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a constrained n-person game is considered in which the constraints

. Zor each player, as well as nis payoff function, may depend on the

~ soravegy of every player. The existence of an equilibrium point for

ach a game is shown. By requiring appropriate concavity in the payoff

-Lncilons a concave game is defined. It is proved that there isa unique

ecuiliorium point for every sirictly concave game. A dynamic model “or

qt . : : _ : JIN : -
. ronecuilibrium situations is proposed. This model consists of a system

~ of ailfferential equations wnich specify the rate of change 07 esch

clayer’s sirategy. It is shcwn that for a strictly concave game the

system is globally asymptotically stable with respect to the unigue ‘

equilibrium point of the game. Finally, it is shown how a gradient .

metnod suitable for a concave mathematical Programming problem can be

c— used to find the equilibrium point for a concave game.
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in Wadle or in Part is Permitted for any Purpose of the United States
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) The concept of an equilibrium point for an n-person game was introduced Dy

* Nash 110, 11] and the existence of such points proved under certain assumptions |

on each piayer's strategy space and corresponding payoff function. He showed

wnat 1f each player is restricted to a simplex in his own strategy space and if

the payoff? functions are bilinesr functions of the strategies, then an equilibrium

point exists. Tails result has been generalized To an abstract economy by Arrow

end Debreuw [.] and McKenzie [9], where each player's strategy space ray depend

or. The strategy of the other players. :

~his more general problem is considered here. Specifically, it is only

reguired that every joint strategy, represented by a point in the proauct space |

cl The individual strategy spaces, lie in a convex, closed and bounced region

X in The product space and that each player's payoff function 2 i=1, ... n,

_e corcave in his own strategy. The existence of an equilibrium point for this

concave n-person game is shown in Theorem 1, using a mapping of R into R
J

end tre Kexutani fixed point theorem [4].

One of the difficulties which has limited the usefulness of the concept of

zn ecuiliorium point for an n-person game is the lack of uniqueness of such

points, as shown by the fact that many games possess an infinite number of
o>

ecuilibriwn points (for example, see Shapley f12]). This difficulty is overcome

oy requiring thet the payoff functions satisfyan additional concavity re-

cuirement which is called diagonal strict concavity. With this addivional

resuirement it is shown in Theorems 2, 5 and 4 that every concave n-person

Too. nas a unicue ecullibrium point. Theorem 2 shows uniqueness for a game

wiva orthozonal constraint sets, that 1s, where R 1s the direct product of

“he individual player's strategy spaces. In Theorems 5 the more general case of
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| - couz.ed constraints 1s considered. A nornarized equilibrium point is defined
: .

. in Terms of a specified positive constant r. for each player, whic determines
. +

the value of the dual variables for the jh player. Theorems 5 and - show that

- & unigue normalized ecuilibrium point exists for each specified value of the

parameters r.. The monotone behavior at the equilibrium point of the payoff

: TanceLion Ds with respect to X. is snown in Theorem 5. Section 3 is
| completed vy giving a sufficient condition for diagonal strict concavity in

terms of cervailn Hessian matrices of the ©.. The interesting case where each
i

A is bilinear in the strategies is discussed To illustrate this condition.

} The bimatrix game [7, 8] is a special case of this bilinear payofY function.

. In Section 4 we consider a reasonable dynamic model of the n-person concave
. same. IT 1s assumed that if the game is not at equilibrium each player will

- actenpl TO Change hic own strategyso as to obtain the maximum rate of change

of nis own payoff function with respect 10 a change in his own strategy. It is

B shown thet the system of differential equations obtained in this way has The

a property that every solution starting in RR remains in XR (Theorem 7). The

: | statility of the system is considered in Theorems 8 and 9. It is shown that

when concavity conditions sufficient for uniqueness are satisfied the system

. of differential equations is globally asymptotically stable. Furthermore,

startingat any feasible point in the strategy space R, the system of

B differential equations will always converge to the unigue equilibrium point of

. the original n-person concave game. Thus the dynamic model and the concave

~ Zz72 have the same unicue equilibrium point. The stability prool uses tne

- ware of the norm of the right hend side of the differential equations as a

| ~lzpunov function to show that the norm approaches zero. The stability of a

dilferent dynamic model of a competitive equilibrium represented by a system of

. Gilferential equations has previously been investigated [13, 19].

