AUTOMATIC GRADING PROGRAMS

BY
GEORGE E. FORSYTHE and NIKLAUS WIRTH

TECHNICAL REPORT CS17
FEBRUARY 12, 1965

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

&



L

-

e

r——

— — r—

r—

AUTOMATIC GRADING PROGRAMS i(./

by

George E. Forsythe and Niklaus Wirth ff/

Abstract

The ALGOL grader programs are-presented for the computer evaluation
of student ALGOL programs. One is for a beginner's program; it furnishes
random data and checks answers. The other provides a searching test of
the reliability and efficiency of a rootfinding procedure. There is a
statement of the essential properties of a computer system, in order that

grader programs can be effectively used.

*
—/ Reproduction in Whole or in Part is permitted for any Purpose of

the United States government. This report was Supported in part
by Office of Naval Research Contract Nonr-225(37) (NR Okk-211) at
Stanford University.

Presented to the national meeting of the Association for Computing
Machinery, Philadelphia, 27 August 1964, under the title "Automatic
machine grading programs". The Stanford computers used for pro-
gram tests are partially supported by the National Science Founda-
tion under Grant No. GP-948.



Discussion

In connection with introductory programming and numerical analysis
courses at Stanford University, grading programs have been used inter-
mittently since 1961. Our programs furnish data, check student perfor-
mance in various ways, sometimes keep track of running time, and keep a
"grade book" for the problems.

The Stanford routines are written separately for each problem.

The most flexible and useful system for elementary classes was used with
the Burroughs 220 computer in the BALGOL language, a dialect of ALGOL
58, and will be described first. Each grader program was written as a
BALGOL-language procedure. It was then compiled together with a proce-
dure called BUTTERFLY, written by Roger Moore. The result was a
relocatable machine-language procedure, with a mechanism for equating
its variables to variables of any BALGOL program, in just the form of
the BALGOL compiler's own machine-language library procedures (SIN,
WRITE, READ, etc.). Finally, the grader program was added to the
compiler library tape for the duration of its use.

The use of a powerful algebraic language and system made it easy
for an instructor to write grader programs with sophistication appro-
priate to the problem. . The student needed only furnish one or two
procedure statements to call a grader; we often furnished him cards to
decrease the chance of error. Since each grader was precompiled on the
library tape, little time was lost in adding it to each student's program
at compile time. A simple handcoded mechanism made it easy for the

operator to rescue a program from a run-time loop and send it into the



rﬂ'—! (“""v

— W O

next case without dismissing the program entirely,, It was possible to

have several different graders concurrently on the library tape, to
take care of different classes.

This powerful grading mechanism was possible only because of the
BALGOL compiler with its own compiler-with-library generator, and because
BUTTERFLY could generate relocatable machine-language programs. Neither
our IBM 7090 BALGOL system nor our Burroughs B5000 ALGOL system has been
so well adapted to the grading problem, to our regret, and we have had
to make do with less desirable expedients. What these newer systems
lack is an easy means of producing a machine-language library procedure
which is fully equivalent to a source-language procedure with several
parameters.

We recommend grading programs to all who teach programming and
numerical analysis to masses of students, but the prospective user should
first carefully investigate the systems available to him,

We give below a typical grading program,' GRADER2, which was used
in connection with an early problem in a beginning programming course.
GRADER2 is suitable for grading a student's program which is written as
a block. It has been translated into ALGOL and is given as part of a
block containing one or more student programs.

In ALGOL there is a practical difficulty in putting many beginner
programs into the same block with GRADERR--a syntactical error in just
one student program may upset the compiler and prevent the testing of
any program. It would be better if we could have GRADER2 precompiled

into a system library and called separately by each student.

