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MATRIXTHEOREMS FOR PARTIAL DIFFERENTIAL

AND DIFFERENCE EQUATIONS

by |

John Miller and Gilbert Strang

We want to reexamine the Cauchy problem for systems with constant

coefficients, together with the matrix questions which arise after a

Fourier transformation, Our main results are in fact purely matrix-

theoretic, so that after motivating those results in the following para-

graphs, we hardly need to mention partial differential equations again.

We do hope, however, that our ideas will prove to be useful locally in

studying certain systems with variable coefficients; such an application

will of course require a much fuller discussion of differential operators.

A simple example will illustrate the problem we solve here, Con-

sider the system

3 (M1) _ [0 oy d/(/" u £

(1) s(o)=( 0) =) (J) -(& at t=0,2 Uo Yo 2

which has the solution

! This paper developed from the first author's M.I.T. thesis; the second

author was supported by the Office of Naval Research and by the

Stanford Linear Accelerator Center,
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of

(2) u(t) =f, u, (t) =f tt.

Since we may choose fr € Ly, (-o, ) such that Us ¢ Los the system (1)

fails to be well-posed over Lye Nevertheless, on the closed subspace

normed by

ou, 2
2 2 1 2

(3) [lu] - [1s idIE

we no longer lose a derivative, and (1) becomes well-posed; in fact,

2 2\1/2| t t t/2WelsVie Ee SY ecg

What we want 1s to associate with more general systems such a sub-

space, maximal in a certain sense, over which the problem is well-posed.

Without the maximality requirement, this question has been treated

independently by Birkhoff and others (see [1]).

| After Fourier transformation, a linear differential (or pseudo-

differential) system with constant coefficients looks like

/\
ou AA

(5) 7 = Po) B, 4,0) = Po)

N

where w = (a, , coe a®4) 2. (1), . Hu (0,1), and ,, m , m
matrix P 1s the symbol of the given differential operator. To stay

within the framework of the Fourier transform we introduce the Hilbert

spaces L,(H), normed by .



2 A A

(6) ull= [ 0) fw), dodand
R |

Here H 1s a measurable Hermitian matrix function, normalized by the

requirement H > I, i1.e., H - I shall be non-negative definite,

Let us call (5) well-posed over L, (H) provided that for some a,

at

(7) lat) < «lll

for all t > 0 and all initial data f. Solving (5), this can be made

more explicit:

2

(8) F¥(@)t H (w) ROL < e at H(o) .

Differentiating at t = 0, we come to a still simpler equivalent con-

dition; for almost all w,

(9) H(o) P(w) + P¥(w) H(w) < 20H(w) .

(To recover (8), post-multiply by exp(P(w) - a)t, pre-multiply by its

adjoint, and integrate.) In the example described by (1) and (3), for

instance, the condition (9) becomes

2 | >

(10) (He 8 0) + 0 -iw\/l+w 00 1/\iw O O © Q 1

: 2

_ 0 -iw < 1+ O
im 0 /J=\0 1) °
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Our definition (7) is stronger than the usual one, which permits

a constant factor M on the right side. Nothing 1s changed, however,

since if (5) is well-posed in this weaker sense with respect to L,(H,),

there is an equivalent norm H, such that (7) holds on L, (Hy) = Ly (H;).

This follows from Theorem III below, and 1n fact it 1s the chief result

of the Kreiss theorems which our work extends,

It is no trouble to bound a from below. If some P(w) has the

eigenvalue M with eigenvector v, we must have from (9) that

~. ((HP + P¥H)v,v) < 2a(Hv,v) ,

which yields

(11) Re A <a .

Therefore a 1s not less than

(12) og = sup Re A (Pw) ,
Ww, J

and we must impose on the symbol P the Petrowsky-Garding condition

0 < ® Subtracting a constant multiple of the identity, we shall in

fact suppose 0 < 0. Now fixing a = 0, there 1s no doubt that we

can construct H(o) to satisfy (9). The delicate problem is to keep

H as small as possible; this we achieve, up to a constant depending

only on the order m, in Theorem III. The corresponding space L, (H)

is consequently maximal; its norm is weaker than that of any L,(H)

over which (5) 1s well-posed.



