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THE DIFFERENCE CORRECTION METHOD FOR NON-LINEAR,

TWO-POINT BOUNDARY VALUE PROBLEMS.

by

Victor Pereyrat

1. Introduction

This paper will deal with the theory and application of the difference
correction method to two-points boundary value problems of monotonic type,
i.e.:

(1.1) y"' = £(x,y)

(1.1) a y(a) - gy (a) =A

(1.1M vy y(o) + 8 y'(b) =B
with several conditions on f(x,y) and the constants o, B, y, 6.

A thorough discussion on the practical aspects of the difference cor-
rection method can be found in Fox [1957] and Fox [1961] where the method
is applied to a wide variety of problems. Considering boundary value
problems for the Poisson equation in two dimensions Bickley, Michaelson
and Osborne [1961] have pointed out some theoretical aspects of the differ-
ence correction when applied to that problem.

In Henrici's book, "Discrete variable methods in ordinary differential

equations" [1962] p.3T7, it is indicated that, if a difference correction
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is added to an approximate solution of 1.1 then the order of the discreti-
zation error is increased in at least two units. After giving some notation
in Section 2 a discussion of (1.1) witha =y =1, =8 =0 1is given in
detail in the following sections. The asymptotic behavior of the discretiza-
tion error is discussed in Section 3, following the lines of Henrici with cer-
tain changes which make it more general and allow us to introduce several
ways of performing the difference correction.

In Section 4 the h2 improvement property of a generalized difference
correction is proved.

In Section 5 two possibilities (different from the classical) are inves-
tigated for the case p = 2, and in Section 6 numerical results and compari-
sons with other methods are presented, showing that it is faster and more
accurate to use correction differences than a direct method of equivalent
order.

In Section 7, the results of Sections 3 and 4 are extended to the general

problem (1.1) and in Section 8 a numerical example is presented.

2. Notation and known results

As we want to use several results by Henrici [1962] 'Chapter 7, and we prefer
to avoid repeated references, we will adopt its notation and we will give a
summary of these results.

A non linear boundary value problem will be called of_class M, if it is

of the form (1.1) and, a) the initial value problem y" = f(x,y)
y(a) = a, y'(a) = A with A arbitrary, has a unique solution. b) fy(x,y)
is continuous and

(2.1) fy(x,y) >0 for a<x<b, ®<y<w®




c) the boundary conditions are,

ya) =a , y(b) =B

It is proved then that a problem of class M always has a unique solution.

The finite difference approximations that we will discuss are of the form,

2
2.2 - - _
( ) yn--l + 2y‘n yn+l + b {BO fn--l + Bl fn +62 fn+1} =0

n=12 ... .N1

where By + By + B, =1, By =B, h = (b=a)/N (N integer), Vo= % vy =B
and the rest is standard notation. The limitation of taking this kind of
equations appears naturally if we do not want fo consider grid points outside
of the interval [a,b]. By introducing some special matrices and vectors,

- part of the following discussion can be simplified. We will use no special
notation for matrices or vectors, but we hope that their meanings will be

clear in each context. Let

\
Vs xpvy) 0
Y - £(y) - : } e = :
0
2
YN-1 £lxg 1 ¥yoq) B-Boh T (xy:B)




1 2
-1 2 -1
Bo Bl B2
J = . B= . . .
. _1 . *
_l 2 L] L] Bz
\ \ BO Bl
(2.3)
f (1 0
(1)
0 f (2
(2)
F(y) = . .
. 0
0 f (N-1
y0)
where f, (j) = fy(xj’ yj) .
For instance, formula (2.2) can now be written,
2
(2.4) Jy +h” Bf(y) —~a =20

where the vector a takes care of the boundary values.

