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A FAST DIRECT SOLUTION OF POISSON'S EQUATION

USING FOURIER ANALYSIS*

by

R. W. Hockney

Abstract.

The demand for rapid procedures to solve Poisson's equation has lead

to the development of a direct method of solution involving Fourier analysis

which can solve Poisson's equation in a square region covered by a 48 x 48

mesh in 0.9 seconds on the IBM 7090. This compares favorably with the best

iterative methods which would require about 10 seconds to solve the same

problem.

The method 1s applicable to rectangular regions with simple boundary

conditions and the maximum observed error in the potential for several

random charge distributions 1s J X 10° of the maximum potential change in

the region.

1. Introduction.

In many engineering problems concerning plasmas, electron tubes and

ion guns, 1t 1s desired to follow the motion of numerous electrostatically

interacting charged particles in two dimensions. If the region involved 1s

divided into a large number -of cells, and the velocity and position of each

charged particle is recorded, then this simulation of space charge flow may

be performed stepwise in time as follows:

*First presented to the Denver meeting of the A.C.M. August 1963.

Applications of the method to the Computer Simulation of Plasma phenomina

have been reported tothe San Diego meeting of the A.P.S. November 1963 and

to the Plasma Instabilities meeting at Berkeley April 1964.



1. The charge distribution;

At the beginning of each time step the position of each particle

1s examined and the charge of each particle 1s associated with the center

of the cell in which the particle resides.

2. The potential;

The charge distribution found in step 1 1s used as the source

term or right-hand side of Poisson% equation, the solution of which gives

the electrostatic potential in the region,

3. The acceleration,

The potential distribution found in step 2 1s differenced to

give an approximation to the electrostatic field acting on each particle,

This field 1s then allowed to accelerate each particle individually for a

short time interval. The new position and velocity of each particle is

recorded and the cycle repeats at step 1. The description 1s thus analogous

to the projection of a motion picture.

For such a simulation to be useful it 1s necessary to follow

several thousand particles through several hundred time-steps and this

means that the overall cycle time must be reduced to a few seconds or less.

The acceleration of all the particles 1s a simple calculation

and can be performed in about-a second on the IBM T7090%. The solution

of Poisson's partial differential equation in step 2 1s more difficult but

it 1s clear that the solution must be obtained in about the same time 1f

the simulation 1s to be useful.

* Computation times given 1n this paper will be for this machine except

where specified,
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Hithertoo the tendency has been to use iterative methods to

solve such an elliptic equation. Theoretical estimates of the computing

time for the best iterative methods,namely the two line cyclic Chebyshev

(2LCC) and Alternating Direction Implicite(ADI) methods, have been made which

compare well with the experimental results of Hageman [1] and Price and

Varga [2].

These lead to solution times of 10 secs,30 secs and 60 secs for

respectively ADI, 2LCC and SOR methods when applied to a 48x U8 square

mesh and an error reduction of 1070

These solution times are thus roughly 10 times too slow for this

application.

The iterative methods of solution named above are very general

and can be used to solve Poisson's equation in systems with complicated

: electrode shapes and boundary conditions. In Plasma applications however,

where the behavior of the space charge distribution 1s of primary

importance, it is often permissible to simplify the boundary conditions in

order to obtain a faster solution.

In this paper we describe an alternative direct method of

solution which takes advantage of this simplification,is applicable to

a certain class of important problems,and 1s 10 times faster than the best

lterative methods so far reported.,

2. Motivation and Discussion.

The problem to be discussed 1s the solution of Poisson's equation in

a rectangular domain where the boundary conditions are given on the

perimeter of the domain only. The boundary conditions may be Dirichlet,

Neumann or periodic (combination being permitted provided that the same

type of condition pertains along the total length of any side). The
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method shows to best advantage in (x,y) cordinates and we shall consider

this case and take the boundary conditions to be zero potential around the

perimeter.

We have

Color) L 300N) ye o<x<s (1
ox oy 0<y<m
?(x,y) = 0 for x =0, a ory=20, nm

2.1 , Fourier Analysis.

The boundary conditions allow ¢(x,y) to be expanded 1n a Fourier

series 1n either the x direction, vy direction or as a double Fourier

series 1n both directions A double Fourier expansion was suggested as

long ago as 1952 by Hyman [7] and is essentially the method of Tensor

~ Products reported recently by Lynch et al [8]. However the determination

of Fourier coefficients 1s a time consuming job on a computer and we have

found that the fastest computer programme 1s obtained if we expand 1n

only one direction and choose this to be shortest. Let this be the x

direction then the expansion is

(x,y) = L 3° (y) sin ZZ (2)
k

and similarly for p(x,y) where oh (y) is the Fourier amplitude of the
kth harmonic.

On substituting (2) into the partial differential equation (1) and

using the orthogonal properties of the Sine functions we obtain a set of

ordinary differential equations relating the Fourier amplitudes of

¢(x,y) and p(x,y)

2=k

9) (2k) 5% (yp) = FF) 5)
dy
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In the continuous case an infinite number of harmonic amplitudes

are required in the representation of @(x,y). However when we perform

the finite analogue of the expansion (2) to express the value of ¢(x,y)

at a discrete number of mesh points only,we find the number of harmonics

required for the exactrepresentation of the mesh function 1s equal to the

numberof mesh points (see for example Jeffreys and Jeffreys [6] paragraph

14.01).

