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ABSTRACT-

Let A be a hermitian matrix of order n, and b a known vector

inc. The problem is to determine which vectors make d(x) = (x-b)" A (x-b)

a maximum or minimum on the unit sphere U = {x : xx= 1}. The problem

1s reduced to the determination of a finite point set, the spectrum of

(A,b). The theory reduces to the usual theory of hermitian forms when b = 0.
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1. The problem.

Let A be a hermitian square matrix of complex elements and order n.

Let b be a known n-vector of complex numbers. For each complex n-vector

x, the nonhomogeneous quadratic expression

H
(1.1) d(x) = (x-b) A(x-b)

(H denotes complex conjugate transpose) 1s a real number. The problem,

suggested to us by C. R. Rao of the Indian Statistical Institute, Calcutta,

is to maximize (or minimize) ®(x) for complex x on the unit sphere

S ={x: xx = 1). Since ® is a continuous function on the compact set S,

such maxima and minima always exist.

In summary, our problem is:

(1.2) maximize or minimize @(x) subjectto xx = 1 .

The purpose of this note 1s to reduce the problem (1.2) to the deter-

mination of a certain finite real point set which we shall call the spectrum

of the system (A,b) (defined at end of Sec. 1), and show that a unique

A _
number A 1n the spectrum determines the one or more x = X which maximize

¢(x) for given b. Theorem (4.1) is the main result. The development is an

extension to general b of the familiar theory for the homogeneous case when

b = 68, the zero vector. No consideration to a practical computer algorithm

1s given here.

In Sec. T we show that determining the least-squares solution of an

arbitrary system of linear equations Cy = f, subject to the quadratic
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H
constraint yy =1, is a special case of problem (1.2).

Phillips (9.2) and Twomey (9.3) begin the actual numerical solution

of certain integral equations by approximating them with algebraic problems

very closely related to the minimum problem (1.2).

Let Ay < Ay se. cx My be the (necessarily real) eigenvalues of A,

and let (ugseeesu be a corresponding real orthonormal set of eigenvectors,

with Au, = Mu, (i=1,...,n).

Let a given b be written

n

(1.3) b = pI bu, .
i=1

(1.4) Theorem. If x is any vector in S for which ®(x) is stationary

with respect to S, then there exists a real number AM = X(x) such that

(1.5) A(x-b) = Xx ,

(1.6) xx = 1 .

Conversely, if any real A and vector x satisfy (1.5, 1.6), then

Xx renders &(x) stationary.

Proof. Let xo be a point of S. Now, as shown in lemma (8.7),

d(x) is stationary at X with respect to x in S, if and only if there

exists a real Lagrange multiplier A such that V(x) = (x-b)2A(x-D) Sh xix

1s stationary at Xo with respect to all neighboring complex vectors x.

Since

1

0 = 5 grad ¥(x_) > A(x -b) = Mx ,

the theorem 1s proved.
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To see what conditions are satisfied by the MA of theorem (1.4), we

note that the system (1.5,1.6) is equivalent to the system

(1.7) (A-AI)x = Ab ,

(1.8) x =1 .

Let

n

Xx = y X.u.
i=l =

Then (1.7) is equivalent to

n n

(1.9) 2 (A-M)xgu, = 2 Abou
i=1 i=1

Definition. By the spectrum of the pair (A,b) we mean the set of all

real M for which there exists an x such that (1.7) and (1.8) are satisfied.

Given any A, x satisfying (1.7) and (1.8), we shall say that x

belongs to A, and frequently write x in the form x

Note that the spectrum of (A,8) is the ordinary spectrum (A) of

A.

2. Special case: no Ab. = 0.

Assume for the present section that by F 0 (all 1). This implies

that all Mo # 0, i.e., that A is nonsingular. If AM is in the spectrum

of (A,b), (1.9) implies that \ # A; for all i, and also that



Ab.
(2.1) £55 (i=l,...,n) .

i

Then the requirement that

n
H 2

(2.2) XX = )) |x, | = 1
i=1

| is equivalent to the condition

n A [b, |
(2.3) gh) = y 2-1.

i=l |h,-A|
i

Although all A corresponding to stationary values of @(x) are

known by theorem (1.4) to be real, it is useful to define g(A) by (2.3)

for all complex M not in (As)

Let G be the set of complex numbers A such that g((X) = 1.

For small enough H bs |, G is the union of n simple closed curves 1in
i=1

the complex plane, the k-th of which surrounds Mee As the Io, | grow,

adjacent curves first coalesce in double points, and then merge into single

curves. For very large values of all LAF G 1s one simple closed curve

including all LA] in its interior. The family of sets G resembles the
n

family of lemniscates TT [A= | = const.
i=}

Note, moreover, that g(X) > 1 for A inside any component curve

G; of G, while g(X) < 1 in the exterior of all components G- of G.

Now'we shall show for the special case of Sec. 2 that each A in

G determines a unique = which satisfies (1.7, 1.8). For that x"



A

(2.4) ¢(x™) = £(h) ,

where we define f Dy

2 hy Ios |
(2.5) tA) = MTL T=.

i=l nM]

Fix A, and drop the superscript AM on x. To prove (2.4), note that

(1.7) says (MyM xy = A;b,. Thus

(A; -2)(x;-b,) = Mb, - b, (M;-M)

= Ab, .
i

Hence

Ab.
Xp = Dy TXx

i

and

. 2

d(x) = RN Mg [%5-bs|

2

CA haf
i

= £(n\) ’

proving (2.4).

Since the Lagrange multipliers M must be real, the spectrum of

(A,b) is the intersection of G with the real axis. This consists of from
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2 to 2n distinct real numbers. How many numbers are actually in the

spectrum depends on b; this will be discussed in Sec. 5 for n = 2.

We wish to determine which A 1n the spectrum corresponds to the

maximum [minimum] value of f(A). Let G. be any component curve of the set
G.

(2.6) Theorem. The maximum and minimum real parts of », for A in any

one Gy» both occur for AM on the real axis.

Proof. LetAN =g¢ + it, with o,T real. Then

2 2

n NS |b.
gn) = gi (0,1) = § —s—

1 i=1 CE EC
i

Hence, for T > 0 and fixed o, g(\) strictly decreases as T increases.

Then-in the upper half plane T > 0, any line 0 = constant intersects G,

in exactly one point. The theorem follows from this.

Definition. Let Ap A] denote the unique real value of MA of

maximum [minimum] real part 1n the set G.

(2:7) Theorem, Under the assumptions that A is regular (i.e., XA, £0

for all i ) and b, #0 (i=1,2,...,n), for all A in G such that

NE Ap, A FAL we have

£4) < f(A) < £(Ag) :

2 2.

Proof. Let a; = A; |b;|= (i=1,...,n). Introduce two independent

complex variables A,u, where pu will later be set equal to A. In order

to study the gradients of the functions g, f, and h (defined below) for
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complex A, we shall use the tools of Sec. 8. This requires extending

these functions into the space of MA and u.

Let MW =0 + it (o,T real). For all complex MA # Mi» define the

functions g; and g, by

g(\) = g,(o,7) = g, (2,1) ’

where

Bor) = 4 TG)%2 =BRUT RUAPACTRP

(This definition is consistent with (2.3).) Then

1 oe, + 1 og) = ep by lemma (8.1)
\& rte) wg

.8 —_- ——————————————————————————————————————

(2-8) 4 (A, =A)(Oh, =X )°
i i

i=l |» BEAN A).i i

For all complex MEA define f(X) by (2.5). We then define

the functions fq and £, by

£(A) = £y(o,7) = £,(A,N)

where

i



oY wo ct TN 42. 2 oo =
H ct (D > MD (DO \O © =
0 4)! ~— “- —

op 85 a =
65 oO a
oo e MD

0 5 He.