2



T

The student's problem is this: Given the integer N (0 < N < 10)
and the real array elements A[O], ...,A[N],B[0], « a, BIN], to write
a program which makes MAX the maximum of A[O0], ..., A[N] and which

computes the numbers C[0], ..., C[2 x n] defined by the polynomial

multiplication
2N N N
$ ookt = (T Akl - (Y Bk .
k=0 k=0 k=0

The student is told that he must arrange his program in the form:
<all declarations>
GRADER2 (<student number>, 1, N, MAX, A, B, C, START, FIN);
START: <all statements of his solution>
GRADER2 (<student number>, 2, N, MAX, A, B, C, START, FIN);
FIN:

end;

Note that the subprocedure SET UP of GRADER2 goes to great trouble
to be sure that no student will get the same data at different times,
and that no two students will get the same data. This was intended to
be sure that a student could not get correct answers from GRADER2 on one
run, and use them for another run. We doubt the value of such pre-
cautions,

Observe that GRADERZ evaluates the correctness of the student
answers, but in no way evaluates the running speed of the program nor
the amount of storage used. This is appropriate for a beginning student

of programming.



L
L

r—

r—

— — o o rF

r—

—

A more advanced student should have his performance examined more
critically. As an example of this, we give a second grader program
called Test, to be used in a numerical analysis class whose members can
already program in ALGOL.

The procedure Test listed below is designed to examine rootfinding
procedures. The students are asked to write an ALGOL procedure which
finds an approximation to a 'root' x (i.e., point of sign-change) of a
(not necessarily continuous) function f in the interval [a, bl. To be

precise, x is any number such that

£(xy) < 0 = f(xl) > 0 -(in the sense of ALGOL 60)
and
a < Xq <x< Xy <D
and
Ixo-xllS‘E s
where £, a, b, and € are given parameters. Such an x always exists,

if f(a) £0 = £f(b) > 0. Each student is asked to submit an ALGOL
program containing his procedure declaration and a single statement of
the form
Test (rootfinder, ‘student neme ° )

As with QRADERZ, all submitted programs are then enclosed together in
an outer block, whose head contains the declaration of the procedure
Test. Thus no use of library tapes is required. The block structure
of ALGOL plays the very important role that all identifiers used by
the student, including the name of his rootfinder, are strictly local

to his program. They can therefore be chosen freely and cannot interfere

e



o

with identifiers in any other program. ©Nor can an identifier of the
procedure Test interfere with any student's program. Of course this
technique requires that the contributions be syntactically correct, but
this is considered to be the minimum requirement for acceptance of a
program from students at this level.

In order to obtain an estimate of the quality of the programs,
one would like to know the accuracy of the answers, the number of
evaluations of the function £ it took to find the root (with the
possibility of terminating the test, if a limit is exceeded), and per-
haps also the time it took to find-the root. It is furthermore desirable
to check that the limits a and b and the tolerance € were not
changed during a test (this might occur, for example, if these para-
meters were called by name instead of by value), and whether the argument
of f always remained within the interval [a, b]l.

The following description of the procedure Test explains the
methods of achieving these goals within the framework of an ALGOL program.

The declaration of Test contains the following variable-declarations:'

grade represents the student's grade; it is cumulated during

execution of several partial tests of one student's
program.

m denotes his number of-successful tests

X 1s a real variable used as abscissa for the evaluation of f.

t records the time spent by the rootfinder.
A procedure P declared inside Test is the heart of the entire grader.
The body of Test contains a series of calls of P; each call of P

contains as actual parameters the data for one test example. E.g., the



L

r—

— r— — r—

- r

r—

r— r—

r—

r— I

call
P(0,2,)4-5,1,1 - %, true, 20, 1)

would cause the testing of the student's program with the function f:
f(x) = 1-x 1in the interval a = 0, b = 2, with a desired accuracy
of 10-5, The expected result (=1) is the fourth parameter to P.
The sixth parameter indicates that a solution exists, the seventh is a
limit for the number of evaluations of £, and the eighth indicates the
number of the test case.