A Newton type iteration used to solve the system of non-linear

equations (2.4) 1is insured to be convergent under certain restrictions,
mainly on the first approximation and on the step length h (Th. 7.7,
(0)

Po 373, l.c.) . If the first approximation is called Yy , then the formulas

for Newton method are in this case,

(2.5) r(y(i)) = Jy(i) + n° Bf(y(i)) - a,




(2.6) Ay(i) =-(J +n

and finally,

r1 . .
(2.7) Y(1 ) _ y(1) N Ay(1)
If the computed approximation is called y* and the exact solution

of (1.1) is called y, then theorem 7.8, p. 374k gives for the components

of the discretization error, e = y¥ - y the following bound,

(Xn'a)ib-xn) P kY

(2.8) le | < (Ch
where C 1s a constant which depends on the method and on the problem
itself, and p 1is the order of the method. K and g are arbitrary
non negative constants which stem from the assumption that the Newton

iteration is stopped when the components of the residual vector satisfy
(2.9) I | <xn®®

This is a very important practical fact, because it permits us to perform
an incomplete iteration (the only possible kind in actual computation) be-
fore applying the difference correction technique. We will assume that

g>p+ 4 in order to avoid interference of this term in the discussion

of the discretization error.



A difference operator L[y(x);h] is naturally associated to the dif-
ference scheme (2.2),

)

(2.10) Liy(x)sh] = -y(x ) + 2v(x ) - v(x |

+07{p, ¥ (k) + By ¥'(x, +B, " (x )]

Lly(x);h] operates on all functions y(x) sufficiently differentiable.
By expanding in Taylor series all the terms of (2.10) it is possible to

find,

) pte (p+2) P, (ph) 6
2.11) L h] = pt
( ) Lly(x)3;h] = n Corp ¥ (x) + n Coul ¥ (x) + o(n™ ")
where p 1s called the order of the method.
We will also need some notions about monotone matrices.

A matrix A is said to be reducible if and only if it is similar to

a block matrix of the form,

All 0
Pl ap =\ A- A
“\ a1 22
where A A are square and P is a permutation matrix. In partic-

11" 22

ular, a tridiagonal matrix A = (aij) is irreducible if and only if,




ai)i-l)é 0 (l =2/ 5} L In)
and

5,41 £ 0 (1 =1, 2, . . . ,0-1)

1f by the notation v > 0 (either for vectors or matrices) we mean that

all the elements are non-negative, then we can define: 5 patrix A is
monotone if A z > 0 implies z > 0. A direct consequence of the definition
is that every monotone matrix is not singular.

A fundamental result of this theory is: 3z matrix A is monotone iff

27t > 0.

Another important fact is the following: if A is irreducibly diagonally

dominant and has non-positive off-diagonal elements then A is monotone.

Finally we quote for further use, gf A and B gre monotone and

B <A then at<pt

3. Asymptotic behavior of the discretization error

Following the lines of Henrici, pp. 375-377, we will now derive an
expression for the discretization error which will be useful in the dis-
cussion of the difference correction method.

We recall that, if formula (2.2) is used as a finite difference
approximation to problem (1.1), and ¥ is the approximate solution of
the system of equations, then the discretization error, A -y(xn)

(n =0,1,...,N) satisfies (2.8). We will assume that p > 2 and that

the exact solution y(x) is (p+6) times continuously differentiable.



Therefore,

£epyy) - e ,y(x)) = £ (x,y(x ) (r,mv(x,)) + 0(6F)

or, by calling g, = fy(xn,y (Xn)),

507 £(x,v,) - £x,y(x ) . g . e, . O(nP)

As B + By + P, =1 and B = B, we get,

(3.2) y(wg)(xn) = B, y(wg)(xn_l) + By y(we)gx ) + B, y(p+2)(

-, 12y P ) 4 o)

Now we will construct a difference equation for the discretization

error, by subtracting (2.11) from (2.2)

2 A
Vpa*t 2V, -y, + 0B £ o+ B T+ B, ) - Llv(x )bkl -

n

c y(p+2)(x' ) - WP o

p+2 n pth 7P G ) o)




Or, letting d_ = f(xn,,yn) - f(xn,y(xn))

2
e, t2e e .+ h° (

c v

o (p+2)(xn) Pt (p+h)

o Y (x)

n

BO dn—l * Bl dn +82 dn+l) =

+ O(hp+6)

Using now the relation (3.1), dividing through by nP and defining the

magnified error e, = h pen we get,

(33) e +2.5, -, +nlp e o +B e T +
By By Bnd =120 v PRe) -t o v )
+ O(h6)

