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Abstract: Fourier analysis and synthesis is a frequently used tool in
applied mathematics but is found to be a time consuming process to
apply on a digital computer and this fact may prevent the practical
application of the technique. This paper describes an algorithm
which uses the symmetries of the sine and cosine functions to
reduce the nq@ber of arithmetic operations by a factor between
10 and 30. The algorithm is applicable to a finite fourier (or
harmonic) analysis on 12 §& 24 values, where g is any integer
> 0 and is applicable to a variety-of end conditions. A complete

and tested B5000 Algol program known as FOURIERI2 is included.

During the period of this research the author collaborated closely with personnel
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1. FOURIER ANALYSIS

Suppose we are given a sequence of (n+l) numbers
PosPysenesPgreees® N ¢

then these may be expressed exactly by a finite Fourier series

k=nmax _
Py = ) V(s,k)o (2)
k=nmin

where Ek is the amplitude of the kth'harmonic and V(s,k) is the kth

harmonic function. This is the process of Fourier synthesis.
To obtain the values of the 5k from the ¢S we form a summation

over ¢ with a second set of harmonic functions W(k,s)

s=nmax

P = 3 Wlk,s)o, (3)

s=nmin

This inverse transformation is made possible because the functions

V(k,s) and W(s,k) satisfy the biorthogonality relations.

nmax
Y W(k,s) V(s,k') e
s=rmin

]
o
———

(%)

nmax
and Y V(s,k) wW(k,s')
k=nmin

|
o

S5

Thus far we have not specified the extent of the summation (Le.,
value of nmax) nor explicitly stated the functions V(k,s) and

W(s,k), because these depend on the boundary conditions which are imposed



on the sequence (1). We shall consider various cases which are
distinguished in the Algol procedure FOURIER12 (BC,Q,X,Y) by the value

of the input parameter BC (meaning boundary condition).

1.1 The periodic case BC =3 and 4

This is the usual situation that is meant when the term Fourier
or Harmonic analysis is used. In this case the values % to Qn-l

= ¢s for any integer p.

are repeated periodically such that ®s+pn

Thus we want an expression for the infinite sequence

...,¢O,..., n-l’¢0"" mn-l;¢0"'° mn-l’¢0""’¢n-l"°'
In this case the harmonic functions are
Pk(n/E)'\/-% cos 2“:’1 k . 0< k < n/2,‘0 <8< n-1
V( s,k) = W(k,s) = (5)
2ns(k- 5) |
I'\/—gsinT .7 .nf2<k<nl, 0<s<n-l

where

l/\ﬁ; if k = 0 or j
P (3) ={

1 otherwise

and

The procedure call

FOURIER12(3,Q,X,Y);




Q

performs a periodic Fourier analysis on n =12 X 2 points
XO’X1’~~°’Xn-l as follows:
n-1
Yk = S=XO- W(k,s)xs _— 0 S k',..s S n-l

The Fourier synthesis is performed by the call

FOURIER12(4,Q,Y,X);

which synthesises the harmohic components Ygs¥yse45Y 5 into the point

values XgsXqy5+e4»X 1 according to

n-1
X, = k)_:o V(s,k)Yk ) . 0< k,'s < n-1

1.2 Sine expansion or zero value case BC =1

R 4
In this case we insist that the value of @ at the two'ends is

zero, and there are only (n-1) active points Ql;¢é;.o': n-1 i.e.,

P =@, =0 (6)

¢_p = -9,
and Qn-p‘= -¢h+p

As a result, if the origin is taken at s = 0, only sine terms

appear in the series expansion and we get

I




V(s,k) = W(k,s) =wJ€?sin“S£H- . I<k<nl,'1<s<n-l
(1)
and nmin = 1, nmax = n-1.
In this case we note that V(s,k) = W(s,k) and the processes of
Fourier analysis and synthesis are identical. Both Fourier analysis

and synthesis are performed by the same procedure call
FOURIER12(1,Q,X,Y)

according to

s=n-1
2 sk S
L o= L Vs TEX, 1<s, kgnn

1.3 Cosine expansion or zero slope case BC = 2

If we have a mathematical problem with the boundary condition of

zero slope, the finite difference form leads to the end conditions

) =
-D qJP
(8)
and ¢n+p = @n_P
In this case the Fourier expansion with origin at s = 0 contains

only cosine terms and the harmonic functions are:

V(s,k) =‘\/—§Pi(n) cos 1—[%15
(9)
W(k,s) =1/€?I§(n) cos 22K

n




Here again V(s,k) = W(s,k) and the process of Fourier analysis and
synthesis is identical. There are however (n+l) active points since
there are now two end values to include and nmin = 0, nmax = n.

Both Fourier analysis and synthesis are performed by the same

procedure call namely

FOURIER12(2,Q,X,Y);

according to

s=n
Y, = Z'\/-%PE cos 15K y
k o n s n s

20 SOLUTION OF EQUATIONS USING EIGENVECTORS

Consider the set of linear equation

Ap =1 (10)

Let the eigenvectors of A be u, with eigenvalue Xi. Then

Au, = \u, (11)

1 Q =(u

s yesesl ) 1is the matrix of eigenvectors apd A is
nmin ~nmax

diagonalisable then we know
(12)
and oagqt-a
where A is the diagonal matrix Ajy = )\1813.

5



Substituting (12) into (10)

2
QRAQTY =2
(13)
- -1 -
or g =ae
If we define the transform of a vector a to be
3 = Q'lg
with the inverse relation
)
then (13) becomes
¢=A"D (1k)
The equations (10) may therefore be solved in 3 stages
1) 'Fourier' analysis of the right hand side into its transform
- -1
b =Q7D (15)
2) Solution by simple division for the transform of ¢
$ =275 (16)
3) 'Fourier synthesis' of the transform of @ into ¢
9=q (17)

If Q is a full (nxn) matrix without symmetry stages 1) and
3) require 2n2 arithmetic -operations and stage 2) n operations giving

a total of




4n2 + n arithmetic operations (18)

If (10) had been solved by Gauss elimination it would have required

about

3

%T + 2n°  arithmetic operations. (19)

This suggests that if Q is full and the eigenvectors are known they
should be used. On the other hand for a band matrix with m diagonals

Gauss elimination requires

2
Ezg + 2mn arithmetic operations (20)

and there will be some m below which Gauss elimination is advantageous

and above which the eigenfunction method should be used.
Of course in the general case the eigenvectors of A will not

be known and it would be a more difficult job to find them than to solve

the equation (10) by Gauss elimination.
In certain cases however where the matrix A is the finite difference

approximation to a linear differential equation the eigenvectors are

known and the method of solution by eigenvectors becomes sattractive.

Furthermore if the eigenvectors are sines and cosines the symmetry

of these functions can be used to reduce further the numbers of operations

required in steps 1) and 2) of the solution of equation (10).



3. SPECIAL CASES WITH KNOWN EIGENVECTORS

Consider the linear differential operator

£=p d2£
L(x) = ng a,, —— (21)
28 4 24

which has constant coefficients and in which derivatives only appear
to an even order.

