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We want to reexamine the Cauchy problem for systems with constant

coefficients, together with the matrix questions which arise after a

Fourier transformation, Our main results are in fact purely matrix-

theoretic, so that after motivating those results in the following para-

graphs, we hardly need to mention partial differential equations again.

We do hope, however, that our ideas will prove to be useful locally in

studying certain systems with variable coefficients; such an application

will of course require a much fuller discussion of differential operators.

A simple example will illustrate the problem we solve here, Con-

sider the system
o E@)-C D EQ) () (D) = e

which has the solution
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of

(2) w(t) = £, u, (k) =1, + t 73.}1_(

Since we may choose fl € L2(—w,w) such that Uy ¢ L2, the system (1)
fails to be well-posed over LE’ Nevertheless, on the closed subspace

normed by
ou, 2
2 2 1 2
) R = [y P o 12l T |

we no longer lose a derivative, and (1) becomes well-posed; in fact,

l 2
O PO PSP

What we want is to associate with more general systems such a sub-

space, maximal in a certain sense, over which the problem is well-posed.

Without the maximality requirement, this question has been treated
independently by Birkhoff and others (see [1]).
After Fourier transformation, a linear differential (or pseudo-

differential) system with constant coefficients looks like

A
(5) U _ pw) B, Nw,0) = Ho)

at

A
where o = (o .,wd), ﬁa(ﬁﬁ(w,t),g 4.,um(w,t)), and .. m . m

1" "
matrix P is the symbol of the given differential operator. To stay
within the framework of the Fourier transform we introduce the Hilbert

spaces L,(H), normed by



(6) Il - [ o) Be), Senas

R

Here H is a measurable Hermitian matrix function, normalized by the
requirement H > I, i.e., H - I shall be non-negative definite,

Let us call (5) well-posed over LE(H) provided that for some q,

1) ()l < el

for all £+ > 0 and all initial data f. Solving (5), this can be made

more explicit:

(8) Fr)t . Plo)t < ot

(w) H (o)

Differentiating at t = 0, we come to a still simpler equivalent con-

dition; for almost all w,
(9) H(o) P(w) + P*¥(w) H(w) < 20H(w) .

(To recover (8), post-multiply by exp(P(w) - a)t, pre-multiply by its
adjoint, and integrate.) In the example described by (1) and (3), for

instance, the condition (9) becomes
2 2
(10) <l+a> o)(o o)+ 0 =-iw\/l+w 0O
0 1 in O 0 0 Q 1
_ (0 i\ _ (1 0
iw 0 -\ 0 1 *




Our definition (7) is stronger than the usual one, which permits
a constant factor M on the right side. Nothing is changed, however,
since if (5) is well-posed in this weaker sense with respect to LQ(H]_)’
there is an equivalent norm H, such that (7) holds on Ly(H,) = L2(Hl).
This follows from Theorem III below, and in fact it is the chief result
of the Kreiss theorems which our work extends,

It is no trouble to bound o from below. If some P(a)) has the

eigenvalue M with eigenvector v, we must have from (9) that
~ ((HP + P¥H)v,v) < 2a(Hv,v) ,

which yields

(11) Re A< a .

Therefore a is not less than

(12) o = sup Re A, (P(w)) ,
w, J J

and we must impose on the symbol P the Petrowsky-Gdrding condition

0 < o, Subtracting a constant multiple of the identity, we shall in
fact suppose 0 < 0. Now fixing @ = 0, there is no doubt that we

can construct H(o) to satisfy (§). The delicate problem is to keep
H as small as possible; this we achieve, up to a constant depending
only on the order m, in Theorem III. The corresponding space L2(H)
is consequently maximal; its norm is weaker than that of any LQ(H')

over which (5) is well-posed.




The theory of partial difference operators leads to a closely related

matrix problem, In place of (5) we have

(13) B, tc,k) = A (@) Blo,t,x), R(w,0,k) = Plw) .

The Ak(w) are called amplification matrices; we don't want to discuss
such systems fully, but we need to explain that the time-step k ranges

over some interval 0 < k < k.. The analogue of (9), equivalent to the

condition (7) on L2(Hk)’ is simply

(14) o) B (0) A (@) < ™ B (@) .