The theory of partial difference operators leads to a closely related

matrix problem, In place of (5) we have

A A A A

(13) uw, t+k,k) = A (w) u(w,t,k), u(w,0,k) = fw) »

The A (0) are called amplification matrices; we don't want to discuss

such systems fully, but we need to explain that the time-step k ranges

over some interval 0 < k < ko The analogue of (9), equivalent to the

condition (7) on L,(H,), is simply

* ok
(14) Ato) B (0) A (0) < EH (0) .

Again there 1s a lower bound on «@, namely

log |r (4 (@))]
(15) g = sup ——————— ,

: k
Ww, Jyk

Therefore we impose on (13) the von Neumann condition of < =, By a

simple manipulation, we may achieve o/ < 0 and fix a = 0 as before.

Thus our two matrix problems can be very concisely stated: given suit-

able P and A, to construct two corresponding matrices H > I as

'small as possible so that

Hp+ P*¥H <0 and A¥HA < H ,

respectively, Since the second problem is perhaps the more familiar,

and 1ts solution leads to a solution of the first, it will be treated

in full detail, We need the definitions
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2 21/2

1<J<m

Theorem I, For a suiltable constant K(m), depending only on the

order m of the matrix A, each of the following statements implies

the next:

: 1/2i) A¥HA < H for some H > I with (Hv, Vv) = C(v) for |v] = 1.

ii) |sas™| < 1 for some S with |s7t) < 1 and | sv] = C(v)

for % — 1a

111) |av| < ¢(v) for all n > 0 and Iv |= 1.

-1 Clv
iv) | (z1-4) v]| <T, 1 for all complex |z] > 1 and all

Iv] = 1.

v) A*HA < AN < H for some H > I with
(vv) 2 < K(m) C(v) for all |v] = 1.

| This theorem is very close to one originally proved by Kreiss [2],

and studied subsequently by Morton [3] and Morton and Schechter [4].

Therefore we should clarify those respects in which 1t 1s new:

a) The previous estimates in v), established by induction on m,

p(m)
had a power C in place of C, with p(m) —» ® as m — %,

b) We estimate the action of H on each vector v, where earlier

there appeared only the single constant C = sup C(v). It follows

that the H in v) 1s minimal in a stronger sense than just 1n norm:

/ 2 ‘
if H' > I and A*H'A < H',- then H < K (m) H'.

6



c) .We construct the new H in v) explicitly, leading to the

following additional information:

For some S with S¥S = H,- A'= sas™t 1s upper triangular,

with A, = 0 unless No and NS are in the same cluster (see below),
/ 1

and A; <5 (1 - max( A, |, 1) in this case,
A trivial modification of S reduces this constant to any

other, say 1/2m, so that the absolute row and column sums (the !_

and £, norms of A') may also be made less than (1 + o(8))/2.

It remains to determine the behavior of the best constant K(m).

Our constant (which we don't compute) grows roughly like m!, while

examples of McCarthy and Schwartz [5] show that it must grow at least

as fast as some power of log m; this leaves a wide gap, It is not

surprising that K(m) - «© in view of the Foguel-Halmos counterexamples

[6,7] to the Nagy conjecture.

2+ In this section we establish the first three implications in Theorem

I* These are easy steps, valid also for operators on Hilbert space.

} With H = 5%S, the equivalence of 1) and 1i) follows from that of

the inequalities

(A*¥HAv,v) < (Hv,v) for all wv

2

| sav|® < | sv| for all vv
-1 2 2

| sas Le < |w] for all w .

In the applications, ii) corresponds to a change of variables and i)

to a new norm, In one respect the use of H 1s to be preferred;
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1t may depend more smoothly on some relevant parameters than does an

_ 1/2improperly chosen S. The positive square root S = a 1s as smooth

as H, but a diagonalizing S may not be, although the latter change

of variables looks especially desirable. Mizohata [8] points out this

difficulty when d = 2, arising from the multiple-connectedness of the

circle; there is no difficulty in his context with H.

To show that 11) implies 111), we compute

| - - -1 -1n

(16) 12%] = |s7(sas™H) sv] < |s7||sas™H|? [sv] < c(v) -

Finally, given 111), we have for |z| > 1

® 0 ( C(v-1 Av C(v) rod .(17) | (z1-4)""v| = | 2 rl | < 2 +1 = |z[-1
0 z |]

%3« Before coming to the final step in Theorem I, we warm up with a more

special result of the same kind, which shows how the geometry of the

' elgenvalues enters the problem.

