= -4sin = By (42)

Sometimes one meets the matrix

1 -2 1

A= AN with d= (43)

oO a-2 1

J ’ 1-1 d
n

ac
as the finite difference form of > with the zero slope conditions

dx

| at the boundaries expressed as

Us © Yos-1 and “nts - Yn-s-1

This amounts to requiring zero slope at s = -1/2 and n + 1/2 and

leads to the eigenvectors

sk n+l -

-1 BN n(k+1/2)s
(@ 7), = W(s,k) «cos ———t==

15



We note that Qk # (Qh), are the process 1f analysis and synthesis
are different.

Thus although the matrix A in (43) has the elegance of symmetry

over the matrix A in (40) 1ts eigenvectors are not so well suited

to Fourier analysis and it is advisable to convert the equations (43) to

the form of (40) by multiplying the first and last equations by 2 and

then use the eigenvectors (kl).

5a MINIMUM MULTIPLICATION FOURIER ANALYSIS

Having described Fourier analysis and its application to the

solution of certain equations we come to the main point of this paper,

which 1s to describe an efficient method of performing this operation.

We have observed that the operation of Fourier analysis

b= 0-4, (Lh)

2 -1
takes 2n arithmetic operations if all the elements of Q are known

and stored in an (nxn) array.

We will now describe an algorithm which computes b from b

with something like a tenth of these operations. This 1s done by

restricting Fourier analysis to those eigenvectors defined in sections

1.1 to 1.3 and restricting the value of n to be of the form 12 x 24

where gq 1s an integer > 0.

That is to say n 1s from the sequence

(12, 24, 48, 96, 192, 384, T68, °°} (45)

16



The process 1s recursive and depends on removing a common factor

(usually of 2) between the harmonic number k and the number of points

n at each recurrence until finallywe are required to do a Fourier

analysis on 12 points only. This last case is written out in longhand

for program efficiency.

This process has the effect that on the first recurrence all the odd

harmonics are calculated, on the second recurrence all the harmonics of

the form 2 X an odd number, on the third recurrence all harmonics of

the form LQ an odd number, and so on. Furthermore, by the use

trigonometric ~identities it is possible to calculate 8 harmonics at the

same time, with very little more work than would be required to calculate

one harmonic.

Before describing the algorithm in detail 1t 1s necessary to

establish some identities.

5.1 Removal of a common factor

Consider 5(k,n,a_) es a_ sin = £x (46)
S=0

and let there be a common factor of 2 between k and n so that

k=2Q¢g

(47)

n=2@h

s=h-1 s=n

s(k,n,a_) _ ) a, sin 2 Ed + apo sin n/2 g+ )} a, sin n/2 =
S=0 s=h+1

17



the third term in (48) may be expressed as

i g (3 ngs nT gs>. a_g Sin /2 I (2h-s) = )} B,-gl8in ng cos 3 <j - cos 7g sin 3 ¥=)s=0 gs=0 = Q

h-1 2 1 gs
= =(-1)° a sin === (49)2 n-s 2 h

Substituting (49) in (48) we get

s=h-1 2 x gs- _ wo = : — + ' 1

Senay) = Y  (a,(-1)%, J) sin 3 +a sin 1/29 (50)

s=h s=n/2
_ x 2 mgs _ 2 nt k/2= 3 F (a) sin 5 $= = ) F(a) sin 3 s oe (51)s=0 S=0

where F(a) stands for the sth element of a new array of elements obtained
from the original array by folding as follows:

°F (a) = a - (-1)8 8. = 0,1 n/2-1. | 5 S n-sg S glee ey
(52)

| 2 _
Fo/2 @> = 8/2

In equation (51)we have reduced the original summation up to n

to a summation up to h = e but over a set of folded values °F (a).
Using the S notation this is

2

S(k,n,a_) = 3(k/2, n/2, F_(a)) (53)

and a common factor of 2 has been removed.

18



To take account of the two possibilities of g being odd or even we

introduce the 'Twofold' operation on an array, which is a procedure

of the algorithm. I

5.2 Twof old (L,N,A);

The numbers Ap, ApigoreeosBy may be imagined to be folded as

follows 1nto a new array B

- |
F (A) = — -(A) = Bs = BpuiA pina

n

i == 0,l,..., 5) - 1
= +

Bpin-1 re A pin-i (54)

2r* (a)

B n
It= = A

2 n

A+ 5

Here [/ is simply a common origin and may be ignored as regards

understanding the process,

The elements Bs Sparro? n will be seen to be the elements
2

’F_(a) for g even (denoted by ‘F_"(a)) while the elements

pan’ Pprmerroo® n are the elements of F(a) for g odd (denoted
2

by F (a)). The purpose of writing the elements for g odd 1n reverse
order is to enable the new elements B to overwrite 1mmediately the

corresponding element in the array A, so that in fact there 1s no need

to introduce the array B 1n the procedure.

To see the effect of the operation Twofold we will apply it to a

few typical harmonics.

19



Sine harmonic Cosine harmonic

sin 2X8 Cos 228
nn | n

Ney,fr

Twofold -

Twofold

(a) ON B
——

Twofold (£) / |

Twofoldw — (—————
+-period ——————

Sin ex . 28
n

(co) 77 \\ a
s=0 N~—r s=n
————t

Twofold

|

Twofald

Fig. 1 = The Twofold operation applied to some

typical harmonics.
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It can be seen from Fig. 1 that one operation of Twofold on the

original data immediately separates the sine from the cosine harmonics,

the sines appearing on the left sideof the fold and the cosines to the

right side (see Fig. 1 (a) and (f)).