The procedure P subsequently calls the rootfinder (which is a
formal parameter to Test) with the given parameters as data. However,
P does not furnish the function £ directly to the rootfinder, but
rather substitutes a function procedure Q, which is declared in the
head of P. Each call of Q then serves to increment the counter of
calls of f and is also used to examine whether the argument of f
lies within the prescribed interval.

The grader program has been used on the T090 computer. In order
to measure the time spent by the rootfinder and to recover from a
possible error in the logic of the student's program, two code procedures
have been introduced which cannot be described in ALGOL:

procedure Setime (n,L); integer n; label L;

initializes the core-clock to trap after n msec and to transfer control
to L. Also,

procedure Reset (t); integer t;
disables the trap and assigns to t the number of msec spent since
initialization of the clock. These procedures protect the entirg grading
run from failure due to one particular examinee's inability to solve

a certain test problem.

-6-



i

The authors feel that particular emphasis should be put not only

on the efficiency of the student's contribution, but also on its reliability.

The choice of the test data reflects the possibilities of this grading
method, since "wildly behaving" functions are used which are not likely
to be foreseen by a careless programmer.

The program Test is believed to mark a further step in the auto-
mation of grading. Whereas GRADER2 bases its grade only on the binary
answer "correct" or "wrong", Test also evaluates a program's quality
i.e., reliability and effectiveness. It thus relieves the teacher from
long and tedious grading work., Last, but not least, the machine may be
more objective in grading than the human, because of its notable lack of
prejudice and its inability to become bored.

The authors wish to acknowledge valuable suggestions made by A.

J. Perlis and P. Naur in regard to grader programs.



An elementary grader program

procedure GRADER2 (STUDENT, ENTRY, N, MAX, A, B, C, START, FIN);
value STUDENT, ENTRY; integer STUDENT, ENTRY, N; real MAX;
real array A, B, C; label START, FIN;
comment We assume the existence of a library real procedure
TIME which produces the time of day as an integer in the
interval [0, 2359];

real procedure RANDOM;

comment The value of RANDOM at.each call is a different
pseudo-random number from a flat distribution in the
interval [0, 1]. The body is not written here ... ;
end RANDOM;

own real array CC[0:10];

real S; own real MMAX;
integer B3, Bk, J, K;
own integer TALLY, Bl, B2;
switch JUMP := L1, L2;
procedure SET UP (CASE, N);
value CASE; integer CASE, N;
comment SET UP furnishes the student's data, which depend on

the student's number, the time of day, and a pseudo-random

number SET UP also solves the case for the use of EVALUATE;

-8-



r— r— r—

r—

r— r

— r r— r

r— r— r— r—

r—

r—

begin

for K := 0 step 1 until N do

begin
A[K] := RANDOM + (STUDENT + TIME) X q4-l;
B[K] := RANDOM x sign(RANDOM -0.5)

end;

comment Now the student is messaged on the line-printer what
data have been generated for him;

outstring (1, 'FOR wCASE?); outinteger (1, CASE);

outstring (1, ‘GRADER? «u FURNISHES s STUDENT’); outinteger(l,
STUDENT ); outstring (1,°THE«s FOLLOWING i DATA:Luis A s IS?);

for K := 0 step 1 until N do outreal (1, AlX]);

outstring (1, ‘Buws IS');

for K := 0 step 1 until N do outreal (1, B[K]);

comment Now GRADER2 solves the student's case for itself.
GRADER2 does not use A[K] or B[K] for any values of K
outside 0 < K < N;

MMAX := A[O];

for K := 1 step 1 until N do

if A[K] > MMAX then MMAX := A[K];

for K := 0 step l-until N do

begin
s :=0;

for J := 0 step 1 until K_do S := S + A[J] x B[K-J];

celk] ;= s
end;

for K := N+l step 1 until 2XN do

...9_



L3
i

for J := K-N step 1 _until N do S := S + A[J]x B[K-J];

cc[K] := s

end;

comment Now SET UP has solved the problem, and we exit
to START, the entry to the student's solution, The
next call of GRADER2 will bring us back to EVALUATE;