Theorem II. Suppose the resolvent condition iv) holds, and the

eigenvalues of A satisfy

(18) JUAN > 1 - A] for all distinct i,j .

2
Then A¥HA < p (A) H < H for some H > I with

2 2m-

(av, v)Y < m(2+kmd) (1+25) . Sclv)

8



for v 1 l. Furthermore, there exists 8S such that H = S*¥S and

SAS is diagonal,

Proof + From 1v) 1t 1s clear that no eigenvalue lies outside the unit

circle, so p(4) < 1. Although (18) admits repeated eigenvalues of

modulus one, suppose for the present that the eigenvalues are distinct,

Then we construct the projections

A-h,

(19) L, = JT ~=%, 1<igm .
JEL TIT

Applying L, to the elgenvectors y_ _... .v we find Lv. = 5. v
1 1’ nl 1 J 1] ik

so there are the standard identities

(20) 1° = I L.L = 0 £ . Ni Ti TT or if

(21) y 321 = —
2 L; I, 2 Lg A
A i

Now define the Hermitian matrix H by

(22) 3H = *mo) LL
1

From (20) and (21) we have

A¥HA = ) N T* * AL = 2 2(23) )} 355 m 2 I¥ L, 2. 1c Phe m INI L¥ L <p (A)H .

To prove H > I we need only (21) and the Schwarz inequality:

9



2 2 2

(2k) |v|® = » Lv] <m) Lv] = (Hv,v) .

From (22),

(25) (Hv,v) < n° max jn, v|® ,

and the crucial estimate 1s that of |L.v|]. We use the resolvent con-
1

dition 1n the most natural way, by expanding

- m 1
(26) L, = ) b,, (2, 1-4)" .

k=1

We shall choose z= 1/N if | is 0 or 1, then 1t 1s no

longer true that 1 < 2, | < ® and a simple limiting argument 1s

required in what follows, To compute the De apply (26) to the
eigenvectors; for each 1,

= — -1. -1

k=1

Solving this system, we get

(28 [p51 eas 1K, 1°Tex = DTT ——=
i JFL jo

29) Pu! = (1+ |)|) lity iL | | Ey][- i _ _ _ = ’Ze 1 k i Me No Mo AN 344,k Ms ho A Me

k £1 .

10



For any distinct i and 7,

(30) 5 2% + MD) <1 + 26.=, J J N.=N_ | —
J 1 3-1

Putting the pieces together,

-1 Jo. | C(v)
(51) Lvl Z log| 1 (3-07 VI <) —or—

2m~2 2m-3
< [2(1+23) + (m-1)45(1+28) ] CV) .

Simplifying the last term and using (25),

2 -

(32) (5v, v)Y < m(2+4mb ) (1426 )°03 C(v) .

To complete the theorem, we introduce the left (row) eigenvectors

res so that

(33) Av.= Ay 5, BA =NT

Multiplying the first by Ty and the second by v., there is the
J

familiar biorthogonality condition

(34) rv, = (0) for J £ k =
kJ

Since ve cannot be orthogonal also to r., we may fix the eigenvectorsJ

11



by the normalization

2 . .

(35) m|v,| = 1 and TVs =(l), 1<j<m .

It follows that

(36) L, =v,

since both sides, applied to Vi give By 2%

Now let the rows of S be Typo Tpy SO that sas™t 1s diagonal.
By matrix multiplication

1
m

9 — A ¥* * = r* r,(37) S%S (= 2) L ¥r,
rr
m

Using (35) and (36), this is precisely

m

% = * = "(38) 3 r¥(mv¥ v,)r, m )) L¥ L, =H

Finally, we have to return and admit eigenvalues A of modulus

one and multiplicity M > 1. From the resolvent condition iv), M

possesses M linearly independent corresponding eigenvectors; one puts

A in Jordan form to compute the resolvent (zI-4)77, and then lets z

approach As The eigenvectors may still be chosen to satisfy (34).