Again there is a lower bound on @, namely

log |n. (A (@))]
(15) o = Su.pk ]2 A .
@y Jy

Therefore we impose on (13) the von Neumann condition ¢/ < =, By a

simple manipulation, we may achieve o/ < 0 and fix a = 0 as before,
Thus our two matrix problems can be very concisely stated: given suit-
able P and A, to construct two corresponding matrices H > I as

'small as possible so that

HP+ P¥H <O and A¥HA < H ,

respectively, Since the second problem is perhaps the more familiar,
and its solution leads to a solution of the first, it will be treated

in full detail, We need the definitions




2 2,1/2
|v| = (|vl| + e +‘vml ) / 5 |Al = Ssup IAVl/‘vI, p(a) = max ‘k.(A)l .
1<j<m
Theorem I, For a suitable constant K(m), depending only on the
order m of the matrix A, each of the following statements implies

the next:
. . 1/2 _
i) A¥HA < H for some H > I with (Hv,v) = C(v) for lvl = 1.

i) |sas7| < 1 for some S with |§7H| < 1 and |sv| = c(v)

for |\/|= 1.

-

iii) |a%| < ¢(v) for all n > 0 and [ |= 1.
iv) \(ZI—A)-lvl ST%E% for all complex \Zl > 1 and all
|v| =1.

V) A*HA < (—lié,L(Q>%-I < H for some H > I with

(fv, v) Y/ 2 < K(m) C(v) for all |v| = 1.

This theorem is very close to one originally proved by Kreiss [2],
and studied subsequently by Morton [3] and Morton and Schechter [4].

Therefore we should clarify those respects in which it is new:

a) The previous estimates in v), established by induction on m,
had a power Cp(m) in place of C, with p(m) -»® as m - ®,

b) We estimate the action of H on each vector v, where earlier
there appeared only the single constant C = sup C(v). It follows
that the H in v) is minimal in a stronger sense than just in norm:

if H' > I and A*H'A < H’,. then H < Ke(m) H'.




c) .We construct the new H in v) explicitly, leading to the

following additional information:

For some S with S*¥S = H,- A'= SAS is upper triangular,

with Ajl_j = 0 unless }"i and 7\3. are in the same cluster (see below),

and IA.’.\<
2= gl =

%— (1 - max( P\il’ |}~.J\)) in this case,

A trivial modification of § reduces this constant —;- to any
other, say 1/2m, so that the absolute row and column sums (the L
and £, norms of A') may also be made less than (1 + p(A))/2.

It remains to determine the behavior of the best constant K(m).
Our constant (which we don't compute) grows roughly like m!, while
examples of McCarthy and Schwartz [5] show that it must grow at least
as fast as some power of log m; this leaves a wide gap, It is not

surprising that K(m) - « in view of the Foguel-Halmos counterexamples

[6,7] to the Nagy conjecture.

2+ In this section we establish the first three implications in Theorem
I* These are easy steps, valid also for operators on Hilbert space.
With H = S¥8, the equivalence of i) and ii) follows from that of
the inequalities
(A¥HAv,v) < (Hv,v) for all v
2
ISAVl2 < |Sv‘ for all v

‘SA.S-lw|2 < |w|2 for all w .

In the applications, ii) corresponds to a change of variables and i)

to a new norm, In one respect the use of H is to be preferred;




it may depend more smoothly on some relevant parameters than does an
improperly chosen 8. The positive square root 8 = Hl/2 is as smooth
as H, Dbut a diagonalizing S may not be, although the latter change
of variables looks especially desirable. Mizohata [8] points out this
difficulty when d = 2, arising from the multiple-connectedness of the
circle; there is no difficulty in his context with H.

To show that ii) implies iii), we compute

(16)  |a%| = |5 (sas™h)? sv| < |s7H||sasTH® |sv| < c(v) .

Finally, given iii), we have for ‘Z|> 1

SR N OB

L |z‘n+l = Jz[-1°

(17) | (z1-8)"1v| = |

of™M]s

5« Before coming to the final step in Theorem I, we warm up with a more
special result of the same kind, which shows how the geometry of the
eigenvalues enters the problem.