TALLY := TALLY + 1;

go to START;

end SET UP;

procedure EVALUATE (CASE, N);

value CASE; integer CASE, N;

B3 =1;

comment EVALUATE examines the student's answers, writing
them and its own answers, with comments on the student's
performance, all on the line-printer;

outstring (1, ‘FOR LJCASE’); outinteger (1, CASE);

outstring (1, (STUDENT'); outinteger (1, STUDENT);

outstring (1, 'COMPUTES—C 1uTO uBE’);

for J := 0 step 1 until 2 X N do outreal (1, C[J]);

outstring (1, ‘GRADER2 . COMPUTES .C ,TO, JBE’);

for J := 0 step 1 until 2 X N do outreal (1, CC[J]);

for K := 0 step 1 until 2 X N do

if abs(C[K] - CC[K]) > ,,-4_then B3:=0;

-10-



{
1

e

r—- r— — r

r— c - r— M T

—

r—

)

if B3= 1 then outstring (1, ‘C IS s ACCEPTABLE )
else outstring (1, ‘C IS wNOT s ACCEPTABLE *);

comment A large tolerance was allowed for possible

differences in the solutions because of different

rounding off;

if MAX = MMAX then
begin

B4:= 1;

outstring (1, ‘MAX LIS JCORRECT?)
end

¢
else outstring (1, MAX s IS L INCORRECT ?);

end EVALUATE; N

comment Now come the statements of GRADER2 itself;

if ENTRY = 1 then TALLY := 0 else_go to JUMP[TALLY];

comment On the first call of GRADER2 by each student,
ENTRY is 1. On the later calls it is 2. This and
TALLY provide the mechanism for permitting different
entries to GRADER2 on different calls;

N :=5;

SETUP (1, 5);

Ll: EVALUATE (1, 5);

Bl := B3,B2:=B4,
N :=4;

SET UP (2, 4);

-11-



1

r— -

r—- r— rr—— -

r

r—— r— I

r—

L2: EVALUATE (2,4);
comment Case 2 is now complete, and GRADERZ2 punches a
card for the "grade book!';
for K := STUDENT, 2, Bl, B2, B3, Bk do outinteger (2, K);
comment GRADER2 now summarizes the situation for the
student's line-printer listing;
outstring (1, ‘STUDENT'); outinteger (1, STUDENT);
outstring (1, ‘SCORES'); outinteger (1, Bl+B2+B3+BkL);
outstring (1, “OUT s OF sl «uON wu PROBLEM s 2. o aIF i SCORE wu IS
LESS v THAN tu 4, i PLEASE s SUBMIT u REVISED t PROGRAM s LATER. ’);
comment Now the program exits to the conclusion of the
student's solution;
go to FIN
end GRADERR;
comment Now follow the students' programs;
comment Here, for example, is the program for student
number 515, with its calls on GRADER2;
real array A, B, C [0:25];
real S, MAX;
integer J, K, N;
GRADER2 (515, 1, N, MAX, A, B, C, START, FINISH);

START: for J := N+l step 1 until 25 do A[J]:= B[J]:= O;

MAX := A[N];

for K := N-1 step -1 until 0 do

if MAX < A[K] then MAX := A[K];

-12-



—

r— r— r— r— r— 6~

[

for K := 0 step 1 until 2xN do

begin
s :=0;

for J := 0 step 1 until K_gp S := S + A[JIxB[K-J];

clk] := s
end;
GRADER2 (515,2, N, MAX, A, B, C, START, FINISH);
FINISH:
end program of student 515; '
comment Program of another student . . . ;
end

.0

end tests of all student programs

-13-



"

