Cs26

STANFORD UNIVERSITY'S _PROGRAM IN COMPUTER SCIENCE

BY

GEORGE E. FORSYTHE

TECHNICAL REPORT CS26
JUNE 25, 1965

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

1

STANFORD UNIVERSITY'S PROGRAM IN COMPUTER SCIENCE

by

George E. Forsythe

1. What is computer science?

One can obtain delivery in 1966 of automatic digital computers capable
of making decisions in less than 150 nanoseconds and multiplying in less than
one microsecond. Such machines can retrieve each of a quarter million words
in less than 100 nanoseconds, and each of some 3 X 107 characters in something
like 0.0l seconds. Since a 500-page book holds approximately 1.5 X 106
characters, thé above large store holds the equivalent of 2000 monographs —

a substantial little library,

Until the first automatic digital computers were available for delivery
approximately 15 years ago, we were limited to making decisions, multiplying,
and accessing a fast store in something like 10 seconds, while access to each
character of a 2000-book library could hardly take less than 100 seconds, Thus
the past 15 years has seer, accelerations of 104 (access to slow store),

10 (multiplications), and even 108 (access to fast store),

In comparison, the speed-up in travel between walking and going by Jet
is about 102, that in the dissemination of information between manuscript
and a large nrewspaper machine is about 106, and that in communication speed
between usfng sound and radio waves is also about lO6uThese changes in

rates of transportation and communication completely remade the world of

earlier times, It is evident that the even greater speed-ups in information

processing are remaking our world, It is furthermore clear that it will be
many years before our capacity to exploit the new power till catch up with
its present capabilities,

I consider computer science to be the art and science of exploiting
automatic digital computers, and of creating the technology necessary to
understand their use, It deals with such related problems as the design of
better machines usfng known components:, the design and implementation of
adequate software systems for communication between man and machine, and the
design and analysis of methods of representing information by abstract symbols

and of processes for manipulating these symbols,, Computer science must also

concern itself with such theoretical subjects supporting this technology

as information theory, the logic of the finitely constructable, numerical
mathematical analysis, and the psychology of problem solving. Naturally

these theoretical subjects are shared by computer science with such disciplines as
philosophy, mathematics, and psychology.

Because the representation and processing of information are the core
of computer science, many persons refer to our subject as the science of
information processing, and indeed the International Federation for Infor-
mation Processing bears such a name. Until a rather substantial discipline
is built up, I prefer to keep explicit our pragmatic goal by retaining the
word "computer" in our name, Perhaps the name "computer and information
sciences" is a proper compromise at present,

An interesting comparison of computer science with both pure and applied
mathematics has been made by Gorn [1]. While Gorn is thinking in [1] only
of the scientific applications of computers, the distinctions presented
certainly could be transferred to all areas of computing. To Gorn, the
pure mathematician is interested in the syntactical relations among symbols,
quite apart from their meaning in the physical world or their computability,
Thus the all-important questions of pure mathematics deal with the structures
of theories, not with their meaning. For example, the majority of practicing
pure mathematicians are unconcerned with what numbers actually are, and indeed
the question is unsettled; they are instead concerned with what relations
exist among numbers and among objects built up from numbers.

The applied mathematician is primarily concerned with the semantics of
symbols — what do mathematical theorems mean as applied to the physical world?
For example, how can mathematical analysis help us understand physics or
economics or electronics? Finally, the computer scientist is concerned with
the pragmatics of the applications of mathematics, What algorithms can
actually be used to calculate things of a mathematical nature% What does
it cost in storage or time or human effort to perform these algorithms'?

What guaranteed or probabilistic error bounds can be constructed for the
answers? What languages can they be expressed in? What hardware do they

require?

An article by Keenan[2] is part of a journal issue devoted mainly
to questions of curriculum in computer science. Keenan develops the
definition of computer science.in several broader areas with which we generally

associate the name,

2. The obijectives of computer science education.

There are at least three different groups of students to whom' computer
science education should be directed, and the objectives are different

for each.

a. Nontechnical students

The advent of computers means that almost all citizens of the developed
nations will be greatly affected by computers, Hence a general education
should include enough background for the citizen to comprehend something
about computer science. Since a university educates the future leaders
of the community, the students need a background for making decisions in
a computerized world, They need to learn what computers are, what they can
do, what they cannot do, They need to realize the large role of human beings
in creating computer systems — that every bit of automation is achieved

by human planning in the large and in detail,

b. Specialists in other technical fields

The automatic computer is one of the most important tools to have
been devised in the history of man, and its domain of application is very
wide. It is already recognized by most engineers and natural scientists
that they must know computing fairly well, Current studies of engineering
education emphasize education in general purpose tools with long expected
lifetimes like mathematics,English, statistics = at the expense of special
information better relegated to handbooks, Automatic computing is indeed
becoming recognized as one of the lasting tools.

zadeh [3], chairman of the Department of Electrical Engineering,
University of California, Berkeley, makes a particularly strong claim
about the importance of computer science in technical education: he
states that electrical engineering will suffer a serious decline in importance
as a discipline unless it can absorb a substantial amount of activity in

computer science,

It is now clear that students of social science must also acquire a
familiarity with computing methods,, And the serious student of humanities
will soon find computers indispensable, if he is to carry out research on

any substantial volume of data,,

c. In education of computer science specialists

The most important group to be educated in computer science are
i the future specialists in the field, for they are the seed who will become
E; the creators and the teachers of the future. They must receive enough
background to be able to follow and preferably lead the future development
of the subject,,

