
AUTOMATIC GRADING PROGRAMS

BY

GEORGE E. FORSYTHE and NIKLAUS WIRTH

TECHNICAL REPORT CS17

FEBRUARY 12, 1965

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

Nuno5

g
wiAUTOMATIC GRADING PROGRAMS

by

L George E. Forsythe and Niklaus Wirth x*/

Abstract

{

—

The ALGOL grader programs are-presented for the computer evaluation
4

g of student ALGOL programs. One is for a beginner's program; it furnishes

. random data and checks answers. The other provides a searching test of
the reliability and efficiency of a rootfinding procedure. There 1s a

L statement of the essential properties of a computer system, in order that
grader programs can be effectively used.

-

Reproduction in Whole or in Part 1s permitted for any Purpose of

the United States government. This report was supported in part
| by Office of Naval Research Contract Nonr-225(37) (NR Okk-211) at

Stanford University.
f

|
— x*/

Presented to the national meeting of the Association for Computing

{ Machinery, Philadelphia, 27 August 1964, under the title "Automatic
L machine grading programs". The Stanford computers used for pro-

gram tests are partially supported by the National Science Founda-
tion under Grant No. GP-948,

i

|
-

8

~ Discussion

_ In connection with introductory programming and numerical analysis

| courses at Stanford University, grading programs have been used inter-

Bs mittently since 1961. Our programs furnish data, check student perfor-

g mance 1n various ways, sometimes keep track of running time, and keep a

N "grade book" for the problems.

| _ The Stanford routines are written separately for each problem.
| The most flexible and useful system for elementary classes was used with

| the Burroughs 220 computer in the BALGOL language, a dialect of ALGOL

| 58, and will be described first. Each grader program was written as a

| ~ BALGOL-language procedure. It was then compiled together with a proce-

L dure called BUTTERFLY, written by Roger Moore. The result was a
relocatable machine-language procedure, with a mechanism for equating

Fo its variables to variables of any BALGOL program, in just the form of

| i the BALGOL compiler's own machine-language library procedures (SIN,

” WRITE, READ, etc.). Finally, the grader program was added to the

_ compiler library tape for the duration of its use.
} The use of a powerful algebraic language and system made 1t easy

— for an instructor to write grader programs with sophistication appro-

B priate to the problem. . The student needed only furnish one or two

” procedure statements to call a grader; we often furnished him cards to

5 decrease the chance of error. Since each grader was precompiled on the
| library tape, little time was lost 1n adding it to each student's program

pe at compile time. A simple handcoded mechanism made it easy for the

operator to rescue a program from a run-time loop and send 1t into the

3 | next case without dismissing the program entirely,, It was possible to
: have several different graders concurrently on the library tape, to

3 — take care of different classes.

B This powerful grading mechanism was possible only because of the

— BALGOL compiler with its own compiler-with-library generator, and because

BUTTERFLY could generate relocatable machine-language programs. Neither

- our IBM 7090 BALGOL system nor our Burroughs B5000 ALGOL system has been
oo so well adapted to the grading problem, to our regret, and we have had

[to make do with less desirable expedients. What these newer systems
lack 1s an easy means of producing a machine-language library procedure

L which 1s fully equivalent to a source-language procedure with several
~ parameters.

| We recommend grading programs to all who teach programming and
4 numerical analysis to masses of students, but the prospective user should

L first carefully investigate the systems available to him,
We give below a typical grading program,' GRADERZ, which was used

in connection with an early problem in a beginning programming Course.

GRADER2 1s suitable for grading a student's program which 1s written as

a block. It has been translated into ALGOL and 1s given as part of a

block containing one or more student programs.

In ALGOL there 1s a practical difficulty in putting many beginner

programs into the same block with GRADER2--a syntactical error in just

one student program may upset the compiler and prevent the testing of

any program. It would be better if we could have GRADERZ precompiled

into a system library and called separately by each student.