—F

An advanced grader program

begin comment grader program for root-finding procedures;

procedure Test (Rootfinder, Name); procedure Rootfinder; string Name
_— H

begin real X; integer m, grade, time;

is root interation limit

procedure P (low, up, eps, root, £,
’ )

problem no);
value low, up, eps, root, jg root, iteration limit, problem no;
real low, up, eps, root, fi
integer iteration limit, problem no;
Boolean is root;
begin 593£ low 1, up 1, eps 1, root 1;
integer n, t; Boolean is root 1;

procedure Setime (n, L); integer n; label L; code;

procedure Reset (t); integer t; code;

procedure error (text, charge);
value charge; integer charge; string text;
begin outstring (text); grade := grade - charge;

if grade < 0 then

begin outstring (‘grade = 0%);
g0 to T exit

end

end error;

real procedure Q(y); value y; real y;

begin if y < low 1 Vy>up 1 then

begin error (‘Argumentuaoutside s interval?, 10);

Reset (t); go Eg P exit

=14~



!
-

end;
n:=n+ 1; if n > iteration limit then
begin error (‘Convergence 3 is = t00 tuslow ’, 5);

Reset (t); go to P exit

end;
X 1=y; Q:=7¢f
end
lowl :=2lows;up 1l := up; eps 1 := eps; n := 0;

outstring (‘problem wruno. =’); outreal (problem no);
Setime (100, fail);
Rootfinder (low 1, up 1, eps 1, @, root 1, is root 1);
Reset (t); time := time + t;
_iilowlf—low\/uplfupt_hen

error (‘boundary .. was ttaltered?, 3);
if eps 1 # eps then error (‘ tolerancei—-lwasualtered’,5);

if T is root then

begin if is root 1 then

error (‘solution:t_lfo'und L where L4 none s exists', 5)
else begin outstring (¢ correct 4= reactionuforuno I—JI’OOt’);
m:=m+ 1
end
end

else

begin real teol; tol := abs (root - root 1);
if tol > eps then error ('incorrect I roet?,5)
else begin outstring (f correct i root wsfound®); m := mtl

-15-



— r— M r—

r—

r

r— r— r— r—

outstring (“no.wu of L iterations =’); outreal (n);
end;
g0 to P exit;
fail: error (‘failure', 10);
P exit:
end P;j
m := 0; grade := 100; time := 0; outstring (Name);
P(-2, 2, 14, -1, x+l, true, 10, 1);
P(-1, 1, £,- -1, x+1, true, 10, 2);
P(-1, 1, 16, 1, x-1, true, 10, 3);
P(2, 5, 10'6; 0, x-1, false, 10, 4);
P(-2, 3.5, 10722 2, xt3 - xX3 - 2-10-20, true, 30, 95);
By -3, 999, 19 -5, 0.01, x + 1/x - 100.01, true, 50, 6);
P(-1, 2, 105, 0 sign(x), true, 30, 7);

P(-3, 100 0, exp(-x) -1, true, 50, 8);

> 107

P(0, 20, ;54 0.95, (x+0.05)¢ 0.1 - 1, true, 30,9);

P(0, 100, 10-5» 1, 1f x C 1 then x-1 else 14-10, true, 30, 10);

~(-2.4, 4.2, 10'1" 3, ((((x-3)x x+5) x x-15) x x+4) x x-12,
true, 50, 11);

P(519-3, 1, 519=3, 0.0265, if x < 0.02122 then -1 else

if x > 0.03183_then l-else cos(l/x), true, 30,12);

outstring (‘encil—lof ratest. wNo. & of 1 correct- problems =’);
outreal (m); outstring (‘time =?); outreal (time);
outstring ('grade =?); outreal (grade) ;

T exit:

end T;

=16-



E
L

—

-

—

r

r— r—

—

comment Subsequently follow the students' programs, each containing
a procedure declaration and a call of Test enclosed in a block;
begin

procedure Bisect (x0, x1, tol, func, result, is result);

real x0, x1, tol, result;

real procedure func;

Boolean is result;

000608 800000

end Bisect;
Test (Bisect, “Tom wuJones?)

end;
comment further students* programs follow here;

end Grader program

-17-