Due to the fact that the Sine functions satisfy the boundary cond-

itions and are the eigenfunctions of the differential operator in equation

(1), the ordinary differential equations (3) for each harmonic are

independent of each other. This change of a partial differential equation

into a set of independent ordinary differential equations 1s the first

crucial simplification of the method. It can only be carried out in

certain simple geometrical situations when,for example, the external

boundaries are parallel to the coordinate axes and the boundary conditions

are of the type mentioned above. The presence of any internal conductors

for example immediately couples the harmonics 1n equation (3) and makes

the method as 1t stands impractical. However a modification of this

direct method 1s being investigated which will allow the inclusion of

interior boundaries and 1s suitable for cases where Poisson's equation 1s

to be solved repeatedly for different space charge distributions but with

fixed interior electrode surfaces. Some preliminary calculation, done

once only, 1s required after which it 1s expected that the solution time

will be no more than doubled.

2.2 Tridiagonal systems.

The ordinary differential equations (3), which in the finite

analogue become a tridiagonal matrix equation, can be solved in a variety
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of ways. Our experience has been that the best technique depends on the

boundary conditions imposed.

In the case that the potential and therefore oy) has prescribed

values at y = 0, m the method of Gauss Elimination in the neat form as

given by Varga [9] and others is suitable and may be used for any number

of mesh points. Gauss elimination 1s an inefficient method to use if the

boundary conditions are periodic and a new technique of 'recursive cyclic

reduction’ has been developed for this case which is particularly neat if

the number of mesh points 1s of the form oP or 3x 2F (see section 6).

This does not seem a severe restriction considering the resulting increase

in computing speed. Indeed 'recursive cyclic reduction' may be applied to

the Dirichlet boundary conditions for these special numbers of mesh r

points and has the advantage over Gauss Elimination that it does not

require the precomputation and storage of the auxiliary vector w (see

Varga [9] p. 195).

An interesting and quick method of solution has been suggested by

0. Buneman for the case that 3500) 1s given and we have an open ended

Neumann condition that

EF at y== (4)
In this case the equations (3) or their finite difference analogue may

be factorized as follows,

(4 ) & + | 7 (y) = 5 (¥) (5)
introducing the auxiliary function = (y) defined by
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d nk -k —-K

(4 - | vo (vy) =p (¥y) (6)
we have

d nk ~K -K

+ | (vy) =v (¥) (7)
Applying the condition (4) to (7) we see that 7 (=) = 0.

Integrating equation (6) inwards from infinity we see that i (y) = 0

until the first charge is encountered, at y = $ say. In practice therefore

(6) is integrated only from y = § to y = 0 yielding me (3) to w (0) .

Knowing the right hand side, equation (-7) may be integrated from y = 0

to y= T starting with the known value of or (0). This technique 1is

known as the 'marching method' and if the march is performed in the

directions given with the factorisation shown there is no build upoferror

due to the homogenous solutions of equations (6) and (7).

=k
Having obtained ¢ (y) as the solution of equation (4) the potential

¢o(y)is obtained by Fourier synthesis from equation (2).

Due to the reciprocity of the Finite Fourier analysis and synthesis

the program for Fourier synthesis will have much in common 1f not all in

common with the program for Fourier analysis.

Summarizing we see that the solution 1s obtained in three stages.

1. Fourier analysis of the charge distribution

| —k
o(x,¥) - 0 (y)

2. Solution of k independent sets of ordinary differential

equations or the corresponding tridiagonal matrix equations

—k —-K
o (y) » @ (vy)
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3. Fourier synthesis of the potential distribution

7 (¥) > oxy)

2.3 Computer time.

If we examine the number of computer operations* required to perform

this calculation the method does not, at first sight, seem particularly

attractive. This is mainly due to the time required to perform the

Analysis and Synthesis,as may be seen i1f we consider the domain of the

of the n

solution to be spanned by an (n X n) mesh. For stage 1l,on each/linesof

constant y we must compute n Fourier components each of which require

n operations giving a total of n3 operations for the whole mesh. The

solution of the n equations for one harmonic in stage 2 may be completed

in the order of n operations giving a total of approximately iE

operations for stage 2. Stage 3 of course also takes n” operations, As

the conventional iterative methods will require of the order of ne

operations per iterations 1t seems that the Fourier technique will only

pay off if the number of iterations required 1s considerably larger than

n . In a step by step simulation, when a good guess for the potential is

avallable from the last time step,it seems quite likely that satisfactory

convergence can be obtained in less than npn iterations (n is typically 50

to 100). In this case no advantage has been obtained by the Fourier

transformation and we have unnecessarilly restricted ourselves to certain

simple types of boundary conditions,

*¥* Here we mean a multiplication and the addition that usually

accompanies 1t,
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2.4 simplifications.