Theorem II. Suppose the resolvent condition iv) holds, and the

eigenvalues of A satisfy
(18) BP‘i‘)‘;jl >1 - |xj| for all distinct i,j

2
Then A¥HA < p (A) H < H for some H > I with

2m-3

(Hv,v)l/2 < m(2+kmd ) (1+25) c(v)




for vI |= le Furthermore, there exists S such that H = S¥S and
sas™t s diagonal,
Proof « From iv) it is clear that no eigenvalue lies outside the unit

circle, so p(A) < 1. Although (18) admits repeated eigenvalues of

modulus one, suppose for the present that the eigenvalues are distinct,

Then we construct the projections

(19) L.=T—r'7::%, 1<i<m

Applying Li to the eigenvectors Viseeu,V W find Liv,j =9,.v

so there are the standard identities

(20) L, =L, LiLj= 0  for 14
(21) 3 3
21 = =

Z L, =1, ]Z xiLi A

. A
Now define the Hermitian matrix H by
(22) 3

= *
H=m %: ¥ L, .

From (20) and (21) we have
- ) N 2
(23) AMHA = ZKJL*J? m-.zL*{ Liz M =m )} |>~i| L¥ L, < pz(A)H .

To prove H > I we need only (21) and the Schwarz inequality:




(e) |v\2 = \Z Livl2 sz |Liv|2 = (Hv,v) .

From (22),
2
(25) (Hv,v) < m max |Liv\2 ,
and the crucial estimate is that of |L,v|. We use the resolvent con-
1

dition in the most natural way, by expanding

m
-1
2 = - .
(26) L, = . by, (zI-4)
k=1
We shall choose z, = 1/Xk; if |>\.k| is 0 or 1, then it is no
longer true that 1 < |zk| < ® and a simple limiting argument is

required in what follows, To compute the bi apply (26) to the

k.,

eigenvectors; for each i,
m

(27) 5., =) b,
k=

Solving this system, we get

(28) ]——-l—lbii] =TT —;‘l_xjhllz
2y 1-1 R R [N
(29) PPl LI L gy ]
[ -1 - (P DD L= P jl_Jk L=y | p

k £i

10



For any distinct i and j,

1-x.xi _ -1
(30) L= _ Mot (1+l>»jl“) T‘:;JC‘ <1 + 26 .

Putting the pieces together,

G1) 1l Tl 1 (7] < 7 L0

2m~2

< [2(1+28) + (m-l)h6(1+25)2m'3] c(w) .

Simplifying the last term and using (25),
2 -
(32) (HV,V)l/ < m(2+hmb ) (1428 )72 ¢ (v)

To complete the theorem, we introduce the left (ﬂ) eigenvectors

r

k? S0 that

(33) Av.= Ay g, TA=NT

Multiplying the first by rk

familiar biorthogonality condition

and the second by v., there is the
J

(34) nvs, = (0) for j £k .

Since V:I cannot be orthogonal also to r., we may fix the eigenvectors
J

11




by the normalization

2
(35) mfv;[" =1 and rv.=(1), 1<i<m .

It follows that
(36) L, =vr, ,

since both sides, applied to vj, give 61ij.
so that SAS™! is diagonal.

Now let the rows of S be r .. T

T’

By matrix multipiication

'vJ.l

m
*S = ¥ o+ o T¥ : = r¥r, .

(37) S*S (I‘l rm> . § 1 1

b

m
Using (35) and (36), this is precisely

m
* = * = .

(38) ? r¥(mv¥ v,)r, =m 3 I¥L;, =H

Finally, we have to return and admit eigenvalues Xi of modulus
one and multiplicity M > 1. From the resolvent condition iv), Ki
possesses M linearly independent corresponding eigenvectors; one puts
A in Jordan form to compute the resolvent (zI—A)_l, and then lets z
approach M. The eigenvectors may still be chosen to satisfy (34),

Let us number the eigenvalues so that Kl’“"kN are distinct,

and the rest are duplicates of these. Then instead of (19) we want

12




(39) Li = .I | —J » i = l,ttx,N .

Simply replacing m by N in all the equations (20) to (32), the first

part of the proof continues to hold. In place of (35) and (36), we have
2

(40) N]vjl = 1 and rvy o= (1) , 1<j<m

(1) : Ly =V, T, + ses ¥V, 7.

where ki s ...,Ki
1 M

may once more identify

are the appearances of the eigenvalue %.I. Then we

m
(42) S*S ; ¥ T, ? r¥(Mv¥ v,)r, = N ; L¥ L, = H.