“Da

B The student's problem is this: Given the integer N (0 < N < 10)

I BN and the real array elements A[O], ...,A[N],B[0], « a, BIN], to write
_ a program which makes MAX the maximum of A[O], ..., A[N] and which

| computes the numbers C[O], ..., C[2 Xn] defined by the polynomial
| multiplication

= b clkltf = : Alk]ES) - 3 Blk") .
: k=0 k=0 k=0

| — The student 1s told that he must arrange his program in the form:

= <all declarations> -

_ GRADERZ (<student number>, 1, N, MAX, A, B, C, START, FIN);

| START: <all statements of his solution>

| —- GRADER? (<student number>, 2, N, MAX, A, B, C, START, FIN);

B _ FIN:

— Note that the subprocedure SET UP of GRADERZ goes to great trouble

to be sure that no student will get the same data at different times,

~ and that no two students will get the same data. This was intended to

be sure that a student could not get correct answers from GRADERZ on one
-

| run, and use them for another run. We doubt the value of such pre-

- cautions,

| Observe that GRADERZ evaluates the correctness of the student

- answers, but 1n no way evaluates the running speed of the program nor

_ the amount of storage used. This is appropriate for a beginning student
of programming.

| -3=
—

| A more advanced student should have his performance examined more
critically. As an example of this, we give a second grader program

L called Test, to be used 1n a numerical analysis class whose members can
{ already program in ALGOL.

- The procedure Test listed below 1s designed to examine rootfinding
_ procedures. The students are asked to write an ALGOL procedure which

finds an approximation to a 'root' x (i.e., point of sign-change) of a

L (not necessarily continuous) function f in the interval [a, bl. To be

| precise, x is any number such that
fxg) <0 =£(x) > 0 -(in the sense of ALGOL 60)

L and

| a <X5 < x < Xq <b
| and

|

L) x, = x, | S€

| where f, a, b, and € are given parameters. Such an x always exists,
if f(a) <0 = f(b) > 0. Each student is asked to submit an ALGOL

L program containing his procedure declaration and a single statement of

| the form
| Test (rootfinder, ‘student name *)

| As with GRADERZ, all submitted programs are then enclosed together in
| an outer block, whose head contains the declaration of the procedure

L Test. Thus no use of library tapes 1s required. The block structure

L of ALGOL plays the very important role that all identifiers used by
the student, including the name of his rootfinder, are strictly local

. to his program. They can therefore be chosen freely and cannot interfere

i in

L

L

with 1dentifiers in any other program. Nor can an identifier of the

procedure Test interfere with any student's program. Of course this

technique requires that the contributions be syntactically correct, but

this 1s considered to be the minimum requirement for acceptance of a

program from students at this level.

In order to obtain an estimate of the quality of the programs,

one would like to know the accuracy of the answers, the number of

evaluations of the function ff it took to find the root (with the

possibility of terminating the test, 1f a limit 1s exceeded), and per-

haps also the time 1t took to find-the root. It is furthermore desirable

to check that the limits a and b and the tolerance € were not

changed during a test (this might occur, for example, 1f these para-

meters were called by name instead of by value), and whether the argument

of f always remained within the interval [a, bl.

The following description of the procedure Test explains the

methods of achieving these goals within the framework of an ALGOL program.

The declaration of Test contains the following variable-declarations:'

grade represents the student's grade; it is cumulated during

execution of several partial tests of one student's

program.

m denotes his number of-successful tests

X 1s a real variable used as abscissa for the evaluation of f.

t records the time spent by the rootfinder.

A procedure P declared inside Test 1s the heart of the entire grader.

The body of Test contains a series of calls of P; each call ofP

contains as actual parameters the data for one test example. E.g., the

— _5-

i call
P(0,2,,5-5,1,1 - x, true, 20, 1)

L would cause the testing of the student's program with the function f:
f(x) = 1-x 1in the interval a = 0, b = 2, with a desired accuracy

- of 15-5. The expected result (=1) is the fourth parameter to P.
g The sixth parameter indicates that a solution exists, the seventh 1s a

limit for the number of evaluations of f, and the eighth indicates the

L number of the test case.

| The procedure P subsequently calls the rootfinder (which 1s a
~ formal parameter to Test) with the given parameters as data. However,

L P does not furnish the function f directly to the rootfinder, but
rather substitutes a function procedure Q, which 1s declared in the

i head of P. Each call of Q then serves to increment the counter of
calls of £ and 1s also used to examine whether the argument of f

- lies within the prescribed interval.