Two further simplifications are, however, available in the Fourier

method which completely reverse the above assessment. In the first

place if a suitable number is chosen for n (such as 12, 24,48) there is

a tremendous symmetry 1n the Sine functions which may be used to reduce

the computing time for analysis and synthesis to about a tenth of the

original estimate (see section 9b). Furthermore the two-cyclic nature of

the finite difference equations allows one to replace the original n°

equations involving all the points in the mesh to a set oe slightly
more complex equations involving only the points on the even lines of the

mesh. This process known as cyclic-reduction may be done at the start

and fortunately gives a set of revised equations which may also be solved

by the Fourier method. The Fourier analysis and synthesis is then performed

on only half the number of lines and computing time 1s reduced. The

solution 1s completed by solving for the potential on the odd lines of

the mesh directly from the known solution on the even lines. We have

called this process odd/even reduction (see section 4).

2.5 Repeated reduction.

The revised equations on the even lines are themselves two-cyclic and

1t 1s attractive to consider whether 1t pays off to do another stage of

cyclic reduction or even to perform cyclic reduction repeatedly until only

a few lines of the mesh are left. The number of mesh points involved in

each finite difference equation increases rapidly as the reduction process

1s continued and this means that 5 diagonal, 9 diagonal equation systems

and worse must be solved when recovering the solutions on the omitted lines.

These band equations can be solved by Fourier analysis and synthesis as
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well as by Gauss elimination or similar methods, and we have estimated

that, is the case n = 48, systems wider than 5-diagonal are solved

faster by Fourier analysis, If Fourier analysis is used to solve these

equations 1t 1s easy to see that cyclic reduction has not significantly

changed the process and the computing time will be unchanged. Our

experience with the n = 48 case is that nothing is to be gained by more

than one stage of cyclic reduction, This conclusion will be reversed for

n large enough because the number of operations in the Gauss process 1s

proportional ton compared with ne for solution by Fourier analysis.

The Fourier method as described above applied to (x,y) geometry

can solve Poisson's equation of a (48 X 48) mesh in 0.9 sec with an error

of about 1070, This time corresponds to about 10 computer operations per

mesh point and if we estimate that an iterative will require at least 2

operations per point per iteration, we can see that an iterative method

would have to converge 1n 5 iterations or less for it to be faster. It

1s hardly credible that any iterative method can achieve this.

Throughout the calculation new results may overwrite old and the

storage required 1s very little more than the original mesh at n° points.

With the aid of the results of section 9 we can extend the comparison made

by Lynch in [8] of the total-number of arithmetic operations required to

solve Poisson's equation on an (N X N) mesh:

SOR | Tensor Product

n
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On the basis of these estimates the Fourier method when applicable isalways

superior to SOR and the Tensor product methods and 1s superior to ADI for

N < 2500 which includes all practical cases that can be solved on present

day machines.

2.6 Other geometries.

(x,y) geometry is not always very realistic as it implies the

existence of an infinite system in the z dimension., For many applications

axially symmetric geometry on (r,z) coordinates is more appropriate,

The Fourier method may be applied in these coordinates as described above

1f the Fourier analysis 1s performed in the =z direction and the only

change 1s that the tridiagonal system of equations in stage 2 now has

variable coefficients. The cyclic reduction method is not suitable for

such equations but the Gauss elimination method 1s as efficient in radial

coordinates as in the x-coordinates. Thus if the z direction is the

shortest there 1s no change in computing speed due to the change in the

coordinate system. However 1f the z direction 1s the largest, as it

frequently will be in electron tube work, the computing time will be

increased and the alternative must be considered of performing a Bessel

analysis and synthesis in the shorter r-direction. The Fourier method

with Bessel analysis procedes in J stages as before however there is no

symmetry in the Bessel analysis and the reduction of the number of operations

by a factor of about 10 cannot be achieved as it could 1n the case of

Fourier analysis. The odd/even reduction, however, may be performed as

before. For z long enough a Bessel analysis 1n the shorter r-direction

will be beneficial. Preliminary estimates suggest that Bessel analysis

should only be performed if (z/r) is greater than about 8.

11



2.7 Generalization.

The basic principle of the Fourier method 1s the expansion of the

solution 1n terms of the eigenfunctions of the Laplace operator for the

problem. This principle can be used as a technique for solving certain

types of matrix equations (see section 11.1) as well as a method for solving

other types of linear differential equations (see section 11.2). The fact

that there may be no analytic form for the eigenfunctions does not matter

because these may be precomputed and stored in the computer. It 1is

important however that the eigenfunctions have a large amount of symmetry.

In the plasma problem considered in sections 3 to 10 the arithmetic

operations are reduced by a factor of about 10 due to symmetrices in the

Sine and Cosine functions which are the eigenfunctions. In the general

case with the absense of this symmetry the computation time would be

increased about 5 fold and the best iterative methods will probably be

competitive.

Next we consider,in detail, the application of the Fourier method

to a particular situation arising in a plasma study which uses a (48x 48)

mesh and report on the measured speed and accuracy of the solution. The

boundary conditions being periodic are slightly different from the problem

discussed above but the principle of the method is unchanged.

The Fourier method has also been successfully used in the Transient

study of the Magnetron by Yu and Kooyers [10] using a (48Xx 96) mesh with

a solution time for Poisson% equation of4 1/2 secs,and by Buneman and

Wadhwa [11] in an ion gun problem using a (24 X 100) mesh with a solution

time of 2 secs. Both the above programs are in Fortran and could be

speeded up significantly by writing in machine code.
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3. The (48 x 48) Plasma Problem.