T=

ra ’ —
hd eH 0Q QO Q/

~~ in 1 HhoF Hh > mn -
ER
on 2 : °. Il i 11 Il + Hy
EC > > > > ae no

5 00 2 oY 2 oY Dag [Dna laek 1 k. OE BIN NE _ ~~ => —

I~ o ee) — pd He & } il
& to T = —_— H- .
- ct NO pad pd > He F. & ow Q/ =

. — 1 & 1 He. He. 1h a)
“ in OO Il - Ry He >’ L Mo Hs.~— —_—

te = + - no T

MD 0) ND I + to |
iy ct Q/ & “ >
aq 0 or “| ® o3 + To | A

a S & = > | H o’‘ >

0) 0) + y= AS) \ 1 ngs < Ne
s Bn 2 0 Zl | > | 0 &

= ct 2 ne ® F
ny ty) | —

Hh 4) < & AV Co
an = HH. ~~ | .
> ©) O —~ -

os

a) ®) 1
o) Q, Hy >|
BS ~~

a Ho] Hh~~
. n>

(DQ ~—
Q

Lr .
O QO
H »



| (2.10) h(n) = £(X) + 2X [1-e(M)],

and note that

(2.11) n(n) = £(A\), for M€ G .

As with f and g, we introduce functions h, and h, so that

h(\) = h, (0,7) = h, (Au) ’

where

A

hy (hn) = £000) + SE [1-g,(h,u)]

-Then

oh of og,
(2.12) 3= = 3 + 3ll-g(hu)] - FE 52

J

=" 3[1-g,(M,0)] , by (2.9) .

Hence 3 3 3h h h
1 1... 1) _ 2 |> (= Ti =) | 52 | » by (8.1)

(2.13) \
rx | T82 . - |

= e—— = - A

. [og og

(15) + He]
9



Now any component G, of the set G where g(h) = 1 encloses a

region where g(x) > 1. On G the gradient vector of g,

og, . dg,
Jo + 37 ?

1s non-zero, 1s normal to Gur and points to the interior of G... Then,

by (2.12), the gradient vector of h on Gy namely

Oh, . Shy og, . og
% tim ti\w tis)

iz non-zero for 7 # O and points along the tangent to G. in the direction
of increasing co. Hence

- h(X) is strictly increasing, as M_traces § In
(2.14)

the direction of increasing o.

From (2.14) it follows that h(h) assumes 1ts maximum value, for each

separate component curve G. of G, at the point 2 on G., of maximum

real part. By theorem (2.6), Bs is on the axis of real A.
Note that setting pu = A = A in (2.12) yields the result that

(2.15) h'(X) = 1 - g(X), for real \ .

To complete the proof of the present theorem, we much show that f (X)

is larger at the point a, of least real part on the component $- of G

10



3 than it is at the right-most point Bay of the component 8. of G
immediately to the left of G. .

: Note that g is continuous for \ € B10, and that
: : = g(t.) = 1 but h) < 1 for B. < AM< a.. Then
| g(B, 1) = 8 5) g (h) Bs 1 :

a,

i h(a.) = h(B. 5) - f J nr(n)anJ J-1 8

a,

] =h(B; ,) +f J [1-g(M)]ar , by (2.15)

>h(By1); since g(A) <1 .

Thus

as was to be proved.

] We conclude that h(X) increases, as A increases along the real

axls between adjacent components of G. Since h(h) = f£(X) on G, we

see from (2.14) and (2.16) that

max f(A) = £(A)
] A EG E

min £(h) = f(A) .
: AN EG g?

11
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It follows trivially from theorem (2.7) that the maximum and minimum

values of f(A) over the real numbers in G (i.e., over the spectrum of

(A,b) in the present case) are also £(Ag) and £(A;), respectively.

By (1.9), our condition that no by = 0 implies that A # Ni for

all i and for all AM in G. Hence A and Ap are not eigenvalues of

A, and so neither A - AI nor A - Apl 1s a singular matrix. Therefore

we can solve equation (1.7) uniquely for x and x.