Introducing now (3.2) and defining,

(3.4) 0 =g e + Y(p+2)(Xn) Cora

(3.3) is transformed in,

5o -epy tRe et hg(ﬁo 2yt By O, By 0 ) =

S n (e, By - Op) ¥ 0 4 (%)



If we solve the boundary value problem of class VM,

(5.6) e 1) = glx) ex) + C .y P (x)

by the method (2.2), we will obtain equations (3.5) with zeros in the

right hand sides. Then, by (2.8) we get,

2
(3.7) e =1° e(x )+ 8 ({béa) {nP*2

n

eo B~ Co) VP ) 4

+12P Gz )+ o)

where pon|< 1.

In other words,

P pt2
.8) yie) = 3 - WP ex ) + O(uF*2)
with the error leading term given in (3.7).

4. The difference correction.

The last formula of Section 3 indicates a way of improving the
approximate solution Y, by at least two orders in h. To do so, we
have to know how to compute e(xn)‘ Actually, it is enough to know

how to compute a quantity eg which satisfies,

10




ex = e(x ) + 0(n%)

and that isthe one which we will be able to obtain. The difficulty in
(p+2)
(xn).

solving (3.6) is that we do not know ¥ Consequently, a
. (p+2) )
reasonable step is to replace ¥ (Xn by a known appropriate value,

r(xn). The only thing we will require from ﬁxn) is that it fulfills
2 2
(4.1) y P ) = v(x ) 4 slx) 6E 4 0(6?)

where s(x) 1s a sufficiently differentiable function, and
|s(x)] < ¥ a<x<b.
Let us now define the following differende problem,
2
. —e¥*_ +D ¥ - ¥ * * * =
(k.2) ®n1 h T 1 T h (BO Qn 1 * Bl ¢n * B2 ®n+l)
with

ri )

* = *
¢n gn en + Cp+2 n

. . . 2 .
The problem has a solution since the matrix @ = (J + h B F) being

monotone (for h sufficiently small) has an inverse. Moreover,

On the other hand, the exact solution of (3.6) satisfies,

11




(h.j) -e(xn-l) *e e(xn) B e(Xnﬂ_) * h2 (BO Qn-l * ﬁl ¢n * B2 ®n+l)

pHo

=h C e(p+2)(§£)

o

P2 )

o =g, e(xn) + C

pte

The difference of (4.2) and (4.3) gives us an equation for the error

M, = e'l)fl - e(xn) P)

o) 2
(& .4) M1 + e Ty ™ Mpta *h (BO (gn—l Mp-1 ~ CP“'2 SC% l) B )

or

Using now the fact that Q" - (J + e B F)-l is a positive matrix we
get,
-1 . -1 -1
(&.5) In] = |27 vl < e lv| < 7 7vl
It is clear that,
M<c.. (xkn + 1”25 )
= pt2 pt2

12



where € 1is a vector with all components equal to one, and

172 ()| < &

p+2 x € [a, b].
Then
e -elx )< knt e E_ )l
n n’! = “pt2 p+t2 n
with
(J_1§)=(xn-a)(b-x)
" 2h?
or by using an uniform bound,
2 P b - 8)°
% _ -
(4.6) lex e(xn)Hw < Chip X b° + n Ep+2) L—T—L
which finally gives the desired result,
(4.7) e* - e(x ) = O(n°)
’ n n

p+2

Summarizing, the complete procedure to obtain an h order in the

discretization . error 1is,

1) Compute yn(n = 0,1,...,N) by the method of order p given by
formula (2.2). The iteration in New-ton method can be stopped when
the residuals are less than K hp+2.

2) Compute -hP eX Dby using (4.2), and add this quantity to v, The

new approximation will hold (3.8 ).

13




The remaining discussion will deal with some possible choices for the
approximation (4 .1).

The classical choice 1is,

-p-2 p+2.
(4.8) r(x ) =h P AP+2yh*q+l (P = 2q)

Ap+2yn+q+l - nP*@ y(p+2)(xn) + Pt s(x_) + o(nP*0)
where we have assumed enough differentiability on y(x).