Consider a square region in (x,y) geometry covered by a square

48x 48 mesh, with the boundary condition that the solution be periodically

repeated 1n both the x and y directions,*

Using the usual 5-point difference approximation, Poisson's equation

may be written in finite difference form as

Pi1,5 * Parr, st Pa,aa1 FPL TH Py TY; (8)

for i,j = 0,1, 22., (n-1) n = 48

where @, is the potential at the (i,j) node of the mesh and gq,
is the charge associated with the (i,j) node of the mesh. The mesh

numbering and interaction module for this approximation 1s shown 1n

figure la.

The boundary conditions are

Pitkn, jtkn =O;

| | (9)Y+kn, jHn © 9,
where k 1s any integer,

A convenient way of including these boundary conditions 1s to state

that all indices are to be interpreted modulo n, and this will be

assumed in the rest of this paper,

The equations (8) with boundary conditions (9) may be written in

block matrix form as follows

*¥ In order for the potential to be doubly periodic it 1s necessary for

the total charge 1n the repeat square to be zero, We assume this to

be the case.
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A I 0-0 I) Po qs

La 1 | 21 3

Bo = Y - (10)
0 I A I |

1 00 I a 1) \doe

Po 5 do 5

h = ®1; . =where A 13 and 9s 3 (11)

Pr-1, 3 9-1,

and -l 1 O ee 0 1
0)

1 =k 1 .

_ | 0 :
A= ; 0 (12)

} 0 yA TR |
10-0 1-4

The first step in the solution of equation (10) for the unknown

potential on 48 lines of the mesh is the reduction of the problem to the

solution of 24 more complicated equations for the unknown potential on

the even numbered lines of the mesh only. After solving for the potential

on the even lines the potential on the odd lines 1s obtained by exact

interpolation as described in section 8.

Consider three neighboring equations from the matrix equation (10)

+ + =

Pio TAR TR, 95-1
+ =

Di-1 FAY + By 33 (13)

C5 + A851 + Zio T Yn
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for j=2, 4, ..., n with the indices interpreted modulo 48.

By multiplying the second equation on the left by -A and adding we obtain

O. + (21-47)9. + 9. = a, -Ag q (1k)
~j=2 ~J Lite ~J-1 2 EoLo

for Jj =0, 2, «e., n-2

The equations (14) are 24 equations for the even lines with a 7

point interaction module as shown in FIG lb. In expanded form they are

oo - QP, + , = . .. T . =, NE SC JPi, 5-2 Pi-2, 8 Pi-1,; 16 Pi, 5 Piel, Pit, ] Pi, 540

= Qo Cott HT Yar Gun

5. Fourier Analysis.

To solve equation (14) we first form a modified charge distribution

on the even lines defined by

* - =

Qt ag Aq, 3441 3 =0, 2, «.., 46 (15)

which 1n expanded form 1s

* = - _ +

1,3 LPR PTE IL TRE PCEBA ee) (16)

for 1i=90,1, . . . . 47, 3=20, 2, ..., 46.

From the point of view of machine storage the modified charge

density on the even lines may overwrite the original charge density as

it 1s formed.

Next the potential and charge distribution are expanded 1n Fourier

components as follows:

15



1 — l — i 22 =C 2nki |, —=s 2nki
, EE += A-1)7 + 5 Cos —pp= + . Sin 1

where

17 3

oC | = 2 yo cos oMki
and . | (18)

35 2 © 0 Sin 2nki
k, = BB 4 Ti, 18

with analogous expressions for q¥ ,, a*, and To .
lyd kK, J k,J

The Sine and Cosine functions satisfy the orthogonality relations

47 .
2nki angi BN

L cos =pg— cos —Ig~ = 8 , X8 k, a=1, 2, .... 23
1=0 2

L 2nki 214i
AP:EE: HE TE k=4=0 or 24

(19)
47 :

,_2nki _. 2npi BN
}, sin p= Sin =p =58 18 k, a=1, 2, .... 23
1=0 2

7 :

Lin 2058 co 208 _ K = 1, 2, «=p 23
1=0 a =0, 1, ..., 24

Substituting the expansion (17) into (14) and using the orthogonality

relations (19) we get the finite Fourier transform of equation (14)

— + — i _ Tx
Pejo FM By tT Kee TOK (20)

where ® and a* refer to either the sine or cosine harmonic and

A, = -2(8 - 8 Cos . + Cos hut (21)
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We note that, because the chosen sines and cosines are the eigen

functions of the matrix A, the equations (20) are 48 independent sets of

24 equations, one set for each of the 48 harmonic amplitudes.

The fourier transform of the modified charge distribution on the

even lines, a J may overwrite the modified charge density on these
lines. The storage layout and resulting interaction module 1s shown in

FIG lc.

6. Recursive cyclic reduction.

The set of 24 equations for any of the 4 harmonic amplitudes may

be written

Pia TAO Phe TY (22)

Jj =0, 2, «.., 46

where the bar, star and constant subscript k have been dropped for

brevity. These equations form a tridiagonal system with periodic boundary

conditions and a particularly efficient method of solution has been devised

in collaboration with Dr. G. Golub. This involves the recursive application

of the process of cyclic reduction as follows.