X = « R (A- 1) tapmax = Ap ’

A.
_ LL _ (a -1

X in = x 2 = (A-A I) Ab |

These equations give unique solutions to the problem of minimizing and

maximizing o(x) = (x-b)PA(x-Db), for nonsingular A and b such that

no by = 0.

It would be desirable to be able to prove that h(a, ) < hg), in
the notation of theorem (2.7), without analyzing h(X) and g(h) for complex

values of A.

3. General case: Some MDs = 0.

We now study the general case where one or more Moy = 0. To be

explicit, let C = {a: A Po = 0}, a set of integers. We wish to examine
the spectrum of (A,b).

Define L as the set (My a € CH.

12



First, given one a € (0, if \ # A, and A is in the spectrum

of (A,b) with corresponding vector x then (1.9) shows that x: = 0.

Thus, if A 1s in the spectrum but not in the set XL , then x: = 0
for all a € C and, just as in the derivation of (2.3), A will satisfy

the equation

no AS Ib. |
(3.1) TL, mm =1 |

i=l |h;-M|

Conversely, any real solution XM of (3.1) -which is not in the set L

will be in the spectrum of (A,b), and its corresponding vector x will

have x: = 0 for all a € C . If we interpret 0/0 in (3.1) as O,

then it is possible that some eigenvalue A in £ will also satisfy (3.1).

If so, we will show that this A is also in the spectrum of (A,b). How-

ever, the spectrum may also contain eigenvalues Me in L which do not

satisfy (3.1), as we shall now show. No eigenvalue Me not in Py can

be in the spectrum, because M = A would make the left side of (3.1)

equal to wo .

Fix attention on one Mc for k ¢€ Cc. We wish to examine the

possibility that this A is in the spectrum of (A,b). Let m be the

multiplicity of A as an eigenvalue of A. Let LQ. = {1: My = Md SO
that card (d,) =m. If A is in the spectrum, then (1.9) shows that

MPa = 0 for all & in A, . Moreover, 1f Me 1s in the spectrum, then
the corresponding vector x = xk has the properties

A, b,

TS en 1g 8),

13



and, by(2.1), also

2 2
SA2 i 1

(3.2) Yoox t= XE <1.
ig, AEN ha |k k "ik

Conversely, 1f (3.2) holds then we can always define Xs for all

i € N, in such a way that

2

A. |b]2 i 1

(3-3) Yo KIP=1- yp 21
ie PER en |

Hence, by (3.2) and (3.3), equation (1.8) holds and, since (1.7) is

satisfied, M 1s in the spectrum of (A,b).

If equality holds in (3.2) then Xs must be 0for all i € RN.
A

i.e., M satisfies (3.1), and x Kis unique. But if inequality <
holds in (3.2), then there is an (m-1)-dimensional sphere 1 of values

of (x1, for 1 € N,, which satisfy (3.3). For, if a point
(x4 yee sXy ) is in (J, then so are all points of form

1 m

ie, ie
(x. e “,...,Xx. e ) (all 6, real) |,

i i i
1 m

since 2 IX. E 1s constant for all of these. In this case
i ¢ RD, i

Me
uniqueness of x 1s lost. The sphere 1s analogous to (in fact 1s a

generalization of) the sphere of unit eigenvectors of a hermitian matrix

A belonging to an eigenvalue of multiplicity m.

14



Note that an inequality < in (3.2) states that Me 1s 1n the

exterior of the graph

r AE Ib, |°i ti

G = : Lo TE = 1 } ’1 £ k [Ag -A]

i.e., Me can be joined to « by an arc not cutting G. Thus, in brief,

the spectrum of (A,b) consists of the union of all real numbers in the set

. n % b, | 1
(3.4) G=q ) ——— =1i=l [MNi

where we interpret O/0 as 0, with those numbers Mc which are exterior

to the graph G. (If G is the null set, then b = 6 and the spectrum

of (A,0) consists of all eigenvalues M+)
A

We must now examine @(x ) for A in the spectrum of (A,b). The

study of (x), for real M € G in (3.4)is the same as in Sec. 2,

and yields the same results (2.4) and (2.5): First, for A € G,

A 2 vy log |”
o(x™ ) = £(X) = IN] )} —5 where 0/0 = 0. Second, leturg,

i=l [A -\ |S
i

u; be the right-most [resp. left-most] points of G. Then f(ug) maximizes

[resp. £ (ug) minimizes] f£(X) for A € G. It remains to consider
A

d(x Ey for eigenvalues A_ outside G.