In this case the quantity o ez is called the difference correction
by Fox [1957].

By extension we will keep calling difference correction to any
quantity computed in this way, whatever the approximation r(x) Dbe.

In the next Section we will give two more expressions for r(x) in
the case p = 2. We will also show there, that the use of the difference
correction instead of a direct formula with the same order, results in less

computational work for the same accuracy. There are two reasons for this

saving; on one side the formula used in the Newton iteration is much simpler

and on the other side, the number of iterations needed is smaller. That
is explained since, when the difference correction is used, the g of
(2.9) has only to be equal to p + 2, while in the other case it has to

be at least p + 4.

14



5. Two expressions for the correction term,

As we are considering the equation,

y" = f(x) Y)

. L
and we want to approximate y( )(X) (p = 2), a natural idea is to consider,

2
L a” f
(5.1) y( )( = (XIQY(X))
dx
which immediately gives place to two new forms for r(x). we will prove

they are valid expressions, in the sense that they satisfy (4.1).

1)

(5.2) r) =h 8 2 f(x,y)

We want to prove that, if

(5.3) v, = v(x )+ n° e(x ) + o(n')

then,

(5.) i(hx) . ;2 f(X,g(X)) _ 52f(x ;yn) . O(hE) .
dx dx h

If we were using y(xn) instead of y  then (5.4) would be trivially

true, but as vy, only satisfies (5.3), some manipulations are needed.

2
2
5.5) f +2f y' +f D+ s y"
( ; _ Ty xy ¥ w7 -

15




On the other hand,

2
(5'6) 5 f(xn)yn) = f(xn_l)yn_l) -2 f(xn,yn) + f(xn+l,yn+l)
and by developing in Taylor series we get,
(5.7) 8% £(x ,y ) - (6 y ) £ (x,y(x)) + h(y_ 4 -y ;)
21 ¥y’ = n’ ty‘tn?d N’/ Tt nt+l n-1
£, v )+ [y g - v )% 4 (v, - v(x ) )
xy'n’ YV + Yp-1 = Y¥p t Wl n’*
2 1 : 2
- 2y, -y )Ty 3 Guy(x)) 4 nT e Geuy(x))

+O(111+).

The coefficient of fyy can be expressed in a more convenient way.

By USing(5-5):
(v, _ v )? 4 (v, ¥ )P - 2y, - yix ))F -
- (0 ) - y(x) + 62 ele )P (v, p) - vlx) + 8 elrgy))”

+ o(n') = (-y'(x )b + [% y'(x) + e(x ;)] n?)? +

Dyl n s 3 ¥ ) ¢ el y)) EDF 4 o)

16




and the final expression is,
2 2 2
(5.8) (Yo v )™+ (v, - v D)7 - 20y, - v(x))” =
- 2 (5 ()" 0 + o(n")

Then (5.7) and (5.8) imply,

2 2
" £x ,v,) SIS Yop ™ Ypo1
T =f (xn,y(xn)) + 3 fy(xn,y(xn)) + 25—

e Gy ) L ()7 g Geuy(e) L o)

2
= 55 (xpvlx)) + 0(n%)

&a@

which proves (5.4).

An immediate advantage of using 8°r instead of 5uy is that no
external values are required to compute the differences at points close
to the boundary, avoiding the use of special formulas and information
unrelated with the problem.

Since the values f(xn,yn) are already computed (from the last
iteration in the solution of (2.2)) no extra work 1s necessary and there is
always less computation in carrying 2nd differences compared with the 4th.
ii) In cases in which f(x,y) is easily differentiated, it would be

worth to use the approximation,

17




(5.9) rx) = £ Gouy) + £ Gy o +
(v, -y )°
n+l n-1
+ f (Xn’yn) ’+h2 - fy(xn:yn) f(xn’yn)

For instance, if f(x,y) is independent of x,(5.9) becomes,

(v, 1 = V)

n yy ' n’ ‘n Lh

n+l
5 + fy(x s ¥y) Ty )

n

If £(x,y) = g(x) ¥ + h(x) then,

) Yn+l B yn-l

2 "
- + e (x )y, +hn"(x )+

1" 1
r(x) = €"() v, + &' (x
+ g(x) hix )
and so on.