Equation (22) 1s identical in form to equation (10) except that the

matrix A is replaced by the scalar A and the subscript advances 1n

steps of 2 instead of 1.

The process of reducing the number of equations by half as described

in equations (13) and (14) may now be similarly applied, leading to 12

equations linking every fourth line, namely:

P02 + (2) Py + Pyip2 =a?) (23)
j=0, 4, ..., 44
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where

(2) a - \

and (24)

(2)
. = . - A . a,

ES 13-2 1, Te

The 12 equations (23) are of identical form to the equations (22)

but with a modified right-hand side, 55 and central coefficient, A,

as given by equation (24). The quantity a}? may, for storage economy,
overwrite the Apr 4p» Ag + + + Qo while Us Ags dg . =» Qg TE kept

unchanged in their location.

The process of reduction may therefore be carried out recursively

until a small number of equations are obtained which are solved directly.

If we let 't’ be the depth of the recursion the recurrence

formulae become

(t) _o(t)
Poot TAT Py Pyotr = (25)

for J = 0, ot ® 00 (48-2Y)

(t+1) (t),2 )
where A =2 (a7)

(26)
(t+1) _  (%) (t) (t) (t)
% ett ST Seat

with \(1) = A
(27)

Vo
J J

Three applications of the reduction process leave us with 3 equations

for Por Pig and P20 which cannot be further reduced, namely:
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AR 1 7 (1)
4) RyCQ = 1 \{ 1 “16 = al}) = gq (28)

I

A CL A af)

The eigen-values, Hy and vectors, u. of the matrix C are known:

gw = (1, 1, 1,) with po= 2% (4)
a _ 4(4)

us = (1, 0, -1) iy = (4) - 1
where the prime denotes transpose. )

Expanding the solution in terms of the eigen-vectors.

2=0Y% + % UY 4 0s (30)

then 0p =a =o) by up +0, Hy uy | Op Hp Us (31)

and ’ (4) (4) (4)
208 Y% 0 The Tx
EN
uu 3(\ + 2)
y (4) (4) (4)
Y cq 0 m2 Tap

Ay = —)— = Tey | (32)u, - U, @N - 1)

/ (4) (4)

SB "O52airless¢) Ea
upc Ug 2(n - 1)

substituting equations (32) into (30)we get the solution

Ps = Gq + Css + 2a

Pr. ~ 20% + a (33)

P30 = OT

19



In order to find the other values of ® we interpolate intermediate

values recursively. First determining Pgs Pp,» P10 then Py,» 2PY Ps

Pog P36 Py), 0 etc. from the relation

CS, = =, - 3k)ASIN 6) {a P3-at 7 Pyeat
t t

for t =3, 2, 1 and for j = 2° step ,t+l until (48 - 2 )

where all the quantities on the right hand side are known.

The process of cyclic reduction described here 1s essentially a

1floating point algorithm due to the fact that the magnitude of A ) can

grow very quickly particularly for the higher harmonics. Consider for

example the harmonic with k = 24, when

(1) _
Mo = -34

(2) _
My = -1154

WB) = 21.33 x 10 ¢ (35)

boy, (4bh (4) = 21.77 x 10 12

This might be thought of as a disadvantage, bringing as 1t does the

danger of machine overflow. In fact the phenomonon may be turned to

advantage on a floating point machine-by noticing that if,at any level of

the reduction, 2 > 10° and we are only interested in computing with a

precision of 1 part in 107, then equation (25) may be written

t t

2 QP, = a! ) (36)
J JJ

t t
for 3 = 0 step 2° until (48- 27)

where the first and third terms of the left hand side have been neglected

in comparison with the second.
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Thus the solution ?, at the {UB level can be determined by
| simple division from equation (37)

| STN 3) (37)

| and interpolation of intermediate values started immediately.

| An alternative scaling of the cyclic reduction method can be made

| in which numbers decrease 1n magnitude and which 1s therefore suitable for

| a fixed point machine. However it appears that an extra multiplication is

introduced.

Te Solution on the Even lines.

| The solution of the equations (22) by the technique of recursive

cyclic reduction has determined the values of all 48 harmonic amplitudes

on the 24 'even' lines of the mesh. The solution on the even lines is

found by the process of Fourier synthesis using equation (17), and the

stage indicated by FIG 1d 1s reached.

8. Solution on the 0dd lines.

The solution for the potential on the odd lines can be found from

equation (13).

A%5= 43 78517 Zn (38)

for J = 1 step 2 until 47

where the potential vectors on the right hand side are the known values

on the even lines.

The equation (38) is a tridiagonal system with periodic boundary

conditions and again 1s most conveniently solved by recursive cyclic

reduction, starting from the expanded form of equation (38)
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PSUR TA FUR TS BER TER CF Wh Bl PRS| (39)

for J = 1 step 2 until 47, for 1 = 0 step 1 until 47

9. Operation Count and Speed

In order to get more general formulae for the number of operations

we shall consider an (n Xm) mesh where the Fourier analysis is performed

in the 'n' direction. The number of operations for the different stages

of the calculation are as follows:

a) Form modified charge density on even lines,

According to equation (16) this takes 5 additions per point¥.

There are n points per line and m/2 lines therefore a total of

n X 5 X 5=2 12 nm additions
(40)

and zero multiplications

b) Fourier analysis of the modified charge on even lines,

According to equation (18) Fourier analysis would require n

multiplications and n additions per harmonic per line, There are n

harmonics and m/2 lines therefore without any simplification we get a

total of

m ~
n Xn X==-—=—m additions

2 2

ne (41)
and 5m multiplications |

If however we make use of the symmetry of the sines and cosines, grouping

and adding together all terms multiplied by the same factor, before

performing the multiplication, the number of operations can be drastically

reduced, See for example Whittaker and Robinson [3].

*The multiplication by 4 is an addition to the exponent of a floating

point number.
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For the case n = U8 which has been programmed we find that all

48 harmonics on a given line can be found with 325 additions and 89
2

multiplications. For this spot case of n = 48 this corresponds to &-
D

additions and z multiplications to determine all the harmonics on one
line, giving a total with grouping of

m a we
5 X TOT IN m additions

m n’ (42)
5 X 56 = 7] m multiplications

c) Solution of harmonic amplitudes of potential on even lines.

For a line of points 48 long equations (27) and (34) show the

operational counts for the process of cyclic reduction to be

2 X 24 additions and 24 multiplications to find ne from ney

2 x 12 additions and 12 multiplications to find q(3) from q(2)

2 X 6 additions and 6 multiplications to find 1) from q(3)

§ additions and 7 multiplications to find Py P16 Po

2 X 3 additions and 3 multiplications to find Pg UNE Pio

2 X 6 additions and 6 multiplications to find Ps PY coos By)

2 X 12 additions and 12 multiplications to find Ps Pg ooo Pug

2 X 24 additions and 24 multiplications to find Py P. o Hie Py
2 X 95 additions and 94 multiplications in total

In general we may say for a line g points long cyclic reduction takes

4 x gq additions and 2 X gq multiplications (43)

In the determination of the harmonic amplitudes at this stage there are

n tridiagonal systems to be solved each 2 long. The total count 1s
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therefore L xn Xx 2 = 2 nm additions
" oo | (44)

and 2 Xn X35 = n m multiplications

d) Fourier synthesis.

The Fourier synthesis required to obtain the potential from the

harmonic amplitudes of potential via equation (17) can be simplified by

grouping of terms to the same number of operations as for Fourier analysis

in step b) giving a further

ne
15° additions

9 (45)

and => m multiplications

e) Solution on Odd lines.

First we form the right hand side of equation (38) for all points

on the odd lines. There are n X 7 such points giving 2 X 5 = nm additions,
Next the tridiagonal system of equation (38) 1s solved by recursive

cyclic reduction. There are = such systems each n equation long,
Using the results of c¢) we have for the solution of these equations

4 on o z= 2 nm additions
m | | (46)

and 2° n° 5 = nm multiplications

The total operations for stage e) 1s therefore

3 nm additions

(47)
and nm multiplications
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Total operations and storage,

The number of operations for the solution of Poisson's equation given

a right-hand side 1s therefore

nm 1 Co im Cg
(== + 7 5 n m) additions and (gz + 2 nm) multiplications

2 (48)

or in total (z= + 9 > n m) arithmetic operations

where it must be remembered that the reduction factors of 7 and 26 appearing

in the n° terms are known to be true only if n = 48. In general these

reduction factor may well be functions of n.

Throughout the process new results may overwrite old and we need

basically only one mesh of (n X m) storage locations, These originally

contain the charge distribution which 1s overwritten by the Fourier transform

of the charge, which 1s overwritten by the Fourier transform of the potential,

which 1s finally overwritten by the potential solution.

The only other storage required 1s for the Fourier harmonics themselves.

In general there would be (n X n) numbers describing the shape of the n

harmonics however due to the symmetry of the sines and cosines only I
distinct numbers occur.

The total date storage is therefore (n Xm + I -
Tables2 and 3 show the estimated times for each stage in the process using

the operation counts above for the IBM 7090 and 7094, together with the

measured time on the T090.

For the purpose of estimation we have used the following speeds for

the floating point operations
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IBM 7090 15us 25us

IBM 7094 ous 10us

TABLE 1.

The measured time 1s taken from a floating point symbolic FAP program,

Due to the large number of additions some increased 1n speed could be

obtained by programming in fixed point.

IBM 7090

i \ oy estimated estimated Total esti- |measured
Stage additions mults

time secs time secs mated time time

a 2 1/2 nlm 00086] O 0 00086

2 0.319
nm

b = 0.118 ry 0.053 0.171
C 2nm 0.069 n m 0.058 0.127 0.168

nm 2

d 1h 00118 ig 0.058 00171 0.250

e nm 0.103 n m 0.058 0.161 0.189

Solution of Poissons equation on 48 Xx 48 mesh|= 0.716 0.906

TABLE 2.
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IBM 7094

. Co estimated estimated Total esti-
tage additions mult

a 2 1/2 nm 0.035 0 0 0.035
n"m 2

b 1% 0.047 nn 0,021 0.068

C 2 nm 0.028 n m 0.025 0.051

nm 2

d 1h 0.047 rss 00021 00068

5 nm 0.041 n m 0.025 0. 064

Solution of Poissons equation on 48 x 48 mesh |= 0.286 0.358

TABLE 3.