15



(3.5) Theorem. For any A in the spectrum of (A,b) we have

(3.6) ox) = hx) = 1x)+ Mi-gA)l,

where f(X) is given by (2.5), with 0/0 intepreted as 0.

Proof. Take any A in the spectrum of (A,b).

If NN # MM, (k=1,...,n), then NM € G, and everything proceeds as

in the proof of (2.4), showing that (x) = f£(X). Since g(X) = 1, we

have proved (3.6) when A # Myo

If A = Mes an eigenvalue of A, let Xs denote the 1-th coordinate
A

of any Xx K which satisfies (1.5) and (1.6) (and hence (3.2) and (3.3)).

Since Mis in the spectrum of (A,b), we have Mb, = 0 for all

i € A, where 0. is defined above after (3.1), and as
2 2 2 :

Mg |x5-b | = xs = Mx, | , for all 1 € 8, Then, by (3.3),

2

aby|

), 0 Mx, ob, [2 = NM : - )» o glRL || € ‘ i ¢ I (MyM)

(3.7)

nA |b, |°
= A 1-) — , where o/o= 0 .

k i=1 (A,r)?
ik

Moreover, like (2.4) we can prove

16



2
| ED WE |

| PI My lxg by [=a Lg a:i K ig n (Ag =M)

(3.8)

2 2M Inf
=A, y — =~ , where 0/0 =0 .

kK 3 (MN, A )?
ik

Adding (3.7) to (3.8), we get

n
A 2

O(x") = Y A, |x,-Db, |
Pc} i i i

2 2
n A, |b,]| n A, |b]2

(3-9) Noll JSR LINN WSEIop Sh LN
= 5 0a) 5 3 oa)?ik ik

= h(n, ) :

This proves (3.6) when A = Mo

It 1s property (3.6) of h which motivated our use of h in Sec. 2.

Note. It is easily shown from (3.6) or (3.9) that, for all AN in

the spectrum of (A,b),

n Ay |v, |° |
(3.10) h(h) =A +N) —=— 5 where 0/0 = 0 .

i=1 i

If MN 1s 1n the spectrum of (4,b), but is not an eigenvalue of A,

we can derive (3.10) as follows. Let x belong to A. Then

17



o(x) = (x-b)"A(x-b)

H
= (x-b) Ax , by (1.5)

=n xx = apix

H
=A — ANDbx, by (1.6)

= NN - A pE(A-AT) "LAL , by (1.7)

no A; |b, |°
RID TI wy

i=1 1

We shall not make use of (3.10!) here.

We now use formula (3.6) to extend the domain of h to all real A

where g(X) < 00, i.e., to all AM except where, for some i, AM = A

and Mb, # 0. X
As stated before (3.5), we know that the largest value of d(x") = h(X)

for A» in G occurs at the right-most point up of G. It remains to

see whether h(M) may be still larger for any M in the spectrum of

(4,0), if pp < yo

The answer is furnished by formula (2.15), which is valid for the

general case of Sec. 3 with the understanding that 0/0 = 0. Thus h is

increasing on all segments of the real axis between or exterior to components

of the curve G. It follows that h(h) takes 1ts maximum at the rightmost

point Ap of the spectrum of (A,b) and its minimum value at the left-

most point A; of the spectrum of (A,b), whether or not these are
eigenvaluee of A.

18



From the considerations following (3.3), we see that the maximizing

X 1s unique if Ap € G. If, however, Ap is not in G and 1s an

eigenvalue of A of multiplicity m, then the maximizing x include all

points of an (m-1)-sphere of nonzero radius, whose center 1s not at ©

when b # 6.