Keenan [2] distinguishes three groups of computer science majors.
In my opinion it is probably better to lump the undergraduate major with
T the group in b. above, for without more than a bachelor's degree the graduate
is likely either to become a mere assistant to a computer user or an
~ applications specialist himself.
For the graduate student of computer science the faculty must create
L a discipline and inculcate standards of performance in it, The student must
learn to read and to write the appropriate literature, A background must
be built for years to come. Computer science education, like all education,
must aim to light a lamp for the student, rather than try to fill the student's
bucket with knowledge, This education must create the field's leaders, full

of ambition and fire to attack the all-pervasive unsolved problems of computer

science,

3. How can a U. S. university realize the above objectives?

The first major step by which a U. S, university can realize the
objectives stated above is to create a department of computer science, or
- the same thing under a different name, The reason for forming a department
is to enable computer scientists to acquire faculty of their own choosing,
9] and exercise control over the curriculum of students wishing to specialize

in computing. There is abundant experience to show that without such an

administrative step computer education will not even keep up with the field.

Without a department, a university may well acquire a number of computer
scientists, but they will be scattered and relatively ineffective educa-
tionally, Naturally a department cannot be started until there are two or
three computer scientists on the féculty. One may expect that the depart-
ment-to-be will be in a probationary status for two or three years,

A crude survey by the author shows that computer science departments
are in existence or imminent in approximately two-thirds of the 15 largest
universities of the U. S.

Probably the department of computer science belongs in the school of
arts and sciences; because of its close ties with departments of mathematics,
philosophy, and psychology. But its relations with engineering departments
concerned with systems analysis and computer hardware should be close,

In years to come we may expect departments of computer science to come
together with departments of systems analysis, applied physics, operations
research, applied mathematics, and so on, inside schools of applied science
or even schools of mathematical sciences, We can even hope for a weakening
of the power of individual departments, and a concomitant strengthening
of the ability of a university to carry out interdisciplinary programs.

A department of computer science has the responsibility of creating
curricula for each of the groups mentioned in paragraph 4 above. Thus
there will be degree programs for its own majors, There will be service
courses for majors in other departments in which computing is recognized
to be central, There will be "computer appreciation" courses as part of
a general education program., In a university with an adult education
program some or all of these will be offered at night for the "re-treading"
of graduates of past years,

In all these courses the computer science department must strive hard
to extract and teach the essence of computer science, and avoid its transient
aspects, For example, introductions to computing should avoid spending
large amounts of effort on comparing base 2 and base 10 arithmetic, And the
detailed study of a machine language seems better relegated to specialist

computer science courses than taught in a first course. Whereas at one time

performing arithmetic on machine-language commands seemed to be, the
essence of programming, it is no longer so important, In fact, where
multiprocessors share the same routines one cannot permit the basic
routines to be modified at all, Finally, the department should insist
that its majors devote substantial time to studies in other departments
(mathematics, 1logic, psychology, electronics, etc.). For having control
of the computer science curriculum does not imply actually teaching the
entire curriculuml

In addition to a computer science department, a university needs
a strong computation center in order to attain its educational goals in
computer science. Such a center must be organized with machines, languages,
and software capable of receiving a large number of programs from different
classes of students. 1In a batch-processing computation center we expect that
each student of introductory programming should have one pass per calendar
day on a computer, More advanced students will come less often, but with
longer runs. Thus the center must be well endowed to receive a very large
volume of student programs in addition to its better rewarded goal of serving
faculty research work. Unless you have had experience with this job-shop
type of computing, you cannot recognize how poorly adapted typical machine
systems are to dealing with it, Even with good machine systems it is a
large problem in logistics and human relations to run more than 1000 jobs a

day for a variety of users,

b, Stanford University's program in computer science,

Since January 1965 Stanford University has had a Computer Science
Department within its School of Humanities and Sciences, The new department
had been gestating for approximately three years within the Mathematics
Department, In September 1965 the Computer Science Department will have
positions for ten faculty members at levels of assistant professor and above.
The principal fields of interest of the faculty are approximately as follows:
numerical analysis (4), artificial intelligence (2), programming languages
and systems (1), machine organization (1), computer control of physical data (1),
logic and linguistics (1). We need more faculty in programming languages:,

as this is the field of largest enrollment of our department,

We have no undergraduate degree program in computer science, and no
present intention of starting one. We have approximately 70 graduate
majors, of whom approximately 45 are full time students, We offer a Master
of Science in Computer Science, and by June 1965 we will have awarded 25
such degrees since 1961, We offer a Ph.D. in Computer Science, None has
yet been awarded, but four students have.just passed our written qualifying
examinations for the degree, Over the past seven years the author has been
the principal thesis advisor of some seven students who have written disser-
tations in numerical analysis for their Ph.D. in mathematics,

In the appendix are given our catalog descriptions of the courses
offered in our department, together with an indication of the requirements
for the Ph.D. degree, (A one-quarter J-unit course normally consists of
30 lectures.) We have also prepared an informal syllabus for our qualifying

-

examination, which includes three papers::
(1) numerical analysis and computational mathematics;
(2) computer and programming systems;

(5) advanced nonnumeric applications, artificial intelligence,

and mathematical theory of computation,

Our main service courses are directed to students who have already
had calculus, Our one-quarter introduction to computing (course 136) ranks
as approximately the fifth most popular non-required course at Stanford,

We have two quarters of introductory numerical analysis (courses 137, 138)
presupposing course 136, linear algebra,, and ordinary differential equations.
We have a special form of course 136 (courses 3;6) directed to younger
students of engineering,

We have instituted one course for general students — course 126,
presupposing only high-school mathematics and directed to students of
humanities and the social sciences,,

Courses 5, 6, 126, 136 all involve very substantial amounts of
computer use by the students as individuals, They are effectively

laboratory courses,

Lo

As time goes on, we anticipate the crkation of more sections of
course 136, directed to majors in special areas and presupposing
different backgrounds and interests,

Several other departments at Stanford teach computing in one form
or another, Most of these are applications courses presupposing our
course 136,

Our graduate offerings include a Z-quarter sequence on programming
systems; a l-quarter course on the logical structure of computers;

a J>-quarter sequence on numerical analysis; a z-quarter sequence on elementary
artificial intelligence; a 3-quarter sequence covering list-processing,

logic of computing, and advanced artificial intelligence; a special numerical

analysis course; a l-quarter course on control programming; and a programming

laboratory course. We expect to add a l-quarter course next spring on either

mathematical linguistics or the logic of theorem-proving.