The proof that (5.9) is an approximation to y(u)(x) of order at

2
least h  goes in the same fashion than the proof for (5.2).

6. Numerical results and comparison of different methods.

We will now state two other finite difference procedures, the
Numerov-Milne fourth order approximation, and a truncated version of
the Fox difference correction. After that, we will compare them with
the two methods described in the previous section and with a shooting

type technique.

The Numerov-Milne fourth order method is,

18




B can also be written as,

The Fox difference correction with fixed fourth order length uses first,

a second order approximation given by the solution of,
2 -_—
(6.2) Jy = -h” f(x,y) + a

then one difference correction in the form,

2 1
(6.3) Jge = -h” F(x,y) e - 5 Iy
12
and finally
- 2
(6.4) vy=y+h e

Thus, the use of fourth differences makes it necessary to compute

external values for y. Fox suggests the use of equation (6.2) to
extrapolate values out of the interval of integration, giving the two

special formulas,

_ 2
y_l =20 - Yl + h f(a‘)a)

2B - +one £(b,B) .

N+l = IN-1

19




Equatians (6.1) and (6.2) through (6.5) will be referred to as Methods I
and II, respectively. Methods III and IV will be the ones which stem from
formulas (5.2) and (5.9).

The procedure used for these methods is similar to the one used for

Method II, the change appearing in equation (6.3).
For Method III we get instead of (6.3),

(6.6) Je = -h° F(x,7) e + »%—2 Jf(x,y)

Method IV expressed in components 1is,

2 = 1 2 =
. - + 2e - - - =
(6.7) e 1 e e, =B fy(xﬂ, Yn) e - 15 [h fxx(xn’yn) +

-\ = - 1 =\ = - |2
L Gy ) - Y)Wy - vpy)

2 — —
+ h fy(xn’yn) f(xn:yn]

In spite of its complicated aspect, method IV turns out to be the fastest
and the most accurate whenever the partial derivatives of f-(x,y) are
simple and can be calculated easily.

Now we want to point out a common feature of the methods using the
correction difference. We recall that if Newton's method is used to solve

(6.2) the formulas are (care has to be taken on the boundary points),

20



(6.9) P TCAR NI CAR
and
(6.10) L) (@) ()

In solving either the linear systems (6.3), (6.6) or (6.7) we get

equations which resemble very much those above. In fact, the changes are:
i i+1 i 2 i
in the expressions for r(y(l));(6.lo) becomes y( ) = y( ) - h Ay(l)

and only one iteration is required.

The r(y) corresponding to (6.3), (6.6) and (6.7) are respectively,

(6.11) r(y) = - —1--§ Jg_i
12h
_ 1 =
(6.12) r(y) = 15 I£(6)
1
(6.13) r(y) =-135 v .

In (6.13), Vv stands for the vector obtained from the second term in the
right-hand side of (6.7).

Thus, 1if the difference correction is combined with Newton's method
in the earlier stages, practically the same code can be used in both parts.
We have written an Extended Algol program for the B5000 at Stanford which

took advantage of this situation. The program modifications for the

21




different methods were very slight, and the procedure followed in the nu-
merical comparisons has been to introduce these modifications in the most
direct fashion.

Another important observation, from the time consuming point of view,
is that the quantities f(x,y) and F(x,y) do not have to be computed
again in order to perform the difference correction since the values cal-
culated for the last iteration of the Newton method are in general good
enough, and no noticeable improvement is observed when these values are
recomputed.

We have chosen as our first example a problem which has a known ana-
lytical solution and is completely worked out in Collatz [1960] pp.lk5-147.
The method used there is a combination of shooting and interpolation.

By using the same step length, h = 1/5, we have computed approximate
solutions with the four methods described above.