Then the finite difference form of
L ®(x) . b(x) (22)

at the sth point on a uniform mesh will be expressable as

—+
J==p

where gj = +g_J due to the even condition on the derivatives, and the
gj are the same for'all points s on the mesh.
In conventional matrix form equations (23) would be written in

the form of equation (10) as
Ap=0 (2k)

with

A= . C Q= f b= 'l (25)

't;n .
m
=,
<§°
56
O e
s




To solve equation (24) by the eigenvector technique we must first
determine the eigenvectors of the matrix A, as these constitute the
columns of the transformation matrix Q.

To determine these vectors it is more convenient to return to the
equations in the form given in (23).

If the eigenvector is u and the eigenvalue M then we need to

solve:
J =4p
Y, g;uy = Mu (26)
. s+ s
3&p 9 ®H
h i6 s
Let us try the complex function e which by taking real, or

imaginary parts can be used to cover both the case of u, = cos Sks

and uS = sin Gks

J=+p i@k(s—i-,j) 16,8 D 1ek( s+3 ) iek(s-.j)
g.e = g.e + g.{e +e }
J=Z-p . 0 ng !

> 103 -i6J 16
G+ 5 Eyle < ve e
=19

P ieks
= (gy *t 2 21 gy cos GkJ} e
J:
Therefore
] (27)
M = 8 * 2 Zlgj cos ij T
J—
and the corresponding eigenvector is
US ’= A sin GkS or B cos Gks




where A, B, and Gk are determined from the boundary conditions. We

consider the same cases as in section 1.

3.1 The periodic case

US+pn = us P an integer
. _2nk . .
The vector has a period equal to n . . . Gk =5 where k 1is an integer.

The value at s = 0 is arbitrary therefore both sine and cosine vectors

are permissible

2nks 2nks
n or B cos

Kk = o,1,...,n/2

when suitably ordered and normalized these functions are identical with

V(s,k) defined in section 1.1.

3.2 Sine case

Ug =u = 0 and qp= -uP un+p ='%—p

Uy = 0, therefore only the sine vector is permissible. wo= 0 there-

fore the sine must go through an integral number of =x as s runs

nk
from 0 to n and Gk = 3

When normalized these are the functions V(s,k) of section 1.2.

3.3 Cosine case

u_P = up
un+P = un_p

10




By the symmetry of the end condition only the cosine vector exists
and furthermore an integral number of n must be covered as s runs
from 0 to n. Therefore Qk _ %%" and the functions when normalized
are the V(s,k) of section 1.3.

We therefore conclude that the eigenvectors of the matrix A are
the functions V(s,k) previously defined, with the‘choice of the
V(s,k) being determined by the particular boundary conditions imposed
at s =0 and s = n.

Forming the transformation matrix Q from the eigenvectors

V(s,k) we have for the s,kth element

Q k = V(S)k) (28)

S

Recalling (17) Fourier synthesis of the function '@ is the operation

(29)

tast

9=0
or in terms of the V(s,k)
9, =L V(s,K), (30)
k

To find the inverse of Q we make use'of the orthogonality

relations (4) when it is clear that
-1

because then the relations (4) become in matrix form

11




(31)

as required.

Recalling (15) we have that Fourier analysis is the operation

g = (32)
or alternatively
7, = é’, W(k,s)o, (33)
4, SOME COMMON CASES
d2
Let L(x) = =% (34)
dx

then the usual 3 point finite difference approximation is

+1
L(X)CP(X) ; JZ_']%J ¢S+j = CPS-l - 2CPS + CPS‘f’l

thus 818 = 1 & = 2.
The matrix form of L(x) has the following forms according to

the boundary conditions




4.1 Periodic

2 10 . 0 1 a
1 . OO
0 : )
A= | 0 d= ' (35)
o O 1
|10 . 012 d

Eigenvector or transformation matrix is defined by

/Pk1V€603223k . Osksn/z, OSSSn—l

= 6
%k (36)
V2 sin %ﬁl n/2 <k'<n-l, 0<s<n-l

A is symmetric therefore the inverse of Q is its transpose i.e.,

-1
(@ )k,s = st

This may also be seen directly from (5). Note that Oy # (Q-l)sk

and analysis and synthesis are different operations. The eigenvalues are

3=1

_ 21k
M= 8g * 2.2: g cos 6 , 6 = &
J=1
= -2 + 2 cos . -2(1-cos éﬂ&)
n n
= b gin® ZE
n

Thus the diagonal matrix of eigenvalues A is defined by

13



(37)

With these definitions

4,2 Sine case

A \1\\\ ! a- (38)

-1 ks 1<k<nl 1<s<n-1
Uk = (@7 g = /5 sin 2 SRS 2
-1 . . . -1 . .
0 is symmetric . . st = (Q )sk and the operations of Fourier

synthesis and analysis are identical

2 1k
Aik = -4 sin o 611{ (39)
4.3  Cosine case

-2 2 d

) 0
1 -2 1 (ko)

A= \\\ d=
1 -2 1
<:) 2 -2 dn

14



g = (47 =V 5 5 cos (12)

note that (Q-l) is not symmetric because of the Pk ... However,

Q = (Q-l) and analysis and synthesis are identical.
sk sk

_ 2 nk
A = -4sin” = b (k2)

Sometimes one meets the matrix

A= \\ with d= (43)
1

1 -1
n
d2
as the finite difference form of -3 with the zero slope conditions
dx
at the boundaries expressed as
Us T 851 and u +s © Yn-s-1

This amounts to requiring zero slope at s = -1/2 and n + 1/2 and

leads to the eigenvectors

nk(s+1/2

= H <

Qg V(s,k) « cos = 0<k<n
-1 3 n(k+1/2)s

15




We note that st % (Q,_l)sk are the process if analysis and synthesis
are different.

Thus although the matrix A in (43) has the elegance of symmetry
over the matrix A in (40) its eigenvectors are not so well suited
to Fourier analysis and it is advisable to convert the equations (43) to

the form of (40) by multiplying the first and last equations by 2 and

then use the eigenvectors (L1).

5. MINIMUM MULTIPLICATION FOURIER ANALYSIS

Having described Fourier analysis and its application to the
solution of certain equations we come to the main point of this paper,
which is to describe an efficient method of performing this operation.

We have observed that the operation of Fourier analysis

b= 0-4, (k)

takes 2n2 arithmetic operations if all the elements of Q_l are known
and stored in an (nxn) array.

We will now describe an algorithm which computes E from b
with something like a tenth of these operations. This is done by
restricting Fourier analysis to those eigenvectors defined in sections
1.1 to 1.3 and restricting the value of n to be of the form 12 X 24
where g is an integer > 0.

That is to say n 1is from the sequence

{12, 2)"') h8) 96, 192, 384, 768, -} (45)

16




The process is recursive and depends on removing a common factor
(usually of 2) between the harmonic number k and the number of points
n at each recurrence until finallywe are required to do a Fourier
analysis on 12 points only. This last case is written out in longhand
for program efficiency.