As we teach computing to specialists of other fields,, it is essential
that their own faculty be able to follow up with important applications.

In the recent transition period, we found it desirable to teach the faculty
directly, We have had three special one-week sessions, two for engineering
faculty and one for biomedical faculty, These courses take very careful
planning, but pay off very well in knowledge and good will,

The Stanford Computation Center is well organized to receive large
numbers of student jobs, mainly in Extended Algol for the Burroughs B5500,
However, as the extra costs required to handle student jobs mount into the
several tens of thpusands of dollars, it will be essential to receive special
funding for this work.

The Computer Science Department is not responsible for the Computation
Center's service work, but it does provide leadership for system selection
and organization, However, the Computer Science Department will itself
soon have some large computer systems acquired in connection with research

contracts.

5. Miscellaneous remarks.

It would be desirable to have criteria of Stanford’s progress
towards our goals in computer science education. So far we are too
much involved in just getting oréénized, recruiting, teaching, and so
on, to have done much evaluation. We do know that Stanford students
appreciate our program very much. Courses 5,126, and 136 have a
campus-wide reputation for being time-comsuming, because it takes
beginners many hours to get problems correctly keypunched and run.
Nevertheless, the enrollments are high. With both formal and informal
programming courses, we estimate that we reach about 1000 persons a year.

If these people average but two years at Stanford, then about 2000 persons
know computing in an active way. With some 10,000 students and 1000 faculty
and teaching staff, that means that almost 20 per cent of the Stanford
academic family are well acquainted with computing.

We therefore feel that computing is established at Stanford, and that
it is time to turn our attention towards raising the quality of our work,

We need not only to teach students to program — we need to teach them to
program well. We must give many more of the science and engineering students
who use the computer an introduction to good algorithms and a fear of bad
algorithms.

We need to improve the quality of our graduate instruction. . Many of
our graduate students are students who were refused admission to Mathematics
and take us as a second choice. We don't resent being second choice, but
we want first-class students.

We have wondered about the place of numerical analysis in a university
with a department of mathematics and another in computer science. No doubt
there will be two kinds of numerical analysis Ph.D. degrees. One will be a
mathematics degree, following the regular required mathematics courses, with
some elective courses in computer science and a thesis in numerical analysis
directed by some one in the computer science faculty. This would be appropriate,
for example, for a student whose thesis developed asymptotic error bounds
for finite difference methods for solving partial differential equations.
There might or might not be experimental computations, The other will be
a computer science degree, with a number of extra mathematics courses and a

thesis in numerical analysis. This thesis would emphasize the algorithmic

prey

aspects of numerical analysis, and would certainly involve experimental

computations on a digital computer, It might, for example, explore

the kinds of languages appropriate to solving difficult mathematical

problems in computer system involviﬁg intricate man-machine interactions,
However, in our first year of independent existence, we are seeing

some sign that graduate students interested in numerical analysis may

find themselves lost between chairs, The principal obstacle to a Ph.D. at

Stanford in either mathematics or computer science is the qualifying examinations.

& graduate student with rather special interests in numerical analysis

is unhappy to find that the qualifying examination in mathematics requires the

mastery of mathematical analysis which goes far beyond what is used in

numerical analysis, He finds that the examinations in computer science

involve too mueh mastery of such subjects as heuristical programming and

computer organization for his taste and ability, 1If a student is so strong

that he can conquer one or the other of these examinations, it is surely worth

while for him to do so. But I am developing some concern for the numerical

analysis student who is not quite so strong or well motivated, Has our

creation of a new Ph.D. degree in computer science actually worsened the

situation for the would-be numerical analyst? Will it therefore be necessary

to create a special inter-departmental program in numerical analysis? How

can we hold the line against such a proliferation of programs?

10

References

[1] saul Gorn, THE COMPUTER AND INFORMATION SCIENCES: A NEW
BASIC DISCIPLINE, SIAM Review, vol. 5(April1963), pp. 150-155.

(2] Thomas A. Keenan, COMPUTERS AND EDUCATION, Comm. Associ
Comput. Machinery, vol. T(April 196k), pp. 205-209.

[3] L. A, zadeh, ELECTRICAL ENGINEERING AT THE CROSSROADS,
paper presented to the Institute for Electrical and Electronic
Engineering, March 1965, Proceedings, pp. 47-50.

-~

Computer Science Department
Stanford University
Stanford, California

May 12, 1965

11

APPENDIX TO CS26
Issued June 25, 1965

STANFORD UNIVERSITY'S PROGRAM IN COMPUTER SCIENCE

BY
GEORGE E. FORSYTHE

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

' — —

REVISED
COURSES AND DEGREES 1965-66 August 1965

COMPUTER SCIENCE

OFFERINGS AND FACILITIES

The Department aims to acquaint a variety of students with the technologi-
cal and intellectual roles of automatic digital computers, and'to educate
research workers in computer science. 1In spite of the diversity of the appli-
cations, the methods of attacking problems with computers show a considerable
unity, and computer science is concerned with the underlying principles. The
field 'is still young, and the student will find many more questions-than
answers.