The difference between the measured and estimated times of about 25%

1s accounted for by computer 'housekeeping' operations. Using this factor

on the 7094 estimated figure we obtain 0.358 secs as a realistic estimate

for the time of solution on the 709%. It is interesting to note from

Table 2 that two frequently repeated generalizations are untrue. It is

not even approximately true, for example, that additions may be neglected

compared with multiplications, because in each stage of the process the

time spent on additions 1s in fact greater than the time spend on multipli-

cations. It is also untrue that it is satisfactory to consider only the

highest powerof 'n' for in this case the time spend computing the

stages with operations proportional to nm is less than the time spent

on stages with operations proportional to n m.
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10. Accuracy

The accuracy of the method has been examined by testing 1ts ability

to reproduce a given random distribution of potential.

We start by generating a random distribution of potential, o¥%*, on

the points of the mesh. Next the charge distribution, gq, which corre-

sponds exactly to 9®* is computed from equation (8) namely

U,5 = PF,i + Ohi + 9 gop + Pfyq ot Pg (50)

The Fourier technique was then used to derive a potential distribution,

®, from the charge distribution Ty and the exact distribution ¢%
and the solution @ were examined,

The random distribution generated varied between -1/2 and +1/2 and

the largest value of the error, (¢*- 9), obtained with 7 different

distributions was 3.3 x 10-7,

11. Generalization

11.1 Solution of matrix equations

Consider the general matrix equations

. BR=g (31)

where B 1s partitioned into (m X m) square blocks B.. of size
1]

(n xD). @ are gq are partitioned into (m X 1) vectors Ls of length
(n X 1).

Bip Bip ov By Ja) 9
B B

B= [21 “22 y=] 2], o=| (52)

Bn B Pm 2m
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Such a system of partitioned equations naturally arises 1n the finite

difference form ofa two-dimensional partial differential equations, when

the mesh 1s confined to a -rectangular region with m lines each containing

n mesh points.

The Fourier technique can be applied to the solution of equation (51)

provided each block matrix Bis can be diagonalised by the same gimilarity
transformation.

If this 1s the case let the (pn x n) transformation matrix pe 0
and the resulting (n X n) diagonal matrices be

1]

then Qt B..Q=0D
1] 1] (33)

We can also define the transformed vectors

—. -1

: QJ =Q QJ
an | (54)

SES

with the inverse transformation

2 =Q2

and - (55)
aJ = Q gj

where

—]1

~2

= _ | %
2371. 257. (56)

Pn; Ps

and J = 1 step 1 until m.
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-1
The operation Q can be seen to correspond to the step of Fourier

analysis and Q to Fourier synthesis in the example given earlier in this

paper. In general we shall refer to the operation 0} on the vector cp
~J

as the analysis of the vector into harmonic components 0 and the
J

operation Q is the synthesis of the harmonic components ols into the
J

actual vector components \ 3 of 2- This process becomes FourierJ

analysis and synthesis in the special case that the vectors comprising the

transformation matrix Q are sines and cosines.

.th
Consider the 1 row of equation (51)

3 B.. 9. = q,

(57)

Im — tt
> B..Q®.=Qaq,
j=1 1J J ~1

multiplying through by 07! we have

m

y ete, 03, = gq
j=1 J J

(58)
In — —

or Y D.. 9. =gq,
jo 10 ~

writing equation (58) in full and writing the diagonal elements of p.. as
=k oe

Di, we have: |
~1 —1 —=1

D; 0 ®j qd;
0 —2 —2

m D,

I CHE (59)
J=1 ° --1 —n

17 ?;

for 1 = 1 step 1 until m.
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The equations for different harmonic numbers are independent and the

equations (359) may be reordered to give n independent sets of m

equations, one set for each of the harmonic numbers.

=k =k =k ~K -k \

P11 Dipe eo - Dy ¥1 4
=k =k =k —K -k
D D 0° ° °
21 22 Pon 2 = 1 (60)

=k =k —k —k
D 0 LJ [+] Q 0nl Drm Pm \ a

for k= 1 step 1 until n.

The Fourier technique of solution of the equations (51) would proceed

as follows:

a) analyse each line into harmonics by the operation 01 as in

equation (54). In the absence of any symmetry in the matrix Q this

leads to

2 CL
nm additions

and nm multiplications

b) Solution of the sets of equations (60) for each harmonic number.

Solution by a direct method would require of the order 0 multiplications

per harmonic or a total of

n wm’ multiplications

c) Synthesis on each line by the operation Q as in equation (55).

As 1n step a) this leads at worst to

2 CL
nm additions

and n’m multiplications

31



In total the set of n X m equations (51) can be solvedbythe Fourier method

with about n nm + 2 n’m operations. A direct method such as gauss

elimination applied directly to (51) would require of the order

(n m)” = nom operations.

A Block Gauss-Seidel iteration on equation (51) would require the

order of nm operations per iteration. The iterative method would be

faster 1f the number of iterations required was less than 'm', which 1s

a plausible situation.

The Fourier method 1s much more likely to be faster for problems in

which the transformation matrix (Q and 0 have symmetry, so that

the number of operations required in forming the product Q tq in step

a) and Q ® in step c) can be reduced to 0 » where F 1s some factor
of reduction. In the special case discussed earlier when Sines and

Cosines are the components of Q, F 1s about 10.