. - 3 ~



Ce | ‘ . |

] } |
In Section 5 it is shown that the unigue ecullibrium point to tre concave

¢

. same can ce found computationally oyusing a gradient method suitable for a

] concave mathematical programming problem [17, 18]. This may be considered as

a generalization of the well known relationship between the two-person zero-

sum geme and linear programming [15]. It should also be noted that the general

concave constrained maximization problem is obtained for the case n = 1, so

“hat such a problem may be considered as a special case of the n-person concave

seme. For this special case of n = 1, the results of Sections 2 and 3 reduce

<0 known results. However, the results of Section 4, in particular Theorem 7,

appear to be new even for n = 1.
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2. Torwolation and Sxictence of Zcuilibrium Point.
i :

| m2 ~~ ro on Sen rn al 7 ) GN : = 5 9 —-— Be oe BE
| The concave n-npersc Jame 10 be considered 1s describea ln terme of the

| <n NS > 2 3 oo + ie += =~ ETA 1 REY + : “+ . Th-- iréividuael strategy vector for each of the n players. Tne surategy of tne i—

- player is represented by the vector Xs in the Euclidian space © ~, i = 1, ... n.
- _ N i LL Co| re vector XK € 4 then denotes ~ ne simultaneous strategies of &.iL players,

where E is the product space L “XE ... XE and m= , 1m . The al-
Co i=1

“owed strategies will be limited by the reguirement that x be selccted froma

= ny) —~ = hy} — H Ts 4) 0 H —— - 4 -— ag
: convex, c.osed and pounded set RX CT. If we denote by P. che projection of

Is

} 2 or ET, we will zlso consider tne convex, closed and bounded product set

SOx, given voy oS =r, X ProeeeX Do This is illustrated in Fig. 1 Tor n = 2.
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In most game theory papers consideration is limited to the case where each

rlayer'ts sirategy Xs is restricted to a convex set KR, CE in his own

_ strategy space. For example, in Nash [10,11] the set R, is the simplexin

— T ~, In this special case where ithe coniiraint sets are orthogora. we have

P. =R , sO that R=8S = R, x Ry oe X Fo In the general case where RCS

we will say that R 1s a coupled constraint set.
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. Joe payorl funciion for the I— player depends oan the strategies of all

Tne otner players as well as his own strategy, and is given by the function

0. (x) =. (x.,.00X.,...X_). It will be assumed that for x ¢ S, @.{x) is
1 i 4 > In i

continuous in x and 4s concave in Xs for each fixed value of

(500%, 19% see 0X ). With this formulation an equilibrium point of thei -177 d+

rn-person concave game is given by a point x° € R such that

em [© _ o o fo o 2

®.(x°) = max ©, (x3,.00y., 00x?) REE ) € R} (2.1)- de _“ Ll A 1 Il

NE
1 = 1, EP#1

AT such a point no player can increasehis payoff by a unilateral change in

nis strategy. |

The results to follow make use of the function p(x,y) defined for

(x,y) € R XR Dy

(x,y) = > o. (x des eY.seeeX ) (2.2): it 1 i n
i=1 ~

SY

Wo Oteerve that for (x,y) € R X R we have (2,50 eayisenex) € S, 1=1,...n,

sc that p(x,y) is continuous in x and y and 1s concave in y <Ior every

fixed x, for (x,y) € R XR. We now prove the existence theorem for the

conceve n-person gare. < | |

| Theorem 1 |

| An ecullibrium point exists for every concave n-person game.

Proof: .

Consider the point to set mapping x €e R - I xR, given by

I x = SALICH?) = max p(x,z)} (2.3)zeR
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) v — fe TU . ~ Ld * oT in} LE * oe+7 TC0..ows Irom tne continuity of p(x,z) and the concavity in z of p(x,z)

Tor Tixed x, that [I 1s an upper semicontinuous mapping wnich raps each

— point of the convex, compact set R into a closed convex subset of R. Then

~- Dy the Kakutani fixed point theorem [4,5] there exists a point x° € R such
— ; we oO o

that x eI’ x°, or

— /..0 Lo\ _ °
p{x°,x°) = max o(x 2) | (2.4)

ZeR

The Tixed point x° is an equilibrium point satisfying (2.1). Tor 3uppose that

it were not. Then, say for 1 = Z, there would be a point xX, = X, such thatLi

x= (x3,..0%,,...x°) € R and © (X) >0 (x°). But then we have

o(x°,x) > p(x°,x°) which contradicis (2.4)

4



” >. Unicueness of Zcuiliorium Point.