The above result about Ap and A for the case where some AD. = 0

can be obtained by continuity from the case where no AD. = 0. It is not

clear that we could use continuity to deduce the nature of the maximizing

and minimizing vectors, for multiple roots

L., The main result.

In Secs. 2 and 3 we have proved our result:

(4.1) Theorem. Given A, hermitian with eigenvalues (A535 and Db,

arbitrary, define (b,) as in (1.3). Then the spectrum of (A,b)

consists of all real A such that

nA |b, |?
gM)= 3 ——5=1 (0/0 =0; 1/0 ==),

i=l [A -M]i

together with each eigenvalue A of A for which g(M,) < 1.

For each M in the spectrum with g(X) = 1, a UNIQUE x" is

found by solving (1.7, 1.8). For each MAM in the spectrum with g(h) < 1,

there exists an (m-1)-sphere of x satisfying (1.7, 1.8), where

= card (X.: MAM.= A}." Ry: he = My

19



Each so found renders Q(x) stationaryon S. Let

Ap= a. A € spectrum); A A = min{A : A € spectrum). Let Xin
= any x; let x _ = any x . Then (x 4) minimizes @(x) on 8,

and ®(x__) maximizes ®(x) on S.
AE max’ ~— —

5. The number of points in the spectrum.

As we noted in Sec. 2, 1f A 1s of order n, then the spectrum of

(A,t) contains anywhere from 2 to 2n real numbers. When does it have

the full amount 2n? If any Abs = 0, then the discussion of Sec. 3

showed that the spectrum necessarily has fewer than 2n points. So we

are limited to the case where all Ab, #0. But then, as shown in Sec.

2, we know that the spectrum is the intersection of the graph of

n AS Ib, |°
(5.1) n= } EE

i=1 In, A 2
i

for real AM with the line p = 1.

The graph of(5.1) for real AX consists of n + 1 branches between

the n vertical asymptotes M = XA, (i=1,...,n). Since wu > 0 for all

Ay, and p->0 as M->eo and A» =- wo, the right-most and left-most

branches necessarily cut pu = 1. The spectrum has the full number 2n of

points if and only if each of the n - 2 interior branches of the curve

reaches its minimum with p < 1. For general n a condition for this 1is

probably too complicated to derive. For n = 2, however, we can answer

the question, as follows:

20



(5.2) Theorem.

(5.3) Letn = 2, and assume A is in diagonal form with hy < hye
If the spectrum of (A,b) consists of 4 distinct numbers, then

(5.4) 0 < [oA| and O0< [oh|
and also

2 2 2
3 3 3

(5.5) [oA[7 + [or[7 < (rg)?

(5.6) Conversely, if (5.4) and (5.5) hold, then the spectrum of

(A,b) consists of U4 distinct numbers.

2

Proof of (5.3). Let a; = AD, | (i=1,2). If either a, or a,
were zero, then the development in Sec. 3 shows that the spectrum would con-

sists of at most 3 points. Hence a; > 0 and a, > 0; i.e. (5.4) holds.
_ 1/3 |

Let M = (ay/a,) . Now the development in Sec. 2 shows that the

spectrum of (A,b) consists precisely of the real roots M of the equation

a

1 + "2

(5.7) gr) =— ——==1 .
(A=hq) (A-2,)

Since (5.7) has Lb real roots, we know that two roots must Jie in the internal

(Ash) Now let up be the unique real root of

-28, 28

g'(M) = —— - —=+ =o |

21



Then, because there are two roots of (5.7) in (Ah),

(5.8) gp) <1 .

We now show that (5.8) implies (5.4).