Of the numerous areas of computer science, the Department has competence
in numerical analysis, artificial intelligence, programming systems and
languages, logical design of computer systems, and computer control of external
devices. -

Courses 1in data processing are offered by the. Industrial Engineering
Department and in the Graduate School of Business.

Since computer science is inherently interdisciplinary, graduate students
of computer science are expected to include in their study program a good deal
of work in other departments; see the list of suggested courses below.

There is no Bachelor's degree in computer science. Undergraduates who
wish to enter the field are advised to major in mathematics and include Computer
Science 136, 137, 138, and 139 in their course of study,

In connection with its courses and research, the Department 'makes consider=-
able use of the Computation Center. See the section "Computation Center" in
this Bulletin.

PROGRAMS OF STUDY

Master of Science

The University's basic requirements for the Master's degree are discussed
in the section "Degrees" in this Bulletin. The following are departmental
requirements:

A candidate is expected to complete an approved course program of 45 units;
at least 36 units will be in this department, or in the Mathematics Depart-
ment, or selected from the list of suggested courses in other departments which
appears at the end of the course offerings in Computer Science. These 36 units
must include 6 units of Computer Science 239 and 15 additional units of, courses
numbered 200 or above.

A student whose primary interest is in the numerical aspects of computing
should include in his program Mathematics 106, 113, 11k, 115, 130, 131, and

!::-':". v r_"‘

PR

Computer Science 136, 137, 138, 237a, b, unless as an undergraduate he has
taken these courses or equivalent ones elsewhere,

A student whose primary interest is in the nonnumeric aspects of computing
should include in his program Mathematics 113, 130, Philosophy 160a, b, and,
Computer Science 136, 137, 139, 231, 236a, b, 238, unless as an undergraduate
he has taken these courses or equivalent ones elsewhere.

The candidate must have a 2.50 average in his course work and a 3.00
average in his courses taken in the Computer Science Department,

Doctor of Philosophy

The University's basic requirements for the doctorate (residence,
dissertation, examination, etc.) are discussed in the section "Degrees" in this
Bulletin. The following are Departmental requirements:

Candidates for the degree of Doctor of Philosophy Will follow such courses
as are approved by the Department faculty, subject to general University regu-
lations. Each student's program should be arranged to include work in computer
science, mathematics, mathematical logic, and possibly such other subjects as
statistics or electrical engineering,, the proportions depending on the student's
previous education and his planned research. Since computer science is becoming
'increasingly formal and abstract, we place considerable emphasis on the student's
mathematical education and ability.

In any case there are the following requirements:

1) Completion as a graduate student of an approved coherent program of at
least 60 units, including Computer Science courses 225, 231, 236a, b, 237s, b,
238, 239 (6 units), 382 (2 units of presenting papers), and either 224 or?245.
An especially well written paper for course'239 is required.

2) A substantial reading knowledge ofone of the languages: French,
German,or Russian.

3) Passing qualifying examination before admission to candidacy.

The most important requirement for the Ph.D, degree is the dissertation.
The Department is now prepared to supervise dissertations in the mathematical
theory of computation, numerical analysis, programming languages, artificial
intelligence, computer control of external devices, and in certain applications
of computers.

TEACHING AND RESEARCH ASSISTANTSHIPS

There are graduate assistantships available in both the Computer Science
Department and the Computation Center. Assistants will receive a tuition
scholarship up to nine units of study per quarter during the academic year,
and in addition will receive stipends for the nine-month academic year ranging
approximately from $2300 to $2600. They will have desks in Polya Hall at the
Computation Center. Some may work full time in the summer for $500 to $550
per month.

Duties in the academic year involve less than 20 hours of work per week.
Part of this is in assisting Stanford people with their programs and methods for
solving problems with computers, often in connection with formal or informal
programming courses. Part of the time is spent in developing programs and
systems for solving problems of general interest on computers, or in assisting
senior staff members with research in computer science. Approximately two
hours of the work week are spent in attendance at Computer Science Department
colloquia and seminars.

Applicants for assistantships are expected to have a background in
computing at least as d2ep as that achieved in course 136, together with some
knowledge of a machine language. A deeper background is preferable. An
applicant's major field may be computer science, mathematics, statistics, physics,
psychology, electrical engineering, or other discipline in which there is
significant research involving the use of automatic digital computers. Because
of the great need for improved computing and programming systems as tools for.
research, preference will generally be given to students of computer science.

Further information may be obtained from the Executive Head of the
Computer Science Department. Applications for assistantships should be made
to the Financial Aids Office, together with an application for admission to
graduate study in some department. Unless the applicant is also applying for
admission to the Computer Science Department, he should at the same time write
to the Executive Head of the Computer Science Department of his desires to have
an assistantship in computing and stating his desired major department.

COURSES FOR UNDERGRADUATE STUDENTS

5. Introduction to Programming - This course is an introduction to ALGOL, a
problem-oriented language for describing computational processes. There will,

be practice in solving elementary problems on Stanford's automatic digital com=-
puters. The course is limited to freshman and sophomore students. Prerequisites:
Mathematics B, er equivalent.

2 units, autumn, (——), WF 11
winter, (—), TTh 1:15
spring, (—), WF 11
6. Introduction to programming——Continuation of 5. - Courses 5 and 6 together

include approximately the same material as course 136, with emphasis on
scientific applications. This course is limited to undergraduate students.