8 The grader program has been used on the T7090 computer. In order
to measure the time spent by the rootfinder and to recover from a

| possible error in the logic of the student's program, two code procedures

{ have been introduced which cannot be described in ALGOL:

procedure Setime (n,L); integer n; labelI;

3 initializes the core-clock to trap after n msec and to transfer control
to L. Also,

. procedure Reset (t); integer t;

i disables the trap and assigns to +t the number of msec spent since
initialization of the clock. These procedures protect the entire grading

| run from failure due to one particular examinee's inability to solve
a certain test problem.

L _6-

L

a The authors feel that particular emphasis should be put not only

on the efficiency of the student's contribution, but also on its reliability.

— The choice of the test data reflects the possibilities of this grading

method, since "wildly behaving" functions are used which are not likely

to be foreseen by a careless programmer.

_ | The program Test 1s believed to mark a further step in the auto-

mation of grading. Whereas GRADER2 bases its grade only on the binary

~— answer ''correct" or"wrong", Test also evaluates a program's quality

l1.e., reliability and effectiveness. It thus relieves the teacher from

—

long and tedious grading work., Last, but not least, the machine may be

. more objective in grading than the human, because of 1ts notable lack of

| prejudice and its 1nability to become bored.
:

— The authors wish to acknowledge valuable suggestions made by A.

J. Perlis and P. Naur in regard to grader programs.

—

_

—

LC

—

-

| Lo An elementary grader program

B begin
ne ocd

procedure GRADER2 (STUDENT, ENTRY, N, MAX, A, B, C, START, FIN);

- value STUDENT, ENTRY; integer STUDENT, ENTRY, N; real MAX;

BB real arrayA, B, C; label START, FIN;

—

comment We assume the existence of a library real procedure

| | TIME which produces the time of day as an integer in the
—

B interval [0, 23591];

| — begin

Bm real procedure RANDOM;

— 1
| begin

comment The value of RANDOM at.each call is a different
_ Sorell

pseudo-random number froma flat distribution in the

— interval [0, 1]. The body is not written here ...;

| end RANDOM;

|

own real array CC[0:10];

real S; own real MMAX;
——

integer B3, Bk4,J, K;

— own integer TALLY, Bl, BZ;

BE switch JUMP := Ll, L2;
—

procedure SET UP (CASE, N);

value CASE; integer CASE, N;
|—_—

| comment SET UP furnishes the student's data, which depend on

— the student's number, the time of day, and a pseudo-random

number SET UP also solves the case for the use of EVALUATE;

|NE

- _8-
|S—

“

| begin
for K:= 0 step 1 until N do

{_ begin

(A[K] := RANDOM + (STUDENT + TIME) X 10=1s
— B[K] := RANDOM x sign(RANDOM - 0.5)

end;
-

comment Now the student 1s messaged on the line-printer what

. data have been generated for him;

| outstring (1, 'FOR Ls CASE?); outinteger (1, CASE);outstring (1, ‘GRADER?wu FURNISHES ws STUDENT); outinteger(l,

| STUDENT); outstring (1,°THEws FOLLOWINGtt DATA:Lais A 1 IS?);
“

for K := 0 step 1 until N do outreal (1, AlK]);

L outstring (1, ‘Bos IS");
, for K := 0 step 1 until Ndo outreal (1, B[K]);

L comment Now GRADERZ solves the student's case for itself.
GRADER2 does not use A[K] or B[K] for any values of K

.

outside 0 < K < Nj;

| MMAX := A[O];

| for K:=1 step 1 until N do
C if A[K] > MMAX then MMAX := A[K];

for K := 0 step l-until N do
-

begin

L s :=0;
for J := 0 step 1 until K do S := 8S + Al] x B[K-J];

L cclK] := s
end;

-

for K := N+l1 step 1 until 2XN do

1.