Solving g'(un) = 0 shows that

Moh
TEESE
H=™1

whence

1

_ M
Ay mb = gy (ph)

Hence

a, (14M)° a, (14M)°
gp) = —5 NPNENE

(am)
= X=_ la. +

(A nN 2 12 1

2

(120)° 83 E y’= ———= | a
2 1 +7

1 1
=\e2

3 5) 1 1& + a3 3 :)OR So = a” + a

2 1

1 1
= = 3

2_ & Tas
—_—

22



Thus g(p) < 1 implies

Lo 2
3 1 3

(5.9) ad + as <(Ay-hg)’

which implies (5.5). Thus (5.3) is proved.

Proof of (5.6).Wehave a, > 0, a, > 0,and (5.9). The above steps
are reversable, and so g(p) < 1, whence there are 4 real roots of gu) = 1.

Thus theorem (5.2) 1s completely proved.

Condition (5.4) says that neither A, nor A, is 0, and that the

point b = (by50,) does not lie on an axis of the (x4 ,%, )-plane. Condition

(5.5) requires that (b;,b,) be inside a curve TI which depends only on

the ratio MoM If MoM = 2, for example, the curve I' 1s
2/3 2/3 _Jo, | /3 4 2b, | /3 1.

by

(0, 2/3)

5.Se | b,
(-2,0) (2,0)

Figure 1
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In Figure 1 the number of points in the spectrum of (A,b) is

indicated for different b in the first quadrant by integers in circles.

If Ao /% | > 2, the curve I' includes values [o|> 1. But

A | > 1 implies that, on T, |b, | < 1.

6. Geometrical interpretation.

Thesurfaces ®(x) = k are similar conic surfaces with center b in

the euclidean n-space E, of vectors x. The maximum problem (1.2) 1s to

find the conic surface with maximum k which touches the constraint sur-

face S, the unit sphere in E_. The rotation of A to diagonal form 1s

a rotation of E, (leaving S "invariant, of course) which causes principal
axes of the conic surfaces to coincide with the axes of E

The vector Ax - b is half the gradient of ®(x), and x is the

radius vector. Condition (1.5) merely states that at a point where O(x)

is stationary, for x on S, the surface ®(x) = k is tangent to S.

Fix x at a solution of (1.5), and let t be real. If the constant

Ln of (1.5) is positive, the value of &®(tx) increases as t increases

from 1; if XM 1s negative, (tx) decreases as t increases from 1.

The main result of Secs. 2 and 3 1s that the maximum problem of Sec.

1 is solved for the largest value: of M satisfying (1.5), for x on S.

The authors see no obvious geometrical reason why this should be so.

If all bh, # 0, then Sec. 2 shows that any vector x = x" which
makes ®(x) stationary on S is uniquely determined by A.

Figure 2 shows, for n =2 and OK AM < Nos a case where there are
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4 distinct points of tangency of an ellipse with the unit circle. All

ellipses have center b and common value of M/A > 2. Since

——

(==> |

Figure 2

My /Mq > 2, it was shown in Sec. 5 that 4 distinct tangencies were possible

for certain b outside S.

Whenever some by = 0, then, provided that (3.2) holds with the

inequality sign <, we get more than one x belongingto a given A. That

1s 1llustrated in Fig. 3, where n = 2 and k = 1. What is not obvious to

the authors 1s a geometrical reason why necessarily A = Mo in this case.

Go
another x

Figure 3



fT. A constrained least squares problem.

Let C be anm Xn matrix (m 3 n) and f an m-vector, both

over the complex field. We wish to study the set of complex n-vectors y

1/2of euclidean length ||| = (vy) /2 _ 1 such that

2 H
(7.1) Icy-f ||© = (Cy-f)"(Cy-f) = min.

The constraint 1is

2 H
(7.2) kl” =vyy=1 .

Because euclidean length 1s invariant under unitary transformations,

it 1s useful to rotate coordinates in both the space of y and the space

of f. To do this, let r = rank(C), and write

(7.3) c = Uv ,

where U, V are unitary, and where the only non-zero elements of D are

the first r elements of the leading diagonal, which we may arrange so

that

®
d; >d, > _*e>dr>0 .

Now let Vy = x and Uf = g. Then
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Cy - £ = uDvy - ulus

= UL(Dx-g) .