Let us number the eigenvalues so that Moeseshy are distinct,

and the rest are duplicates of these. Then instead of (19) we want

12



N A-h,

(39) L, = | | sd L 1 = lyessyN
j=1 "i773

JF

Simply replacing m by N in all the equations (20) to (32), the first

part of the proof continues to hold. In place of (35) and (36), we have

(40) N|v |= = 1 and r.v, = (1) , 1<j<mJ JJ =dJ =

(41) = L, = V, IT, + see + Vv, T.
i i "i i i

1 71 M M

where A; sewers are the appearances of the eigenvalue Meo Then we
1 M

may once more 1ldentify

m m N

42 S¥S = * — *( Nv* — * — .

(42) 2 r¥ r, 2 r¥ (vy v, rs N 2 L¥ L; H

Notice that when all Ml = 1 we may take ® = 0, so that
. 1/2

(Hv, v) / < 2m C(v)e Even this estimate is too large, since McCarthy
[5] has shown that in this special case iii) implies v) with K(m) = 1.

A similar comment applies to Theorem 4, and is especially relevant for

hyperbolic equations, in which Re A (Plo) = 0 by definition,

be To complete the proof of Theorem I, it remains to show that iv)

implies v). From iv) we know the eigenvalues satisfy [As] < 1; we
shall put them into clusters as Morton [3] has done, TInto the cluster

15



Cy goes an eigenvalue, say Ns of largest modulus, together with

all others that can be connected to NM by a chain of eigenvalues, each

link having length less than (1- |r 1 )/%m. Cs 1s formed 1n the same way
from the remaining eigenvalues, and so on until every eigenvalue enters

one of the clusters C.,...,C.. Of course r < m; whenr = m, our1’ r

basic constructions coincide with those in Theorem I, Notice that an

eigenvalue of modulus one and multiplicity M appears alone in M

clusters.

Let us suppose that

(43) p(A) <1 and A, # ~s for i £3,

and remove this hypothesis later by a continuity argument.

We want to associate with each cluster several matrices from which

to construct H. Given the cluster Coy let Ny be the eigenvalue of

largest modulus 1n Co from which the cluster was formed. Recalling

the projections L. defined in (19), let

2(N, -N_)
(Lk) I_=)L , A = LAL. B - 9 —2 9 1

o 1 0 ii! 0} 1 - AEN | i?ol 1

summing over the indices i such that A € C,- Define

(oo)

n n
= T* *

(45) Ho = I¥ I + ) (B%)"(B)" .

From (20), I, acts like the identity relative to ¢, and matrices
associated with different clusters are orthogonal, In particular, we

write down

1h



(46) lo = Ig ToPa = Bw Toho =A tof = Bohn = HA =0, QfEB .

From the definitions it follows that

1-|n |
(47) By = Mla 77 By

* = * = - I% .(18) 18 Bla = By Bafa = "la las]

Then from the appropriate triangle inequality

1-|n_[\2 2
| Q 1+p(A)>»

From (21) we see at once that

r r

(50) YI, =I, ) A =A.
1 1

Now the matrix we want is just

: r

(51) H=m 2 H, |

'Combining the last three equations with (46),

2

(52) AXHA LatmiH LA n ag ip, < ( £ )E .
To see that H > I we use the Schwarz inequality to compute

2 z 2 2
(53) II = Zn x Zag] < m Z(Eynsv) = (Hv,v)

1

15



The essential problem 1s to bound

2 = 2n

(54) (#v,v) =m L (Jz6° + Z IBv|7)
x 1

There are two means of carrying out this estimate. Conceptually, the

simplest possible approach 1s to expand ly and B as sums of resolvents,

just as L. was expanded in (26), and then apply iv). Unfortunately,

the choice of the Ze has to be more complicated than 1t was there,

and the consequent algebra 1s a sorry mess. Therefore we adopt a more

economical alternative; with some minor refinements, the estimates we

need can be lifted from those made by Morton [3]. We denote his equations

by an added asterisk.