Notice that when all |?\j| = 1 we may take & = 0, 350 that
(Hv,V)l/2 < 2m C(v). Even this estimate is too large, since McCarthy '
[5] has shown that in this special case iii) implies v) with K(m) = 1.
A similar comment applies to Theorem 4, and is especially relevant for

hyperbolic equations, in which Re kj(P(m)) = 0 by definition,

4+ To complete the proof of Theorem I, it remains to show that iv)
implies v). From iv) we know the eigenvalues satisfy |)\J.| < 1; we

shall put them into clusters as Morton [3] has done, Tnto the cluster

13




Cl goes an eigenvalue, say A of largest modulus, together with

l)
all others that can be connected to Kl by a chain of eigenvalues, each

link having length less than (l-‘kl 1 )/, C, is formed in the same way
from the remaining eigenvalues, and so on until every eigenvalue enters

one of the clusters C «C_. Of course r < m; when r = m, our

1’ r
basic constructions coincide with those in Theorem I, Notice that an
eigenvalue of modulus one and multiplicity M appears alone in M

clusters.

Let us suppose that

(43) p(A) < 1 and Ki # kj for i #£ 3,

and remove this hypothesis later by a continuity argument.

We want to associate with each cluster several matrices from which
to construct H. Given the cluster Cof let Ka be the eigenvalue of
largest modulus in Ca from which the cluster was formed. Recalling

the projections L. defined in (19), let

2(r, =N

(k) 1,- 2L , A, = LML, B Z_—I_T L,

suming over the indices i such that xi € Ca. Define

[
Q¥

(45) Hy= IX I+ ; (8%)"(3)"

From (20), I, acts like the identity relative to C,, and matrices
associated with different clusters are orthogonal, 1In particular, we

write down

1k




2 5 . _ -
(86) I, =TI, IB, =B, Ty =4 B Ay = BAy = HA, =0, atp .

From the definitions it follows that

1-|xa|
() B~ oy
* = % = - I* .
(48) Ioz Hanz Hy BaHaBa % Ia Ia—sg
Then from the appropriate triangle inequality
1-|n_|\2 2
o 1+9§A2
¥ —
(k9) AaHaAcx5<P‘a|+ 2 )Ha5< 2 )ch ‘
From (21) we see at once that
r r
(50) Y I,=1, ) A =4 .
1 1
Now the matrix we want is just
’ r
(51) H=m z H, .

'Combining the last three equations with (L46),
2
1+p(A
] = * =
(52)  avHA ZAamZHBZAy_mZA&(-HaAa_<_<_éL(_l>H ,

To see that H > I we use the Schwarz inequality to compute
2 S 2 2 \
(53) " =¥ 1T r Llryl® < m Ly = (v, )
1

15



The essential problem is to bound
2 - n_ 2
(54) (Hv,v) = m 2 (|Iav{ + X |§av| ) .
Er 1

There are two means of carrying out this estimate. Conceptually, the
simplest possible approach is to expand Ia and 33 as sums of resolvents,
just as Li was expanded in (26), and then apply iv). Unfortunately,

the choice of the has to be more complicated than it was there,

g
and the consequent algebra is a sorry mess. Therefore we adopt é more
economical alternative; with some minor refinements, the estimates we
need can be lifted from those made by Morton [3]. We denote his equations

by an added asterisk.

Morton's final result is
(55) iv) => |&v] < Kl(m) sup C(v) ,

but his proof works without requiring the supremum on the right side,
by noticing the action on each v in (13%)-(16%) and (18*). Further-
more, his estimate of A is found precisely by bounding the contribu-

tion from each cluster; thus when n = 0, i.e., v= 0 in (18%),

(56) \Iav\ < K2(m) C(v)

and also when n > 0,

(57) lay v| < Ky(m) c(v) .