2 units, winter, (—), TTh 1:15
COURSES FOR UNDERGRADUATE AND GRADUATE STUDENTS

126. Computing for Nonscientists - This course is directed to students of
social science and the humanities, and is not open to students who have the pre-
requisites for course 136. The syllabus is roughly that of course 136, but

the problems are selected more from nonnumeric applications. Prerequisites:
Mathematics B, or equivalent.

3 units, autumn, (————), MWF 2:15

136. Introduction to Algorithmic Processes - Concept and properties of an
algorithm; language and notation for describing algorithms; analysis of compu-
tational problems and development of algorithms for their solution; use of a
specific procedure-oriented language to solve simple numericai'and nonnumerical
problems using an automatic digital computer. Prerequisite: Mathematics 23

or 43.

3 units, autumn,—{(—=), MWF 11; (——), MWF 1:15; (————)
TTh 9:30-10:45 ‘

winter, (——), MWF 10; (————), MWF 1:15

spring, (=), MWF 11; (——), MWF 1:15

3

]

137. Numerical Analysis - This course and 138 are designed to -acquaint seniors
and graduate students of science and engineering with methods of solving mathe-
matical problems on automatic digital computers. Problems discussed include
numerical differentiation and integration, solution of linear and nonlinear .equa~
tions, solution of differential equations, and approximation of functions.
Introduction to the analysis of convergence and errors. Pitfalls in automatic
computation and their remedies. Prerequisites: 136 and Mathematics 130, or
equivalents.

(- 3 units, winter, (—), NMF 11; (—), MWF 2:15

|
L

—-

138. Numerical Analysis--Continuation of 137. - Also the numerical analysis of
functions of several variables, including problems of linear algebra. Pre-
requisites: 137 and Mathematics 113, or equivalents.

3 units, spring, (=————), MWF 2:15

—

139. Computers and Machine-Language Programming - Introduction to machine-code
programming. Representation of numeric and nonnumeric data. Machine arithmetic.
Discussion of various ways of organizing machines. Prerequisite: 136 o r
concurrent registration in 136.

3 units, autumn, (———), TTh 9:30-10:45
. winter, (————), MWF 1:15

COURSES INTENDED PRIMARILY FOR GRADUATE STUDENTS

224, Computer Simulation of Cognitive Processes - Introduction to computer
{ simulation techniques and information-processing models of thought processes.
Survey of various computer simulation models. This research area lies at an
interface between psychology and computer science, and the course is expressly
, v designed for graduate students in both fields. Some knowledge of experimental
| and theoretical psychology is advisable but not mandatory. Prerequisite:
— 136 or equivalent.

3 units, autumn, (—-), by arrangement

- 225, Artificial Intelligence - Introduction to problem solving and heuristic
programming. Survey of chess- and checker-playing programs; theorem-proving
programs; General Problem Solver; mathematical, linguistic, and industrial

- applications. Question-answering programs, and natural-language communication

with machines. Advice-taker and Inquiring System concepts. Other topics as

time allows.' The course is designed to dovetail with 224 with minimum overlap,
but 224 is not a prerequisite. Prerequisite: 136 or equivalent.

3 units, winter, (——), by arrangement

o 231. Structure of Digital Computers - Boolean algebra; analysis and synthesis
of combinatorial and sequential networks; electronic components used in logical
gates. The design of a simple digital processor, arithmetic unit, program
control, memories. Use of this processor and its simulation on another computer.

Various existing forms of machine organization. Prerequisite: 139 or
equivalent.
3 units, winter, (————), MWF lo:o0o0

4

.
i
i
—

.

—

r-

233, Topics in Numerical Analysis - Selected topics in numerical analysis.
Prerequisite: 138 or equivalent.

3 units, winter, (————), TTh 9:30-10:45

236a, b. Systems Programming and the Theory of Formal Languages =~ The
technique of constructing systems programs: Supervisory programs (monitors),
input-output systems, interpreters and compilers for procedure-oriented
languages, in particular ALGOL. Selected topics from the theory of formal
languages: syntactic analysis and semantic interpretation. Prerequisite:
139 or equivalent.

236a. 3 units, winter, (———), TTh 9:30-10:45
236b. 3 units, spring,), TTh 9:30-10:45

237a, b, c. Advanced Numerical Analysis - Selected topics from the theory and
practice of using automatic digital computers for approximating arithmetic
operations, approximating functions, solving systems of linear and nonlinear
equations, computing eigenvalues, and solving ordinary and partial differential

equations. Testing of methods on a digital computer. Automation of methods.
Prerequisites: 138 and Mathematics 114 and 115 or equivalents.

237 a. ~ 3 units, autumn, (—), MWF 3:15

237b. 3 units, winter, (——), MWF 3:15

237c. 3 units, spring, (—), MWF 3:15

238. Computing with Symbolic Expressions - The LISP programming language with
applications to symbolic differentiation, integration, simplification of
algebraic expressions and compiling. Design of list-processing systems.
Prerequisite: 136 or substantial programming experience. '

3 units, autumn, (———————:), TTh 11:00-12:15

239. Computer Laboratory - A substantial computational program is undertaken
and well documented. Prerequisite: 138 or 139 or equivalent.

Any quarter, (Staff), by arrangement

243, Mathematical Theory of Computation - Semantics and syntax of programming
languages; formal systems for proving equivalence of programs; computability
and unsolvability; computer proof procedures; related topics in mathematical
logic. Prerequisite: 238.