Morton's final result 1s

n

(55) iv) ==> | A v] < K, (m) sup C(v) ,

but his proof works without requiring the supremum on the right side,

by noticing the action on each v in (13%)-(16%) and (18%). Further-

more, his estimate of A% is found precisely by bounding the contribu-

tion from each cluster; thus when n = 0, i1i.e., v= 0 1in (18%),

(56) |Tv < K, (m) C(v)

and also when n > 0,

n

(57) |4, v| < kK (m) C(v)

16



Now we introduce one more matrix associated with Cyl

(58) D,= A, + A (I-Io :

From the identities (46), we know

n n n

(59) Dy = Ay tN, (1-1) , on > 0

According to (56) and (57),

(60) N |, v| < K (m) C(v) , n> 0 =

Then the implication 111) ==> 1v) gives

K,(m) C(v)
-1 3.°°

(61) | (21-D_) v| STE ’ | 2] > 1 =

Manipulating with the definitions, we find

1-|a | 1- |x|~1 0 -1 Q

(62) (2I-By) = = —5—= (20-Dy) = 20 = NM TBF

Let z lie on the circle 2 of radius 1 about the point

LAWL (or 4, if Ay = 0), The minimum of || on this circle
occurs when z 1s closest to the origin, and an easy computation gives

| 1- |r|
(63) z,| -12>——, Z on Zo

Thus 1t follows from (61) =~ (63) that

17



| -1

(64) | (21-B) v| < K, (m) C(v) , z on Z,.

From (44), the eigenvalues My of B, are

2(M 2)
Sil i » NM €C, 5m =0,N EC,

Since each A € Co 1s connected to > by a chain with fewer than m

links,

- I PN VN
a _ a

Thus for all 1,

Using only (64) and (66), we will obtain the required bound (70); this

result may have some independent interest. Looking a second time at

Morton's argument, we put all the My into one cluster, so his X = 1.

Denoting by DP a divided difference formed at some p + 1 of the

points u,, (11%) becomes

| n lyn-

(67) |0P (= ) | < n® (3) Po,

Carrying out the contour integration (14%) over Zo and applying (64),

(16%) simplifies for g<m to

(68) |p) | < K), (m) civ)

18



-1

Here P(z) = (21-B,) | | (zp, ) 1s a matrix polynomial of degree less

than me As in(4%), B, v is just the divided difference of order

m-1 of the product z" P(z)v formed-atthe Lise Constructing a
Leibnitz rule, this divided difference 1s the sum of oi-1 products,

each bounded by

| P= m-1 ,1

(69) [DP (z")D" PH (p(2)v)| < 077 (5)" Kom) cv)

Consequently

0 ) n m-1,1\n ](70) IB, vl < 07 (5) Kg(m) C(v)

Substituting (70) and (56) into (54), the infinite series converges to

give the final estimate

1/2
(71) (Hv, v) / < Km) C(v)

We still have to eliminate the hypothesis (43).It is easy to choose

M (after triangularizing A, for example) so that

2

! A_ = (1-€)A + e€ M

satisfies (43) as ¢ = 0. Then for Iv = 1 it follows from iv) that

(72) (|21-(1-€)A)| < =r < min( SV) C
— 1z2]|-(1-¢) = z|-1 7 €

for |zl> 1, where C = sup c(v)* (The uniform boundedness theorem

applied to 1v) assures that C(v) can be chosen so that C < ®,)

19



Therefore

ee] n
- 2 - -1

(73) | (z1-a) Nv] = | T [7 (21-(1-€)a)"u)  (2I-(1-€)A) |
) :

< 1 ] C Vv
— 1-€C IM] z|-1 °°

Since (43) holds for A, there is an H > TI with

1+p(A) \2
x € 1/2 _ K(m) C(v(74) AZ HA = ( 2 ) Hes (Hv, v) < 1-eC|M :

As € -» 0, some subsequence of H converges by compactness to an

H >I, and taking the limit in (74) gives v).

5. In this section, we establish the italicized statement about S

which follows Theorem I. Again we start by assuming (43), and we recall

the left eigenvectors Ty defined in (33). Suppose we now number the

eigenvalues in the order that they fall into clusters, and let C.

© contain Noosa. We want to prove that Hy = S¥ 55 where the first

qg rows of 5S, are linear combinations of ris | [gle and the other
m-q rows are zero. From the definition (45),

(75) Hv, = 0 for k>gq, rank (Hl) =gq .