16




Now we introduce one more matrix associated with qzz
(58) D,= A, * Aa(I-Ia) .
From the identities (46), we know

n n n
(59) Da = %1 + Ka (I-RJ> , n > 0
According to (56) and (57),
(60) - vl Rm)e(v) , n 20

Then the implication iii) => iv) gives

K3 (m) c(v)

, =1
(61) ‘(ZI-Da) V' S_——ré-r_—l'—— » IZI >1
Manipulating with the definitions, we find

1- I 11|

(62) (zI--]sa)’l = —5 (ZotI"Da)-l r 2y =Ny % .

Let z lie on the circle Za of radius 1 about the point
:hlo/lka‘ (or 4, if Xa = 0). The minimum of’lza| on this circle

occurs when z 1is closest to the origin, and an easy computation gives

| 1-n,
(63) lz,| -1>2—%—, 2z on

Thus it follows from (61) - (63) that

17




(6k) |(ZI-Ba)_lV| < K3<m) C(v) , z on 26.

From,(hh% the eigenvalues Ky of %1 are

2 (xi-xa)

T T M € T 0 M E G

Since each Ki € Ca is connected to Ka by a chain with fewer than m

links,

. gl 1yl
) [0 a

Thus for all i,
(66) |pi| < L/Q .

Using only (64) and (66), we will obtain the required bound (70); this
result may have some independent interest. Looking a second time at
Morton's argument, we put all the My into one cluster, so his X = 1.
Denoting by D° a divided difference formed at some p + 1 of the

points My (11*%) becomes
(&) ()] < PP

Carrying out the contour integration (14%) over Za and applying (64),

(16%) simplifies for g<m to

(68) Ip%(P)| < K, (m) c(v) .

18




-1
Here P(z) = (ZI-Ba) |l (Z-Hi) is a matrix polynomial of degree less
than me As in.(h*), Bg v is just the divided difference of order

m-1 of the product z" P(z)v formed-at the H;e Constructing a
1

Leibnitz rule, this divided difference is the sum of o products,
each bounded by
(69) 0P (") P (p(z)v) | < 0" (H)" K (m) C(v) -
Consequently

n m-1,1\n
(70) lBa vl < n (5) K6(m) C(v)

Substituting (70) and (56) into (54), the infinite series converges to

give the final estimate

(71) (v, v) 2 < K(m) C(v)

We still have to eliminate the hypothesis (43). It is easy to choose

M (after triangularizing A, for example) so that

A.€ = (1-€)A + e2M

satisfies (43) as e —»0,. Then for [v] = 1 it follows from iv) that

(72) (lzI-(l-e)A)-lvl < m%}i’)-:y < min(-‘%&% s %>

for |z > 1, where C = sup c(v)* (The uniform boundedness theorem

applied to iv) assures that C(v) can be chosen so that C < @)

19



Therefore
(73) | (z1-a)7v| = | Y (- (e1-(-em |
; !

< l-eéTMT : |Z%2 y

Since (43) holds for A, there is an H_ > I with

L+p(A_) \2 1/2  k(m) C(v

As € -0, some subsequence of H€ converges by compactness to an

H > I, and taking the limit in (74) gives v).

5. In this section, we establish the italicized statement about §
which follows Theorem I. Again we start by assuming (43), and we recall

the left eigenvectors Iy defined in (33). Suppose we now number the

eigenvalues in the order that they fall into clusters, and let Cl

= * 1
1 Sl Sl’ where the first

g rows of Sl are linear combinations of rl,. MMWW and the other

- contain kl,.@wkq. We want to prove that H

m-q rows are zero. From the definition (45),

(75) Hv, =0 for k>aq, rank (Hl) =q .

Writing Hi/e for the positive semi-definite square root,

(76) |Hi/?rk| 2 _(Hlvk’vk) = 0 for k >qg

20




By (54): I‘l,.u,,rq span the orthogonal complement of the space generated
1/2 . .

by vq+l""’vm° Therefore each row of Hl/ is a combination of

rl,.”,rq. Let V be the space spanned by the columns of H%/g, We

construct orthonormal bases cen con
Uy ,uq and uq+l’ sUp for V and

VJ'. Taking the u. as the rows of a unitary matrix Ul’ we have shown

that Sl = UlHi/Q has the required properties; of course
1/2 1/2
¥ = % =
Sl S1 Hl Ul UlHl Hl "

For every CO!’ we construct in the same way an Sa satisfying

H =8S¥§S. ] £ i - i i o

o SaSaFOW J o Sa is non-zero if and only if ?\.J. € Coe Then
o = 2 . .

