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PART 1: GENERAL CONSIDERATIONS

Introduction.

The problem to be considered is that of obtaining polynomial approx-
imations to continuous functions or empirical data in such a way that
the approximating polynomials are convex in some prescribed interval.

This problem arises naturally in connection with data smoothing and
was in fact suggested to the author by a problem requiring the calculation
of derivatives from data,

The difficulties arising from the use of interpolation and least
squares methods for data smoothing by polynomial approximation are well
known. There are excellent discussions in Lanczos Uﬂ]*, and Hamming
(7]. There appears, however, to be very little literature which treats
the problem of interest by methods of constrained polynomial approximation.

Such problems are usually posed in terms of minimizing functionals,
which suggests treatment by variational methods. A similar problem has
been so treated by Boltjanskii [3]. He examined the problem of approx-
imating continuous functions with functions whose n-th derivatives
satisfy a Lipschitz condition. By application of the Pontrjagin maximum
principle [15 ], he obtained necessary conditions which solutions of the
problem must satisfy. The problem of interest here can be formally
stated in a manner similar to that of Boltjanskii, but such a represen-
tation does not appear to help in the study of means of computing best
approximations.

Methods of polynomial approximation where the polynomial coefficient

vectors are constrained to lie in a convex set are treated in the recent

*
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paper of Rice [16]. He showed that the problem of obtaining best
approximations to continuous functions with n-th degree polynomials
whose k-th derivative is positive on [0,1] has solutions and gives
conditions for uniqueness and location of these solutions. However, he
does not find the problem of computing such approximations to be tract-
able.

The difficulties that Rice encountered are of two kinds. First,
the problem is essentially nonlinear, having nonlinear constraints.
Second, the geometry of the constraint set is difficult to deal with
because it is not given explicitly.

In this work, both of the aforementioned difficulties will be
dealt with. In this first part, after development of some necessary
preliminaries, a theory for treating a class of nonlinear approximation
problems is presented. This class is of interest not only because it
includes the convex polynomial approximation problem, but because it
provides a potentially useful generalization of the linear theory. A
typical problem of this class is expressed as follows: Given an element
f of a real normed linear space V, a set {xi(z) : 1 =1,...,k} of
elements of V which are continuous functions of z in a subset S
of En, and a set H in E% determine an element (y*,z*) in

Hx S so as to minimize
“f' (ylxl(z) + . e e ykxk(z))“ .

To the writer's knowledge,this class of problems is being treated

for the first time in this work. Questions of existence, uniqueness,




and location of best approximations of this type are discussed in
Sections 5 and 6. Except as otherwise noted, the theorems given there
appear to be new. One concludes from these results that under fairly
general conditions, this class of problems exhibits most of the nice
features of constrained linear approximation problems.

In the second part, the geometry of the set of polynomials convex
on [0,1] 1is developed. The theorems which represent the convex poly-
nomials in such a manner that the results of Part 1 are applicable are
given in Sections 10 and 11. These theorems appear to be new; in
essence, they say that the problem of convex polynomial approximation
on an interval can be reduced to a problem of minimizing a function
subject to linear constraints. Further, the problem exhibits features
which make it amenable to treatment by readily available computational
procedures. In particular, the function to be minimized cannot have a
relative minimum even though it need not be convex. It is also shown
that under certain conditions solutions can only lie on the boundary
of the set of constraints.

Computation of best least squares approximations by convex poly-

nomials is illustrated in an appendix.

1. Definitions and Notation.

Throughout, V will denote a normed linear space over the real
numbers with norm || ||; elements of V will be denoted with letters
f, g, x. E' will denote n-dimensional Euclidean space. It will be
convenient to have two means of referring to coordinate systems in

+ . . . .
Fuclidean space: the element y of o 1 will be written in either




of the forms

a (yl"“’yn'i'l) or ., “ (YO:“-,yn)

Sets or sequences of points are denoted by capital letters such as
A, B. The elements of a set or sequence are indicated by enclosing them
in brackets, and the customary procedure of writing "X is the set of

all x which have property P" as

X=(x:x has property P)

is used.

The closed interval 0 < t < 1 will be written as [0,1] or I.
The finite set of points on I given by 0 = t, < tl < oo < tN =1
will be denoted by T. The linear spaces of real-valued continuous
functions f(t) on I or T will be written as C(l) and C(T)

respectively. C(I) is a Banach space with norm

el = max [£(t)|
t eI

C(T) 1is a Banach space with norm

Nl = max fe(s,)]
0<i<N
Other norms can be put on these linear spaces to obtain Banach spaces.

The spaces CP(I), p > 1, are obtained with definition

il =]/,

1 1
if(t)]pdt‘




and the spaces CP(T) are obtained when

N

= [ X ]

.

i=0

The same notation is used for both norms, but context will always make
the usage clear.
Inner product notation for sums of products will be used whenever
. . n+l .
convenient: y .x =¥ X  + .00 + Y %n for x, y in E . With the
convention that x"(t) = (l,t,---,tn), polynomials p(t) of degree

< n can be written in the form

n
P(E) =y .X'(8) =y + ¥yt + .xx 4y b

If p(t) > 0 on a set S, it will simply be called positive on
S; if p(t) > 0, it will be called strictly positive on S.

It is now possible to state the convex polynomial approximation

problem: Given an f(t) in C(l) or C(T) normed in one of the ways

. . . + .
given above, an integer n, and a set H in ok l, determine an ele-
ment y*¥ in H such that

ly - " - £

is minimized at y = y¥* subject to the condition that

d2 n n-2
oy L xXM) =2y, + 6yt +.a= + n(n-l)yt - >0
at2 2 3 n

for all t in I.