In order To discuss the unicueness of an equilibrium point we must

cescrioe the convex set R more explicitly. For the general coup.ed con-

straint set where Rc 8, we will describe R by means of the mapping

i in k B . .a(x) of E —E, where each comporent h.(x), j=1,...k of h(x) is a
J

concave function of x. It is assumed that

R = {x | 2) > 0} (3.1)

1s nonvoid and bounded. It follows from the concavity of the h.(x) that
N

The c.osed set I is convex. For the orthogonal constraint set

R=2©5= Ry X Ryee XR, we consider the nonvoid and bounded sets

| . |

R. = {x. | h.(x.) > 0) J 1 — l,...n (3.2)
1 + | +r ai

where eacn component h..(x.)}, J = l,-..X., is a concave function of x_,
i301 | i i

™ Im,
: : : - 4 = AA | coma

so that R, 1s a convex, closed and bounded set in “E ~. We will also
A.

assume that the set R contains a pointy waich is strictly interior to

every noniinear constraint, that is, B Xx € R, such that h(x) > GC for
oo every nounlinear constraint h.{(x). This is a sufficient condition Tor the

satisfaction of the Kuhn-Tucker constraint qualification [ 2 ].

We wish to use the differential form of the necessary and sufficient

Kuhn-Tucker conditions for a constrained maximum [ 6 ]. We therefore make

the additional assumption that the h.(x) possess continuous first deriva-
J :

tives for Xx € R. We also assume that for x € R the payoff function

PrN ~ 0 La .th 1 a . . : at©,(x) for the i—— player possesses continuous first derivatives with
A

| respect To the components of x... For any scalar function o(x) we denote

oy Vo (x) the gradient..with respect to x, .of ¢(x). Thus Vio (x) €eE ~.



. “he Xunn-Tucker conditions equivalent to (2.1) with R given br (3.1)

N can nOw ve stated as follows:

. h(x®) > 0 (3.3)

: = - . : o o _ —K » 1 |
| and Tor 1 = 1,...n, u, > 0, u, € 3, such that

: o? . 0 \ ;
ul n(x®) = 0 (3.4%)

— i

0 o 0 o/- ° o\
Tm G - xX > N X ob aN, ao 0X / i u. 8! xX . sw - es oa X ] .P, ) > 9. 1? Ja a! 4 ( 1? Ys n’ (3.5)

— Sirece ©.(x) and h(x) are concave and differentiable,
the inequality (3.5) is equivalent to

Vo. (x?) + ¥ uw Un. (x) =0, i=1,...n (3.6) |
} | iti : 1g vi gy

|

| We will also use the following relation which holds as a result of the

~ concavity of h.(x). For every x°, x' € R we have

| ra = o VET o - o Ver o
| h(x!) - h(x) < (x'=x°)\/b.(x°) = } (x/-x2)\{/;b.(x°) (3.7)| J J > — J 1 =1 i 1 1 J |— i=

- A weighted nonnegative sum of the functions Pp, (x) is given by |

- n i

o(x,r) = } ro. (x), r.>0 (3.8)iti i-

i=1 |

LL Tor each nonnegative vector r € E. For each fixed r, a related mapping

[oe | z({x,r) of E into itself is delined in terms of the gradients Vo, (x) oy

|
|

— : :
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rNP (%) |g(x,r) = | T2V¥2 (5.9)

. \+ To (xQR on g

An important property of o(x,r) is given by the following

Definition

The function o{x,r) will be called diagonally strictly concave for

Xx € and fixed r > 0, if for every x°, x' € R we have

(x'-x°) g(x*,r) + (x°-x') g(x’ (3.10)x'-x%) g(x°,r) + (x°-x') g(x',r) > 0 3.

As shown later, a sufficient condition that o(x,r) be diagonally

strictly concave 1s that the symmetric matrix [G(x,r) + G7 (x,r)] is

aegative definite for x € R, where G(x,r) is the Jacobian with respect to

x of glx,r).

| 2 Co
We first give the uniqueness theorem for orthogonal constraint sets

oo where = = S.

| Theorem 2

If o(x,r) is diagonally strictly concave for some T = 1 > 0, then the

ecuilibrium point x° satisfying (2.1) is unique.

Proof: |

Assume there are two distinct equilibrium points x° and x' € R, each

of which satisfies (2.1). Then by the necessity of the Kuhn-Tucker conditions

we have for £4 =0, 1 and 1 =1,....n,

z ooh(x) > 0 (3.11)ivi

y/ £ =u, > 0, u, € & +, such that
i= i

| | - 10 -
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uw, n(x) = 0 (3.12)

| \ 4 + = 2 1 y/ =

|

oo We multiply (3.13) vy Tr. (x!-x°) for £2 =0 and by rT. (x°-x'Y for ¢ = 1,
/ ivi Ti itt i

- ana sum on 1. This gives |

~ wonere

0 / f - 0 1 —
B= (x'-x") gx°,7) + (x°-x') g(x',r) (3.15)

= and

- K.