The Fourier method will benefit further 1f special direct methods

are avallable for the solution of equation (60) in step b). In the case

that the matrix operator in equation (60) can be diagonalised by the same

similarity transformation for every value of k then equation (60) can

itself be solved by the Fourier technique. This would require of the

worst of the order n(n” + m} instead of n mS. Also if (60) is

tridiagonal then (60) may be solved in the order of m operations for

every k or a total of the order n m operations. Furthermore if the

Block form of the matrix B 1s tridiagonal it 1s likely to be worth-

while to perform at least one step of Odd/Even reduction before intro-

ducing harmonic analysis, as described earlier in section kL.
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11.2 Solution of Differential equations

An important class of differential equations which lead to matrices

of the form that can be solved by the Fourier method are those of the form

( L(x) +My) o(x,y) - s(x,y) (61)

where L(x) 1s a linear operator which may be a function of x only

and M(y) a function of vy only. The boundary conditions must be

specified on the surface of the rectangle,  « 4 <4, 0<y< ‘ and
be of the form

a XL ® = c,(y) along x = 010x 1 1 J

- (62)
- a, S= tb, ¢ = c, (¥) along x = 2

or the periodic condition (x,y) = ®(x + 4,,y) where a_, a., b b

are constants C12 C5 may be functions of y and the form

oP

- (63)
a) (x) 5 t b) (x) ¢ — c), (x) along y = £,

or the periodic condition (x,y) = o(x,y + 2,) where all a, b, c¢ may

depend on Xx.

Examples of equations satisfying these conditions are Laplaces, Poissons,
and Helmhotz equation in a rectangle where all parameters occuring 1n the

equation and boundary conditions are either constant, or depend on only one
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variable. The coordinate system may be any pair of coordinates from

Cartesian, polar, or spherical systems.

These are

Vie =o
2

Vo =o

+ It 1s interesting to note that in the case of Laplace's equation there

1s no change in the complexity of the calculation 1f the nine point finite

difference module 1s used instead of the more common five point formula.

4
The biharmonic equation, VV ® = 0, in the rectangle may also be

solved with the 25 point difference module [4].

If the index, 1, corresponds to the variable x and, j, to the

variable y then the finite difference form of equation(61) will be

(I; Mobo, Sa (04)

where L. ana M, are difference operators acting on the indices 1 and
J respectively. Any finite difference mesh may be taken within the

rectangle and we suppose i=1,2, .. . .n and j=1, 2, ..) m.

The matrix form of equation (64) is of the form of equation (51) with

Bs a multiple of the identity matrix if i # j. The restricted form of

boundary ‘conditions (62) ensures that Bq = By =" = Bo and the

condition 1s satisfied that all Bin can be diagonalized by the same
similarity transformation. The transformation matrix Q is the matrix

formed by all the eigenvectors of Bq which can be precalculated.
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| If the boundary conditions at y = 0, 2 are also of the restricted
kind of equation (62) then x andy can be interchanged and the

] transformation matrix can be formed from the eigenvectors of the matrix

equivalent of the operator Me. Which choice 1s the better depends on a
balance between the symmetry of the eigenvectors and the length of the

| eigenvector. The greater the symmetry the larger will be the reduction

factor F in the analysis and synthesis steps. On the other hand the

number of operations 1s i and increases rapidly with the length of
the vector, that 1s to say the number of mesh points in the direction of

the analysis. To increase the value of F it will be advantageous to

have a uniform mesh spacing in the direction of the harmonic analysis.

If we are concerned with second order equations 1t appears that the

greatest amount of symmetry in the matrix Q occurs if its component

| eigenvectors are sines and cosines which have zero slope or value or are

periodic at the boundaries. This implies that the operator in the chosen
direction of analysis 1s simply (2 + k=) and the boundary conditions

| (62) are further restricted to be oF the form

cither $2 = 0 or ¢ = 0 along x = 0X

elther 2 =0 or ¢ = 0 along x = / 0)X 1

or the periodic condition @(x,y)= ¢(x + £5).

In certain cases it may be worthwhile performing a transformation

on the whole problem to achieve this simple form. FIG 2 shows

diagramatically the types of problems most suitable for solution by the

Fourier method.
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The Fourier method, providing as 1t does a fast method for the solution

of Poissons equation over a rectangle, can be used as the basis for various

block iterative schemes for more complex regions that can be divided up

into rectangles. One could consider for example a block 48-line iteration

analogous to the block l-line and 2-line methods [5].

Conclusion

For the special problems involving (X,¥y) geometry in the rectangle

for which the Fourier method 1s well suited there seems little doubt that

1t 1s a faster method of calculation than any direct or iterative method so

far suggested.

For other problems where the method can be applied but 1s not well

sulted the position 1s less clear and we will have to await the results

of practical numerical experiments before the fastest method can be chosen.
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FOURIER ANALYSIS

FIG 2

PROBLEMS MOST SUITABLE FOR FOURIER METHOD

a) Rectangular region

b) slab type property changes @,@ etc.

c) simple boundary conditions

d) uniform mesh at least in analysis direction

e) typical equation

Vn(y) Volx,y) + K) oxy) = S(x,y)
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