defining § = ml/ ZSa, and recalling the multiplication rule (37),

we have S¥S = H,

Let A = SAS ~°. Since the first row of S is by construction a com-
bination of rl,...,rq, and r A = )\.krk, the same is true of the first
row of SA. This must coincide with the first row of A S, which is
a combination with weights Zj of the rows of §. Again Dby construction,
the rows of § after row g are combinations of r +es,T . Using

qtl’ """ m
the linear independence of the T, and also of the rows of §, we
conclude that Zj = 0 for j > g« In the same way, A..= 0 whenever
19

Xi and }\,j are in different clusters. Therefore

0

*

]
I
™

21



the square block Z& on the diagonal corresponding to the cluster Ca.
With a final unitary similarity U of the same block form, we triangularize
each Ka separately. Thus with S = v §, we have H = S¥3, and

A' = SAS_l has the required (triangular, block diagonal) form.

We have still to estimate the off-diagonal entries of A.'. Denoting
by a prime the result of applying the similarity S, we conclude from the
reasoning of the previous paragraph that A&,I&,B& and L{OH.E Ca)
all have zero entries outside block a. Since I& is the sum of the
right number of mutually orthogonal projections L{, we know that Ié
is just the identity matrix in its block. Therefore by (47) the off-
diagonal entries are introduced through q;.According to (48),

:ﬁ&' < 1l, and the same must be true of all its entries. Then the off-
diagonal entries of A& are bounded by (l-Pkﬂ)/E < (l-PﬁJ)/E,
Ki € Ca.

Again we must circumvent (43). Recall that the sequence A +A

led to a subsequence H€'4Iﬁ for each He we have seen how to con-
struct Se’ and taking a further subsequence, we get Se-» S, where
s*s = H. Unless (43) is violated by a repeated eigenvalue of modulus
one, the clusters for A€ and A coincide for small €. Therefore
the limit matrix S gives an A' = SAS-l with the right properties.
In case A has a repeated eigenvalue with |kj|= 1, we still know
A' 1is upper triangular and.lA'l: 1; but from this the off-diagonal
entries in the rows containing xj must vanish, and once more A' is
all right.

It is worth remarking that in v), H and S cannot be made con-

tinuous functions of A. The family

22




A = R 7 real

satisfies iv) with some C(v) independent of 7. Since the eigenvalues

of A_ have modulus one, A7 must be diagonal with respect to H7 to

7
satisfy A"y" H7A7 < H7- However, one of the eigenvectors of 7A is
discontinuous at 7 = 0, from which one easily verifies that H7 is

too.

6. With the definitions

(78) 7(P) = max Re ?\.j(P) , Re P = .Eéfi

we can state the analogues of Theorems I and II for the exponential case.

Theorem III. For a suitable K'(m) depending only on the order m

of the matrix P, each of the following statements implies the next:

i') HP + P¥H < 0 for some H > I with (Hv,v)l/2 = c(v)

for v| |= 1.

-, -1 -
ii') Re 8PS ~ < 0 for some S with |S ll < 1 and

|sv| = c(v) for |v| = 1.
iii") |e"*v] < c(v) for all t > 0 and |v| = 1.
iv') |(ZI—P)_1V| S}%él% for Re z > 0 and Ivl = 1

v') HP + P¥H < ©(P)H < 0 for some H > I with

(Hv,v)l/2 < K'(m) C(v) for |v| = 1.

23




Theorem IV. Suppose iv') holds, and the eigenvalues of P satisfy

(79) 5|7\-i->\j| > -Re KJ for all distinct i,j
Then HP + P¥H < 2 7(P) H < 0 for some H > I with
2 -
(Hv,v)l/ < m(2+l&m‘6)(l+28)2m 3 v

for |v| = 1. Furthermore, there exists S such that H = S¥8 and
SAS-l is diagonal.