2. The Problem is Reasonable.

It is worthwhile to inquire as to whether the problem posed at the
end of the last section is reasonable in the following sense: Given a
function convex on [0,1], are there polynomials convex on [0,1]
which are arbitrarily close to the function in some norm? If the answer
is yes, the problem will be considered reasonable.

The desired affirmative answer is contained in the following

Theorem 2.1: Let f(t) be a function which has positive k-th derivative
on [0,1]. Then given any € > 0, there is a polynomial p(t) with

positive k-th derivative on [0,1] such that

max lp(t) - £(t)] < €
0<t<1
The desired result is the special case of this theorem with k = 2.
The theorem is proved as a consequence of two other theorems, the
first of which is S. Bernstein's version of the Weierstrass approxi-
mation theorem.

For a function f£(t) defined on [0,1], the expression

n
B [£(¢)] =m=21 £(2) (e (1-8)" "

is called the Bernstein polynomial of order n of the function f(%).

With this definition, one can obtain

Theorem 2.2 (S. Bernstein): If f(t) is continuous on [0,1], then

lim Bn[f(t)] = f(t)

n — oo




uniformly on [O,l].
Proof can be found in Natanson [14].
Now, define forward differences of f(t) at t = m/n by

ae(2) = (B2 - 2(2)

X k-
Af(%) = AA lf(%)) , k =2,3,...

Then, by direct differentiation and term rearrangement, the following

expression for the k-th derivative of B [£(t)] is obtained:
3 g (1)) =n!——ni‘,k e () (AR gmey g )R-k
n k! =0 n’'m

for k = 1,2,...,n. If the k-th derivative of f(t) is positive on

[0,1], then AFf(g) is positive for 0 < m < n - k. This proves

Theorem 2.3: If f(t) has positive k-th derivative on [0,1], then
the Bernstein polynomials of £f(t) have positive k-th derivative on
[0,1].

The proof of Theorem 2.1 follows directly from Theorems 2.2 and 2.3.

The above results are contained in Lorentz [1l]. Convergence in
the uniform norm implies convergence in any of the norms for C[0,1]
considered in Section 1.

Armed with the comforting knowledge that there are convex poly-
nomials close to convex functions, it is now interesting to ask the
following question: Among all n-th degree polynomials convex on [0,1]
is it possible to find best approximations to a given function (in

particular, a convex function)? Here, "best" will mean the usual thing:




best in the sense that some norm is minimized.

To answer this question, the problem of Section 1 will be imbedded
in a larger class of problems. To do this, and to facilitate discussion
of the geometry of convex polynomials, the next two sections will be

devoted to a development of results on convex sets and cones.

3. Convex Sets.

, A set S in E" is convex if for each pair of points yl and y2
in S, the points y = Gyl + (l-9)y2 are in S, where 0 <6 < 1;
that is, the line segment Jjoining yl and y2 lies in S. S is called

strictly convex if 0 < 6 < 1 causes the points y to lie in the in-

terior of S. For a fixed vector x and a constant c, the plane En

determined by

is called a supporting plane to S if the plane contains at least one

point of S and S lies entirely in one of the half-spaces
{y:y*x > ¢}, {y:y'x < c}. BAny half-space containing S is called a

supporting half-space to S. Theorems relating these concepts can be

found in many places; for example, Karlin[8] proves:

Theorem 3.1: A closed convex set is the intersection of all of its
supporting half-spaces, and every boundary point of the set lies on a
supporting plane.

The dimension of a convex set S is defined as the dimension of

the linear subspace of smallest dimension which contains S.




If the set S is convex, closed, bounded, and n-dimensional, it 1is

called an n-dimensional convex body.

A supporting plane to a closed convex set S will be called proper
if it contains exactly one point of S. In such a case, that point is

called an extreme point of s. It is an immediate consequence of the

definition that an extreme point cannot lie in the interior of a line
segment joining two points of S.

The following theorems give relationships between convex sets,
extreme points, and supporting planes. Their proofs can be found in

Berge [2].

Theorem 3.2: If S is a compact non-empty convex set in En, it has
an extreme point; further, every supporting plane of S contains an

extreme point of S.

. n . .
Theorem 3.3: A compact non-empty convex set S in E° is the inter-
section of the closed convex sets containing the set of extreme points

of S.

Theorem 3.4: If R and S are compact convex sets in En, each having

at least one interior point, then R and S are homeomorphic.

4. Convex Cones.

A set K in E is a convex cone if for each pair of points yl
and y2 in K, the points y = ayl + By2 are in K, where &, B > O.
A convex cone is a convex set. The relationship of convex cones and

supporting planes is shown by

Theorem 4.1: Let K be a closed convex cone in E°. Then every




supporting plane to K contains the origin, and a supporting plane can

be proper only at the origin.

Proof : Suppose y .x = c 1is a supporting plane to K at ¥y # 0.
Then ¢ = 0, else there are points of K, namely Qy for ¢ < 1
and & > 1, on both sides of the plane. This shows that every support-
ing plane to K is of the form y .x = 0 from which both parts of the
theorem can be concluded.

For convenience, it will be supposed that any x which defines a
supporting plane to a closed convex cone K is always taken so that K
lies in the half-space given by y .x > O. The intersection of the
translate y .x = 1 of a supporting plane to K with K will be

called a cross section of K. 1If K has a 'proper supporting plane,

its corresponding cross section is called a proper cross section, and

K is called pointed (the origin is an extreme point).

Theorem 4.2: Let K be a closed convex cone in En. A cross section

of K is bounded if and only if it is proper.

Proof: For each fixed vector x, y'x is a continuous function
on E”. Define the set S = {y:y € K, lvyll = 1) and let u be the
greatest lower bound of y - X on S. S is compact, so there exists
a y in S for which y - x =p. By convention, y +x > 0 for each
y in K, so u>0. If u>0, then for each y in S there is a
number A, 0 <A< % such that Ay .x = 1. This says that the cross
section corresponding to x 1is bounded if and only if p > 0. If
p = 0, there is a non-zero y in K such that y . x = 0, which

makes the supporting plane improper. The desired result follows

immediately.