The problem 1is,

- 1 2
(6.1k) y" = % v o oy =% y(1) =1
with one solution equal to
. L
(6.15) y(x) = ——
(1+x)
0 .
In all the methods the first guess y( ) was constructed from a linear

interpolation of the given data

Y(O) (x) = - 3x+4

22




In Table I the values of the five approximate solutions are given; and
in Table II information about number of iterations, computing time, and
deviation from the true solution is recorded. The subscripts stand for
the numbering we have given to the different methods. Method V is the

one used in Collatz and y(x) is the exact solution (6.15).

TABLE I
x y(x) 1 Y11 Yz Vv Yy
0 4.00000 }4.00000 4,00000 4 . 00000 )4 ,00000 k. 00000

0.2 | 2.77778 2.77680 277718 2.77719 277757 2.79464
0.4 | 2.04082 2.03995 2.04019 2.04019 2.04054 2.05787

0.6 | 1.56250 1.56191 1.56202 1.56202 | 1.56226 1.57519
0.8 | 1.23457 1.23427 1.23431 1.23431 1.23443 1.24138

1.0 1.00000 1.00000 1.00000  1.00000 | 1.00000 1.00003
TABLE II

Y1 Y11 YIIr Yiv Yy
Number of
Iterations 1in 4 3 I 3 3 -
Newton Part.

- -4 -l 4
ly(x) = Yupp.lln 9.75 x 107%.| 6.29 x 207" | 627 x 104 | 2.78 x 107 | 293 x 10

Computation time
in seconds & 1.70 1.63 1.62 .63

y In the Burroughs BS000 at Stanford Computation Center.

23




It is observed that this is a problem in which method IV is fairly con-

venient. In fact, (6.13) becomes

r (7)) = - 55 (075 (74 - ¥,)° + 7 k5 52).
Method V is included as a matter of reference, but no attempt is made in
comparing it with the finite differences type procedures since they are
completely different in principle.

Methods I through IV have been numbered-in order of increasing speed and
accuracy. There is no discussion about the accuracy in this example.

One word has to be said about the speed. The figures in the third row of
Table II show that the computation time was practically the same in all
four methods with a tiny seven hundreth of a second in favor of the differ-
ence correction. This situation will also be noted in the second problem
presented at the end of this section. However, we can mention some reasons
which lead us to believe that the ordering is also meaningful in so far as
computational speed is concerned.

The solution by Newton's method of the system (6.1) is more com-
plicated than the solution of (6.2) which is basic for all the methods using
the difference correction. Moreover, as was mentioned in Section 4, the
requirements of precision in these latter methods are less than for the
Numerov-Milne method. That implies, that in general less iterations can
be expected for methods II, III, and IV than for method I. That is shown
in the first row of Tables II and IV. Of course, one more iteration (the

difference correction) has to be counted, but in general, as can be seen

2k




in formulas (6.11), (6.12) and (6.13), this iteration involves less compu-—
tation than the one corresponding to the regular Newton formulas. That is
more noticeable after recalling that f and F do not have to be recomputed

for this correction.

A last remark is that all the linear systems involved in this discussion
are tridiagonal, and a simplified Gauss-type elimination procedure can be
used, saving both computation and storage (see, for instance, Henrici [1962]
pp. 351-354, or D. H. Thurnau [1963]).

To finish with this section, we present another example which behaves

in the same fashion as the first one.

v =™ 5 y(1) =0, y(2) = 1n(2)

The exact solution is y(x) = 1In (x)

The step length used was h = 1/16, and in Tables III and IV we give the
numerical results corresponding to the nodal points x = 1, 1.25, 1.5, 1.75.

Since

-2 . -
f(X)Y) = —e v 5 fy(X)Y) =2 e 5 fyy(X:Y) = —2fy(x,y)
(6.13) becomes
r (¥) = -5 £ (x 7 )5 £ (x,5) - 0.5 (7]
A R w¥n) = 05 Gy,

25




TABLE III

x y(x) Yo VI Y11t Y1y

1 0 0 0 0] 0

1.25 | 0.223143551 | 0.2231L43676 | 0.223143656 | 0.223143656 | 0.2231L43525
1.50 | 0.405L65108 | 0.4O5465225 | 0.405465209 | 0.405465209 | 0.L4O5LE5088
1.75 |. 0.559615788 | 0.559615853 | 0.559615847 | 0.559615847 | 0.559615778