Writing Hy for the positive semi-definite square root,

(76) B/S 12 (nv v,)= 0 fork > gql k lk )

20



By (34), TireeesTy span the orthogonal complement of the space generated
1/2

by Var1? =o Vie Therefore each row of i is a combination of
TpseoesT os Let V be the space spanned by the columns of Hl 2, We

construct orthonormal bases UpseeesUy and Ugr1? woo Up for V and
vh Taking the u. as the rows of a unitary matrix Urs we have shown
that S; = 0,2 has the required properties; of course

1/2 1/2S¥* w= * =1 5) 5 Ei U8 . 1"

For every Cor we construct in the same way an 5, satisfying
=S¥S. — .H, S* S . pow j of 5, is non-zero if and only if As € Co Then

defining § = m2 y NTefining § = m S$,» and recalling the multiplication rule (37),
we have S%S = H,

Let A = SAS "1 Since the first row of § is by construction a com-

bination of rs seesT os and r,A = MN Ties the same is true of the first
row of SA. This must coincide with the first row of A 5, which 1s

a combination with weights 43 of the rows of S. Again by construction,
the rows of S after row q are combinations of op sss, . Using

q+l’ "Tm

the linear independence of the I. and also of the rows of S, we

conclude that 4 3 = 0 for j > q. In the same way, A.. = 0 whenever1J

oN and Ms are in different clusters. Therefore

A=

O x
T

21



the square block A on the diagonal corresponding to the cluster Cqr
With a final unitary similarity U of the same block form, we triangularize

each A separately. Thus with S = US, we have H = S%3, and

Al = sas™t has the required (triangular, block diagonal) form.

We have still to estimate the off-diagonal entries of A.'. Denoting

by a prime the result of applying the similarity S, we conclude from the

reasoning of the previous paragraph that A, I's B and L(»; €C)

all have zero entries outside block a Since I, 1s the sum of the

right number of mutually orthogonal projections L; we know that I,
is just the identity matrix in its block. Therefore by (47) the off-

diagonal entries are introduced through B.. According to (48),

B| < 1, and the same must be true of all its entries. Then the off-

diagonal entries of A are bounded by (1-]»_|)/2 < (2-17, ])/2,
ho S Cor

Agaln we must circumvent (43). Recall that the sequence A, +A

led to a subsequence H - Hj for each He we have seen how to con-

struct Ss and taking a further subsequence, we get Sc S, where

~ s*s = H. Unless (43) is violated by a repeated eigenvalue of modulus

one, the clusters for A and A coincide for small €., Therefore

the limit matrix S gives an A' = SAS™ with the right properties.

In case A has a repeated eigenvalue with [As = 1, we still know
A' 1s upper triangular and |A'| = 1; but from this the off-diagonal

entries 1n the rows containing Ms must vanish, and once more A' 1s
all right.

It is worth remarking that in v), H and S cannot be made con-

tinuous functions of A. The family

22



i

et’ |]

A = , 7 real
0 1

satisfies iv) with some C(v) independent of 7. Since the eigenvalues

of A have modulus one, A must be diagonal with respect to H, to

satisfy A HA, < f. However, one of the eigenvectors of A is

discontinuous at 7 = 0, from which one easily verifies that H is
too.

6. With the definitions

(78) t(P) = max Re A, (P) , Re P= adsl

we can state the analogues of Theorems I and II for the exponential case.

Theorem III. For a suitable K'(m) depending only on the order m

| of the matrix P, each of the following statements implies the next:

i') HP + P¥H < 0 for some H > I with (Hv, v)Y/ = c(v)

for v] |= 1.

a. -1 ~1
ii') Re GPS < 0 for some S with E | < 1 and

|sv| = c(v) for |v] = 1.

111") |e v]| < C(v) for all t > 0 and |v] = 1.

iv") | (21-P)"v| < Ev) for Re z > 0 and |v] = 1
v') HP + P¥H{ < 7(P)H < 0 for some H > I with

2

(fv, v) < K'(m) C(v) for |v| = 1.

23



Theorem IV. Suppose 1v') holds, and the eigenvalues of P satisfy

(79) JUAN > -Re oF for all distinct i,j .

Then HP + P¥H < 2 7(P) H < 0 for some H > I with

2 -

(av, v) < m(2+km ) (1426 )™ > C(v)

for |v = 1. Furthermore, there exists S such that H = $%¥S and
-1

SAS 1s diagonal.

Of course Theorem IV goes almost exactly as Theorem II did; one

makes the choice zy = -N in (26), as in the original paper by Kreiss
[9], and recomputes (28), (29), and (30).