3 units, winter, (— —=), TTh 11:00-12:15

245, Advanced Topics in Artificial Intelligence - Analysis and discussion of
selected frontier research problems in the field, e.g., Advice-taker, game-
playing programs, pattern recognition, man-machine interaction, proof procedures.
Term paper focusing on research problems will be required. Prerequisites:
225 and 238.

3 units, spring, (———), TTh 11:00-12:15

246. Data Reduction and Control Programming - Organization and Pprogramming
of automatic data reduction systems: data collection, storage, and ret rieval;

fion

e

erA

r——

G S N R R P KN e

248, Computational Linguistics - Applications of computers to language problems;
Formal models of language. Parsing algorithms; recognition programs for trans-
formational grammars; mechanical translation. Prerequisite: 136 or consent of the
instructor.

3 units, spring, (), by arrangement

machine-to-machine data transmission; control programs; interrupt processing;
list-processing applications; decision processes.. Prerequisites: 137, 231,

236a, 238.

3 units, sprj_ng, (), MWF 9

360. Advanced Reading and Research.

Any quarter, (Staff), by arrangement

382. Computer Science Seminar - There are ordinarily two or more sections on
different topics.

1 or 2 units, any quarter, (Staff), by arrangement

The following courses offered in other departments may be of especial
interest to students of computer science:

Analog Computation - See Electrical Engineering 268.

Data Processing - See Industrial Engineering 156, 210, 257, 261, and 263.

Data Processing in Business Problems - See Business 367 and 368.

Mathematical Logic - See Philosophy 160a, b, 161, and 292a, b, c.

Mathematical Models in Behavioral Sciences = See Behavioral Sciences courses.

Mathematics, ~ See Mathematics courses.

Organizational Processes and Task Performance - See Psychology 221.

Probability and Statistics - See Statistics 116, 219, 220.

Recursion Theory - See Philosophy 293a, b, c.

Science inManagement and Operations Research - See Business 366, and
Industrial Engineering 152, 252, 253, and 257.

Statistical Inference in Economics - See Economics 272.

Theory of Automata - See Philosophy 162.

Theory and Design of Systems and Adaptive Systems - See Electrical Engineering
248, 249, 250a, b, 25la, b, and 286

Theory of Switching and Digital Computer Circuitry - See Electrical Engineering
261, 262, and 266.

i
L
L
\
|
|

1

2

STANFORD UNIVERSITY
COMPUTER SCIENCE DEPARTMENT

March 30, 1965

Syllabus for Ph.D. Examination
in Artificial Intelligence Research, Non-numeric

Applications, and Mathematical Theory of Computation

The following is a list of topics with which the student should be familiar:

List Processing, Symbol -manipulating languages for non -numeric applications.
1. Thorough familiarity with LISP or some other list processing language.
1.2 Some familiarity with the other languages of this t,ype; similarities, differences,
and issues in the construction of list processing languages.
NOTE: The languages under discussion here are LISP, IPLV, SLIP, COMIT,
SNOBOL, plus others you may discover in your reading.

Artificial Intelligence
2.1 Heuristic Programming heavy emphasis .

Chess and Checker Playing Programs (various; Samuel)
SAINT (Slagle)
Logic Theorist (NSS)
Geometry Theorist (Gelernter)
Assembly Line Balancing (Tonge)
. General Problem Solver (NSS)
Geometric Analogies (Evans)
Graph Isomorphism Finder
Finding Group Transformation (Amorxel)

Theorem Proving a la J . A, Robinson, H . Wong, etc.
(is any of this,. or is this not, heuristic programming?)

STUDENT (Bobrow)
Advice Takexr Concepts (McCarthy)
Music Composition (Hiller and Issacson)

MH-1 Hand (Ernst)

\.-

—

r

—

L
L
L

2.2

2.3

2.4

2.5

o

Simulation of Human Cognition

General Methodological Considerations Regarding Information Processing Models
in Psychology

EPAM (Feigenbaum)

Binary Choice Hypothesis Former (Feldman)
“Concept” Formation (Hunt)

Investment Decisions (Clarkson)

Belief Structures, Personality, Neurotic Behavior (Abelson, Loehlin, Colby)
Learning in Problem Solvers

Learning in Random and Structured Nets, and The General State of “neural”
models.

Pattern Recoghition Theory and Applications

2.6 Other Adaptive Systems

3 Other Non -numeric Applications .

3.1

3.2

3.3

3.4

Question-Answering Programs (BASEBALL, SIR, Black’s Program)

Information Retrieval Research, more generally construed . . . broad outlines
of the current state of art.

Automatic Indexing and Abstracting

Machine Translation ... broad outlines of current state of art.

4. Mathematical Theory of Computation.

4.1

4.2

4.3

4.4

Formalisms for Describing Computable Functions - Turing Machines, Post
Canonical Systems, General Recursive Functions.

Universality and Undecidability . .
Functions Compatable in Terms of Base Functions

Formal Properties of Conditional Expressions - Proofs of Equivalence of Computations.

4.5 Recursion. Induction

|9

4.6 Spaces Representable in Terms of Base Spaces

4.7 Abstract Syntax - Conditions for Correctness of Compilers

5. Mathematical Logic

5.1 Propositional Calculus - Canonical Forms Rules of Inference, Decision Procedures.

5.2 Predicate Calculus - Axiomatization of Theories in Predicate Calculus; Axioms
and Rules of Inference, Models, Completeness, Proof Procedures,

5.3 Set Theory - Zermelo-Frankel or Von Neuman Axioms .

References

For Section 1 see the IPLV"Manual, the LISP 1.5 Manual, the SLIP Manual (Comm. of ACM,

Sept .1963), COMIT Manual, SNOBOL article (JACM, in 1964). Also, Bobrow's and
Raphael’s survey article (Comm. of ACM, in 1964).