] — o 1° o | © 1 | |- Yu Yr Lr; (ug (x)-x) Vig s(x) ug (x2 x Vib 5 (x0)
| i=1 J=1

9) 5 - |
- or ry (© 1 oy _ 1

> Lo Lrg (ufyhy (x) on,GedyIn (x9) -h, (x00) )
} i=l j=1

n

— _ - 0’ H 1? 0

= PEN (us h, (x) + ou) h, (x0) } (3.16)
oo i=1

Tre inequality follows from the concavity of the hy 5(x) and (3.7), and the
3 lest relation from (3.12). Then from (3.11) we have that ¥ > 0. Since

oo. o(x,r) is diagonally strictly concave it follows from (3.10) that 8 > O.

CT But this contradicts (3.14), so thet we cannot have two distinct equilibrium

} points and therefore x° is unique.

We now consider the general case where R is a coupled constraint set and

is given by (3.1). The values of the nonnegative multipliers uu’, i=1, ...n
- 4

. = given by whe Xuhn-Tucker conditions at an equilibrium point will, in general,

oo | C1 |
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- ~o= De related to each other. We will comsicer a special kind of ecuilibvrium

point such that each wu, is given oy
+- -

uy —_— LA Ral iL = goa ell (3.17)
: EN

x. | a = a -
“or some r > 0, and u® > 0. We will call this a normalized equi ibrium

Doin.

Thaorem 3

Thera sxists a normalized ecuilidbrium point to a concave n-person game for

crery specified Tr > 0.

Proot:

For a Fixed value r =r > 0, let

n | |

X Tr = y Ir. “ x. © oo Lo 0 0X 18oJ INE ) L 39, ( 1° Ts 0) (3 ) |
1=ai

| Using the fixed point theorem as in Theorem1, ThereTeXists a point x° such
-

That |

le) oo 0 —| p(x°,x°,r) = max (p(x°,y,r) h(y) > 0) (3.19)
Ng

Then by the necessity of the Kuhn-Tucker conditions, h(x°) > 0, and u° > 0,
“ Co o” osuch that u° nh(x°) = 0 and

| Vo. (x°) + © un. (x°) =0, 1i=1,....n (3.20)| i171 Jig -
J=1

Buc these are just the conditions (3.3), (3.L) and (3.6), with ul. = ul/r,,

or uu. = u/r, which are su? *:ient to insure that x° satisfies (2.1).le

x° is therefore a normalized ecuilibrium point for the specified value of r=r.

- 12 = |
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oC et o(x,r) be diagonally sirictly concave for every r e€ Q, where §

Co : Co J 4}
is z convex subset of the positive orthant of EZ. Then for each r € Q <here

” is & unique normalized equilibrium point.

Proof:

- Assume that for some r =r ¢ @ We have two normalized equilibrium |

- points x° and Xx'. Then we have for ZZ =0, 1 and i= 1,...n,

rod

oo y Cy
_ Ju > GC, o € £2 , such that

u’ n(x") = 0 (3.22)

. |
| - JA 57. 1. 2ro. (x) +  ui\[a(x")= 0 (3.23)

ivivi Ji
- | J=1

“

) TI aa EE = 1 o / a 2 oO 1 ‘
Je multiply (3.23) by (x!-x) for £ = 0 and by (xg-x1) for 2 =1, and- i.

~ stn on 1. As in the proof of Theorem2 this gives B + ¥ = 0, where B is

- given by (3.15) and

| v k n , | |- | = o 1 oo \” © 1 oO 1 ! hiu, (x) -x, h(x) + ul({x,-x: \.n Xx |LL 30x) Vale) + wi (xg-x)) Vax)
- J=1 i=1 | |

) , )

> wo’ (a(x) -b(x*)] + uw’ [6(x")-n(x")] (3.24)

,

= uw” nlx") + uth(x’) >0

. Tren since o(x,r) is diagonally strictly concavewe have B > 0, which

contradicts 3 + J = 0 and proves the theorem.

- 13 -
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. We will now investigate the dependence of the normalized equilibrium point
LJ

cn the value of r for the general case where R 1s a coupled constraint set.

For an orthogonal constraint set it follows from Theorem 2 that if o(x,r) is

Ciagonally strictly concave for some r =r > 0, the equilibrium point x° is

| irCependent of r. On the other hand it is not difficult to construct a simple

example with a coupled constraint set (see Fig. 2) where the equilibrium point

x° does depend on r.