In Theorem III, the step 111') ==> iv') involves the Laplace trans-

form in place of the power series in'(17):

® t Pt t Re z

(80)| (21-P)™*v| = Ji e “Ye ty at| < c(v) |e” dt = C(v)/Re z00

The cluster c, 1s now formed by starting with an eigenvalue N
of largest real part (necessarily < 0 by iv')) and connecting to it

those eigenvalues which can be reached with links less than -Re A / lim,

Then Cl ¢ «30 C. are formed in the same way, In analogy with (43) we

may temporarily assume that

(81) (P) < 0 and Ng # Ns for 1 # 3 ,
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and then remove this restriction as before. Now we can define

| 2(N_-\,)
82 I = = LA, ” SI

summing over indices {i such that A S C5 Next we let

© nn 5— * = H

(83) Ho = IX + L(y) (G,)°» H = m&H

From the orthogonality of the Ls it follows as usual that

Sl HI + I* H = 2H( ) co ye % a

Obviously for n > 0

8 »\1 _ * _ n(85) (6%) (GI) (6,1) (Gy) > 0

or 1n other words,

. | + n n+1 n+l n n
(86)  (60)™(c "+ (EH) He) < (607 (e I + (6076 )

0} x a a - ao x a 7

where the last term is to be interpreted as I¥ T when n = O.
a «o

Summing (86) from 0 to w=,

*(87) HG,+ GX H<2 H_ .

From (82) we have
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Re My
(88) P,= NTI, = G,

so that (84) and (87) yield

cH A(89) HEP, + PX H, < Re MH < 7(P) H,

Summing on @& and using orthogonality,

(90) HP + P*¥H < 7(P) H .

The 1nequality H > I is (53), and we have now to estimate (Hv, Vv).

This time there are three possibilities. The first two — to expand

I, and G,, as sums of resolvents, or to repeat the argument of Theorem
I with appropriate changes — would be safe but tedious. Therefore we

shall try to derive the estimate from Theorem I itself, using only some

essential remarks about its proof. In fact, we now give a complete

proof of the last step in Theorem III without using the H defined

explicitly in (83), and then identify the new H with that H.

For a given positive integer k, let w = ck, so that

Re z > 0 <=> |w| > 1. Then as in (73)

-1 -

(91) | (wI-e¥/¥) v| = k|(2I-P+F, ,) yiJ

k|(z1-P) Tv] c(v 1
— -1 — Re z/k T

1-|(21-P) | IF, | 1 - )
J

Re z

< 2 C(v

1 - kb.2
Re z
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where we used u < ec” ~ 1 for real u. Estimating the perturbation

“k, 2’

(92) IF. | = | (7 ¥o1- Zyp. (P/E 1. 1 _ 0(2)k,z k k k

as k »® uniformly for z in a compact set Z. If Re z > 0 in

Z, we have

k CiF

Z IT _ k.,2
- Re z

We want to deduce from (91) that Morton's result (55) holds for

A=e Fx in the strong form

(9k) Pky) < K, (m) C, (v) for n>0, |v] = 1 |.

Then Theorem 1 provides an explicit H > I such that

(95) (8, v, v)7/? < K(m)K, (m)c, (v)| oy ? — 1 k

i. P*¥/k., P/k 14p(e?/E) © 1+ (P)/k -
(96) € He < > Ho =| = Hy .

As k = «©, some subsequence He converges to a limit H > I, with
J

= 1/2 ‘
(97) (Hv, Vv) < K(m)K, (m)C(v). = K'(m)c(v) .

27



Expanding (96) in powers of k, subtracting He multiplying by k,

and taking the limit as k, -»> ®, we get

(98) Hp + P¥H < 7(P)H .

ier P/k
All this 1s justified 1f, in applying Morton's argument to e |

we actually need the estimate (91) only for z in a compact set Z

in the right half-plane. It turns out that this 1s actually the case.