TABLE IV
Y1 Y11 Y111 Y1v
[ Number of

Iterations in 4 3 3 3
Newton Part.
lly(x) = YapR ll2 12.9 X 10"8 10.9 X 1078 10.9 X 10'8 2.7 X 10'8
Computation time

in seconds .24 L.17 .20 4,13
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We note again that methods II, III, and IV are about the same in speed
and somehow faster than method I. Methods II and III gave practically the

same results when h was fairly small. There is a noticeable increase in

accuracy when passing from method I to IV.

7. Boundary conditions of Sturm-Liouville type.

In the more general problem (1.1) the conditions on f(x,y) are the
same as in the problems of class M discussed before. For the constants

a, B, 7, 8 we have the following requirements,

(71 .1) 0<a B 7,08; ay+ad+ By>0

- Under these conditions this problem is also of monotonic type and it has
an unique solutZon (Schrdder [1956]).

Now the finite difference procedure has to be modified in points close
to the boundary.

To clarify the ideas we will only consider in detail the case p = 2,
and the corresponding difference correction. For n=1...N-1 the
approximation is the same as described in (2.2) (with BO = B2 =0, ﬁl =1).
Observe that now Yo and yn are also unknown. To handle these two new
unknowns we need two more equations.

By using the formula,

(7 .2) yv(x) - Y(X + h)zi; y(x _ h) - % h2 y.//./ (;)



. 1l .2
(without - z h® y” (x) ) combined with the first boundary condition (1.1")

we get at x = a,
2h
(7'5) 'Y_lF(aYO'A)‘Yl

By applying (2.2) at x = a (n = 0) we get,

2
Yy_1tay, "Yy = - fo h
and by using (7.3) and multiplying through by B,
2
(7.4) (26 + 2ah) y, -2y, =-Bfyh" + 2h A
Similarly, at x = b (n = N),
(7.5) 26 + (26 + 2y h = 2B h 6fh2

with (7.4), (7.5) and the N - 1 equations (2.2) we have now as many

equations as unknowns. On the other hand the exact solution satisfies,
(7.6) (28 + 20 ) y(xy) - 28 v(x)) =

-8 £lxgy lx) ) 8% 4 2n a - £ nt y T )

3
h "
“3B Y (xg) + o)
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(7.7) (25 + 2h 7) y(xN) - 2% Y(}ﬁ\] l) =
3
- -1ns flag v () ) + 20 B + 8 % v ) - % n SyIV(x_N) + o(n?)

Now, by taking the corresponding differences we get for the error of discre-

tization at the boundary points,

(7.8) 4 2oh 2 _ _ 3 qt+2
(2 B+goh)eo Eel_®o(h Ml+h K)
2hy 2 _ _ o3 g+2
(2 + = +gNh) ex ~ 2oy 4 Oy (b M, + h K)

Together with (7.8) we have the equations for the inner points,

(7.9) - e 1 2 e "€ T h2 g, €, = @;ll (hq+2 K + hu G Z) (Henrici (l.c.) p.375)
or in matrix form,

(7.10) se=b

where,

(7.11) s, -2+h g f=1...N-1
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g€ h
a h e}
= + — 4
S00 L B 2
2
h
S =l+'Lh+gN
NN e} 2
Si,i+l = i-1,1 = -1 L =0 r N
and
+2
bi=®;'(hq K+ thz)— 7=1...0N1
_e (2K + S M
(7.12) by =€ (n > T h 2)

M
3)

I

_ Al q_+2_!§+5
bN_eN(h °3 h

If B and ® are different from zero then S is irreducible, otherwise

we can skip the corresponding equation and the resulting matrix will be

irreducible. Moreover,

i) 5;<0 it i, =0 ... N
N
. o ah 2
ii) Sa: = a1t egyh >0
3-8 R 707
N
}:si.=h2glzo
j=0
N
h 2
2: 5., o= 2= 4 g, h >0
=N 8 N
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Consequently S is monotone.

Now we will try to find a bound for the discretization error.