This process has the effect that on the first recurrence all the odd
harmonics are calculated, on the second recurrence all the harmonics of
the form 2 QD an odd number, on the third recurrence all harmonics of
the form hé@ an odd number, and so on. Furthermore, by the use
trigonometric ~identities it is possible to calculate 8 harmonics at the
same time, with very little more work than would be required to calculate
one harmonic.

Before describing the algorithm in detail it is necessary to

establish some identities.

5.1 Removal of a common factor

S=n

. . n sk
Consider S(k,n,ask) =S§ a, sin 3 & (L6)

and let there be a common factor of 2 between k and n so that

k=2Q¢g
(47)
n=2@h
s=h-1 5 S=n
S(k,n,as) = Z a, sin /2 _hg + an/2 sin n/2 g+ Z 8, sin n/2 sTg
S=0 s=h+1
(48)

17




the third term in (48) may be expressed as

h-1 h-1 ‘
Z a,_g Sin /2 % (2h-s) = Z an-s{Sin ng cos 23% - cos ng sin g % )
s=0 8=0 =0
h-1 g x gs
= gé% -(-1) & o sin 3% (49)
Substituting (49) in (48) we get
s=h=1 g -
Someg ) = Y - (a1, ) sin 3 8 +e,psin 129 (50)
s=h s=n/2
_ 2 T gs _ 2 . k/2
= g;o F (a) sin 5 3= = Sz%‘ F (a) sinz s =5 (51)

where Fs(a) stands for the sth element of a new array of elements obtained

from the original array by folding as follows:

2
F(a)=a_ - (-1)8 8 _ s = 0,1,...,n/2-1

3]

(52)

2
ofe @ = 2nf2

In equation (51) we have reduced the original summation up to n
to a summation up to h = g but over a set of folded values 2Fs(a),

Using the S notation this is

s (k,n,8.) = 8(k/2, n/2, ¥ (a)) (53)

and a common factor of 2 has been removed.

18




To take account of the two possibilities of g being odd or even we
introduce the 'Twofold' operation on an array, which is a procedure

of the algorithm.

5.2 Twofold (L,N,A);

The numbers Az, A£+l’°°"AE+n may be imagined to be folded as

follows into a new array B

2 .
F(A) = _ -
(A) =By = Agu-hp
i = O,l,ovo, g - l
Bpin-i = Bpei*Ppinag (54)
2_+
F (4)
B n
I+ = = A
2 n
o+ §

Here /4 is simply a common origin and may be ignored as regards

understanding the process,

The elements B,, B, . 5005,B will be seen to be the elements
£ Tl o+

VT

2Fs(a) for g even (denoted by 2FS-(a)) while the elements

B

P B£+n-l”°°’B£+ n are the elements of Fs(a) for g odd (denoted
2
by 2FS+(a)). The purpose of writing the elements for g odd in reverse

order is to enable the new elements B to overwrite immediately the
corresponding element in the array A, so that in fact there is no need
to introduce the array B in the procedure.

To see the effect of the operation Twofold we will apply it to a

few typical harmonics. ’

19




Sine harmonic

Sin 2ns
/—,\ . n
s=0 \\\\\‘——’//é

U

Twofold
o /‘\
Tw&%old
() J} -

+-period ———————>

Sin E . 28
n
) 7~ N\ ——
§=0 ~—r s=n
Twofold
\-——V-:—-o
Twofald

(e) —I\

Cosine harmonic

Cos EES
|\ ! /I

=0 T 8=

Twofold

()

Twofold

L

Fig. 1 = The Twofold operation applied to some

typical harmonics.



It can be seen from Fig. 1 that one operation of Twofold on the
original data immediately separates the sine from the cosine harmonics,
the sines appearing on the left side of the fold and the cosines to the
right side (see Fig. 1 (a) and (f)).

A further fold applied to the sine harmonic will separate out all
the harmonics with an odd number of x° in the half period. These
harmonics will appear in the right half of the two fold (see Fig, 1 (b)).
All other harmonics appear on the left of the last two fold (i.e.,
in the first quarter period).

The procéss is continued by applying a further twofold to the first
quarter period when all harmonics with an odd number of x° in the
first quarter period will separate to the right of the twofold (see
Fig. 1 (e)) and all others to the left.

Similar considerations apply to the separating off of the cosine
harmonics and in both cases Twofolding can continue until only 12
points are left when the last 12 harmonics are calculated by a special

routine.

5.3 Threefold (L,N,A)

As 3 is always a factor of the number n it is also possible
to remove a common factor of 3between k and n by a folding process

as follows.

Eime . % sk
S(k,n,as) = Z a sin 3 I+ s = 0,1,...,n (55)
s=o

21




now let

k=3Qzsg
n=3®hn
s=h-1
n
s(kx,n,a) = z &, sin %%& +a sinzs g
s=0

h-1
L n X & - ;
I E: 8. SN 5§ (2h-s) + a,, sin 7ng

2h

% (2h+s) + a3y sin %; g

h-1
T 8 T
S(k,n,a) = Zvas sin 3 —1% + ah sin 59
5=0
h-1
-1)8 X sg
+ th-s( 1)® sin 5 T
sS=
Ly (-1)8 sin 5 28 4+ (-1)8 in 5 g (56
Sgo “Bopsg(~1)” 83 3 + (-1)% 8gy sin 5 g (56)

The three fold will only be used on the right hand section following
a.Twofold for which it is known that g is odd. Making use of this
fact we have
h z2%0/3

h n/3
,n, = 3F sin Isg_ 3F i z k3 (57)
s(k,n,a) ;Zg S(a) in 5 2;0 S(a) sin

where 3Fs(a) are the elements of the Threefold applied to a, defined

as follows

22




SFS(a’) a's + a2h_s = a2h+s S = l’2,0‘o’h-l

(58)

]

[\]
]

o]

r,(2)

Thus S(k,n,a) = S(k/3,n/3,3F(a)) and a common factor 3 has been re-
moved.

In view of the fact that the right hand section of a Twofold has
its elements written in reverse order the procedure Threefold must

reverse the indexing and is defined as follows

+ A

. L =1,2,...,h-1
Bpin-i < Bpin-i pn-2h+i ~ Agen-oh-i : et

(59)
Apin-n Rpm-n — Ay

5.4 Eightk (k,N,A)

Having eliminated all common factors by the operation of Two or
Threefolding, processes incidentally that require only additions, we are
left with a reduced number of points from which we must compute the
harmonic amplitudes. We will restrict consideration to the evaluation
of the sine summation S(k,n,a) when given X,n,a because we shall

see in section 5.5 how this can also be used to evaluate the corresponding

cosine summation.

s=n
Let C_Pﬂ = s(24,n,a) = Z a sin En—z s = 0,1,...,n (60)
“s=0

23




where now it happens to be more convenient to let k = 2¢ and # takes
the values 0,1,...,n. As mentioned earlier it is possible to calculate

eight harmonic amplitudes at a time and these are

Py aSn/)-i-‘ll’ cpn/h+,8’ an/2—£’ an/2+,8’ CP3n/1+-17/’ (p3n/)++.2’ P-4 (70)

The harmonics being picked off an equal distance /4 to either side of

the key values 35, 6n/h’ $n/2’ 53n/h’ @n-

Let us define the quantities

A(z) = z as S ij}:'lig
s mod L4=2
B(Z) = 2: a_S S i?ﬁf
s mod L=0
E(Z) = 2: a s 1¥$£

where each sum is taken over all s in the range 0 to n that satisfies
the modulo condition given.

Then

% = io ag sin “%z = (A(ﬂ)+B(£)) + g(4) (72)

[}

I n
o .. ns(n-£ . Tsh
CP = z a sin J——l I Z - as COS s S1n T

n-2£ L s n -
=0 $=0
(73)
= - 2: a, s 1ﬁ$£-+ 2: a sin 54 (A( £)+B(£)) TE 2
s mod 2=0 ° n s mod 2=1




I T ns

= _ LTS n T,y _ X fie-?cos—ssin——}
Cpn/2-7-£ = z_: as sin E(§ +z)-Zas {sinzscos o 5 "y
s=0 S=0
=+ 2 ascosgssing—i—z+ 2 assingscosﬂ—s-‘-e
s mod 2=0 s mod 2=1 n
= + as sinE%g-l_: Z aB sinﬂ—i!+ Z aS coszﬁ-—'e
s mod 4=0 s mod 4=2 s mod b=
Z ns b
as CcCOs =———
s mod 4=

Oufotg = + (304408 4 5(4) (74)

To obtain the remaining harmonics we determine expressions fgy

A(n/l.t-z), B(n/lt—l), E(n/h-z) and F(n/h-ﬂ)

and use these values again

in equations (72) to (74)

- T h_yp
M), T o g D) T, e
smod L=2 n s mod 4=2
ns ., wnskt
- cos T~ sin —ﬁ—]
z . WS s 4 Z ns 4
= ag sin g= cos == = a, cos —=
s mod 4=2 s mod 8=2
a_ cos 154 (75)
s mod 8=6 ° n
similarly
B(n/’-}-.l) _ Y a gin 1rsT (n/k-2) _ _ Y a siijrs]!
s mod 4=0 s mod 8=0
+ Z ag sin u%.z (76)
s mod 8=L

25




Introducing now the notation

S(z) = 2: a, s i?if
J s mod 8=j

C(z) = E: a, cos ng
J s mod 8=j

We can express the results of equations (71)as

PONEONEO
S5 40, oo
e - (s(Dse())

+ (ng)+sgz))

1
from which we compute

¢, = (A+B) + E
® ,=-(A+B) + E

n-4

Eqﬁations (75) and (76) become

3 7

CPn/2+2 = ~(aE) +

6n/e-z = (a-B) 4 F

A/h2) _o(8) _ ()

2

p(n/k-2) _ _S% L), Sg4 £)

and one may also show that .

26
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Va2

pV40) 2 L e Dol + (o sl 4 (oDl - (o)

<|

where _-\-/_];-_ comes in as the value of sin ﬂ/’+ and cos ﬂ/)+-
2

" From these new A, B, E, F one calculates

= _ = = - + F
an/h-ﬂ = (a+B) * E, q’3n/l+-/z (4+3)

(81)
cpgn/)w3 = -(A+B) + E , (Pn/)++£ =(A-B) . F

Formulae (77) to (80) constitute the algorithm for calculating the

eight harmonic amplitudes.

5.5 The cosine harmonics

Cosine summations of the form

s=h
T
C(g,h,as) = Zb a_ cos 2—§ g = 0,1,...,h (82)
S-

h
are required for the cosine harmonics. These may be calculated using
a sine summing routine such as EIGHTK by applying it to the coefficients

in the reverse order and making a simple alteration of sign.

sch n (h-s
c(g,h,A) = ;) a, o o8 5 58
sS=

szh x ngg g T 5g
=S§Oah_s {cos§gcos-2-. T +s1n§g31n-2-h—}
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It will be observed in the algorithm that the harmonics are only
evaluated after Twofolding has reduced g to be an odd number. Using

this fact we have

A
~18

. s=h
C(g,h,as) = sin 5 & 2: &, _g sin
s=0

b (83)
C(S:h:as) = sin > €& S(s’h’ah-s)

g1
= (1) ° s(gmna, )

5.6 The procedure value - VAL(L,N,A,M,Y,SI)

The procedure VAL 1is the ALGOL procedure which evaluates all the
summations of the type S(g,h,a).

It performs a sine analysis on the input values Z&HJZ£+2’”"Z£+n 1
and stores the harmonic amplitudes in the array Ym+l’Ym+2’.’.’Ym&n-l’
using as eigenvectors the contents of the array SI, which is assumed
to contain the first quarter period of the first sine harmonic.

The procedure calculates

s=n
Ym—)-k'= z Z£+SSIkS
S=0
One use of VAL is in the call of the procedure FOURIERI2 with
BC =1, which performs the Fourier sine analysis of synthesis defined

in section 1.2 and used in section 3.2 and 4.2.

In this case SI is filled with the normalized function:
2 ., 7t
SI, —'\/;sm = (8%)
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and the procedure VAL is entered
VAL(O,N,Z,0,Y,SI)

when the Fourier sine analysis will be performed on Zl""’Zn 1 with

the harmonic amplitudes in Yl’””Yh 1

s=n=-1
_ 2 . msk
where Y = SE= z\[5 sin — (85)

The procedure may be understood by reference to Fig., 2 where the
case of 96 points is illustrated.

The basic recurrence of the process starts with a Twofold, initially
on the original 96 points. The 48 values obtained by subtraction on
the left side of the Twofold, and indicated by the shorthand 2F', are
the input points for the next stage of the recurrence.

The 48 values obtained by addition on the right side of the Two-
fold and indicated by the shorthard 2F', are used to compute all the
harmonics with odd k. First all odd harmonics that are not multiples
of 3 are found, eight at a time, by entry to the procedure EIGHTK.
This is defined as the set of numbers ({1}. Secondly all odd harmonics
that are multiples of 3 are found, by first performing a Threefold
(3F) and then entering EIGHTK with the reduced number of points. This
set of numbers is defined as {2}. In both cases EIGHTK need only
be entered for values of k less than N/8 because the remaining
values are filled in automatically by the procedure.

The next stage of the recurrence works on the 48 points from the

subtractive side of the previous Twofold and computes similarly all
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vAL(L,N,Z,M,Y,SI)

N=96 » Q=5

2,
48 @ \ '
\ gr={1} \JF
2+
2p- - ® 16
oL ® ‘ '
: 2L o + 8k={2}
8K=2x{1}
2 +

12; 8K=0®{2}

8Kk=4®{2}

FOURIER12(1,Q,X,Y); -

X. «X <03

0
2 .. 1t
SIt <\/7 sin T

vAL(O,N,X,0,Y,SI);
YO (-—Yn « 0

Ty oo Yﬁ

FIG2 = The procedure VAL and SINE ANAL/SYNTH BC=l

{1} - the set of all odd numbers which are not multiples of three
{2} - the set of 8ll odd numbers which are miltiples of three
0} ~ the set of integers 1 to 12.

8K= - the procedure 8K is entered to obtain-the harmonics from the indicated

set

=
[

the subtractive or left 'side of a Twofold

=
[

the additive or right side of a Twofold

a threefold

N\
&
[ ]

] ]

the number of points involved
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harmonics of the form 2@) an odd number. The process repeats until
we are left with 12 points from which the harmonics k = 8@ (1,2,...,11)}
are computed. This calculation is written out in full within EIGHTK
and is selected by the artifice of making the input parameter F an
odd number, in all other circumstances it happens that F is even.

It should be clear that the increase of the number of points by
a factor of 2 simply adds a further limb to the recurrence tree of
Fig. 2 and that the number of points may be increased in this manner
until some machine limit is reached. On the B5000 using one dimensional
arrays which have a maximum length of 1023 this limit is soon reached,

namely when n = 768.

5.7 The procedure SLOPE(L,N,Z,M,Y,SI)

The procedure SLOPE is the ALGOL procedure which evaluates all the
summations C(g,h,as). It performs a cosine analysis on the input
values ZZ’ZZ+1’°°"Z£+n and stores the harmonic amplitudes in

Y

ml? -2 gy USING as eigenvector the array SI.

Ym,Y

The procedure calculates

s=n
Y = Z ST 86
mt+k ;E% L+s PTks+n/2 (86)
One use of SLOPE is in the call of the procedure FOURIER12 with
BC = 2, which performs the Fourier cosine analysis or synthesis
defined in section 1.3 and used in section 3.3 and 4.3.

In this case the array SI is filled with the function

’ SIt =»'\/—§-_sin I;—t , (87)




The end values Zo and Zn are halved to take account of the factor
Pi in the definition of the normalized function given in equation (9)

and the procedure slope is entered
SLOPE (O,N, Z,0,Y,SI) ;

when a Fourier cosine analysis is performed on the elements ZO,...,Zn

with the harmonic amplitudes in Yb""’Yn° However, due to the fact

that the input values were not reversed in order before the procedure

EIGHTK is applied, as is required by equation (83) it is necessary

finally to reverse the sign of all odd harmonics to get the correct result.
The detailed operation of slope should be clear from Fig.3.

It is only necessary to say that CHS stands for the change of sign

required by equation (83) in order that EIGHTK calculate cosine harmonics

instead of sine harmonics, and that the special case of a 12 point cosine

analysis is selected in the routine EIGHTK by making the input parameter

F negative. In all other circumstances it happens that F is positive,



SLOPE(L,N,Z,M,Y,SI);

N : 96
25 25+
48 o
3 8k={ 1} 2_-
F pos F
16$ ;2& | o 2
=2®{1 - 2+
8k={ 2} 3p 8§;§®{ } F °F
CHS N\ .
- 8= 2 3 8Kk=4®{ 1} ‘ 8k=8%{ 0}
CHs[ } F CHS F<O
s
8Kk=4®{2}
CHS
FOURIER12(2,Q,X,Y);

2 ks

SI, «-*\/-; sin == ;

SLOPE (O, N,X,0,Y,SI);
change sign odd;

Y

o,..o,Y

n

FIG 3 _The procedure SLOPE and COSINE ANAL/SYNTH BC=2

Notation as FIG 2

CHS - change at sign required by equation (83)
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5.8 Periodic analysis and-synthesis

In the periodic analysis defined in section 1.1 the cosine

harmonics are given by

s=n-1
k'v_ 2“51{ for 0<k< n/2 (88)

n/2-1 n/2-1
zl Pk'\/—g— cos 2“Sk Zl ‘\/— cos ark (n—S)(P +
s= n

2 2
" Pk‘\/_ﬁ-' cos T @y, * B\ 7 %o
n/2-1
2 2 271k 2
k k-\/—H_cPO + sz-::l {q)swn s} Pk_\/; cos “n + Pk\/; cos i an/E

Px

= P

CPS is initially given in the range s = 0 to n-l. If however we

now introduce fpn _ CPO/2 and also make CPO 3 @0/2 then

n/2-1

P L } P -\/'2-
P, = P+ = cos
k ) 5 n-s k n

Darlr
Y=418.¢

=~
== 4 Pk‘\/i cos nk q}n/2 (89)

Both terms in equation (89) may be neatly combined if we recall

the definition of the Twofold in section 5.2 equation (54) whence

o+
2Fn_s(cp) =0, + @ s = 0,1,...,n/2-1

(90)

QF;/e(q’) = Pn/2
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and

n/2
- 2+ 2 21k
P = é Fn-s(q)) Pk_\/ﬁ—cos n

=0
(91)

— f2 2_+
3, - k‘\/; o(2k, n/2, °F (9))

Equation (91) shows that the cosine terms of the periodic analysis may
be computed from the additive side of a twofold on the original data,

as is shown in Fig. 4,

The sine harmonics amplitudes are defined by

s=n=1

_ 2 ., 2nsk
an/2+k - Szl o\ 7 sin — 1<k <n/2-1 (92)

s=n/2-1

i 2 . eomsk | SRl 5 21k
sgl P \/7 sin —/ + séi % \/7 sin == (n-s) + cpn/2 &®o
n/2

= 2 2nsk
s;) [QJS-CPn_S}‘\/:sin n

P /o4 ='\/§_ s(2k, n/2, “F.(9)) (93)

Thus the sine harmonics can be computed from the subtractive side of a

" Twofold on the original data,

Periodic Fourier synthesis is defined by

k=n/2 k=n .
¢, = Z/ Pk'\/g cos 27;181‘ P + ‘\/% sin ?%S- (k-n/2)p, (9%)
k=0 k=en/2+1

s = 0,1,...,n
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FOURIER12(3,Q,X,Y);

wn
=~
ct+

T

b

=

Im

=)
d

0 n
N = 96 » Q =
°
2F- 2F+
.8 R 48
° Cosine harmonics
Sine harmonics SLOPE
Y VAL Y YO,.OO, Yl}8
bho? - *2 To5
FOURIER12(4,Q,Y,X);
ST ‘__~\/é_-| si 2nt ;
t n n
Yo — — — — — Ygltyg — — — — — — — Y| @
Y, (-YO/Q; Yn/2 e—Yn/Q/Q; YM_BG—Y% «0 ;
SLOPE VAL
change sign odd . reverse and change sign

O’ .. o,xh8 Xh9, . o,x95

PERIODIC SYNTHESIS BC=h4

- FIG. 4.
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t and 2nd sums to those that can be performed

in order to reduce the 1°
by the procedures VAL and SLOPE it is necessary to reduce the range of

variation of s to that of k.