Morton uses the resolvent condition in the contour integrations (14%),

where w = RA lies on circles with

Re Jk -Re A i Im NJ k
(99) radius =8=1 - e < ——2 | center = (1+28 )e oo.

a — k Qa

On this contour it 1s easy to bound z by Re Ny and Im Ny

To make the identification H = H, we want to match the clusters

Coy derived from P with the clusters Co derived from Fk k
N Jk

large, Clearly My of maximum real part corresponds to e od of
" maximum modulus, and also the ratios which arise in forming clusters

satisfy

Aok Re A
(100) Lo le S—- K —

JE RTE Tmo] 28 Koo
hm|e —e J J

Therefore Ns € Co 1f and only if e S Cop 1f we exclude eigen-

values of equal real part (which may make the choice of Ny ambiguous)

and also exclude the possibility that the limiting ratio in (100) 1s one,
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ee

With these exceptions,

pled 2AM)
(101) EE Rl RE a IL,

1-]e™ | *

and H = lim H = H. In the excluded cases, as in the case when (81)

fails, the proper estimate for (Hv, Vv) follows by a continuity argument.

Repeating the proof in Section 5, we can describe a further pro-

perty of H:

For some S with S*S = H, P' = Sps™t is upper triangular,

with Pi = 0 unless Ns and A are 1n the same cluster and

2; < 5 min (-Re h.,-Re Ade
There 1s one additional consequence of our method of proof which

1s significant 1n the applications to partial differential equations:

The conclusions 1n v) and v') may be changed to

2-6+6p( A) 2

A¥HA < (=) H and HP + P¥H < et(P)H ,
where 0 < 6 < 2 and the constants K and K' depend on 6 as well

as m.

It follows that our space L,(H), over which (5) is to be well-

posed, does not depend on the constant multiple of the identity which

was subtracted in order to make 0 < 0. In other words, the minimal

renorming families H(w) used to achieve (7) are equivalent for any

two choices a > o,
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T« We want finally to extend Theorem I to apply to matrices such that

o(A) = 1 but Al 1s unbounded; this occurs 1f and only 1f some eigen-

value of modulus one has a non-simple elementary divisor, and conse-

quently too few corresponding eigenvectors. The standard example 1s

1 1

a=(5 71) -

It 1s easy to see that all the conditions 1) - v) fail for Ap no

matter how large C(v) is chosen; in particular, 4] grows like n
and the resolventhas a double pole at z = ls The following result

shows that such a relationship is typical.

Theorem V. There exist constants @(s) and B(s) depending on

s > 0, such that with A = eA and the constant K(m) as in Theorem

I, each of the following statements implies the next:

I | | 1 '
i") For 5<e<l, A¥* HA < He for some H > I with€ € € Ee —

1/2

(H_v, n < C(v)/(1-€)® for v= 1.

11") For Lo e <1 E A s~t < 1 for some S with. 2 ? €€ ¢ €
~-1 S

|s_ < 1 and sv] < C(v)/(1-¢) for |= 1.

iii”) |A"v] < a(s)(n+1)5c(v) for n > o and |v| = 1.
Ss

: ~1 als s) lz] Cv

iv”) (zI-A) | < os)p(s) 2] Cv)) =| ctv) for |Z > 1 and
(z]-1)

n 1 !
v") For 5 < € <1, there exists H_ > I such that

AHA <H and (Hv,v)Y? <2eBKmMC) b= 1.€ € € S € — S

(1-€)
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Proof, The first two conditions are equivalent as before with

H = 8% s_. Given ii”), we have for |v| = 1

n 1

(103) lA” v] <c(v)/(1-e)® , F<e<1

(104) [8%] < e(v)/e™(1-e)® < als) (n+1)c(v) 5 Ls [4

by maximizing the denominator with respect to e€. It follows that iv')

holds; for |z| > 1,

-1 - Ay - S

< as)B(s)C(v) 2] ®
~ ([z]-1)F

In order to apply Theorem 1, we compute

< -1 3 _ 31 ,z -1

| (106) | (21-4) v] = |= (= I-A) v|

< Us)p(s)o(v) |z/e|” _a(s)(s)e(v)|z]
e(|2/el-1) (|2]-)

< a(s)B(s)C Vv) Z 5 < a(s)B(s)C(v)
- Z|=-1 Z|=-€ — | s °°

(|2]-1)(1-€)

Now the last step in Theorem I yields v'),

We leave to the reader the exponential analogue of Theorem V, which

arises naturally in the attempt to take a =o in (7). When equality is
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impossible to achieve, as 1t 1s 1n our example (1), a sequence of norms

H_ with @ decreasing to 0 retains more information about the true

growth of e than any single norm--with respect to which a > o.
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