1.2 |
Wi pe = -=—X_ + X_X .0, (x) 2 "1 172
0, (x) --x° - x.x

x, | oN, TTR 172
| n(x) = x, >0

H

:

| a(x) =x, > 0

| N | 5 (x) 5
) ho(x) = x) +x, = 120 :

| o e : o o
0. (x = max X,y%XA) 1 hix,,x,)> 0 = X, {4

| | 1 Co

| xX") = max X. ,X X. ,X = X. -.

| er Pox) Pol Xs Xp) 1220) 1X ~ oo |
2 tp |

- ( i r. <r )1 xy | > 1 = “2

| xq ry ary, a ’ o 1
| or. +r. °° 1 2

1 e

. CL
rigure 2

In such a case we will now show that in a certain sense the equilibrium value

of 04 1s a monotone increasing function of r..

Theorem 5 .

Let o{x,r) be diagonally s3rictly concave for r e€ Q. Let r°, r' e¢ Q

be such that rr! =r, 1i# gq and r'>1r°. Let x° and x', with

pl £ x°, be the corresponding unique normalized equilibrium points. Then the

directional derivative of ¢_(x°) along the ray (x =x) ispositive.
| - 14 - | |
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) Let u° and ' be the .. . vliers corresponding to the normslized

oo equilibrium points x° and =x. Then for £Z=1. ar’ i=1,....m, and for

— — vA 1 “ Get yee- Zz TN Z cor iaPiasZ=0 and 1 # q, the relatior:. (3.21), (3.22) and (3.23) are sztisfied

h with r, = re For £ =0 and 1 =4q, Wwe have

- | k

0 t oy { {. 0 o -] _(zor No _(x°) + ro (x°) + § u\Jn(x°) = 0 (3.25)g a @ a ¢g avg g 2, J 'q
| J=1

Vaae fam art om po. oy = ~ FO 17 7 3 : |
} vulitiplying by (x!-x%)° for 2 = 0 and (x3 -x}) for £4 = 1, and summing~ ii

- LOW gives

o ' : o\’ [.. ©| (rer)(x =x Vo {x°)= -(B +¥) <0 (3.26)To ¢@ & 2 a "ag 14 |

or since r' > r°, | |
- q q | |

, |

x!-x® WA x) > 0 2(x =x) 2 (x) (3.27)
Zn

But this is Just the directional derivative of P(x) along the rey
(x'-x°).

: ¢ a |

. A useful interpretation of Theorem 5 1s obtained by observing that if

. - - nd 4. - . A t Oo [3 ~ - - :

o (x) nas bounded 2—partial derivatives and xy x2 is sufficiently small
er + 2 Da Yn = -~ - © ~ ° H °

then it Follows from (3.27) that o (x) > 9, (x ), where x = (x) eeexpseeexp). |
Since x° 1s an equilibrium point x cannot be a feasible point, and the

valve of % (x) may decrease as X goes Irom the infeasible point x to
: eq ens : 1 : . :

3 the new {feasible) equilibrium point x, as illustrated in Fig. 3. Because

of the diagonal concavity propertyof ©.(x), the dependenceof 9, (x) on

x will usually dominate its da: .nience on X. i £ gq. Therefore, it willLr

usually be true that P(x") > 9. (x7). This is illustrated by the example of

Zig. 2, where it is easy to show that both py and are.nonnegative.CC - r or
| 1 2

| | ~ 15 - |
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| Figure 3

| B We complete this section by giving a sufficient condition on the functions

| ©.{(x), which insures that o{x,r} is diagonally strictly concave. The

- condition is given in termsof the mxm matrix G(x,r) which is the Jacobian

—y AY Nad mh — - en .th ~~ a
| o? gz(x,r) for fixed =r > 0. That is, the J column of G(x,r) is
| delx,r) | on. - \ . - A Phd ga

| —_—, j=1,...m, where g(x,r) is define® by (3.9).
| ox.

J

Trecorem 6

| A sufficient condition that oix,r) be diagonally strictly concave for

- R - - . . - . . . - -_- . # I
X ¢ 3 and fixed r =r > 0, is that the symmetric matrix [G{Xx,r) + G"(x,r)]

ve negative definite for x e¢ RH.