L For Section 2.1 and 2 . 3 the prime reference is Computers and Thought. This book will lead

E
|

you to the original sources (¢ .g., Slagle’s SAINT was originally a Ph. D. thesis, as were
many others), and also to many and various references as you read through the articles
and scan through the Index to the Bibliography. Minsky’s survey article is not to be
missed! The host of Newell - Shaw - Simon papers, in RAND reports, in published
literature, in the library, should be read. See Feigenbaum’s short survey article in

the IEEE Information Theory Transactions, plus other review articles in these

Transactions . See the volumes Self -Organizing Systems (1960 and 1962). Also, the

numerious JCC Proceedings and ACM Conference Proceedings. Bobrow's papers is

Project Mac TR-1. Hiller and Isaacson wrote a book, Experimental Music.

For Section 2.2 prime reference again is Computers and Thought. See also Newell and Simon

in the Handbook of Mathematical Psychology, chapter on Computers in Psychology.

EPAM papers will be put in the library . Hunt has a book, Concept Formation: An

Information Processing Problem. See also Tompkins and Messick, Computer Simulation

of Personality .

—

-

b

T

i
|

For Section 2.4 literature abounds . Minsky’s “Steps” article is a good start.

For Section 2.5, ditto. See, also, Sebestyen,Decision Making Processes in Pattern

Recognition. Look at Selfridge's Pandemonium and Uhzr's work ('ef. Computers and
Thought),

For Section 2.6 - purposely vague, For example, see Ashby, Design for A Brain(second edition);

Automata Studies (Shannon and McCarthy) .

For Section 3.1 see Computers and Thought. Raphael’s SIR is Project Mac TR-2. Black’s report

is in Fran Thomson’s office .

For Sections 3 .2 and 3.3, scan recent issues of the NSF publication “Current Research &nd
Development in- Scientific Documentation” as a means of ascertaining state of art and diving

into literature.

For Section 3 .4, ditto, perhaps, for this. Look at survey article by Dick See of NSF in the
magazine, “Science”, sometime in Spring of 1964, Use as springboard to literature. See

also, Bar-Hillel’s famous article, highly critical of MT work (Advances in Computers, Vol. 1)

*On pages 521-523 of Computers and Thought there is a list of collections and special proceedings

and symposia that are relatively dense in articles with which you should be somewhat familiar.

Try to get a look at as many as you can.

With respect to Sections 4 and 5, the following references are recommended:

Davis - Computability and Unsolvability

Suppes - Introduction to Mathematical Logic;.: Axiomatic Set Theory

McCarthy - A Basis for a Mathematical Theory of Computation in Computers and Formal

Systems
- Towards a Mathematical Science of Computation, ICIP, 1962.

- A Formal Description of a Subset of ALGOL, Al Memo.
- Problems in the Theory of Computation , ICIP 1965, Al Memo.

;

r._":l‘

— r— r

r—

r

STANFORD UNIVERSITY

COMPUTER SCIENCE DEPARTMENT
March 10, 1965

Syllabus for the Ph.D Examination in Computer Systems,

Programming Systems and Programming Languages

The student taking the examination should have a background in the following areas:

1. Computer Components and Memories

1.1 A general familiarity with the elementary physical properties of the following
devices which make them useful in digital circuitry: tubes, transistors, diodes,
tunnel diodes, integrated circuits, cryotrons, thin films, and magnetic cores.

1.2 An understanding of the principles of operation of mechanically scanned
memories (tape, drum, disc, card) and electrically scanned memories (core planes).

2. Logical Design and the Structure of Digital Computers ,

2.1 Some familiarity with Boolean Algebra and the synthesis of Boolean Expressions
(this assumes some knowledge of elementary minimization procedures; Karnaugh or Veitch
diagrams) .

2.2 A knowledge of the properties of elementary sequential circuits (flip flops,
shift registers and counters).

2.3 An understanding of the common number systems used in present machines (sign
magnitude, 1's complement, 2's complement and binary coded decimal). The student should
have some appreciation and familiarity with the fact that many algorithms exist for
performing arithmetic in various number systems.

2.4. Computer Organization
- An understanding of the basic organizational features of a Von Neuman Sequential
Processor (the 7090 as an example) a Stack Machine (the B-5000 as an example) and an
understanding of how data flows through a machine; and how I-O can be organized.
3. Programming Languages
3.1 A thorough familiarity with AILGOL 60 and B5500 ALGOL.

3.2 A general familiarity with some other programming languages such as FORTRAN,
LISP, etc. and at least one machine code.

3.3 A knowledge of some of the more ustf’ul features of Iverson's notation.

—
1

4. Programming Systems

4,1 A general familiarity with the principles and organization of assemblers,
interpreters and compilers and the knowledge of the problems connected with the implemen-
tation of various computer languages, in particular AILGOL(the mechanisms for
compiling expressions, procedures etc., and the problems of storage allocation).

4.2 An understanding of the general principle8 and tasks of supervisory systems
and the problems involved with time-sharing a computer and with parallel processing.

k.3A thorough familiarity with at least 2 computers, and a general familiarity
with the capabilities and organization of a machine of the “new generation”,

5. Phrase Structure Languages

Aknowledge of production grammars, the specification of a programming language by
a syntax (BNF) parsing of sentences of phrase structure languages, and syntax directed
compiling.

REFERENCES

A partial list of useful references is included below. Other references of a similar
nature can be found in the library.