A further fold applied to the sine harmonic will separate out all

the harmonics with an odd number of n° in the half period. These

harmonics will appear in the right half of the two fold (see Fig, 1 (b)).

All other harmonics appear on the left of the last two fold (i.e.,

in the first quarter period).

The procéssis continued byapplying a further twofold to the first

quarter period when all harmonics with an odd number of 7° in the

first quarter period will separate to the right of the twofold (see

Fig. 1 (e)) and all others to the left.

Similar considerations apply to the separating off of the cosine

harmonics and in both cases Twofolding can continue until only 12

points are left when the last 12 harmonics are calculated by a special

routine.

5.3 Threefold (L,N,A)

| As 3 1s always a factor of the number n it 1s also possible

to remove a common factor of 3between k and n by a folding process

as follows.

S5(k,n,a_) > ¥ a sin o ow s = 0,1,...,n (55)
S=0

21



now let

k = 3Q8

n =3Qh

s=h-1 x sg »
S(k,n,a) = ) &. sin 7 J + 8p sin 5 8

s=0

h-1 Tg
I 2 8,_ Sin 5 (2h-s) + 8,, sin 7g

h-1

ng . 3i ~ + =+ )) Bre SIN 5 3 (2h+s) + Bap Sin Fo
s=0

h-1 x sg .
s(k,n,a) = ). 8. sin 5 4 + ah sin 5 9

s=0

h-1 Z "sg
+ a (-1)° sin 5 =PN 2h=-s 2 h

hl g TT Sg g Tt
+ PN 85, (1) sin 5 == + (-1) agp sin 3 g (56)

The three fold will only be used on the right hand section following

a. Twofold for which it is known that g is odd. Making use of this

fact we have

h n/3| TX k

S(k,n,8) = YF (a) sin S28 = 3 3F(a) sin ks 5 (57)
s=0 s=0

where F (a) are the elements of the Threefold applied to a; defined
as follows

22



3 _ - _
F(a) =a tay "8. s =1,2,...,h-1

(58)

3 =a -
F(a) = 8 "8

Thus S(k,n,a) = s(k/3,n/3, 3p(a)) and a common factor 3 has been re-

moved.

In view of the fact that the right hand section of a Twofold has

its elements written in reverse order the procedure Threefold must

reverse the indexing and 1s defined as follows

- = 1 2 eo eo 0 h-1
Aprn-i © Ppan-i T Aprnon+i  Apen-on-i ER

(59)

Bgtn-n © Apin-n - Ay

5.4 Eightk (k,N,A)

Having eliminated all common factors by the operation of Two or

Threefolding, processes incidentally that require only additions, we are

. left with a reduced number of points from which we must compute the

harmonic amplitudes. We will restrict consideration to the evaluation

of the sine summation S(k,n,a) when given k,n,a because we shall

see 1n section5.5 how this can also be used to evaluate the corresponding

cosine summation.

= ny nst
Let ?, = s(24,n,a) = 3 a_sin =— s = 0,1,...,n (60)} S n

s=0

23



where now it happens to be more convenient to let k = 22 and #£ takes

the values 0,1,...,n. As mentioned earlier it is possible to calculate

eight harmonic amplitudes at a time and these are

Pp n/p? Pn/h+ 07 Pn/2- 22 Yn/o+s? P3n/h-p2 Pan/hep Png (1)

The harmonics being picked off an equal distance 4 to either side of

the key values Lo “0/4 ¥n/2 P3n/l ?,-
Let us define the quantities

al 4) = 2 a, s 117
s mod 4=2

5 £) = 2. 3, s 1H?
s mod 4=0

£4) = L 3 s 117
s mod 4=1 or 3

ns k £

pl £) = )X a cos =- - )X a, Cos = (71)
s mod L4=1 s mod 4=3

where each sum is taken over all s in the range 0 to n that satisfies

the modulo condition given.

Then

n
- £ y

?, = )} a sin —= = (al 154) + gl 4) (72)S n
s=0

P 5 a sin X8(n-£) .Y-a 1 sin 254neg = ¢ 51 = = ! g COS 78 sin—
S=0 S=0

(73)

= = 3 a s 12 4 2. a sin 222 = _ (A £) 5 Ly + gl 4)
s mod 2=0 © "5 mod 2=1

2h



n

? 8 on IS (R 3g) = in Xs cos X82 Toos Ls sin X84Pn/2%s = L a, sin — (3 +4) = )} 8 {sin 5 8 cos — 08 3 sin =, }
S=0 S=0

= + 2. a_ cos 7 5 sin E84 + )) a, sin 3 s cos ===s mod 2=0 : s mod 2=1 &

= + 3 By sin 282 4 2 ag sin X84, 3 ag cos XE

> ns kbAe cos on
s mod 4=3

3 _ (£)_, (4) (4)
ce Prot To (B*7/-A*7") + F (74)

To obtain the remaining harmonics we determine expressions fay

- Ty n/b-4 n/k-4
aln/h 2 p(n ), g(0/44) gna Fl [h=2) and use these values again
in equations (72) to (74)

- he L-2A(n/4 £)_ )) a sin s(n/ ) — ) a_(sin uu cos etsmod L4=2 i s mod L4=2

ng .  wuslt

= cos T= sin a

3 ) EE 1 ns 4 )) ns4= dg Sin = cos === = ag, COS ——
s mod 4=2 s mod 8=2

)X a_ Cos tsb (75)
s mod 8=6 ° &

similarly

p(n/b-2) _ )} a sin En (n/k-2) _ y a 5 112
s mod 4=0 s mod 8=0

+ )) cH sin 188 (76)
s mod 8=k

25



Introducing now the notation

SS HEY
J s mod 8=j

(17)

(4) = 3 a_ COS 1s 4
a J s mod 8=j° 0

We can express the results of equations (71)as

(2) _ (2), (2)
A = Ss + S¢

(£2) _ &8) «(%)

(2) (£),o(%£) (2), (2) oe£2) _ )/ £ y/ y/
E = (8; +S ) + (85 So )

(2) _ (02) (2) (£) (£2)
F = (cq +Ce ) - (Cs +Co )

from which we compute |

¢, = (A+B) + E Pnjo+g = TBE) + F
(79)

0 — oO _ (A= F9 _, = -(a+B) + E Doms = (A-B) +

Equations (75) and (76) become

A(0/h=2) _ (8) _ (2)
2 6

(80)

g(n/b-2) _ st 8) 4 g(H)

and one may also show that .
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(n/k-2) _ 1 (£)_n(2) (£)_o(2)y , (a(£)_(2) (2) (2)= — -C - {S ~5 + (C)77/=C + (S.77=S

E 75 (aes) - est + (03a + (sea)

(n/b-2) _ 1 roat2)_o(2) (2) (2) (£)_(£)y _ (o(2)_o( 2).
F = == [(C; '=C + (S,7/=8 + (C -C - (S) “=S75 [e057 + (sy Msg) + (03er®) - (83870)

where Nr comes in as the value of sin n/t and cos =n/L.2

From these new A, B, E, F one calculates

© = +E, ro) = -(A+B) + FPn/b- 4 (443) P3n/4- 4 (443)
(81)

prot = «(A+ + = -B BF
P3n/L+ (448) + E Pn/l+ (A-B) +

Formulae (77) to (80) constitute the algorithm for calculating the

eight harmonic amplitudes.

5.5 The cosine harmonics

Cosine summations of the form

s=h Ts

C(g,h,a,) _ 2 a_ cos 7 £2 g = 0,1,...,h (82)

are required for the cosine harmonics. These may be calculated using

a sine summing routine such as EIGHTK by applying it to the coefficients

in the reverse order and making a simple alteration of sign.

sh i (h-s)
C(g,h,A) = ). a, _. Cos 5 3 5—= 8

s=0

sZh x Ts t 1 58,
= )) 8 gs (cos 5 g cos 5 32 + sin 5 & sin 5 =)

s=0 Lo | N
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It will be observed in the algorithm that the harmonics are only

evaluated after Twofolding has reduced g to be an odd number. Using

this fact we have

s=h

_ in IT , & se
C(g,h,a ) = sin 3 g ) 8s sin 3 3

s=0

Tt | (83)
C(g,h,a) = sin 5 & 5(g,h,a, _)

1 g odd
2

= (-1) S(g,h,a, _)

5.6 The procedure value - VAL(L,N,A,M,Y,SI)

The procedure VAL 1s the ALGOL procedure which evaluates all the

summations of the type 8S(g,h,a).

It performs a sine analysis on the input values 2gp12Lpporr esp

and stores the harmonic amplitudes 1n the array Yo? Tmo? 0 2 Vinal?

using as eigenvectors the contents of the array SI, which 1s assumed

to contain the first quarter period of the first sine harmonic.

The procedure calculates

s=n

tk )} 2 prs Ks
S=0

One use of VAL is in the call of the procedure FOURIERIZ2 with

BC = 1, which performs the Fourier sine analysis of synthesis defined

in section 1.2 and used in section 3.2 and 4.2.

In this case SI is filled with the normalized function:

2 . 7nt

SI, AVE sin = (84)
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and the procedure VAL is entered

VAL (O,N,Z,0,Y,SI)

when the Fourler sine analysis will be performed on Zoseoesl with

the harmonic amplitudes 1n Tyseeest 1

where Y= il 2/2 sin Tex (85)
The procedure may be understood by reference to Fig., 2 where the

case of 96 points is illustrated.

The basic recurrence of the process starts with a Twofold, initially

on the original 96 points. The 48 values obtained by subtraction on

the left side of the Twofold, and indicated by the shorthand °F, are

the input points for the next stage of the recurrence.

The 48 values obtained by addition on the right side of the Two-

fold and indicated by the shorthard °p~, are used to compute all the

harmonics with odd k. First all odd harmonics that are not multiples

; of 3 are found, eight at a time, by entry to the procedure EIGHTK.

This is defined as the set of numbers {1}. Secondly all odd harmonics

that are multiples of 3 are found, by first performing a Threefold

(3F) and then entering EIGHTK with the reduced number of points. This

set of numbers is defined as {2}. In both cases EIGHTK need only

be entered for values of k less than N/8 because the remaining

values are filled in automatically by the procedure.

The next stage of the recurrence works on the 48 points from the

subtractive side of the previous Twofold and computes similarly all
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VAL(L,N,Z,M,¥Y,ST)

. ’ .

. 2_+y NY |
eo 48 |

48 e | } 3 }
8k={1} F

2+
F ®

2p = 1
| 2h | 8K={2}2h o 3 |

8K=2x{1]}

2p~ 2.+ |
C .

So | 120 8K=2®{2}

F 8Kk=4®{1} 3p |

8K=8%{ 0} |
F odd

- 8Kk=®{2}

FOURIER12(1,Q,X,Y); -

Xx, «X «O03
2 . 7tSI, AE sin — 3

vAL(O,N,X,0,Y,SI);

YH “I «03

Tyr vo LI

. FIG2 = The procedure VAL and SINE ANAL/ SYNTH BC=1

{1} - the set of all odd numbers which are not multiples of three

{2} - the set of all odd numbers which are mltiples of three0} = the set of integers 1 to 12. N
8K= - the procedure 8K is entered to obtain-the harmonics from the indicated

set

op” - the subtractive or left 'side of a Twofold

2. + CL : :
F - the additive or right side of a Twofold

Sg - a threefold

2he - the number of points involved
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harmonics of the form 2 an odd number. The process repeats until

we are left with 12 points from which the harmonics k = 8) (1,2,...,11)}

are computed. This calculation is written out in full within EIGHTK

and 1s selected by the artifice of making the input parameter F an

odd number, in all other circumstances 1t happens that F 1s even.

It should be clear that the increase of the number of points by

a factor of 2 simply adds a further limb to the recurrence tree of

Fig.2 and that the number of points may be increased in this manner

until some machine limit is reached. On the B5000 using one dimensional

arrays which have a maximum length of 1023 this limitis soon reached,

namely when n = 768.

5:7 The procedure SLOPE(L,N,Z,M,Y,SI)

The procedure SLOPE 1s the ALGOL procedure which evaluates all the

summations C(g,h,a_). It performs a cosine analysis on the input

values ZgsZginsecesdp and stores the harmonic amplitudes in

LE) SNE FTIRFY SI. using as eigenvector the array SI.

| The procedure calculates

s=n

“mk © PN prs Shyegm/o (86)

One use of SLOPE 1s in the call of the procedure FOURIER1Z with

BC = 2, which performs the Fourier cosine analysis or synthesis

defined in section 1.3 and used in section 3.3 and 4.3.

In this case the array SI is filled with the function

fo nt

SI, -\/5 sin =, (87)
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So CTT —

The end values Zq and 2 are halved to take account of the factor

P. in the definition of the normalized function given in equation (9)
and the procedure slope 1s entered

SLOPE (O,N,Z2,0,Y,SI) ;

when a Fourier cosine analysis 1s performed on the elements Zoys eos Zy

with the harmonic amplitudes in Tseees) o However, due to the fact

that the input values were not reversed in order before the procedure

EIGHTK is applied, as is required by equation(83) it is necessary

finally to reverse the sign of all odd harmonics to get the correct result.

The detailed operation of slope should be clear from Fig.3.

It 1s only necessary to say that CHS stands for the change of sign

required by equation(83) in order that EIGHTK calculate cosine harmonics

instead of sine harmonics, and that the special case of a 12 point cosine

analysis 1s selected in the routine EIGHTK by making the input parameter

FF negative. In all other circumstances it happens that F 1s positive,
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SLOPE(L,N,Z,M,¥,SI);

/Nwol48
48 eo ® | oo

3, /8k={1] 2p CONF

° | eo 24

“1 +2 | |8K=0®{1 ea. / 2 +

° ° ®12

—. 8k=28{ 2] 3p 8K=4®{1]} 8Kk=83{ 0}
CHS CHS <0

8K=4®{2}" |

FOURIER12(2,Q,X,Y);

X, «X,/2 , X «X /2 ;

SI, “fF sin wal
SLOPE(O,N,X,0,Y,SI);

change sign odd;

LOY Ley 1

FIG3 The pr re SIOPE an INE ANAL/SYNTH BC=2 _

Notation as FIG 2

CHS ~ change at sign required by equation (83)
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5.8 Periodic analysis and-synthesis

In the periodic analysis defined 1n section 1.1 the cosine

harmonics are given by ”

s=n-1
- 2 2nskPp = 3 p\f2 cos ——— @_ for 0 < k <nf2 (88)s=0

n/2-1 n/2-12 2nsk 2 2nk

= )} B\[2 cos 22g L n\[2 cos == (n 5)P, +s=1 S=

2 2

n/2-12 | 2 21k 2

k 5/2 % * Py (@5+Py [2cos =~ 7 p/2 cos nk © 2

P, 1s initially given in the range s = 0 to n=l. If however we

now 1ntroduce Pn _ 0/2 and also make ® _ 0/2 then

_ m2 [2 ork [2 8
Px - L SRL B\/n €o% + BV = cos nk Pn/o (89)s=0

) Both terms in equation (89) may be neatly combined if we recall

the definition of the Twofold in section 5.2 equation (54) whence

| opt (¢) =9_ +O s = 0,1 n/2-1Nes = Yg n-s 3-Lycecy

(90)

2. +

Fn/o(®) = p/n
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and

n/2
- 2+ 2 27kPi = { Fo_.(®) 5/2 cos ons=0

” (91)

. [2 2_+
7, = R\E c(2k, n/2, “F. _(9))

Equation (91) shows that the cosine terms of the periodic analysis may

be computed from the additive side of a twofold on the original data,

as is shown in Fig. 4.

The sine harmonics amplitudes are defined by

3 _ TT 2 .  2nskn/2+k © Z Ps \/ 7 In — 1<k <n/2-1 (92)

s=n/2-1 s=n/2-1
2 . @2mnsk 2 2nk

= — —— | aa ———— - +2 ALLELE N 0, \/% sn BE oo 2 ©O= g=

n/2
_ 2 ansk

2% 0pus)[2 sn ES oo

—- 2 2 a

*n/2+k 2 S(2k, n/2, “F(9) (93)

Thus the sine harmonics can be computed from the subtractive side of a

- Twofold on the original data,

Periodic Fourier synthesis 1s defined by

k=n/2 k=n

P= o p\/2 cos SLL Pt 1/2 sin Sas (k-n/2)o, (9k)k=0 k=n/2+1

s = 0,1,...,n
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FOURTER12(3,Q,X,Y);

SI [2m ;t n n

X «— X «— X,/2 :

°

- | +2, Ne
s8 . L8

® Cosine harmonics

Sine harmonics SLOPE

hg? + =» tgs

FOURIER12(4,Q,Y,X);

SI AL sin=xt ;t n n

Yop— — — — — — — Yl — — — — — — — 1] 3

Y «YY /2; v «Y 23 YoY. «0;0° "0 n/2 = “nf 48 © “96

SLOPE VAL

) change sign odd . reverse and change sign

9%

| - +

: 2p 2p

48 » , 48

Xo - FRI: Xo . +1%g5

PERIODIC SYNTHESIS BC=k

- FIG. 4.
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in order to reduce the St and pnd sums to those that can be performed

by the procedures VAL and SLOPE 1t 1s necessary to reduce the range of

variation of s to that of k. .

Consider

kn/2 mo = or _
Ps = ) B\/2 cos ~~ (n-s) k + 2 sin Pe (k-n/2)(n-s) Ppk=0 k=n/2-1

Ss = 0,1,...,n/2

k=n/2 k=n
nsk = -

Ps = 2 p\f2 cos SE Py - | V2 sin 28 (k—n/2) Pyk=0 | k=n/2=1

P = 2 (2s n/2, P.®) - 2 ses n/2, @.) |n-s n ? > "k'k n ? > Tk

and (94) becomes (95)
2 po 2 o—

P -\/2 c(2s, n/2, PP) ava s(2s, n/2, Py)
*where the function § must be understood to be operating on the

variables Pnjo+1? 0 9 Ppo1 in contradiction to its definition in
equation (55).

The summations C are performed by the procedure call

Yo <Yo/2 3 Yup «Yul?
SLOPE(O, n/2, Y,0,X,SI) ; (96)

change sign odd ;

acting on the ,5t n/2 harmonic components Yoreeea¥y/o with the
results placed 1in Yor-eeatp soe

The summations S are performed by the call

37



Yn/3 «Y «0
(97)

VAL(n/2, n/2, vy, n/2,Y,SI) ;

with the results placed in tnfe+1? trina

We note from (95) that 9, (s=0,1,...,n/2) is obtained by an

additionof C and S and that Ps 1s obtained by a subtraction. A

Twofold operating on the whole sequence Pores 9% has this effect if

the sine summation terms are first reversed and have their signs changed.

This process is illustrated in the lower part of Fig. i.

6. OPERATION COUNTS

Table I gives the complete information on the number of arithmetic

operations required for different values of Q and BC. The operations

counted are only those used directly in the arithmetic of the summations

and do not include any additions or multiplications which are concerned

with indexing and 'housekeeping' operations. They therefore represent

| the best that can be achieved in an efficiently written program in

machine code.

For comparison purposes the number of operations 1s compared with

that which would be performed in the direct evaluation of the summations

in for example

?, = = ¢, sin =e k = 0,1,...,N (98)
s=0

Such an evaluation requires we additions and ne multiplications

for all values of k.
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We introduce the factor of simplication

total number of operations

and the weighted comparison for T7090, using 15u8 for addition end

25u8 for multiplication as follows

15 N° + 22 N= 100

F7090 15 X (# of adds) + 25)(# of mults) ( )

The results for the total number of operations are shown in Fig. 5 and

6 together with-the theoretical asymptote for large N.

It will be observed that the periodic analysis requires

asymptotically only half the number of operations of a sine or cosine

analysis and that asymptotically the number of operations increases

as N.

The following empirical fits have been made

Sine or Cosine analysis

| | 2 N°
total # operations = =gg= + 5N (101)

—Periodic analysis

total # operations = ET 6.3 N | (102)
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¥ Sine Anallysis BC =1

Total = 11 Time
N Adds Mults Ops F FT090 X 10 Secs

0 12 51 27 18 | 3.7 4.0 15 0.8

1 24 135 57 192 6.0 6.7 15 1.0

2 48 339 150 L489 9.0 9.9 17 1.3

3 | 96 TT 565 1,542 | 11.9 | 12.8 27] 2.4

Lh | 192 3,016 2,157 5,173 | 14.2 | 14.9 25 5.2

5 | 384 | 10,231 8,477 | 18,708 | 15.8 | 16.1 23 1404

6 | 768 | 37,206 | 33,661 | 70,867 | 16.6 | 16.8 22 43

*¥ Cosine Analysis BC = 2

o| 12 LL 21 65 4.4 4.9 10 0.5

1 24 128 51 179 6.4 7.2 14 0.55

2 48 345 156 501 9.2 | 10.2 14 0.9

31 96 970 559 1,529 | 12.0 | 12.9 15 1.8

4 | 192 3,009 2,151 5,160 | 14.3 | 14.9 18 5.0

5 | 384% | 10,224 8,471 | 18,695 | 15.8 | 16.1 21 15

6 | 768 | 37,199 | 33,655 | 70,854 | 16.6 | 16.8 2k 43

¥ Periodic Analysis BC = 3 or 4

1 24 110 37 147 7.8 8.9 2 0.80

2 L8 302 98 400 11.5 13.2 12 0.85

3 96 780 305 1,085 |16.9 | 19.1 21 1.5

41192 | 2,130 | 1,113 | 3,243 | 22.7 | 24.6 18 3.4

5 | 384 6,400 4,297 | 10,697 |27.5 | 29.0 22 8.

6 | 768 | 21,214 | 16,937 | 38,151 | 30.9 | 31.8 20 206

TABLE I
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BC=1.2
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To RUN TIME COMPARISON

The relations (101) and (102) show that for very large N the

Fourier 12 program with periodic conditions can be, at the most, 36

times faster than a program which evaluates the summations directly.

The Fourier 12 program 1s however complicated logically and

contains a large amount of indexing and the time to perform these

operations has been neglected in the counts of arithmetic operations given

in section 6. In order to get a more realistic view of the possible

time savings we have compared FOURIERI2 with the following alternative

Algol programs?

FOURIERDEF = This program evaluates the Fourier amplitudes directly

from their defining summations, It evaluates explicitly a sine or cosine

for every term of the sum.

FOURIERE = This program is CACM Algorithm #571] modified for

an even number of points as described in a remark by 6. Schubert 21

This program considers only periodic analysis corresponding to BC = 3,

It does not evaluate the sine and cosine for each term and contains oN

arithmetic operations for large N. It corresponds therefore to the

direct evaluation considered in section 6 where no allowance was made

for the evaluation of the sine function. The results of the comparison

are shown in Fig.7 where it can be seen that for large N, and periodic

conditions Algorithm 157 is 7 1/2 times faster than Fourierdef, and

Fourier 12 is 9 1/2 times faster than Algorithm 157.

Thus about 1/4 of the potential saving of 36 is obtained from an

efficiently written B5000 Algol program., It is to be expected that a
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| \ _ FOURIERE ACM ALGORITHM ~

| #157 USES RECURRENCE BC=3
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\ FOURIERDEFime | JDIRECT EVALUATION ~

FOURIER 12 | -
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=

=
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FIG. 7 = TIME COMPARISON
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"i

well written machine, code program could realize a good deal more of the

potential saving perhaps up to TO%.

We also observe that both the sine and cosine analysis (BC = 1 or

2) are slower than the periodic by a factor of 2 as expected from

the formulae (101) and (102).

8. ERROR COMPARISON

The accuracy of the Fourier 12 program has been checked in two

ways.

In the first place we have compared the harmonic amplitudes pro-

duced by Fourierdef, Algorithm 157 and Fourier12 for a random input

vectors and the results for the periodic case (BC = 3) are shown in

Table 2. The results for BC = 1, 2 and 4 have been obtained and are

qualitatively similar to the case BC = 3 except that we have no com-

parison with Algorithm 157.

BC = 3 PERIODIC

I TE ET
1 ol, 8 x 1071 < 107
2 18 4 x 10710 1 x 107

3 96 yx 1078 1 x 10H

4 192 1x 1070 2 x 107

; 384 2 x 107° 1 x 107°

6 768 1 x 1070

TABLE 2

Maximum deviation from FOURIERDEF result for a random

input vector ranging1n magnitude from -1/2 to +1/2.

—————

In this case to avoid excessive machine time that would be required

to evaluate Fourierdef we have assumed that Fourier 12 1s correct.

N=



Table 2 shows that the error in Fourier 12 does not increase

significantly with increasing N and is of the order of the truncation

error of the B5000 machine, which 1s ~1071L, Thus technique of folding

used 1n Fourier 12 appears to be a stable process numerically.

It can be seen however that the error using Algorithm 157 increases

with N such that for N > 100 the calculation of Fourier amplitudes by

the recurrence techniques suggested by Goertzel 13] and used 1n Algorithm

157 1s probably not a suitable method.

As a further confirmation of numerical instability in Algorithm

157 we have used as input the test vector

X = (-1)* for i = 0,1,...,N-1

which is Vr ® the highest cosine harmonic,

Table 3 shows the relative error in the amplitude of the highest

cosine harmonic when calculated by the various routines. Again there is

a steady increase 1n the relative error in Algorithm 157 as N 1ncreases,

whereas there 1s virtually no 1ncrease in the error when Fourier 12 or

" Fourierdef 1s used.
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BC = 3 PERIODIC

1 ol 4x 107 [3x 107d 1x 107

2 48 1 x 107° 3 x 107° 1 x 1071

3 96 1 x 107% 2 x 1070 c 1071

4 192 3 x 107° 1 x 10 -6 1 x 1071

5 384 8 x 1077 3x 107° 1 x 107°

6 768 .- 8 x 107° c 1071

a TABLE 3

Relative error in the highest cosine harmonic amplitude.

The second check on the accuracy of Fourier 12 was a self con-

sistency check performed as follows. A random input vector is analyzed

into Fourier harmonics by Fourier 12 and afterwards the harmonics are

synthesized by Fourier 12. The final vector obtained should be identical

with the initial vector and the greatest deviation between the two 1s

. recorded in Table 4. The test was performed for three different random

vectors 1n each case and the maximum derivation of the three cases is

recorded. The random vector varied in magnitude from -1/2 to +1/2.
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olor |e | ee | EN BC=1 then BC=l BC=2 then BC=2 BC=3 then BC=k4

0 12 1.5 x 10 -10 1.0 x 10 1° ---

1 ol 1.5 x 1071 1.4 x 107° 2.0 x 1071

) 48 1.7 x 107%! 1.4 x 10 tY 102 x 107°

3 96 2.7 x 107° 1.5 x 1010 2.1 x 10 10

| 192 2.5 x 100° | 1.8 x 107° 1.8 x 107°

5 | 384 9.3 x 107° 2.1 x 10 1 2.2 x 10 HY

6 | 768 2.2 x 10 -10 2.4 x 1070 2.0 x 10"

TABLE 4
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PRUCEDURE FOURIER12 (BCsRsXrY)}
VALUE BC»Q3} v

INJTLEGER ols QJ ARRAY X,YIC13

BEGIN

UWN INTEGER NIsNUsSNSshEsNTsNEBINTsNL1ONLYL)

NGeN3e12%x2%Q)

BEGIN . | Co.