Proc: | |

| | Let x°, x' be any two distinct points in R, and let x(8) = 6x' + (1-6)x

so that x(8) e R for 0 < 6 <1. Now since G{x,r) is the Jacobian of g(x,r)

we have

| UY — - oo
agix\8),r A —y ax 6 —8elx(0),7) _ gpa),r) ELL _o(x(6),) (xx) (3.28)

| | dé ay |
| - 16 -
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- q
o —— — S£ — .

g{x',r) - alx’,r)= [J G(x(e), r)(x'-x°) a 6 (3.29)

rm . - . = 0 ad .
Multiplying both sides by (x°-x') gives

Qo 1 ’ 1 ju 1 o\ 0 - 1 1 oy’ — 1 o =
(x°-x') glx',F) + (x'=x°) g(x°,7) = = [© (x'-x°) 6(x(8),F) (x'x°) & 6

1 1 - _ ,
- =-5 J, (xx?) [6(x(8),r) + G7 (x(8),r)] (x'-x°) a 6 > 0 (3.30)

| which shows that (3.10) is satisfied.

The interesting case where ¢. (x) is bilinear in the strategies x,
EE emprnasizes an important relation ovetween this condition and a stability matrix.

we lev | |

n , |/ : |
: — + = oe .} Pp, (x) 2. Le] xC; 5] X35 i=1,...n (3.31)

| J=1 |

~ wanere e,, 1s a constant vector in E J znd C.. 1s an m,Xm, cons int
ES! 1d mm LJ

a maTrix. The bimatrix game [7,8] is a special case of (3.31) witn

| no= 2, e,. = 0, C1 =Cp, = 0 and £0, Coq Z 0. The two-person zero-sum

} seme 1s a further specialization with Coq = -C/5 | ~ |
; From ~v.. definition (3.9) of g(x,r) and G(x,r) as its Jacobian matrix,

~~

- we ootain

" | G(x,r) =D C | (3.32)

. where CC 1s the mxm constant nzirix | |

| 2Cq4 Cio « oe Cin
C 2C
21 22

C= | (3.33)

C_. 2n/ |



J | ent. D is the diagonal positive definite matrix D = clag{r, }. For this
> bilinear case it follows from Theorems 2 and 6 that we have uniqueness if

| | there exists some r > 0 such that

oo Sc+ CD =-I (5.3%)

| where D = diag. {r,]. But this is just the condition which ensures that

© every eigenvadiue of C hasa negative real part (see, for example,

Bellman [ 3]). Thus the same condition which guarantees uniqueness also

implies that CC 1s a stability matrix. |

| A case nich might be considered as a generalization of the .wo-person

| zero-sum game is the n-person "skew-symmetric" game where B .

Coe = = Cys i, J = 1, ...n. For such a game we will have [C + Cc] negativeyl |

Gefinite if [C., + c.,] is negative definite for 1 = 1, ...n.
| . -

pig |
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-. ~~ Clobal Stability of Ecuilibrium Point. |

! . we Wi1ll now coasicer a reasonzc.e dynamic mocel of a concave n-person game in

) woich each player cneanges his own sirategy in such a way that the Joint strategy

F remains in Rand nis own payoff function would increase if all other players

E neld To their current strategy. Tnat is, each player changes his strategy at

| |
2 + - 1] - - » - -
| & rate proportional to the gradient with respect to his strategy of his payoff

-& .

Tunction, subject to the constraints. If we let the proportionality constant

hy | S$ .th "- - - 4 - " - [3s Tn - :
for the 1— player be r., we obtain the following system of differential

» ecuavions for the strategies Xx.,

ax. K
—= = X, =r. \/.9. XxX) + u,\/.h, X i=1l, ...n L.1== % =r, V0)+ Tw. Vn (x), , (4.1)fm = y: ug

. |

where the vector u lies in a bounded subset U(x) of the positive orthant of

» ZT. Tne effect of the summation term, with the appropriate choice of uu, is

- “0 ensure hat starting with any x € R, <he solution to (4.1) remains Ir =.

- Tn fact, the right hand side of (4.1) is just the projectionof the gradient

VoL (x) on the manifold formed by the active constraints at x. If we define
| . Th

an mxXk matrix H(x), whose j— column is Vn, (x), |

E(x) = [Vn (x) Vn (x) - - -Vn (x)] (k.2)
| i 2 kK

and use the definition (3.9) of g{x,r), we can define the mapping f(x,u,r)

| .  mtk —m . —
| of Z = = E for each fixed =r > 0, as follows | |

. | £(x,u,r) = glx,r) + H(x)u (4.3) |

<

. Then the system (4.1) can be written |

x = £(x,u,r) , uu: G(x) (4.4)