~9-

C

s := 0;

for J := K-N step 1 until N do § := S + A[J)x B[K-J];

CC[K] := S

end;

comment Now SET UP has solved the problem, and we exit

to START, the entry to the student's solution, The

next call of GRADERZ will bring us back to EVALUATE;

TALLY := TALLY + 1;

= go to START;

end SET UP;
-

3 procedure EVALUATE (CASE, N);

value CASE; integer CASE, N;

B33 =1;
—

comment EVALUATE examines the student's answers, writing

— them and its own answers, with comments on the student's

performance, all on the line-printer;

~ outstring (1, ‘FOR CASE’); outinteger (1, CASE);

outstring (1, (STUDENT'); outinteger (1, STUDENT);
-

outstring (1, 'COMPUTES-C TO BE’);

. for J := 0 step 1 until 2 X N do outreal (1, C[J]);

outstring (1, GRADER2,, COMPUTES ..C TO, BE’);

- for J := 0 step 1 until 2 X N do outreal (1, CC[J]);

forK := 0 step 1 until 2 X N do

BN if abs (C[K] - CC[K]) > 1o-t_then B3 := 0;

-10-

5

i if B3= 1 then outstring (1, ‘C «IS «sACCEPTABRLE")
else outstring (1, ‘c — IS wa NOT 1+ ACCEPTABLE 9;

1 comment A large tolerance was allowed for possible

| differences 1n the solutions because of different
-

rounding off;

B 4 :=0;
-

if MAX = MMAX then
]
— begin

- \)
outstring (1, ‘MAX IS. JCORRECT")

| end
¢

else outstring (1, MAX ws IS 1L4INCORRECT’);

| end EVALUATE;)

— comment Now come the statements of GRADER2 itself;

if ENTRY = 1 then TALLY := 0 else_go to JUMP[TALLY];
.

comment On the first call of GRADERZ by each student,

L ENTRY is 1. On the later calls it 1s 2. This and

TALLY provide the mechanism for permitting different

]

- entries to GRADERZ on different calls;

| N t= 3;
SET UP (1, 5);

L Ll: EVALUATE (1, 5);
Bl := B33; B2:= B4,;

C N :=4;

SET UP (2, 4);
C

i -11-

|
—

L2: EVALUATE (2,4);

comment Case 2 1s now complete, and GRADERZ punches a

card for the "grade book!';

for K := STUDENT, 2, Bl, B2, B3,B4 do outinteger (2, K);

comment GRADERZ now summarizes the situation for the

student's line-printer listing;

outstring (1, ‘STUDENT'); outinteger (1, STUDENT);

- outstring (1, “‘SCORES'); outinteger (1, Bl+B2+B3+Bk4};

outstring (1, “OUT tw OF tu 4 a ON wu PROBLEMtw 2. tu eu IF cu SCORE wu IS wy
i

LESS« THAN &u 4, «1 PLEASE + SUBMIT a REVISED tu PROGRAM + LATER. °);

1 comment Now the program exits to the conclusion of the
student's solution;

L go to FIN

| end GRADERZ;
—

comment Now follow the students' programs;

| beg]3 egln
L begin

comment Here, for example, is the program for student

- number 515, with 1ts calls on GRADER2;

real array A, B, C [0:25];
i

real S, MAX;

integer J, K, Nj;
‘ —_J

GRADER2 (515, 1, N, MAX, A, B, C, START, FINISH);

START: for J := N+1 step 1 until 25 do A[J]:= B[J]:= 0;

MAX := A[N];

-

for K := N-1 step -1 until 0 do

3 if MAX < A[K] then MAX := A[K];

- =12-

—

| for K := 0 step 1 until 2xXN do
begin

g Ss :=0;

L for J := 0 step 1 until Kdo S :=5 + A[JIXB[K-T];
C[K] := s

{
end;

L 1!

GRADER2 (515,2, N, MAX, A, B, C, START, FINISH);

L FINISH:
end program of student 515; |

begin

comment Program of another student . . . ;

end

3 end tests of all student programs

|
L

_

| 13-
.