OWN INTEGER KsF1sF sl sK1aNZ»I1,120JsK2oH2oHsL10L2,L3)

OWN HEAL AsBsEsFoTSsTCoGrRIALIAZ0A3»A4»AS,TERNM,B1,B2,B3,B4,B85,86)
LABEL ENOD13

UWN ARRAY ZTOSN3I)»SI[CIN3/2])3

OWN ARRAY $8,C{0381}

UWN HEAL NO;
REAL PRCCEDURE SIN1(X)}

VALUE X3} INTEGER XJ

BEGIN xeX MCD (N10)}

SINLelF XSNT THENSI(X] ELSE

IF X>N7 AND XSN3 THEN SIIN3=X] ELSE
IF X>»N3J AND XSNi1 THEN *SI{X=N3)ELSE

“SIIN1O=X1]}

END SINT)

PRUCEDURE TWOFOLDCL»N)}

VALUE LN} INTEGER LasN3}

BEGIN

He ¢ N/23.

FOR I1¢ 0 STEP1 UNTIL H2=10 0

BEGI N [1el+L} J2eN=I+L3

Ael{11)} BeZ2l12))
Z{I1)e A=B]) Z012)ep+B3

ADO ¢ ADD+2)

ENOJ

END TWOFOLD

PRUCEDURE THREEFOLOCL,N)I3

VALUE Losi} INTEGER LaN}

BEGIN

HeN DIV 33 J1lelL+N} J2¢LaN=H=H}
FOR let STEP 1 UNTIL H-1 00

ZUIt1=1leZ2C11=13¢72112¢41)=2(12"11)}

Z{I1=H)eZ[I1=HI=2(L)}

ADD)¢ ADD + 2 x (H-1) +1;
ENU THREEFOLD
PRUCEDURE EIGKTK(LANsKsMsY)J

VALUE LaNsKsM}3 INTEGER LaNsKoMJ ARRAY Y(01}
BEGTiv
FURI€OSTEP1 UNTILED O S[1)eC[1]e¢0}

I FX<O0 THEN

BEGIN CCMMENT 1 2POINT COCSINES | h LONGHANDFOR EFFICIENCY)
TWOFOLDO(L +656)

A+Z2ILIxB6+2[L+8])xB2Z} Be Z2IL+2)nB43 Te
AleZ(L+3)IxB3 J

fe ZEL#1IxBi=A1+2[L+5]1%BS} Ee 2IL+1IXES+AL+2(L+5]1xBL}

GeA+8; Re¢A=8} Kee=K/23
[eM+K 2) JeM=K2}

Yll)e=G=E} YIN7+I)eF"R}3 YINI¢JIEE=G] VYIN7+Jle=R"F)

GeB6XCZILI=20(L+4))3 €EeR3xC 20(L+11=20(L+3)°2CL+5]))} K2e3XxK2)
YIK2+VM Je=G=E} YIN3I~K2+M])e¢E=G}

GeoZ2[L+6)xHE6=2(1+8)1%xB23 Ee=2([(L+71xB4} K2e=K}

JeM+K2} JeM=K2}3

Y (I11¢G+E} YIN3+J]eG=E} YINT¢M)eBoX(=2(L+61+2(L+8))}
AeZL+123+4201L+1C)3 DBeZIL+113+2CL+9)3

Y{M)eBOXCA+EDS YY I[NI+M JeBEX(A=B))

FeZlL+11)xp2=21L+9)%B63 ReZ(L+12)%xB6~2{L+10)xB2}

YINT4+J)eR4F 3 Y{NT+]1e¢R=F}
ADD¢ADD+28} MUL TeNULT #420)
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END

ELSE

IF K MO 2=% THEN
BEGIN

KeK+1)

AleZ[L+9)xB3) 3

AeZlL+10]xBz+2(LL+6)1%B6S BellL+B81IxB4)
EeZ2CL+11)xB1+20L+7IxRS5+A1) FeZ{L+11)xB5+20lL+7)xB81=A1}
Ged+B) ReA=R3 K2eK/23
JeMenZ} JEMmK23

YUT JeE+GS YONT+I)¢F=R} YINI+J)eE=G) YIN7+J)eF+R}

GeBO6X(2IL+1CI=Z2TL+6))3 EeBIXCZIL+11)+20L+91=2(L+7]))3 K2¢3IxK2)

YIR2+M]Ie¢E+G3 Y [N3I=K2+4M JeE~G)
Z{L+6)eC)

TWGFOLUCL,E&)

Eet2xZ(L+H1+BEXZ[L+3])) GeBa4xZ(L+4)3 JeMeK} JeM=K}

YIL1leE+G) YIN3+J)e¢E=G} YINT+MIeBEX(C2LL+512(L+3)))

YINT+udeBax(Z2IL+3)+2[L +21) YONT+IleBa4n(Z{L+1122(L+21))])
ADDeADD+223 MULTeMULT+16)

END

LLSE

HEGIN

K2¢ K 21

FOR J ¢1 STEP | WHILE usa AND JsSN DO
BEGIN

FUR 1 + J STEP 8 WHILE 1 S$ N OU

BEGIN It ¢ [xKéj L3¢L+N>]}

TERMeZ(L3IIXSINICIN1)}

TSelF IsJ THEN TERM ELSE TS+TERM)
If I#J THEN ADD¢ADO+{3

MULTeMULT+13

IF J MXC 4 # 0 THEN

BEGIN

TERMeZILIIXSINICILI+NT))

TCe¢IFI=y THEN TERM ELSE TC+TERWM}
IFI#) THEN A D O «ADD+13

MULTeMULT#1)

ENO TCS

eNVU 1)

Styl ¢ TS 3 CLJI + TC 3
END 3

A €S(21+ SCé61 }JBeS[8I+ St43
EL ¢ (SCI) + SUSY) t (SC3) + Sc71)3

Fe(ef1)+C(S5)1)=( C C 3 1+CL71))
) G ¢ A+R 3 KR + A=E} JeMtK23 JeM=K2) :