. | - 19 - |



| |

|

|

. The set U(x)C =" is determined as follows |«

U(x) = a) 1 2{x,u,r) | = min [f(x,v,r)! (.5) |
v.>0,ed : |

| | v.=0,] £J :

wnere | |

| T= 3(x) = (3]n,(x) <0) (4.6) |
| Nove that Tor every interior point x of R the set J(x) is empty andI

Jix; = 0, so tnat T{x,u,r) = glxr). |
We will assume that g(x,r) and H(x) are continuous in x Tor all x ¢ R,)

| where RZR is a compact set such that every point of the compact set R is

| invwerior to R. |

Theorem 7 |

Starting at any point x e€ R a continuous solution x(t) <o (4.4) exists,

| such that x(t) remains in R-. forall t.>0.- |

2rcof:

| Because of the continuity in x, and assuming only that u is measurable |
- ) : ow ld - - - - |
in LT, we have from the Caratheodory existence theory [14,16] that a continuous

solution x(t) exists for x(t) in R, which satisfies (4.4) almost everywhnere

| Now suppose that for some point x'e R on the trajectory x(t) we have |

| h(x") < 0. Then by the continuity of x(t) there must be an earlier point x |

on the trajectory, such that hh, (x) = 0 and h(xX) < 0. But from the latter
ant (4.4) we have |

| !
| .

WOR Send SY SP de SW A nt |ho (7 = 20x) 2 =X) £<o (4.7)
y/ J y/



— — | a

_ we Let the corresponding value of u be ue U(x). From the definition (4.3)

we nave |

HE ’ ~os tet op =f° = g’g +2 WH g + UHHEU (4.8)

| or oo

322 . _ =
| 7 =2 h’{x)[g + Hu] = 2\/n (x) £ <0 (4.9)u y y/ || LZ

- : ~ t ! . " -

According to (4.9) we could decrease the norm [If] by increasing u, > O. But
. since n(x) = 0, we have J e€ J(x) by (4.6) and therefore u cannot satisfy

(+.5, 50 that u & U(X). This contradiction shows that there is mo point x

on the trajectory such that hy (x7) <0, for any 1, which proves the theorem.

3y a direct application of the necessity of the Kuhn-Tucker conditions for

The constrained minimization problem in (4.5) it is not difficult to demonstrate

) tne Tollowing |

ne nonzero elements of every vector u e U(x) are given by a vector

ue, k<k, where

: —- =I -L = -
w= -(HH ~Hglx,r) >0 (k.10)

The mXk matrix H = H(x) consists of k linearly independent columns of

E(x) selected from \/h,(x) for je J. |
- - tJ -

We now consider an equilibrium point x of the systemof differential

) egu.tions (4.4). That is, for a fixed r = r, we will call X an equilibrium

point of (L.4) if

: f(x,u,r) = 0, ue U(x) (4.11)

CS | - 21 - |



Tre system (L.4) will be called asymptotically stable in R if for every

. initial point x € R, the solution x(t) to (4.4) converges to an equilibrium
. Point X € R as t —ow.

| Theorem 8 |

If R is given by (3.1) and [G + G’] is negative definite for x ¢ R,

where G is theJacobian,of g(x,r), then the system (“.4) is as tow Ly

stable iz R. - | |

| 2ro0T;

The proor consists of showing that for x and u satisfying Chk), the

raze of change of elx,u, FE is always negative for f(x,u,r) # 0. We first
consider the situation when the selection of columns in H(x) remains unchanged.

Taen since all elements of wu are zero except those given by u > 0, we have

from (4.3)

fT=g+Hu=g+ Yu, \/h, (4.12)
J J

3

anc

| f-=cx+1 TU, q %x+Fu (4.13)J J

| where Qs is the Jacobian of Va, (x) (or its equivalent, the Hessian of h.(x))a | | 7

and is therefore negative semidefinite from the concavity of his). Now using
(4.13) and (4.4) we have |

| = ele = — (£7F) = $f = £G £ + Lu £a, f+ Ew (L.1k)

We consider the last term and make use of (4.12) and (4.10) to show thax

| Eu = [@F+ WEE f= fF - eT T= (4.15)



| Tee reo TT = fT iz regzmiots Zzfiizftes z=Z Tihs I Ears mszaTivves ssmiisTinice
8 | | - )

| LL sR Lrler ele DE, 27, £ < me lel (1.26)
| for scme € > 0. | |

A change in the columns selected for H(x) can never increase the value of

iT! since the selection as determined by (4.5) will always minimize ell, 14

“rerefore foilows from (4.16) that lim £1 = 0, so that x(t) — x, where x
Tr00

| ‘s an equilibrium point which savi:Ties (-.11). By Theorem 7, we uzve that

| X € 5, 5c That (k.4) is asymptotically staple in R.

a Ln ecuiliibrium point x° € RB will be called globally asymptotically stable

in R if for every starting point x € R the solution x(t) to {L.L) converges
: to x°. We will now show that with the appropriate concavity conditions the

) woosve equilibrium point x° of (2.1) is also globally asymptotically stable in

Theorem © B | |

] et Re given uy (3.1) and G be the Jacobianof g(x,r) for some

. fixed r =r > O. Then if [G+ a] is negetive definite for x € =, the

pormaiized equilibrium point x° (1) is globally asymptotically stable in R.
] roof: |

Since [G + G7] is negative definite, o(x,r) is diagonally strict.y |

concave by Theorem 6. Then by Theorem & there is a unique normalized equilibrium

- point x° = x°(r), which satisfies {(%.21), (3.22) and (3.23). But en eguilibriun

point x of (4.4) also satisfies these three relations. The first relation is

) satisfied since x e€ R, while (4.11) is equivalent to (3.22) and (3.23).

Therefore we must nave X = x°. By Theorem 8, the system (4.4) is asympto- ically



| - Le T ’ 4 .

| s<zZle in =. Since x = x° is unigue the solution to (4.4) will converge to

| ] x° from every starting point in R, and the system 1s globally asymptotically

| ) ste d.ie. |
|
|

|

|

| : |

=,
| ™

a

~ 24 -
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| - oe —gternination of Touilibrium Point.

The gocbal stability of the equilibrium point permits us to determine |
| The unique eguilibrium point for any concave game by appropriate mathematical

programming computational methods. In particular, gradient methods for the

concave nonlinear programming problem [17,18] can be modified to find the

eculliorium point for a concave game. Such methods take finite steps in the |
|

Girecvion or the gradient of the function to be maximized taking account of the |

constraints by projection, or appropriate penalties, in order to remsin in the |

Teasit.e region R. The essential idea in applying one of these gradient |
methods TO the concave game problem is to use the vector glx,r), given by

(3.9), as if it were the gradient of a function of x, where the function is

vo oe maximized for x e€ R. The solution to this "maximization" problem will

give a point x° e€ R where the Kuhn-Tucker conditions (3.21), (3.22) and (3.23) |

are satisiied. But as has been shown such a point is the unique equilibrium

pcint Tor the concave game. Note that the optimality conditions involve only |
whe gradient g{x,r) and do not require that the Function itself be ¥mown. |
Tne gradient projection method can be considered as a finite difference |

approximation to the system (4.4), where the solution is obtained by a secuence

of finite steps in the direction of the projected gradient Tx,u,r). The
oH

| only practical difference between this and a true maximization problemis that

in the latter case we choose the step length so as to givea maximum of the .

| true function value along the chosen ray, whereas for the equilibrium point |
| proodlemwe choose the step length so as to minimize the norm of f. |

To show now This 1s done we consider the finite difference approximation

| iC (4.4) given by

LZ Wd wd pred dF 3 i
X = x¥ +1° £(x%,u’,r), u* e U(x") (5.1) |

|  woere 79 is the step length to be selected.



id .

. “neorern 10.

If the assumptions of Theorem 8 are satisfied then a finite step lengtn

: 3 \ | _ nadtdy Ad! a ) 1 ) 5 9
tY cen be chosen so that |fY | < |#9, for fY # 0, where fv = f(xY,u’,r).

Proof: | | |

| For wu = uY held fixed we have

FIT 2 £(xY ud, 7) I F(x — - x9) (5.2)

wiere I 1s a mean value of the Jacobian of f, so that fF © < 0,

for f£# 0. Then from (5.1) we have |

=Jtl } = ad | /| | to (1+ 1d Fr (5.3)

Re . £ =Jj+1 - « [3 - - te 4
The norm of f is minimized by the choice

’ - . 2 2 » =J Ted / od Ted 7 [cITT = = Irind [x FY > 0 | (5.4)

Walch gives

| - - Fan « J - -
=J+dlnz HoadllE Je Li =ad Jie :TOT = lel + (19) 2 Fed <2) (5.5)

-

. +1 +L gti— +1 j+1 cL, aFinally since £9 = = f(x’ YF), where ut toe U(x"), it follows

2. = LY mde aoa n=l H Jifrom (4.5) and (5.2) that [fv 7 < [IT < led).

The convergence of this finite difference procedure to the unique

equilibrium point x° can be shown as in Theorem 8.

~7 : :
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