Consider
k=n/2 k=n
an—s - Z/ Pk_\Ecos -211:1_1{ (n=s) k + _\/-25- sin = (k-n/2)(n-s) 61{
=0 k=n/2-1 7

s = 0,1,...,n/2

k:gz k."—'n

2 2nsk = 2 . 21s -
= P '\/:cos ORI ‘ -\/: sin =— (k-n/2) @
n-s K=o k n n k k=n§é-l n n k

S
|

2 — 2 —
wn—s =\/z C(2s, n/2, Pk¢k) JWV/E S(2s, n/2, @k)
and (9%4) becomes (95)
2 - 2 -
CPS =‘\/-H- c(2s, n/2: Pk(pk) +\/_H‘S(2S: n/2, cPk)
*where the function S must be understood to be operating on the
variables mn/2+l’°°”¢n-l in contradiction to its definition in
equation (55).
The summations C are performed by the procedure call
YO (—YO/2 5 Yn/2 «— Yn/2/2 i
SLOPE(O, n/2, Y,0,X,SI) ; (96)

change sign odd ;

t

acting on the 18 n/2 harmonic components Y ’°°"Yn/2 with the

0

results placed in Yb’“"’Yh/E'

The summations S are performed by the call
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Y «Y «O0
n

n/3
/ (97)

VAL(n/2, n/2, v, n/2,Y,SI) ;
with the results placed in Yn/2+l”"’Yh-l°

We note from (95) that ¢s(s=0,l,...,n/2) is obtained by an
addition of C and S and that ¢n-s is obtained by a subtraction. A
Twofold operating on the whole sequence @0,”.,¢n has this effect if
the sine summation terms are first reversed and have their signs changed.

This process is illustrated in the lower part of Fig. k4.

-~

6. OPERATION COUNTS

Table I gives the complete information on the number of arithmetic
operations required for different values of Q and BC. The operations
counted are only those used directly in the arithmetic of the summations
and do not include any additions or multiplications which are concerned
with indexing and 'housekeeping' operations. They therefore represent
the best that can be achieved in an efficiently written program in
machine code.

For comparison purposes the number of operations is compared with
that which would be performed in the direct evaluation of the summations

in for example

=N
(Pk = z cPs sin %ﬁ k = 0,1,...,N (98)
s=0

. 2 - .
Such an evaluation requires n2 additions and n- multiplications

for all wvalues of k.
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We introduce the factor of simplication

o1F

= Total number of operations (99)

F

and the weighted comparison for 7090, using 15us for addition &and

25u8 for multiplication as follows

15 N° + 25 N

FT090 = [5X(F of adds) + 25 &) (F of milts)

(100)

The results for the total number of operations are shown in Fig. 5 and
6 together with-the theoretical asymptote for large N.

It will be observed that the periodic analysis requires
asymptotically only half the number of operations of a sine or cosine
analysis and that asymptotically the number of operations increases

as N2

The following empirical fits have been made

Sine or Cosine analysis

2
total # operations = =gg= + 5N (101)

—-Periodic analysis

>
total # operations = =§%- + 6.3 N (102)
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40

¥ Sine Anallysis BC =1
Total miior Time

Q| N Adds Mults Ops F FT7090 X 10 Secs
0 12 51 27 78 | .3.7 4.0 15 0.8
1 2k 135 57 192 6.0 6.7 15 1.0
2 48 339 150 489 9.0 9.9 17 1.3
3| 9% 97T 565 1,542 | 11.9 | 12.8 27 2.4
L | 192 3,016 2,157 5,173 | 1%.2 | 1.9 25 5.2
5 | 384 | 10,231 8,477 | 18,708 | 15.8 | 16.1 23 1404
6 | 768 | 37,206 | 33,661 | 70,867 | 16.6 | 16.8 22 43

* Cosine Analysis BC = 2
o 12 LY 21 65 4.4 4.9 10 0.5
1 24 128 51 179 6.4 7.2 14 0.55
2 48 345 156 501 9.2 | 10.2 14 0.9
3 96 970 559 1,529 |12.0 | 12.9 15 1.8
4 | 192 3,009 2,151 5,160 | 14.3 | 14.9 18 5.0
5 | 384 | 10,224 8,471 | 18,695 | 15.8 | 16.1 21 15
6 | 768 | 37,199 | 33,655 | 70,854 | 16.6 [ 16.8 2k 43

¥ Periodic Analysis BC = 3 or 4
1 2k 110 37 147 7.8 8.9 2 0.80
2 L8 302 98 400 | 11.5 13.2 12 0.85
3 96 780 305 1,085 |16.9 [ 19.1 21 1.5
I4 | 192 2,130 1,113 3,243 | 22.7 | 24.6 18 3.4
5 384 6,400 4,297 | 10,697 |27.5 | 29.0 22 8.7
6 | 768 | 21,214 | 16,937 | 38,151 |30.9 | 31.8 20 26

TABLE I
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To RUN TIME COMPARISON

The relations (101) and (102) show that for very large N the
Fourier 12 program with periodic conditions can be, at the most, 36
times faster than a program which evaluates the summations directly.

The Fourier 12 program is however complicated logically and
contains a large amount of indexing and the time to perform these
operations has been neglected in the counts of arithmetic operations given
in section 6. In order to get a more realistic view of the possible
time savings we have compared FOURIER12 with the following alternative

Algol programs?

FOURIERDEF = This program evaluates the Fourier amplitudes directly
from their defining summations, It evaluates explicitly a sine or cosine

for every term of the sum.

(1]

modified for

(2]

an even number of points as described in a remark by G. Schubert .

FOURIERE - This program is CACM Algorithm #157

This program considers only periodic analysis corresponding to BC = 3,
It does not evaluate the sine and cosine for each term and contains 2N2
arithmetic operations for large N. It corresponds therefore to the
direct evaluation considered in section 6 where no allowance was made
for the evaluation of the sine function. The results of the comparison
are shown in Fig. 7 where it can be seen that for large N, and periodic
conditions Algorithm 157 is 7 1/2 times faster than Fourierdef, and
Fourier 12 is 9 1/2 times faster than Algorithm 157.

Thus about 1/4 of the potential saving of 36 is obtained from an

efficiently written B5000 Algol program., It is to be expected that a
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well written machine, code program could realize a good deal more of the
potential saving perhaps up to TO%.

We also observe that both the sine and cosine analysis (BC = 1 or
2) are slower than the periodic by a factor of 2 as expected from

the formulae (101) and (102).

8. ERROR COMPARISON

The accuracy of the Fourier 12 program has been checked in two
ways.

In the first place we have compared the harmonic amplitudes pro-
duced by Fourierdef, Algorithm 157 and Fourier 12 for a random input
vectors and the results for the periodic case (BC = 3) are shown in
Table 2. The results for BC = 1, 2 and 4 have been obtained and are
qualitatively similar to the case BC = 3 except that we have no com-

parison with Algorithm 157.

BC = 3 PERIODIC

Q N ALG # 157 FOURIER 12
1 2l g x 107 <107
2 48 4 x 1070 1 x 107
3 9 y x 1078 1 x 107
4 192 4 x 1077 2 x 1071
5 384 2 x 1077 1 x 10720
6 768 1 x 107
TABLE 2

Maximum deviation from FOURIERDEF result for a random
input vector ranging in magnitude from -1/2 to +l/2.