10



5. Existence.

Throughout this section and the next, y = (yl,.“,yk) will denote

a point of Ek, and z = (zl,...,zn) a point of E'. The unit sphere

2 2
1+ "'*'yk =1
. K .
in E will be called U.
Achieser [1] gives the fundamental existence theorem for approxi-

mation in normed linear spaces as follows:

Theorem 5.1: Let Xyse-+,X  be k linearly independent elements of
V. Then for any element f in V there exists a point y* in Ek

such that the function

y.x-*f ||

o(y).

attains its greatest lower bound (and hence its minimum) at y¥*.

Rice [16] shows that ¢(y) will also attain a minimum if y is
constrained to lie in a closed set H in Ek.

The approximation problem under consideration involves the para-
meters nonlinearly. Thus, it would be useful to have an existence
theorem which-covers the situationof interest and might also be appli-
cable to other approximation problems. A rather general theorem is
given by Young [22], and discussed by Rice [17], but appears difficult

to apply. The theorem which will be given here is appropriate to the

situation and is an extension of Theorem 5.1.

Definition 5.2: Let x,(z),...,xk(z) be k continuous functions on

11




E® into V. Let S be a subset of E®. If for each z in S, the

set B(z) = Dﬁfz),-n,xk(zn is linearly independent in V, then the
set B(S) = {B(z) : z € S) is called a basic set on S, or simply a
basic set.

An example of a basic set is obtained by taking V = C(I), S the

z
. , 1
square in E2 given by 0 < zi <1, i =1,2, and xl(z) =t
a+z2

=t 0

, x(2)

Definition 5.3: Let B(S) be a basic set and define the function

Wwsz) = Iyl = lypxy(2) + oo + w2

Since V¥(y,z) 1is positive, it has a greatest lower bound p > 0 on
the set U X S in Ek x BN, If w > 0, B(S) is called an admissible
basic set.

The example of a basic set given above is admissible. It would be
tedious to show this by direct computation; however, the reason for the

truth of the assertion is contained in the following

Lemma 5.4: Let B(S) be a basic set. If S is a compact set in Eq
then B(S) 1is admissible.

Proof: Since S 1is compact in En, UX S is compact in Ek X E°.
The function V¥(y,z) given in Definition 5.3 is continuous on Ek x B
and hence attains its greatest lower bound p on U X S. Now, let

(y*,2*%) be a point in U x S such that
Y(y*,2%) = |ly*ex(z%)] . u .

Since B(S) is a basic set, the xi(z*) are linearly independent.

12




Hence p = 0 if and only if y; = 0, all i. Since y* is in U,
L # 0 and B(S) is consequently admissible.

Theorem 5.5:Let f be an element of V, H a closed set in Ek,

S 'a compact set in ET. Let B(S) be a basic set in V with elements
xl(z),...,xk(z). Then there exists an element (y*,z*) in H X S such

that the function

y-x(z) - £

(P(Y;Z> = l

attains its greatest lower bound on H X S at (y*,z*).
Proof: U is compact in Ek- Thus, for each fixed z in S,

the continuous function

¥(y,z) = fy-x(2)]

attains its greatest lower bound u(z) on U. By Lemma 5.4,
p(z) >n > 0,where p is the greatest lower bound of ¥(y,z) on

. k .
u x s. Also, observe that for any y in E and z in S,

k 1/2 | k 1/2
|Iy-X(Z)I|Z(.ZlVy:2.L) “(Z)Z<2 yi) T

i=1

Now, let p be the greatest lower bound of CP(Y;Z) on H X S.

By the inequality just derived,

k 1/2
brex(z) - £l > ly-x(2)] - liel {g y§> S L

Thus, if y is taken such that

k 1/2
(2 y?) >5 (o + 14 fel) = x,

. i
i=1l

13




then .

ly-x(z) - £l >p + 1

This shows that only those y in the sphere

-

k
2 2
R= {y: ) y; ST JL
i=1

permit ®(y,z) to approach p.

'R is closed and bounded, so R {l H is closed and bounded and
hence compact in Ek. S 1s compact in En, so (RN H) x S is com-
pact in Ek x E®.  Since ¢(y,z) is continuous on Ek X En, it will
attain its greatest lower bound on (R N H x S which by the above
argument is its greatest lower bound on H x S, and this is what was
to be proved.

Theorem 5.1 can be obtained from Theorem 5.5 as the special case
when Xqsee05X, are constant linearly independent elements of V.

Conditions under which solutions of approximation problems such
as those under discussion are unique are discussed in the next section.

Location of solutions is also discussed.

6. Uniqueness and Location of Solutions.

Achieser [1] proves a uniqueness theorem for linear approximation
in a finite dimensional linear manifold in V under the condition that

V is a strictly normalized space. This condition holds whenever

equality in the expression

14




£ + ell <l [ +lell (£,8 # 0)

holds only for g = af(a > 0).
Rice [16] gives more specific results. Let H be a closed set in
Ek, and let XqpeeesXy be fixed linearly independent elements of V.

Let f be an element of V and suppose that

min , Iy - €] < min Jyex - 7] .
y € E y € H
Rice proves:
Theorem 6.1: (1) Every local minimum of |jy-x - f|| on H is a global

minimum on H.

(2) If y* minimizes Iyd{- f” on H, then y*¥ is in the

boundary of H.

(3) If H 1is strictly convex, then y*¥ is unique.

(4) If v 1is strictly normalized, then y* is unique.

(Rice actually proves a slightly different statement than (%), but
it 1s essentially the same in the present context.)

Some theorems similar to those of Rice can be proved under some
assumptions on the nature of the mapping of H x S to the set of
possible approximations in V.

Let ® denote the mapping which associates the element y .x(z)

K o E®., TLet C = 0(H x S).

in V with the element (y,z) in E
Henceforth, it will be assumed that C is a closed convex set in V.

It will also be assumed that ¢ sets up a 1 - 1 correspondence

between H X S and C. If ¢ is a homeomorphism between H X S and

15




C, then C will automatically be closed because H x S is closed.

Definition 6.2 (Riesz-Nagy [18]): A Banach space V is called uniformly

convex if for each f, g in V such that |f |, |lg || <1l 4 €and
le + &l > 2, then | - g|| < e.
It can be shown (Clarkson [5]) that of the spaces defined in Section

1, Cg(I) is uniformly convex, but C(l) is not.

Theorem 6.3: If V is a uniformly convex space, then
®(y,z) = |ly-x(z) - £|| has a unique minimum in H X S.

Proof: Let {(yn,zn)] be a minimizing sequence for @. Let
n n

g =Y .x(zn) and p be the minimum of ® on H xS. Then given

€ >0, there is an N sufficiently large so that for m, n > N,

I n_f“ ’ I m_f” <t
o -

o

Now, because C = ®(H x S) is assumed convex, =( g™+g"™) 1is an element

o] o

of C and
n m
I 825 - 2]l > o

b

which implies

S T
&=+ &= | >2
P P -
By the assumed uniform convexity of V, it then follows that
" - "l < oc

which shows that {gn}, and hence any minimizing sequence in C, is

a Cauchy sequence. By the completeness of V and the fact that C

16




is closed, this sequence converges to an element g of c. The element

g is unique in C, for if {hn} is another minimizing sequence, then

1 ‘ n.n
grh,g,h" ...,g,h, | _
is also a minimizing sequence which must converge to g. The assumption
that ©® is a 1 - 1 correspondence implies the existence of a unique
element (y,z) in H X S with ®(y,Z) = p, which is what was to be

proved.
Theorem 6.4 Let ® be a homeomorphism. Then every local minimum of

®(y,z) on H X S is a global minimum on H X S.

Proof: Using the notation of the previous theorem, let gl and
g2 be elements of C such that ”gl-fn < ”g2-f”. The elements g
of the line segment between gl and g2 in C are given by the

expression.

g = 6gt + (1-0)°, O0<o<1

By hypothesis, the points Q‘l(g) lie on a continuous path from

(yl,zl) to (fz,g) in H XS. Along this path, ¢(y,z) is monotone,

since

.
log" + (1-0)¢ - ]l < ollgt-2ll . (1-0)[¢" - £]| < [I€F - £ .

11 .
Now, let ®(y,z) have a global minimum at (y ,2z ) and a candidate
‘ 1.1
for a local minimum at (yz,iz)- Construct the path from (y ,27)
to (yz,zz) as indicated above. Because the path is continuous and

® is monotone along it, it is not possible for a relative minimum to

17




be at (yg,ze). This completes the proof.

There are several conditions which can cause ¢ to be a homeo-
morphism. In particular, if H is compact, then ¢ is a 1 - 1 con-
tinuous map from a compact space onto a Hausdorff space and hence a
homeomorphism. Also, if C can be decomposed into a product A x B
and ¢ into a product ¢ X ¢, such that ¢l is a homeomorphism of
H onto A and ¢2 is a homeomorphism of S onto B, then it can be
shown that ® 1is a homeomorphism.

It is now interesting to inquire about conditions which would force
solutions to lie on the boundary of H x S. A set of conditions for
this is given in
Theorem 6.5: Let ® be a homeomorphism. Let H XS be closed, con-
vex, and have interior points in B X EP. Let (y*,2*¥) be a point
of EX x E® such that (y*,z*) 1is not in H xS and
?(y*,z*) < ®(y,z) for all (y,z) in H xS. Let V* be the smallest
linear subspace of V which contains g* = y*.x(z*¥) and C. Then
if C has an interior point in the relative topology in V¥, the
minimum points of @ on H xS must be on the boundary of H xS.

Proof: It is easily shown that @ is a homeomorphism of H xS
onto C considered as a subset of V¥*. Let g2 =;y'2 . x(ze) be a
candidate for a minimum in the relative interior of C corresponding
to a point (y2,z2) in the interior of H XS (guaranteed by the
homeomorphism). Construct the line segment from g* to ge. Because
C is closed and convex with an interior, this line segment must meet
the boundary of C in exactly one point which will be called gl.

By the same argument used in Theorem 6.4, |[f-g| is monotone along the

18




. 2 .
line segment g* to & , and consequently is also monotone from g
2 - 1 . 1.1
to g - Under the homeomorphism, g~ corresponds to a point (y ,z7)
on the boundary of H x S and @(yl,zl) < @(yz,ze)- This completes

the proof.

The remainder of this work is devoted to an example in which the

foregoing theorems apply.

19



PART 2: CONVEX POLYNOMIALS

T. Methods of Representation.

Some kind of parametric representation of the set of polynomials
of degree < n which are convex on [0,1] is needed before a com-
putation of best convex polynomial approximation can be attempted. One
such representation is suggested by Section 2: form Bernstein poly-
nomials with coefficients whose second differences are positive. The
second difference expressions will yield a finite set of linear in-
equalities which the coefficients must satisfy, which is desirable,
but this method will be rejected since it can be shown that not all poly-
nomials of degree < n which are convex on [0,1] can be represented
exactly by Bernstein polynomials of degree < n (see Section 12).

Another method would be the direct method of Section 1: make the

polynomial y . x"(t) satisfy the infinite set of constraints
2y, * 6y3t + oees + n(n-l)yntn"2 >0

for each t in [0,1]. This is the method found intractable by Rice
(16].

The method which will be adopted here derives from the existence
of a parametrization of the set of polynomials of degree < n which
are positive on [0,1]1. It has the desirable property that the para-
meters must satisfy a finite set of linear constraints. This repre-
sentation can be integrated twice to obtain a representation of the

polynomials of degree < n + 2 which are convex on [0,1].

20




8. The Cone of Positive Polvnomials.

The results of this section and the next were obtained by Karlin
and Shapley [9] by less direct means.
. . n+l .
The point y = (yo,yl,...,yn) in E representing the poly-
nomial y .x(t) = Yo t oyt toree yntn corresponds to a polynomial
B(g) > 0 for each t in [0,1]. Let

Kn denote the set of all y in En+l which have that property.

positive on [0,1] when y-° X

Theorem 8.1: K° 1is a closed convex cone in En+l whose boundary con-
sists of points representing polynomials of degree < n which have roots
in [0,1] but are otherwise positive there.

Proof: If Pl and P2 are polynomials of degree < n which are
positive on [0,1], then so also are the polynomials ap, + Bp, for
all &,Bp > 0; hence, K® is a convex cone. Since a polynomial is a
continuous function of its coefficients, a polynomial p(t) which is
strictly positive on [0,1] will remain so in an open neighborhood about
its coefficient point in En+l; hence, that point must lie in the
interior of K®. If p(t) is positive but has a root at t, in [0,1],
then each open neighborhood of its coefficient point contains a point
corresponding to a polynomial which is negative at to? hence, p(t)

corresponds to a boundary point of - x%. Since K© contains its boundary,

it is closed.

Corollary 8.2: The planes of the form

n
p(t ) = ¥y, + vty + % + ¥t =0

where p(t) is positive with a root at t, on [0,1] are supporting

planes to Kn.

21




Proof: If q(t) 1is a positive polynomial of degree Cn on
[0,1], then g(t) > p(to) = 0, so K* 1lies to one side of the plane
p(to) = 0. By hypothesis, p(t) corresponds to a point in the plane,
so p(to) = 0 is a supporting plane.

If p(t) has a root at to on [0,1], then so does oap(t) for
all & > 0. Thus, the supporting planes of the form p(to) = 0 cannot

be proper. K" does have a proper supporting plane, however. This fact

is used to prove

Theorem 8.3: K" is pointed.

Proof: It will be shown that the plane

1
Yo o291 ° = "ol Yn

is a proper supporting plane to K. First, the plane meets K at
the origin. Second, 1if y % 0 is in Kp, then p(t) =y . x"(t) > 0

for t in [O,l], but p(t) is not identically zero, so
1
_ 1
Yo TE YL T wx n+l Yn = /r p(t)at > 0
. Jo

The rest of the proof follows immediately from Theorem 4.1 and the

definitions of Section 3 and L.

9. The Cross Section Pn-

Theorem 8.3 implies that K" has a proper cross section defined

by the intersection of K" with the plane

1 1

y0 + 2 yl + .** + nt+l yn =1
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This cross section will be called Pn and will be described in detail.

Theorem 9.1: P" is an n-dimensional convex body.

Proof: It must be shown that Pn is convex, closed, bounded, and
n-dimensional.

P is closed and convex because it is the intersection of two
closed convex sets. By Theorem 4.2, Pn is bounded. To show that P"
is n-dimensional, observe that the points in P corresponding to the
polynomials 1, 2t, 3t2,. .,(n*1)t" lie in the plane defining the

cross section. Thus, the n vectors

(-1,2,0,0, . .. , 0) ,
(-1,0,3,0, . .. » 0)

.. ,
(-1,0,0,0,.. . , 0, ntl) ,

formed by subtracting the vector to the first point from those to the
others, all lie in the plane of the cross section and are clearly
linearly independent. The dimension of the plane must therefore be at
least n. Since the dimension of the plane must also be < n + 1, the
proof is completed.

Theorem 3.3 says that to describe P°, it suffices to describe
its set of extreme points. The nature of the extreme points of P is
given by
Theorem 9.2: The extreme points of P correspond to polynomials which
have n roots (counting multiplicities) on [0,1].

Proof: Each polynomial corresponding to an extreme point of P’

must be of degree n exactly. To see this, suppose p(t) corresponds
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to an extreme point but is of degree < n. Then the polynomials tp(t)
and (1-t)p(t) are positive on [0,1] and both are of degree < n. It
is then clear that positive scaling factors a) and ny can be found
so that altp(t) and aE(l—t)p(t) correspond to points of P, and

further, there will be a 6, 0 <6 < 1, so that

p(t) = Oa tp(t) + (1-6) ay(1-t)n(t) ,

which contradicts the hypothesis that p(t) corresponds to an extreme
point.

Now, if p(t) 1s positive on [0,1] but does not have all of
its roots there, then its corresponding point in K" cannct be an
extreme point of Pn, for p(t) must then have a root a < 0, a
root b > 1, or a pair of complex roots ¢ % id. This implies that

p(t) 1is expressible in one of the forms

p(t) = (t-aju(t) = 3 (t-2a)u(t) + & tu(t)

el

p(t) = (b-t)v(t) = 5 (2b-1-t)v(t) + & (1-t)v(t) ,

p(t) = [(t-c) + a®lw(t) = (t-c)Pw(t) + a®w(t) ,

where u, v, and w are polynomials positive on [0,1]. All three of
the right-hand expressions can be scaled so that they are of the form
Gpl(t) ¥ (1-9)p2(t) with 0 < 6 < 1 and p; and p, corresponding
to points in P*. This proves one half of the theorem.