(7.13) 1+ P -1 0

S =
O o
0 -1

A v -
> =9

VT 1+ mh '

-where

VT = (0, 0, , 0, -1)
m = 7/6 (aJ 7> 0)

and

-1 2 -1

o
I
=
n




We know that

o<s'l§§"l
~1
Let's compute a bound for S
’C o
o~ 11 12
S -
Coy 2

where the Cla are blocks with the same sizes as the corresponding ones

in S

~1

From Householder [1953], p. 78, we obtain for S 7,

C
e R aﬁ%
C (a-l a-l)
Co1 =92 ‘¥ r oy
(7 .114-) CT
Cip = "2

with a;; being the elements of A
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It is easy to show that,

Using this result in

Then,

(7.14)

we obtain,
c . L
22 =1+ mh -1 mh
Coy = 'rii (1, )
. i_jl+ a—;ﬁl\lg (N-1)) + lﬁ
e} <87 by

33
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N-1
2 +
Since (N-i + lﬁ) )y ijl < M-1F %% ¢ 4 ¥ g 2]

J=1

<n? k' + 1076z (b-a)

—1 L q+l ' 2
and Ibo|[N1+mh]<h K' + h° M
we finally obtain,
(I llell, < 202 [G' 2 (b-a) + M']+ 2K'h%[1+h]

which is the result (2.8) corresponding to this problem. For the interior
points the treatment of Section 4 is carried over in this case, the only

—changes appearing at the boundary points. Consequently (4.2) is used for
n=l . . N-1, and also at 0, N in order to construct the corresponding
modified equations. We also need y”/(x) = t(x) + h2 u(x) + 0 (hu)

with t, u smooth. Now we are able to define the two boundary equations

to be added to (4.2),

(2ha+2 B + h2 B g(O))e‘S -2B e*{ _ Bh r(0) + B % t (0)

(7 .16)
2 5 .2 8h
(2hy + 26 + hBg(N)) et -26¢ef _3;0 M -3 £ (V)
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The equivalent of (3.6) is,
e" (X) = g(x) e(x) +.C s“(x)
(7.17) aela) -8 e (@) = £y (a)
y e(b) +de'(b) = '2'""' (b)
whose solution satisfies (4.3) at the interior mesh points and

(ha + 2 B + n® B g(0)) e(xo) -28 e(xl) =

h b =
=B‘l—2y( )(XO)+}; m (x)+-—e(h)( )
i ,
(2 7+ 23+ h” 8 g(N)) e(xN)-26e(le)
(ll-) hd _w hll- (%) =
=12 (o) -5 v O + 13 (g
at the boundary.
From here we obtain the n equations,
2
o] h
b 3 I
h ~ h h L) ,=
(7.19) G- Eu®) -5 ME
2 I 3 b =
Zn+ Bo Ty o+ b M)z
Qrghr ey -y, =-13 s +Ful -5 )
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But now the n system we have obtained is of the form,
(7.20) Sn=v

where v has components with the same orders in h as b in (7.10).

Hence the same result (7.15) is obtained for Hn”w (with different constants),
2

nea [hil, = o(n®)

which finally implies,

(7.22) e* - e(x ) = O(hg)

: n n

Consequently, in this more general problem, the difference correction,

being applied not only to the differential equation, but also to the

boundary conditions, improves the solution in two orders in h, as in

the simpler case.

8. Numerical example for the Sturm-Liouville case.

Equation (6.14) with the boundary conditions,

y(0) -2 y'(0) = 20
(8.1)

2 y(1) + 3 y'(1) = -1

was integrated by using a suitable modification of method III. Since this
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problem has the same solution (6.15) as before we only list the new results.
This time, the first guess (a linear function) turned out to be fairly bad,.

forcing several Newton iterations before reaching the required precision.

Step (h) |Number of comput . e = || y(x) - YAPRiHE ¢ after
Newton iter. Time (Sec) diff. correc.
(before diff. correc.)

1/5 5 2.6 1.1 x 10 -1 9.6 x 10-3

1/20 6 8.1 : 7.8 x 10-3 L x 10 -5
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