Of course Theorem IV goes almost exactly as Theorem II did; one
makes the choice Zy = -%_.k in (26), as in the original paper by Kreiss

[9], and recomputes (28), (29), and (30).
In Theorem III, the step iii') ==> iv') involves the Laplace trans-

form in place of the power series in'(17):

(80)|(zI-P)-lv| = |f° ety at| < C(v)je't Re 254 - C(v)/Re z
00

1

of largest real part (necessarily < 0 by iv')) and connecting to it

The cluster Ci is now formed by starting with an eigenvalue A

those eigenvalues which can be reached with links less than -Re Kl/hm.
Then 02', v+ 1C are formed in the same way, In analogy with (43) we

may temporarily assume that

(81) 7(P) < 0 and A # KJ. for i £ 3,
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and then remove this restriction as before. Now we can define

2(h )

a=& RN oo

(82) I, = ZLi » Py = inl’i ,7 G

summing over indices i such that Ki € Cli Next we let

(83) H = I% 1 + Zl(GE)n(Ga)n, H = mZHa

From the orthogonality of the Li’ it follows as usual that

8 -
(84) B, + 13 Bo=2H

Obviously for n > 0

8 *)1 _ * _ n
(85) (GX) (6, 1) (6,-1) (G,)" > 0
or in other words,

- n n n+l n+l n n
(8)  (a)(e )™ + (@™ e )] < ()T (a )T+ (@G )

where the last term is to be interpreted as I¥* I when n = 0.
a o

Summing (86) from 0 to ,
*
(81) B, *+ GXH <2 H

o4

From (82) we have
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Re )»a
(88) P,=MNEy - 3 G, >

so that (84) and (87) yield
(89) By * PE Hy < Re N < 7(P) By,

Summing on @ and using orthogonality,
(90) HP + P < 1(P) H

The inequality H > I is (55), and we have now to estimate (Hv, v) .
This time there are three possibilities. The first two — to expand
ch and Gg as sums of resolvents, or to repeat the argument of Theorem
I with appropriate changes — would be safe but tedious. Therefore we
shall try to derive the estimate from Theorem I itself, using only some
essential remarks about its proof. In fact, we now give a complete

proof of the last step in Theorem III without using the H defined

explicitly in (83), and then identify the new H with that H.

For a given positive integer k, let w = ez/k, so that
Ré z > 0 <=> |W| > 1l. Then as in (73)
(91) | (wz-e/%) | = kl(zI-P+Fk,Z)-lv|
-1
k| (zI-P) "v| c(v) . 1
- l-‘(ZI-P)-ll lF l '- Re ak , T
Re z
<1 c(v)
= |w|-1 L. qu.zT s
Re z
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where we used u < e° - 1 for real u. Estimating the perturbation

Fk,z’

(s2) 7y ) = k(7 B - B - o)

as k »®, uniformly for z 1in a compact set Z. If Re z > 0 in

Z, we have

(93) Ck(v) = sup - C(v) as k » = .
Z

We want to deduce from (91) that Morton's result (55) holds for

P/k

=e , 1n the strong form
(9k) 85| < K (m) ¢ (v) for n20, |v] =1

Then Theorem 1 provides an explicit Hk > I such that

1/2

(95) (v, v)

< K(m)Kl(m)Ck(v)

2 - 2

' B/k) \° 2(P)/k \°
(96) eP*/kaeP/kS (l_*‘dii_> H = <M_> Ho .

As k - ®, some subsequence Hk converges to a limit H > I, with
J

(97) (Fo,)Y? < K@K, (m)C(v) = X’ (m)c(v)




Expanding (96) in powers of k, subtracting %ﬁ multiplying by k,

and taking the limit as kj - ®, we get

(98) HP + P¥H < 1(P)E .

All this is justified if, in applying Morton's argument to eIYk,

we actually need the estimate (91) only for z in a compact set Z
in the right half-plane. It turns out that this is actually the case.
Morton uses the resolvent condition in the contour integrations (14%),
where w = eZ/k lies on circles with

Re ?\a/k -Re x i Im xa/k

(99) radius = 8 =1 —— » center = (1*26a)e

On this contour it is easy to bound z by Re Ka and Im Xa.