Now, suppose p(t) 1is a polynomial corresponding to an extreme

point of P?, and that there are polynomials pl(t), pe(t)
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corresponding to points of P* and 8, 0 <6 < 1, so that

p(t) = Gpl(t) + (l-9)p2(t). Because p; and p, must each have the
same roots as ©p, they must be identical, for p(t) already has the
maximum possible number of roots. Thus, the supposed convex combination
is impossible, and this completes the proof.

Knowing the permissible disposition of all of the roots makes it
possible to write down polynomials proportional to those corresponding
to extreme points of P Any roots in the interior of [0,1] must
be' of even order; Roots of odd order can occur only at 0 and 1.

Hence for n even (n=2m), the extreme polynomials are

n m-1
2 2
[[(t=2,1)7 or td-t) [ (t-2,,)° ,
3=1 3=1
and for n odd (n=2m+l), they are
m m
2 2
t II(t—zgj) or (1l-t) II (t_ZEJ-l) ,
j:: Jj=

where the z, are in [0,1] and need not be distinct. The subscripts
were taken as shown for later convenience.

One would expect that a convex linear combination of n + 1
extreme points would be required to represent an arbitrary point of
Pn. However, it is a remarkable fact that every point in Pn, and
hence any point of Kp, can be represented by a unique positive linear
combination of at most two extreme points, and the extreme points can
be chosen in a completely systematic manner. That this is so is stated

in
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Theorem 9.3 (Karlin-Shapley): Every polynomial corresponding to a
point y of P has a unique representation by a pair of polynomials

corresponding to extreme points of P’ as follows:

; m m-1
i 2 2
Z yit =Q H (t’-z2j-l) + Bt(l"t) H (t'zea)
1=0 . .
j=1 J=1
if n = 2m, and
n . "
1 2 - 2
Tyt = ot (eezy )+ BO-Y) [[(t-255 1)
1=0 j: j—l

if n=2m+1, witha>0, B>0, OSZI-<-Z2;'** Szn_1_<_l.
Moreover, y 1s interior to P’ if and only if all of the inequalities
are strict. Note that @ and P are not independent. They are
actually of the form @ = &'z , B = B'(l-zn}} <z, < 1, where o’
and B' are scaling factors which make the corresponding extreme points
lie in P,
The proof of this theorem is too lengthy to repeat here. See Karlin
and Shapley [9]. Note that each point in the simplex in En_l defined
by 0 < 2y <°°°< Y < 1 -generates two linearly independent poly-

nomials proportional to polynomials corresponding to extreme points of

PY. A sketch of the cross section P~ is shown in Figure 1.

Corollary 9.4: Every polynomial corresponding to a point y of K®

has a unique representation of the same type as that given in Theorem
9.3. Here, @ and B may be regarded as independent.
Proof: Every element of K is a positive multiple of an element

: n
in P .
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The representation of Theorem 9.3 will be used to generate the

desired parametric representation of the convex polynomials.

10. Convex Polynomials.

Let Z" denote the set of those z in E' whose components
satisfy the relations 0 < 24 < ... < Zn-l <1, 0< z, < 1. It is

clear that 2Z° 1is a compact convex set. Define the mapping & from

728 to P° by &(z) = the element in P corresponding to the poly-

nomial given by Theorem 9.3.

1 3

+ +
Now, define the mapping 1 from E" to E° as follows:

TG ) = L L . 1
1y, 0 5H) = (O’O’ 21 Yo 3.2 Y170 (me2)(ntl) yn)

Under the corresponding relation between polynomials, the polynomials of

degree < n are mapped into their indefinite double integrals. Let

+ . . .
Theorem 10.1: Qn 2 is an n-dimensional convex body homeomorphic to 2"

Proof; By Theorem 9.3, ¢ is a 1 - 1 continuous map of Zn
n n . . .
onto P . Z 1s compact and P is Hausdorff, so ¢ is a homeomorphism.
. . : . n n+2
Also, n is a linear 1 - 1 continuous map of P onto Q from
which the rest of the proof follows.

+ .
The polynomials corresponding to points in Qr1 2 can be realized

+2(

as images of points in 2" in the form q(z,t) = n(&(z)).x" <(t),

n+2 n+2

+
n 2( ). Let C denote the set of poly-

where x t) = (1L,t,...,t
nomials of degree < n + 2 which are convex on [0,1].

+
Theorem 10.2: Each element of C° 2 has a unique representation of the
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form

Yo + Vit + voa(z,t)

B3

subject

with qg(z,t) defined as above and (yo,yl,y2 ) a point in
to the condition Vo > 0.
Proof: Let p(t) be convex on [0,1]. There is no loss of
generality if it is supposed that the degree of p(t) is exactly
n+ 2. Let p'"(t) be the second derivative of p(t). By Corollary
9.4, there is a scale factor y, > 0 so that p"(t)/y2 corresponds
to a point of P and a unique point z of z" which represents that
element of P". By Theorem 10.1, the point z determines a unique
element of Qn+2 and a corresponding polynomial q(z,t). It follows
that yéq(z,t) agrees. with p(t) except for the terms y_ and y;t
- which are absent from yéq(z,t). The rest of the proof follows easily.
In the proof of the last theorem, it is observed that the degree
of any of the polynomials g(z,t) is > 2. Thus, for each fixed z,
the set {l,t,q(z,t)} is linearly independent in the space of poly-
nomials of degree < n + 2. Since 7" is compact, this proves

Theorem 10.3: {1,t,q9(z,t)} is an admissible basic set.
3

Now define H = {y Ly = (yoﬂﬁjyé> in EY, yé > 0}. H is
closed. Define the mapping ¢ from H X z? to C(l) by the
expression

o(y,2) . ¥, . vt . vealzst)

Theorem 10.4: The mapping ¢ is a homeomorphism of H X 7" onto

n+2
C .
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+ . 1 2
M: Let B = tyg :y2 > 0}, E (t) = [yo + ylt : (yo’yl) € E},
and Cg+2 = the set of all polynomials of cn+2 with Yo =¥ = 0.