-

i An advanced grader program

3 begin comment grader program for root-finding procedures;
procedure Test (Rootfinder, Name); procedure Rootfinder; string Name

i 5

begin real Xj integer m, grade, time;

procedureP (low, up, eps, root, f, is root interation limit
2

C problem no);

i value low, up, eps, root, is root, iteration limit, problem no;
| real low, up, eps, root, I

| integer iteration limit, problem no;
Boolean 1s root;

i begin real low 1, up 1, eps 1, root 1;
| integer n, t; Boolean 1s root 1;

procedure Setime (n, L); integer n; label L; code;

| procedure Reset (t); integer t; code; oo

| procedure error (text, charge);
value charge; integer charge; string text;

begin outstring (text); grade := grade - charge;

1f grade < 0 then

begin outstring (‘grade = 07);

g0 to T exit

end

end error;

real procedure Q(y); value y; real y;

begin if y < low 1 Vy>up 1 then

begin error (¢ Argument ws outside + interval?, 10);

Reset (t); go to P exit

~1h-

n =n + 1; if n > iteration limit then

] begin error (‘Convergence wis +utoo tuslow >, 5);
Reset (Lt); go to P exit

end;
| X =y; Q:=1¢f
-

end

| lowl :=2low;up 1 := up; eps 1 := gps; n := 0;
outstring (‘problem runo. =); outreal (problem no);

L Setime (100, fail);
| Rootfinder (low 1, up 1, eps 1, §, root 1, 1s root 1);

Reset (Lt); time := time + t;

| if low 1 # low Vup 1 # up then
error (¢ boundary ru was tJ altered?, 3);

L if eps 1 # eps then error (étolerancet was «J altered?, 5);
| if 1 is root then }

begin 1f 1s root 1 then

i error (“solution i found ts where4 none wu exists', 5)
else begin outstring (correctid reactionuforuno root ?);

i m:=m+ 1

end

begin real tol; tel := abs (root - root 1);

L if tol> eps then error ('incorrect «roet?,d)

| else begin outstring (f correctiv root vfound®); m := mtl
end; .

§

L outstring (no. of Ly iterations =); outreal (n);
enc,

L go to P exit;
3 fail: error (‘failure', 10);

| P exit:
)

L end?;

| m := 0; grade := 100; time := 0; outstring (Name);
P(-2, 2, 16, -1, x*1, true, 10, 1);

P(-1, 1, fo- -1, x*l, true, 10, 2);

P(-1, 1, 44, 1, x-1, true, 10, 3);

| P(2, 5, 1076 0, x-1, false, 10, 4);

1 P(-2, 3.5, 10727 2, xP3 -xX3 - 2-15-20, true, 30, J); |P10 -3, 99:95 19-5, 0.01, x + 1/x = 100.01, true, 50, 6);

i - P(-1, 2, 10-5. 0» sign(x), true, 30, 7);
| B(-3, 100, ,o-4 0, exp(-x) -1, true, 50, 8);

L P(0, 20, 107% 0.95, (x+0.054 0.1 - 1, true, 30,9);

i P(0, 100, 445-5, 1, if x C 1 then x-1 else 14-10, true, 30, 10); |
: ~(-2.4, 4.2, 10™%s 3, ((((x-3)x x+5) x x-15) x x+4) x x-12,

L true, 50, 11);
P(5,5-3, 1, 519-3, 0.0265, if x < 0.02122 then -1 else

t if x > 0.03183 then l-else cos(l/x), true, 30,12);
outstring (‘ end of Latest. No. «= of wo correct- problems =?);

L outreal (m); outstring (‘time =); outreal (time);
\ outstring ('grade =?); outreal (grade) ; |

T exit:

L

:

| comment Subsequently follow the students' programs, each containing

a procedure declaration and a call of Test enclosed in a block;

- begin

procedure Bisect (x0, x1, tol, func, result, 1s result);

—
real x0, x1, tol, result;

. real procedure func;
Boolean 1s result;

L begin

end Bisect;

i Test (Bisect, ¢ Tom Ly Jones ?)
end;

ee ® ® & & Oo & © @¢ 0 OO & 0

comment further students* programs follow here;

_ end Grader program

}

—

—

;

L

-

-

i

—

L -17-

:

