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A constrained n-person game is considered in which the constiraints

Zor each player, as well as his payoff function, may depend on the

- ciravegy of every player. The existence of an equilibrium point for

fuch & game is shown. By requiring appropriate concavity in the payoff
._.“ncu_o ns a concave game is defined. It is proved that there is a unique
eguilibrium point for every stirictly concave game. A dynamic model Tor

™ . -
nonecuilibrium situations is proposed. This modsi consists of a system

<
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specify the rate of change of each

E

.

e
Fde

’
.

- of aifferential equa tl"nf
rlayer’s strategy. t is shown that for a strictly concave game the
systenm is globally asympeotically stable with respect to the unigue
equilibrium point of the geme. Finally, it is shown how a gradient '
method suitable for a concave mathemaical programming problem can be

— used to find the equilibrium point for a concave game.

*Prepared under NASA gran T Is G565 at Stanford University. Reproduction
in Waole or in Part is Permitfed for any Purpose of the United States
Government.
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The concept of an eguilibrium point for an n-person game was Introduce
Nash (10, 11] and the existence of such points proved under certain assumpvions

on each player's strategy space and corresponding payofi function. He showed

that if each player is restricted to a simplex in his own strategy space and if
the payoff functions are bilinesr Tunctions of the strategies, then an ecuilibrium
point exists. This result has been generalized to an abstract economy by Arrow

arnd Deoreu _1] and McKenzie [9], where each player's straiegy space ray depend

or. the strategy of the other players.

[

~his more general problem is considered here. Specifically, it is only
reguired that every joint strategy, represented by a point in the product space

¢ <rne individual strategy spaces, lie in a convex, closed and bounded region

J
3

R iz the product space and that each player's payoff function ¢i, i=1, ... n,
.e corcave in his own sirategy. The existence of an equilibrium point for this

concave n-person game is shown in Theorem 1, using a mapping of R into R
s LR

N

»

end tze Kexutani fixed point theorem [4].

Cne of the difficulties which has limited the usefulness of the concept of
ar. ecuilitrium point for an n-person game is the lack of uniqueness of such
points, as shown by the fact that many games possess an infinite ﬁumber of

-
ecuilibrium points (for example, see Shapley [12]). This difficulty is overcome
oy reguiring that the payoff functions satisfy an additional concavity re-
virement which is called diagonal strict concavity. With this additional

reguirement it i1s shown in Theorems 2, 3 and 4 that every concave n-person
Ioo.r nas a unicue ecuilibrium point. Theorem 2 shows uniqueness for a game
wi~a orthozonal constraint sets, that is, where R 1s the direct product of

tne individual player's strategy spaces. In Theorems % the more general case of
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couz.ed constraints is considerel. A nornailized eguilibrium point is defirned

in Terms of a specified positive constant r. for each player, which determines

L

~

-+
. m 2 . e sLh ) .
the value of the dual variables for the i— player. Theorems 3 and - show that

.

& unigue normaliized eguilibrium point exists for each specified value of the
parameters r.. The monotone behavior at the equilibrium point of the payoff
Tuncetion Qi with respect to ri is shown in Theorem 5. Section 3 is
completed vy giving a sufficient coxndition for diagonal strict concavity in

Terms of certain Hessian matrices of the ©.. The interesting case where each
i
$. 1s bilinear in the strategies is discussed ©To illustrate this condition.
e oimairix game [T, 8] is a special case of this bilinear payofi function.
In Section 4 we consider a reasonable dynamic model of the rn-person concave
Zame. + 1s assumed that if the game is not at equilibrium each player will
avtenpl To change hic own strategy so as to obtain the maximum rate of change

of zis own payoff funciion with respect to a change in his own strategy. It is

sr.own thet the system of differential equations obtained in this way has the

>

progerty that every solution starting in R remains in R (Theoren 7). The

lity of the system is considered in Theorems 8 and 9. It is shown that

[N

stab
when concavity conditions sufficient for uniqueness are satlsflea the system
of Cifferential equations is globally asymptotically stable. Furthermore,
sterting at any feasible point in the sitrategy space R, the system of

-

differential equations will always converge to the unigue equilibrium point of

—ra < o
vl Or.t.‘%

[$8

nal n-person concave game. Thus the dynamic model qnd the concave
czre have the same unicue equilibrium point. The stability proof uses the

ware of the norm of the right hand side of the differential equations as a
“Ilzpunov funciion to show that the norm approaches zero. The stability of a
dirferent dynamic model of a competitive equilibrium represented by a system of
GiZferential equations has previocusly been investigated [13, 19].

-3 -
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In Seczion 5 it is shown that the unigue eguilibrium point to the concave
same can ve found computationally Ty using a gradient method sultable for a
concave mathematical programming provlem [17, 18]. This may be considered as
a generalization of the well known relationship between the two-person zero-
sum geme and linear programming [15]. It should also be noted that the general
concave constrained maximization problem 1s obtained for the case n =1, so
that such a problem may be considered as a special case of the n-person concave
zame. Tror this special case of n =1, the results of Sections 2 and 3 reduce
<o known results. However, the results of Section 4, in particular Theorem 7,

appear to be new even for n = 1.

L=
.
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The concave n-nersc. Jame 10 be considered 1s described 1n terms of the

.

e . v - A v N . . .Th

irdividual stratezgy vector for each of the n players. The sirategy of the i
s

)i=

[e5]

(]
-

player is represented by the vector X, in the Zuclidian space coe .

) B m B . L . .
Tre vector x € & then denoter - 2e simuitaneous strategies of & i1 players,
o s m n
N N e o < "
where E is tThe product space I 7 X E eoe X E and m= , 1w . The al-

1
lowed strategies will be limites oy the reguirement that x be selccted from a

- — il —n

convax, c.osed and bounded set R C I . If we denote by Pi <he projection of

O

B! - s = - - -
X on E we will azlso consicer tne convex, closed and bounded product set

SDO= ziven ¥y S =P, X Pre...x P . This is illustrated in Fig. 1 Tor n = 2.
— et

vy

In most game theory papers consideration is limited to tThe case where each

vlayer's strategy Xy is restricuved to a convex set Ric:.E in his own

stravegy space. ror example, in Xash 120,11} the set Ri is the simplex in

T ~, In this special case where the con:iiraint sets are orthogeral we have

P, =R, so that R =8 = R, XfBE 0o aX Pro In the general case where RC S
1 1 X ol

we will say that R 1s a coupled constraint set.



e

wil

The payoll funcltion for the i— player depends on the strategies of all
the otvner players as well as his own strategy, and is given by the function

@i(x) = @:(x,,...x:,...xn). It will be assumed that for x € S, ¢.(x) is
BN A -~

1

continuous in x and 4s concave in Xi for each fixed value of
(x_l,...xi ,x4+l,...xn). With this formulation an equilibrium point of the
-— - -

1
-

n-person concave game is given by e point x° € R such that

il

@i(x°) = max {¢i(xi,...yi,...xj) '(xi,...yi,...x;) € R) (2.1)
¥y

such a point no player can increase his payoff by a unilateral change in

i
cl

nis strategy.

The results to follow make use of the function p(x,y) defined for

.

(X,¥) e R XX vy

.
o) = Foyaeeevy o) (2.2)

9

7c cteserve that for . (x,y) € R X R we have (xl,...yi,...xn)le S, i=1,...n,
s¢ thet p{x,y) 1is continuous in x and y and 1s concave in y for every
fixed x, for (x,y) € R XR. We now prove the existence theorem for the
conceve n-person gane. *

Theorem 1

An ecuilibrium point exists for every concave n-person game.

Proot:

Consider the point to set mapping x ¢ R - I xR, giveh by

I x={y]|plx,y) = max po(x,2)] (2.3)
zeR



<% To.lows Irom the contimuity of p(x,z) and the concavity in z of p(x,2)

Tor Tixed x, that [ 1is an upper semicontinuous mapping which maps each

point of the convex, compact set R into a closed convex subset of R. Then

Oy the Kakutani fixed point theorem [4,5] there exists a point x° ¢ R such

that x° ¢ I' x°, or

p{x°,x°) = max p(x°,z) (2.4)
zeR

—~—ai

it were not. Then, say for 1 = 7, there would be a poir: X, =X, such that
L

-

w

= (xi,...Ez,...xg) € R and QZ(Q} > ¢z(x°). But then we have

o{x°,x) > p(x°,x°) which contradicts (2.4)

The fixed point x° is an eguilibrium point satisfying (2.1). TFor suppose that



3.  Unigueness of Zguilibrium Point.

In order To discuss the uniqueness of an equilibrium point we rmust
Cescribe tne convex set R more explicitly. For the general coupled con-
straint set where R S, we will describe R by means of the mapping

m

a(x) of E —aEk, where each component hj(x), j=1,...k of nh(x) is a

cozncave function of x. It is assumed that

R = (x |n{x) >0) (3.1)

is nonvoid and bounded. It follows from the concavity of the h,(x) that

c.