YII)eE+G) YINT+1)eF=R} YCNI+JIeE=GS YEN?+J)eF+R)
ADD ¢ ADD + 14 3

IF h #NS THEN

BEGIN

A + Cl2) =Ct6) j B + =Sr8)+ 5([4))
E + CL11=C(5]1 3 Fr ¢ S${1) = §(51}

Al + E+F 3 A2 + E=F3}

Ee¢C(31=C{71 F + S{31 = SI71)

A3 € E=~Fj3 Ad ¢ E4F3

E ¢ ASX(A2+A4)}

F € AS X(Al1+A3)}

G €A+B J} R ¢ A=8}

YINS+JI¢E+G) Y(N6+J)eF=R} YECNG6+11¢E=G) YONS+IIeF+R)
ADD ADD+18; MULTeMULT +23
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ENDS

END’

END EIGHTKS

PRUCEUVDURE VAL (LsoMsY )3

VALUE LsM3} INTEGER LM} ARRAY Y{01}
BLGIN :

N2 € N33 Fle 21

FUR Peg STEP t+ WHILE N2>12 DO

BEGIN

TROFULDCLAN2)S |

N2eN2/2) LieL+N23

FOR Kei STEP 2 WVWHILE FixK<NS DO
IF x MOD 3#0 THEN

EIGHTK(LIsNZ2»F1XKsNyY))}

THREEFULDC(L1I»N2)}
FOR K¢ 3 STEP 6 WHILEF1xKSNS 00

BEGIN NI9eN2DIV3 1 EIGHTK(LI+2XNYsNG»FIxKy)MrY)} ENDS
LIL+N2)e¢0} Fl1eFL+F1)

END Pi

TWOQFOLDCLaNZ))

EIGRTKC(LsNZ2sFi=10M,Y)}

END VALS

PRUCEDURE SLOPE (LsVM»rY)3}

VALUE LaM3 INTEGER LsM} ARKAY Y([0)}

BEGIN ~.

N2e€N3} Fle?) L2eL+N3}
FOR Pel STEP 1 WHILE N2>12 00

BEGIN

IWOFOLOCL2=N2,5,N2)}

N2eN2/2) Liel2=N2=N2)

FUR Kel STEP 2 WHILE FixKSNS DG

IF kK MUD 3 #0 THEN

EIGHTKCLIsNZ2»FIXKsoMsY)}

THREEFOLDC(L1,NZ2))

FOR Ke¢3 STEP 6 WHILE F1xKSNS D0
BEGIN N9eN2OI V 33 EIGHTKCLZ=4XNIsND»FIXKsMsY)} ENODJ

FOR Kel STEP 4 WHILE FiIxKsSNi10 DO
BEGIN TeVM+FixK/2} Y{lle=Y([1)} END)

FleFi+F1)
END}

LielL2=N2}

TWOFOLDCL1sN2))

EIGHTK(L1,NZ22=*FiroMsY)}

ENO SLOFL)

IF Q27 OR Q8<0 THEN GO TO ENDY)

IF (BC=3OH BC=4) AND @=0 THEN GO TO ENO1&}

FOR I1¢ 0 STEP 1 UNTIL N3 00 2(I1eX(1})}

PI € 3.141592653591 ASe¢1/SQRT(2)}
NO€SQRT(2/N3)}

IF BC=3 THEN

BEGIN

Z(N3)e2(0)e2(01723

THNOFOLODCO,N3)

NIeN3I DIV 21 ..

ENDS

IF BC24 THEN N3eN3 O1V 2} |
NS¢N3 OIV 4) NE¢IXNS} NTeNI DIV 21 N1Qe2XN3J3. Nijle3dxNT)

FOR [ ¢ 0 STEF § UNTILN? 00 SIC11 *NOXSIN(PIXI/NI)}
B1eSIINI O I V 121382¢SIINIDIVGS 11 BIeSIINS)I
BAaeSIIN3 DIV 311 BSeSIISxNIY Ov 12) B6¢SIIN?))

IF BC=1 THEN

BEGIN

£0] « ZIN3]¢ 0}

VAL (0»0»Y)3

Y(OleY(N3)e0} -
END}

IF B8C=2 THEN

BEGIN 52



Zl0)e2101723 ZIN3]e2(N3]/2) a
MULTeMULT+2}

SLOPE (C20,Y)}

F OR Kel STEF2UNTILN3I=10 OY(KIe=Y(K])}
ENDS

| FRC=33 THEN

BEGIN

E SLOPE (AN3»05,Y)} -

Y(O)eY[O0IXAS} YONI)eY[NIIXASS
MULTeMULT#+23

LL0)e¢Z{N3)e0}

VAL C(0sN3sY)}

YING)eQS
END J

IF BC=4 THEN

BEGIN

200) e¢Z2[01xA5} ZIN3IYe2(N3]I%AS)
MULT eMULT +23

SLUPEC0,0,Y)3

FURKe¢q STEP 2 UNTIL K3=1 00 Y(K]e=Y([K]))
ZIN31¢Z{NAG]}e0)

VAL(N3IsN3»Y)}

FOR I€¢1 STEP 1 UNTIL WN? DO

BEGIN JeN3I+I3 KeN4=13 AeY[JI3 YIJIe=Y{K]} Y(K)¢e=A ENDJ
Y(N4}e0}

FORIe¢y STEP 1 UNTIL N3=t{ 00

BE G I N JeNA=TJAeY(113BeY[JISYLIJeA=RBI YIJI¢A+BIADDCADD+2JENLD
ENO .

ENDLIT

ENU END FAOURIER12}

pp)
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