To make the identification H = H, we want to match the clusters
F/k

}\.O/k

large, Clearly Ka of maximum real part corresponds to e of

C& derived from P with the clusters Ca derived from

" maximum modulus, and also the ratios which arise in forming clusters

satisfy
1 - 1eka/k| Re Ka
hm|e - J
/K
Therefore hi € C& if and only if e € C, if we exclude eigen-

values of equal real part (which may make the choice of Ka ambiguous)

and also exclude the possibility that the limiting ratio in (100) is one,
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With these exceptions,

2‘ }\.i/k KJk . 2()\(}_}\.)
(101) B =y =le e L, 5G =9 —e2" I,
a hojk i a Re ka i
1-le™ |

and H = lim H = H. 1In the excluded cases, as in the case when (81)
fails, the proper estimate for (Hv,v) follows by a continuity argument.
Repeating the proof in Section 5, we can describe a further pro-

perty of H:
For sdme S with S*S = H, P' = 8PS™T is upper triangular,
with P/, = 0 unless Ki and A, are in the same cluster §’ and

ij 3 o’
|Pf.|<:-2L-

iyl < min (-Re hT,—Re N

J
There is one additional consequence of our method of proof which
is significant in the applications to partial differential equations:
The conclusions in v) and v') may be changed to

2-6+9p(4A) 2
A¥HA < | —5—— ) B and HP + P < ot(P)H ,

where 0 < 6 < 2 and the constants K and K' depend on 6 as well
as m.

It follows that our space Ié(H), over which (5) is to be well-
posed, does not depend on the constant multiple of the identity which
was subtracted in order to make ¢ < 0. In other words, the minimal

renorming families H(®w) used to achieve (7) are equivalent for any

two choices o > o,
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T« We want finally to extend Theorem I to apply to matrices such that
p(A) = 1 but An is unbounded; this occurs if and only if some eigen-
value of modulus one has a non-simple e“lementary divisor, and conse-

quently too few corresponding eigenvectors. The standard example is

11
A1 = ( 0 1 ) -
It is easy to see that all the conditions i) - v) fail for Al’ no
matter how large C(v) is chosen; in particular, IA;_ll grows like n

and the resolvent has a double pole at z = 1. The following result

shows that such a relationship is typical.

Theorem V. There exist constants a(s) and B(s) depending on
s > 0, such that with A€ = eA and the constant K(m) as in Theorem

I, each of the following statements implies the next:

i") For —l—<€<l, A¥* HA < He for some H > I with
2 € €€ €~

(1v, V2 < c(v)/(1-)° for |- 1.

y 1 -1
" ey 1
ii") For 5<e<1, |S€A€S€ | < 1 for some S€ with

s < 1 ana [|sv] < ¢(v)/(1-€)° for ¥|= 1.

iii"”) |Anv] < a(s)(n+1)°c(v) for n > o and |v| = 1.

iv”) l (ZI-A)-ll < a(S)B(S) Lz|_SC(v)

for |z| > 1 and
1
(|2]-1)%*

v") For %< € <1, there exists H€ > I such that

A% HA_ < H_and (Hev,v)l/’cl? < a(S)BEiIgI;I)C(V) for | |= 1.
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Proof, The first two conditions are equivalent as before with

H, = 8 s.- Given ii”), we have for |v| =1
(103) |82 v| < e(v)/(1-¢)° , % <e<l1
(104) || < c(v)/e(1-€)® < a(s)(n+1)%C(v) 5 50

4

by maximizing the denominator with respect to €., It follows that iv')

holds; for ‘zl> 1,

n
v

n+l

gn+lzs

(105) | (z1-8)"1v| = |
Z|n+l

| < a(s) c(v)

o8
N
o™Ms

Z

< (s)B(s)c(v)|2|®
(Izi‘l)s+l

In Order to apply Theorem I, we Compute
-1y - 1 /2 -1
(106) I(zI-Aé) vl = |E (E I-4)"v|

< a(s)B(s)e(v)|z/el® _ a(s)B(s)c(v)|z]®
e(|z/el-1)® (|z]-€)%*

< As)B(s)C(v) < B )5< a(s)8(s)c(v)

= lzl—l z|~e (IZl-l)(l-e)S

Now the last step in Theorem I yields v”).
We leave to the reader the exponential analogue of Theorem V, which

arises naturally in the attempt to take & =0 . .
y P in (7). When equality is
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impossible to achieve, as it is in our example (1), a sequence of norms
H€ with @ decreasing to o retains more information about the true

growth of eP(w>t than any single norm--with respect to which o > o,
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