In this case to avoid excessive machine time that would be required

to evaluate Fourierdef we have assumed that Fourier 12 is correct.

he




Table 2 shows that the error in Fourier 12 does not increase
significantly with increasing N and is of the order of the truncation
error of the B5000 machine, which is ~;O-ll. Thus technique of folding
used in Fourier 12 appears to be a stable process numerically.

It can be seen however that the error using Algorithm 157 increases
with N such that for N > 100 the calculation of Fourier amplitudes by
(3]

the recurrence techniques suggested by Goertzel and used in Algorithm
157 is probably not a suitable method.
As a further confirmation of numerical instability in Algorithm

157 we have used as input the test vector

X =(_l)l for i = O,l,ooo’N-l

which is ’/36_69 the highest cosine harmonic,

Table 3 shows the relative error in the amplitude of the highest
cosine harmonic when calculated by the various routines. Again there is
a steady increase in the relative error in Algorithm 157 as N increases,
whereas there is virtually no increase in the error when Fourier 12 or

* Fourierdef is used.
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BC = 3 PERIODIC

Q N FOURIERDEF ALG 157 FOURIER 12
| ol 4% 107 3x 107H 1x 1074
2 48 1 x 10710 3x 10710 1x 107+
3 96 1 x 1071 2 x 1077 c 10711
4 192 3 x 1070 1x10-6 1x 1071t
5 384 8 x 1072 3x 1077 1 x 10710
6 768 - 8 x 10™° c 10711
TABLE 3

Relative error in the highest cosine harmonic amplitude.

The second check on the accuracy of Fourier 12 was a self con-
sistency check performed as follows. A random input vector is analyzed
into Fourier harmonics by Fourier 12 and afterwards the harmonics are
synthesized by Fourier 12. The final vector obtained should be identical
with the initial vector and the greatest deviation between the two is
recorded in Table 4 The test was performed for three different random
vectors in each case and the maximum derivation of the three cases 1is

recorded. The random vector varied in magnitude from -1/2 to +1/2.
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SINE CASE COSINE PERIODIC

N BC=1 then BC=l BC=2 then BC=2 BC=3 then BC=k
12 1.5 x 10 -10 1.0 x 10710 -

2l 1.5 x 10 10 1.4 x 1079 2.0 x 1071

48 1.7 x 10710 1.4 x 1010 102 x 1070

96 2.7 x 1070 1.5 x 10 *C 2.1 x 10 20

192 2.5 x 10750 1.8 x 1070 1.8 x 107°

384 9.3 x 10710 2.1 x 1020 2.2 x 10710

768 2.2 x 10 -10 2.k x 1070 2.0 x 1070

TABLE 4
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PRUCEDURE FOUKIER12 CACsAsXsY)}
VALUE BC»Q3 v

INTEGER ©C» Q) ARRAY X,Y(CI3

BEGIN '
OWN INTEGER NIsNUGsNSshEsNTsNBINGsN10sNLYL S
N4eN3e12x2%Q)
BEGIN . .

OWN INTEGER KsF1sFsI1sK1sNZ»I11,12sJsK2,H2sHsL1oL2,L33

OWNHEALAsBIEsFsTSsTCrGoRIALSA22A3»A4»AS,TERM,B1,B2,B3»B4,B5,B63
LABEL ENO13

OWN ARRAY ZTOSN3)»SIC(CIN3I/2)3

OWN ARRAY $,C{03813

UWN HEAL NO;

REAL PRCCEDURE SIN1(X)}

VALUE X3} INTEGER X3

BEGIN xex MCD(N10))

SINLelF XSN7 THEN SI(X] ELSE
IF X>N?7 AND XSN3 THEN SIIN3I=X] ELSE
IF X>N3 AND XSNi1i THEN =SI{X*N3) ELSE
=SIIN10=X])}
END SINYS
PRUCEDURE TWOFOLDCLsN)3
VALUE LN} INTEGER LN}
BEGIN
H2 ¢ N/23. ™

FOR I¢ 0 STEP1 UNTIL H2=10 0

BEGI N I1el+L} [2€eN=1+L3
A1)} BeZl1213
Z{I1]le A=B)} 2012)¢n+83
ADO ¢ ADD+23
ENOJ
END TWOFOLDS
PRUCEOURE THREEFOLOCLsN)I}
VALUE LosN3 INTEGER LaN}
BEGIN
HeN DIV 33 JTlelL+N3  J2¢L+NwH=H}
FOR le1 STEP 1 UNTIL H-1 00
ZUI1=1le2C18=10¢2002¢41)=2(12=1))
ZUT1=H)eZ[I1=HI=2(LY}
ADD ¢ ADD + 2 x (H-1) +13
ENU THREEFOLDI )
PROCEDURE EIGHKTKC(LANsKsM»Y)3
VALUE LoNsKsM3 INTEGER LsNsKsMJ ARRAY Y(O013
BEGTi
FURI€OSTEP 1 UNTILED O S[1)¢C[I]e0}
I FXK<O0 THEN
BEGIN CCMMENT 1 2POINT COSINES| h LONGHAND FOR EFFICIENCY)
TWOFOLOC(L+626)3
A+2[LI%XB6+2[L+4)1xB2Z} Be 2[L+2)%B43
AleZ(L+31xB3 J
Fe ZEL+1)IxBl=A1+4Z2[L+5)%BS} E¢ ZIL+1IXBS+AL1+2(L+5]1xB1}
GeA+B; Re¢A=8} Kee=K/23
IeM+K2) JeM=K23
YU1)e=G=E3 YIN7+I)eF=R3 VYINI+JICE=G} VYIN?+J1e=R=F)
GeBO6XCZILI~2CL+4))3 E€RIXC 2CL+1)=2(L+3)*2(L+5))} K2e3%XK2)
YIK2+M]e=G=E} YIN3I~K2+M)e¢E=G}
Ge=Z[L+6)xB6=2(L+B)xB23 Ee¢=2(L+71%xB43 K2e=K}
LeM+K2} JeEMN=K2}
Y (11¢G+ES YIN3+J1e¢G=E} YONT#M)eBEX(=2Z(L+61+2CL+8])}
AeZUL+123+4201L+1C)3 BeZIL¥113+2(L+9)3
YCM)eBOXCA4E)) Y [N3I+M JeB6x(A=B))}
FeZIL+18)xB2=21L+9)x%863 ReZ(L+12)xB6~2(L+10)xB2)
YINT4JIER+F YINT+]leR=F}
ADD€ADD+283 MULTeNULT 4203
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END
ELSE
IF K MO 251 THEN
BEGIN
KeK+]3
AleZ[L+9)xB3)} -
Ae2lL+10]1xBe+2(L+51%B63 BellL+BIxB4)

Ee2lL+11)xB1+2[L+7I%xAS5+A1} FeZlL+11)xBS+2L0L+7)xB1=AY}

Ged+B} Re¢A=R3 K2eK/23
JeMen2} JEM=K 23
YOI J¢E+G3 YINT+I)¢F <R3} YINI+JIeE=G)

YIN74+JDeF+R)

GeB6XCLIL+1CI=ZIL+6])3 E€BIXCZIL+1114Z0L+9]1=2(L+471)3 K2¢3IxK2)