Then the mapping ¢ can be considered as a mapping from

2

F x (BT x z27) to E-(t) x c'2, ®

o Now, can be decomposed into the

form ¢, x %, where ® maps ® to Elﬂt) and 9, maps E+ x 7t

1 2
+ . . . +
to 6;2. By definition ®2 is 1 - 1, continuous, and onto Cg 2-
+
A product of an open interval in E  and an open set in 2" s

. + . R
mapped to an open set in C? 2 because Qn+2 is homeomorphic to z",

Thus, ®2 is an open mapping and consequently a homeomorphism. Ql is
a homeomorphism by definition From the remarks following Theorem 6.4,

it follows that ® is a homeomorphism.

11. Convex Polynomial Approximation.

Theorem 10.2 isolates the class of convex polynomials and Theorems
10.3 and 5.5 establish the fact that the best approximations exist with-
in the class Furthermore, Theorems 10.4 and 6.4 give assurance that
during computation of best convex approximations to f(t), if a local
minimum of the function.”yo + ylt t ¥oa- fH is found, then it is a

solution to the problem.

Now, observe that with the definitions of H and z" given in

Section 10, H X 7% is a closed convex set with interior in En+3,
Observe also that Cn+2 is a convex set of dimension n + 3 in either
C(l) or C(T). Thus, the linear subspace of either of these spaces

+
generated by Cn 2 is just the set of all polynomials of degree
+
<n +2, and in this subspace cn 2 has interior points (by an

extension of Theorem 8.1). Thus, an immediate application of Theorem
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1

6.5 yields

Theorem 11.1: Let f be an element of C(l) or C(T). Suppose the

best approximation to £ by polynomials of degree < n + 2 in one of
the norms of Section 1 is not convex. Then the best convex polynomial
approximation to f is obtained on the boundary of H X 70,

In computational practice, one may as well allow H to be all of
Ej, in which case either the best convex or the best concave poly-
nomial approximation will be found. Since best approximations must occur
in a compact part of E3, application of Theorem 11.1 implies that
all solutions are on the boundary of z? whenever the unconstrained

best approximation is not already convex or concave.

Computational examples are described in the Appendix.

2 . A Note on the Bernstein Polynomials; Some Unsolved Problems.

A look at Figure 1 shows that it is impossible to express the poly-
nomial (t-%)2 as a positive linear combination of the polynomials t2,
t(1-t), and (l-t)g. Thus, it is not in general possible to obtain
a best approximation by positive polynomials of degree < n by taking
positive linear combinations of the polynomials tk(l-t)k, K = 0,1,...,n.
The set of polynomials just referred to is linearly independent, so any
polynomial of degree < n can be represented as a linear combination
of them. However, conditions on the coefficients making the polynomial
positive are not known. This is an interesting problem which would
bear investigation.

For reasons much the same as in the positive polynomial case, the

attempt to represent all polynomials convex on [0,1] by linear
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combinations of the same kind with a condition on the second differences
of the coefficients will fail.

Another difficulty with the ordinary Bernstein polynomials is that
no matter how many derivatives the parent function has, the order of
convergence of B, (f) to f is o(%). See Voronowskaja [21] or
Lorentz [11]. Butzer [4] has shown that certain linear combinations of
the ordinary Bernstein polynomials converge to f like n_k if £ is
bounded and has 2k derivatives on [0,1]. The question of whether
Butzer's polynomials exhibit properties-like that of the parent function
is also open.

Now that best convex polynomial approximations can be computed,
the problem of order of convergence estimation for these approximations
becomes more interesting and should be investigated. However, no

course of attack is immediately evident.
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APPENDIX: COMPUTATIONAL EXAMPLES

The spaces 02(1) and C2(T) defined in Section 1 are uniformly
convex, SO best convex polynomial approximations in these spaces will
be unique. Furthermore, the functions of the form f - y-x(z)“g which
are to be minimized are differentiable functions of the parameters in

the cases to be considered. One example will illustrate approximation

in C2(I), the other in CQ(T).

Al. Convex Cubic Approximation in Cg(IL

This case can be solved exactly. This is facilitated by the use
of the Legendre polynomials on the interval [0,1], the first four of

which are (see Milne U3])

Pl(t) =1 -2t ,
p) = 1- 6t +6t°,

Py(t) = 1 - 12t + 30t2 - 20t3

These polynomials are orthogonal on [0,1]; in fact, they satisfy

the relationship
1 o, i#3
[ rop(s)as - { .
0 J (2441)™, 1 = 3

They are linearly independent, forming a complete orthogonal set;
hence any polynomial of degree n can be written as a unique linear

combination of the first n + 1 of them.
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Polynomial approximations of the third degree to f(t) on [0,1]

are obtained by minimizing

3

Lot

2 1 3 1 Yy
If - 3 y.p. f o f £(£)P, (t)at + 5 == |
it e 2 ~Jg [£(t)]1%at - 2 o v+ Jo 1 i&p 21+l

> Jeo

where the right hand side has been obtained by using the orthogonality
relations. This expression is quadratic in the yi, and by completing

squares it is easily shown that its minimum value is

2
[‘1 e(6)Pat - & ok (a1)
f(t)l7dat - - 5 Al
Jo i 2i+l
which 1is obtained for
1
f £(t)P, (t)dt
0 . .
Yy = 1/2i+1 3 i=0,1,2,3 . (A2)

Now, let it be required that the approximation be convex on [0,1].