Components, Memories, Logical Design and Computer Structure
Braun, Digital Computer Design

Phister,_logical Design of Digital Computers

Buchholz, Planning a Computer

Ledley, D C ter C E r

Beckman, . . . “Development in the Logical Organization of Computer Arithmetic @ @
Control Units”, Proceeding8 of the IRE, January 1961, pp 53.

Rajchman, “Computer Memories: A SBurvey ofthe State of the Art”, Proceeding8 of the
1Re, January 1961, pp 104,

Mac Sorely, High Speed Arithmetic in Binary Computers", Proceeding8 of the IRE,
January 1961, pp 67.

Burks, A W., Goldstint, H.H., and von Neumann, J,"Prelimin Discussion of the
Logical Design of an Electroniec Computing Tnstrumeht , Collected Works of

Yon Neumap.

Y

(References, cont'd)

Critchlow, A.Jd., "Generalized Multlprocessmg and Multiprogramming Systems"
AFIPS Conference Proceedings (FJCC - 1963), pp 107-126.

Amdahl, . . /'Architecture of the IBM System 1360", IBM Journal of Research and
Development, Vol. 8, No. 2, April 196k, pp 87 - 101.

"The Structure of System 1360", IBM Systems Journal, Vol. 3, N's 2,3, 196k,

Barton, "A New Approach to the Functional Design of a Digital Computer'’,
Proe. WJCC 19, (1961) pp 393 = 396.

Programming Languages and Systems

Barton, R.S., "A Critical Review of the State of the Programming Art", AFIP§,
Conference Proceedings (SJCC - 1963) pp 169 = 177.

Bobrow, Daniel and Raphael, Bertram. "A Comparison of List Processmg Computer
Languages", Vol 7, No, 4, April, 1964, Comm ACM pp 231 -

Floyd, 'R.W., "The Syntax of Programming Languages =~ A Survey" IEEE Transactions
on Electronic Computers, Vol, EC-13, no. 4, August 196k,

Iverson, A Programming Language, Wiley, 1962

Rosen, Saul, "Programming Systems and Languages, A Historical Survey", AFIPS
Conference Proceedings (SJCC - 1964), pp 1-15.

Survey of Programming Languages and Processors", Comm ACM 6,3 (March 1963),
PP 93-99.

Survey Issue on Programming Languages: IEEE Transactions on Electronics Computers, ,
Vol, EC-13, No, 4, August 196h.

B. Randell and B. Russell; "AIGOL 60" Implementation; AP 1964

STANFORD UNIVERSITY
COMPUTER SCIENCE DEPARTMENT

March 3, 1965

Syllabus for Ph.D. Examination

in Numerical Analysis and Computational Mathematics

1. A general familiarity with the following computer problems:
solving one or more linear or nonlinear equations; simple problems involv-
ing ordinary or partial differential equations; approximation of data by
polynomials; approximating integrals and derivatives of functions by
linear formulas; locating maxima of functions; computing eigenvalues of
matrices. The subjects and the supporting Mathematics or Statistics
should be known at a depth like that of courses 137 ‘and 138 and the
following books: Hamming, COMPUTING FOR SCIENTISTS AND ENGINEERS;
Henrici, ELEMENTS OF NUMERICAL ANALYSIS; Anonymous, MODERN COMPUTING
METHODS, 2nd ed.; Stiefel, ELEMENTS OF NUMERICAL ANALYSIS. For compu-
tational methods of linear algebra, see Forsythe, NOTES ON COMPUTATIONAL
METHODS OF LINEAR ALGEBRA (dittoed notes for course 137, 1964, on reserve
in Computer Science library), or L. Fox, AN INTRODUCTION TO NUMERICAL
LINEAR ALGEBRA. For solving parabolic and elliptic partial differential
equations, see D. Young's Chap. 11 of John Todd (editor), SURVEY OF
NUMERICAL ANALYSIS, or "A survey of numerical methods for parabolic
differential equations," by Jim Douglas Jr., in ADVANCES IN COMPUTERS,

vol. 2 (1961).

2. A reasonable understanding of the pragmatics of scientific
computation with automatic digital computers: the importance of fully
automatic procedures for frequently used computations; pitfalls in using
standard algorithms of mathematics on computers with (necessarily) limited
precision; what constitutes a good and well documented algorithm, and
where such algorithms can be found for various problems; the different
types of errors in computation, and ways to estimate and (where possible)
reduce the errors; the influence of the logical design of computer
hardware and software on the accuracy and cost of computation in time,

storage, and human effort.

|
!
—

e

Syllabus for Ph.D. Examination in March 3, 1965
Numerical Analysis and Computational Mathematics Page 2
3. A deeper knowledge of some selected area of numerical analysis,

with a depth like that of courses 237a, b. Examples: discretization
error and stability in solving ordinary differential equations (Henrici,
DISCRETE VARIABLE METHODS IN ORDINARY DIFFERENTIAL EQUATIONS), round-off
error (Wilkinson, ROUNDING ERRORS IN ALGEBRAIC PROCESSES), solution of
partial differential equations (Varga, MATRIX ITERATIVE ANALYSIS, or
Forsythe-Wasow, FINITE-DIFFERENCE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS),
approximation (Davis, INTERPOLATION AND APPROXIMATION, or J. R. Rice,
THE APPROXIMATION OF FUNCTIONS), computation methods in linear algebra
(Wilkinson, THE ALGEBRAIC EIGENVALUE PROBLEM), numerical integration
(Krylov, APPROXIMATE CALCULATION OF INTEGRALS); Monte Carlo methods
(Hammersley and Handscomb, MONTE CARLO METHODS).

4, Familiarity with the principal reference books for mathematical
computation --bibliographies, tables, collections, formulas and algorithms,

specialized monographs, etc.