YIK2+M)eb+G3 Y (N3=K24VM JeE=G)
Z{L+6)eC}
TWGFOLOCL,6)3
Eet2x2(L+51+B€EX2(L+3)3 GeBaxZ(L+4)3 TeM+K} JeM=K}
YLIJeE+GS YIN3+J)¢E=G} YINT+MIeBEXC2(L+51"20L+3))}

YINT+J)eBUx(Z2LL+1)+2(L+2))) YONT+T)eBax(2(L411°2[L+21))

ADUeADD+223 MULTeMULT+163
END
ELSE
HEGIN
K2¢ K21
FOR J ¢ 1 STEP 1 WHILE us8 AND JsSN DO
BEGIN
FUR 1 + J STEP 8 WHILE T $ N oo
BEGIN I1 ¢ IxKéj L3¢L+N=]}
TERMeZ(LIIxSINICIL)S
TSe¢lF IsJ THEN TERM ELSE TS+TERM)
If I#J THEN ADD¢ADO+{j
MULTeMULTH1)
IF J MX 4 # 0 THEN
BEGI N
TERMeZILIIXSINICIL+NT)}
TCe¢IFI=y THEN TERM ELSE TC+TERM}
IFI#J)JTHEN A D O «ADD+13
MULTeMULT+1S
ENO TC3
END I3
Styl € TS 3 CLJY + TC 3
END 3
A €8(21+ SCe6l J8 eS8+ St43 3
L ¢ (SC1Y + SUS)) ¢ (St3) + S(71)3
Fe(ef1l+C(S))=( C C 3 1+CL71);
G € A+B 3 R + A=E3} TeMeK23 JeM=K2}

YOI)¢E+G) YIN7+1J¢F=R} YINI+JIeE=G) YENT4J)eF+R}

ADU ¢ ADD + 14 3
IF h #NS THEN
BEGIN
A+ Cl2) =Ccl6) j B + =Sra) + S[4))
E + CL11=C(5) 3 F ¢ S{1) = S(513
Al + E+F 3 A2 + E=F3
E€C{31=C{73} F + S(3] = ST71)
A3 € E=F3 M ¢ E+F3
E &« ASXCA2Z2+A4)}
F € A5 X(A1+A3)}
G €¢A+B } R ¢« A=8}
YINS+JICE+GS YIN6+J)eF=R} YING+]1 J¢E=G)
ADD«ADD+18; MULTeMULT +23
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END

END;

END EIGHTK;
PRUCEVURE VAL (LsMsY )}
VALUE LsM} INTEGER LM} ARRAY Y(01}

BEGIN
N2 € N33 Fle 21
FOR Pey1 STEP t WHILE N2>12 DO
BEGIN
TROFOLDCLAIN2) S
N2¢N2/23 LieL+N23
FOR Keéi STEP 2 VHILE Fi1xK<NS DO
IF x MOD 3#0 THEN

EIGHTK(LIsNZ2sF1XKsNM»Y))

THREEFULD(L1ISN2)S
FOR Ke 3 STEP 6 WHILEF1xKSN5 00
dEGIN N9€N2DIV 3 1 EIGHTK(LI+2XNIsNG»FIXKpMrY)} ENDS
ZIL+N2)¢03 FleF1+F1)
END Pi
TWOFOLDCLANZ)S
EIGRTK(LIN2sF1=1oMyY)}
END VALJ
PRUCEDURE SLOPE (LsVNMsY)3
VALUE LaM} INTEGER L»MJ) ARRAY Y(0Q1)
BEGIN -~
N2€N3} Fle2) L2¢L+N33
FOR Pe¢l STEP 1 WHILE N2>12 00
BEGIN
TWOFOLOCL2=N2,N2)}
N2eN2/2) Liel2°N2=N2)

FUR Ke¢1 STEP 2 WHILE FIXKSN5 DO
1F K MUD 3 #0 THEN
EIGHTKCLIsN2)FIXKsM,Y)}
THREEFOLD(L1,N2))
FOR Ke¢3 STEP 6 WHILE F1xK$NS DO
BEGIN NSeN2 O TV 33 EIGHTKCLZ="AXNIsNS»FIXKsMsY)} ENDI
FOR Keél STEP 4 WHMILE FixKSN10 DO
BEGIN TeV+FixK/2} YClle=Y(L)) ENDI
FleF1+4F1)
END 3
LieL2=N2}
TWOFOLD(L1sN2)3
EIGHTK(LL1sNZs=F1ioMsrY))
ENO SLOFE)

IF @27 OR Q<0 THEN GO TO END1}

FOR
PI

IF (8C=3 OH BC=s4) AND @=0 THEN GO TO ENO13
I¢ 0 STEP 1 UNTIL N3 00 2C1)eX(1)}
¢ 3.141592653591 ASe¢1/SQRT(2)}
NO€SQRT(2/N3))
IF BC=3 THEN
BEGIN
ZIN3)e200)e¢2(0)72)
TWOFOLOCO,N3)I
N3eN3I DIV 21
ENDUS
IFBC24 THEN WN3eN3 OIV 23 _
NS¢NI OIV 43 N6€3IXNS} NTeNI DIV 21 N10e2xN3) .  Nile3xNT)
FOR [ ¢ 0 STEF 1 UNTIL N7 00 SICI11 *NOXSINCPIXI/NI)}
B1¢SIEN3I O I V 1213 82¢SIINIDIVG 1 1 BIeSIINS))
B4¢SIIN3 DIV 311 BS5¢SI[SxNI Ov 1213 B6¢SIIN7))

IF BC*1 THEN
BEGIN

201 ¢ Z(N3) ¢ 0}
VAL (0»0»,Y )3
Y(OleY(N3)eOS

END)

IF

BC=2 THENW
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200)e2101/23 ZIN3)e2(N31/23
MULTeMULT+23
SLOPE (C20,Y)}
F OR Kel STEF2UNTILN3I=1 (0 O Y(KJe=Y(K]}
ENO3
| FBC=3 THEN
BEGIN
SLOPE (N3s0,Y)} -
Y(O0)eY[0)xAS) YINIJeY[NIIXASS
MULTeMULT+23
2{01e¢Z2{N3)e0}
VAL (O0»N3sY)}
YINGleQ3
END 3
IF BC=4 THEN
BEGIN
200)¢Z[0)xAS} ZIN3eZ{N3I)XAS)
MULTeMULT+2)
SLUPECO0,0,Y)}
POURKel STEP 2 UNTIL K3=1 00 Y(KIe=Y(K)}
ZIN3IeZ(NG) &0}
VAL(N3»N3»Y)}
FOR [¢1 STEP 1 UNTIL N7 DO
BEGIN JeN3+13 KeNa=[3 AeY(J1J YIJIe=Y[K]} Y(KIe=A END)
YIN4]eO}
FORIe{ STEP 1 UNTIL N3=t 00 . .

B E G I N JeNASTJAeY[113BeY[JIIYCIIeA=RI YIJI¢A+BIAOOCADD+2IENGY
ENDJ .
ENDT T

ENU END FOURIER12}
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