This condition is expressed as

3
d A _
—5 1L=‘o yiPi(t) =12y, + ( 60-120t)y3 > o0,

or,

y2+5(1-2t)y320; 0<t<1

What this means geometrically is shown in Figure 2, where the shaded
region is the intersection of all of the half-spaces given by the
constraints. The boundary lines of the cone of possible solutions are

given by Yo * 5y3 = 0.
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Now, supposing it is known that the best unconstrained least squares
cubic approximation to f(t) is not convex. Then one can conclude by
applying Theorem 11.1 or Theorem 6.1(2) that the solution must lie on

the boundary lines. The expression to minimize then becomes

1 1 N2
fo {f(t) - [a P (t) + & P (t) + ¥Bp(8) £ 5 yePe(t)]} at ,

and again it is easy to show by completing squares that the minimum is
2 . =
frl [£(t)]%at - {ao + 13168 v inog? 4 i1 (L5 ae)e} o (83)
0

and that the minimum is obtained for

. l .
¥; = (21+1)~/; f(t)Pi(t)dt , i =0,1;
(Ak)
1
\/;01 £(t) [f’e(f;)qt 5 P3(t)]dt
Y2 = T
S 7(2)5

Two solutions are possible from equations (A3) and (Ak); the
correct one is that which gives the smallest wvalue in (A3).

To illustrate, consider the problem of obtaining the best convex
cubic approximation on [0,1] to f(t) = tu- Using equations (A2)

it is found that the best approximation is

|-
+d
1
o
o]
+
e
o]
[
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or,

1 +2, 9424 543,
'70'+7t 7t+t

The mean square error from equation (A2) is found to be approximately
2.3 x 10'5. It is easily shown that this approximation is not convex.
Applying equations (Al) with minus sign (which is seen to be
correct by plotting the point of best unconstrained approximation in

Figure 2), one obtains

1 2 I 1
5P -5h tap BT
or,
1 T 7.3
gd-—e-at'l'gt .

From equation (A3), the mean square error obtained is approximately

2.8 .10%

Approximation in CE(T) can be handled in essentially the same

manner using the orthogonal polynomials described by Forsythe [6].

A2. Convex Quartic Approximation in CE(T)'

By application of Theorems 9.3 and 10.2 for the case n = 2, every
polynomial of degree < 4 which is convex on [0,1] can be represented

in the form
v t 2 2
p(¥,2,8) =5+ ¥yt + Y2 (z,(t-2.)" + (1-z,)t(1-t)]at™ , (A5)
o] 1 0 0 2 1 2
withyezo, 05z1<1, 05_22<1.
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Thus, best least squares convex approximations to functions f(t)

in C2(T) are obtained by minimizing

N
2 O .
le - ly = T (e(s,) - p(y,2,.)1° (46)
i=1 1
subject to the constraints. In Section 11 it was pointed out that the

constraint Y, > 0 need not be applied in practice, so only the bounds
on , 2 and.z2 will be used.

One might now proceed by trying to solve the problem using the
method of Lagrange multipliers.

However, the equations so obtained will be non-linear and difficult
to solve, thus it seems worthwhile to use a numerical procedure from
the start. Fortunately, such procedures are available, and many are
programmed for digital computers The method to be employed here is the
gradient projection method of Rosen [19]. It has been programmed for
use on the IBM 7090 computer by Merrill [12]. For use on the problem
at hand, a subprogram for evaluating expression (A6) and its gradient
on the parameter space must be supplied. The program is already ahle
to handle the constraints. A subprogram has been written for the

following test problem:

T=¢(t, : t, =0.11; i = 0,1,2,...,10} ,

For purposes of comparison, and to obtain starting approximations
for the gradient projection code, best unconstrained quartic approxi-

mations for this test case were computed. This was done using the
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method described in Forsythe [6] and an IBM 7094 computer code based
on the program described in Rudin [20]. The second, third, and fourth
degree approximations and the corresponding sums of the squared errors

were computed as follows:

2

Second degree, z ei = 0.092146842 ,
0.82273361 - 2.5890284t + 1.863667Tt> .

Third degree, by ei = 0.013453531 ,
0.95122132 - 4.630555k% + 7.217322Ut°

- 3.569103lt3

Fourth degree, bY ei = 0.0012569747 ,

0.99040337 - 5.9910430t + 1k4.019760t°

14.453004¢3 + 5.4419509t

The third and fourth degree approximations are not convex. Thus,
the best convex approximations in these cases must lie on the boundary
of the constraint set.

However, in the first application of the gradient projection
method, the solutions were not constrained to lie on the boundary of Z2
(see Section 10), but allowed to range over all of Z2. No other
constraints were applied. As a starting guess, the above second degree
approximation was used, for it is convex.

Convergence towards a minimum was very slow, despite various

accelerating options in the program that were applied. After some 3500

iterations, the following result was obtained:
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y.. = 0.92700600 ,
(]

y, = -4.7174867

Y, = 29-390549
2, = 0.78380506 ,
z2 =1

;, The corresponding polynomial and sum of squared errors are:

p(y,z,t) = 0.92700600 -4.7174867¢
+ 9.0280&731:2 - T.6788203t3
+2.zm9212ut4 ,
£ € = 0.0092285508 .

This result is better than the best third degree (unconstrained)
polynomial approximation, but not as good as the pest fourth degree
approximation, which gives a lower bound for the error. Notelthat this

result is on the boundary of Z2.

Some subsequent computations were made forcing the solutions to
lie on the boundary of Z?,. but unless the starting approximation was
close to the one found above, convergence was also quite slow. It
appears that slow convergence is the price that one must pay for the
lack of convexity of the expression (A6).

It should be mentioned, however, that the long computation referred

to above took 12 minutes on the IBM 7090 computer.
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Perhaps better (e.g., faster) computational procedures can be found;
however, the principal aim here has been to demonstrate the possibility
of solving such problems by practical means. This has been

accomplished.
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