Hence

2 {2

ley-£ [I = |[px-g|

(7.4) . i,

- ) a,x, -g, | + )) le, |° y
i=1 i=r+l

The problem (7.1,7.2) is to minimize

r r

2 2 2
2 rdgxi-es]” = XO Ix-e/dy]
i=1 i=1

-subject to the constraint

= 2
(7.5) y IX] =1 .

i=1

0 (i = 1,2,...,n=T)

Now let A, =
i

4°
n+l-i (i = n-r+l,...,n) ,

0 (i = 1,2,...,n-r)

and let Db. =
gat]

Sed (i = n-r+l,...,n) .
n+l-1

We then have changed our problem to one of minimizing
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2 2
(7.6) PIRI EI TE

i=1

subject to the constraint (7.5), where

(7.7) SE CIR UID J SERRE SA

This 1s precisely the minimum problem (1.2) of Sec. 1. The special role of

H
the n- r zero eigenvalues of CC becomes-evident.

Thus the general problem of the least-squares solution of Cy = f

with constraint (7.2) is a special case of our minimum problem (1.2).

8. Lemmas from complex function theory.

In this final section we state and prove three lemmas relating partial

derivatives of certain regular analytic functions of several complex

variables to gradients of real-valued functions of vector variables. This

technique 1s common in the study of second-order partial differential

equations; for example, see (9.1). We include the material mainly to

keep our treatment self-contained, and partly to call explicit attention to

the fact that the Lagrange multiplier MA must be real even though complex

variables are used.

(8.1) Lemma. Let ®(A,un) be a regular analytic function of two complex

variables A,& such that, for all real x, ¥,
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(8.2) F(x,y) = O(x+iy, X=1y)

1s real-valued. Then

oF : oF _ , 234
ox © dy 9, A=x+iy

p=xX-1y

Proof. Differentiate (8.2):

OF od 20
(8.3) x" tty ocd J

OF oo . 0%

(8.4) Somos

Add (8.3) to (8.4) x i:

OF . + OF _ 5 Lo
a E-T

(8.5) Lemma. Let F and G be real-valued differentiable functions of real

variables CR AERREF SEN AE For abbreviation, let Ze = Xp + Vy» and let

v4 = (295-0052). Then, for F(z) to be stationary at z = a with respect

to all neighboring z such that G(z) = G(a), 1t 1s necessary and

sufficient that there exist a real Lagrange constant A such that

OF OF oG oG
(8.6) + i - A + i = 0

for z = a and k = 1,...,n.
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Proof. Condition (8.6) is nothing but the usual condition that the

real gradient vector

(2 OF OF OF OF x)ox. ’ Ov. > 3k. °° Jv. °° te > 3x’ OvXp © oy 7 9k, Ty *n Yn

be parallel to the vector

( 3G dc 3 dG ee 2)ox. ’ ov. ’ x > Ov > "0 3x? Ov .gnI T= Sf *n Yn

The use of the complex variables Zy 1s unessential.

Given any vector z = (245 ces2)s we let z denote the vector of

complex conjugates (2 ‘oo 2).

(8,7) Lemma. Let ®(z,w) and Y(z,w) be regular analytic functions of the

two complex vector variables z = (z5+++,2,) and Ww = (Wyseensw,) with
the property that ®(z,z) and ¥(z,z) are real. Then ®¢(z,z) is

stationary at z = a with respect to all z such that ¥(z,z) = ¥(a,a),

if and only if there exists a real Lagrange constant A such that

| od oy
SC A So = 0

k k

for z = a and w =a and k = 1,2,...,n.

Proof. Let z = x + iy. Then %(z,z)= F(x,y), v(z,z) = &(x,y). By

lemma 8.1 applied to each variable 2.5
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od _ OF i OF
EP) a) Jwy Oxy Yk

a: _ 9G, { OGx Og Oy

for z = a, w = a, and k = 1,...,n.

Then lemma (8,7) follows from lemma (8.5) .
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