the closed set R is convexXx. TFor The orthogonal constraint set

R=8= Rl X RE...X Rn, we consider the nonvoid and bounded sets

2. (x.) >0}, 1=1,...n (3.2)

wahere eacn component hi‘(xi)’ J = l""ki’ is a concave function of xi,
J

so That R

o

~m
. - . - . 4T . .
is a convex, closed and bounded set in "E 7. We will zlso

=

assuwme that the set R contains a polnt waich is strictly interior to

every nonlinear constraint, that is, 3 ¥ € R, such that hj(x) >0 for

every nonlinear constraint h.(x). This is a sufficient condition Tor the
o~

satisfaciion of the Kuhn-Tucker constraint qualification [ 2 ].

We wish to use the differential form of the necessary and sufficient
Xuhn-Tucker coanditions for a constrained maximum [ 6 ]. We therefore make
the additvional assumption that the h.(x) possess continuous first deriva-

o .
tives for x ¢ R. We also assume that for x € R the payoff function
- . PO .th - . . . . .
o.(x) for the i=— layer possesses continuous first derivatives with

respect to the components of x.. For any scalar function o(x) we denote

, . m
oy Y]{p(x) the gradient. . with respect to x, .of o(x). Thus VQ¢(x) €T I

-8 -
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unn-Tucker conditions eguivalent to (2.1) with R given by (3.1)

I

can now be stated as follows:

n(x°) >0 (3.3)

- . m

k v oan
and for i = l,...n,3 u; > 0, u; € £, such that

wn(x°) = 0 (3.4)
o
(pi(x") > @i(xi, e s ayee .x;} A+ u;'h(xi, .. Vire xr"l) (3.5)
Since ©.(x) and h.(x) are concave and differentiable,

~ ) J

the inequality (3.5) is equivalent to

k

vicpi(x°) + Z ugj vih.(x°) =0, i=1,...n (3.6)
=1

-

We will also use the following relation which holds as a result of the

concavity of hj (x). TFor every x°, x' € R we have
Bo(x) - b () < o fTn, () = T (g xd U, ()
s - jxe_x-xvjx —i);l xi-xivijx 3.7)

A weighted nonnegative sum of the functions cpi(x) is given by

n }
o(x,r) = 'El ri(pi(x), r. >0 (3.8)
1=

. . n . . .
or cach nonnegative vector r € E'. For each fixed r, a related mapping

iy

z(x,7) of E" into itself is defined in terms of the gradients v4cpi(x) oy

_9_



g(x,) 2V2*92(X f (3.9)

Q (x)

An important property of o(x,r) is given by the following
Delinition

The function o(x,r) wilil be called diagonally strictly concave for

~r

¢ R and Tixed r > 0, if for every x°, x' ¢ R we have
2 U, J )

(x'-x°Y g(x°,r) + (x°—x')’g(x',r) >0 (3.10)

As shown later, a sufficient condition that a(x,r) be diagonally
strictly concave is that the symmetric matrix [G(x,r) + G (x,r)] is
aegative cefinite for x € R, where GC(x,r) is the Jacobian with respect to
x of glx,r).

ﬁ
We first give the uniqueness theorem for orthogonal constraint sets

If o(x,r) is diagonally stirictly concave for some r =1 > 0, then the

-

ecuilibrium point x° satisfying (2.1) is unique.
Proof: |

Assume there are two distinct equilibrium points x° and x' e R, each
of which satisfies (2.1). Then by the necessity of the Kuhn-Tucker condition

we have for £ =0, 1 and 1 =1,....0,

) A
hi<xi)'2 0 (3.11)

£ £y
Hu. 0, u, € E 1, such that

v



k

I

vifPi(X'Z) ) ufJVh (x
J

= ivig

and sum on 1.~ This gives

(3.12)

2
)

=0 (3.13)

We multiply (3.13) by ‘fi(xi'-x;)" for £ =0 and by Fi(x;-xi)' for 4 =1,

5 + D, = O (5- l)-'r)
woLere
B = (x'-x*) g(x°,7) + (x°-x')" g(x',T) (3.15)
and
k.
2 1 bl o o\’ o 1 o 1 . '
¥ = igl qglri {uij(xi-xi) vihi'(xi)+uij(xi-xi)Vihij(xi)}
" k. o,
T X — o r 1 4o 1 o 1
n _ , .
= 1_11”1 (g hi(xi') oy hi(xz)} (3.16)

Tre inequality follows from the concavity of the hij(x) and (3.7), and the

last relation from (3.12). Then from (3.11) we have that ¥ > 0. Since

o{x,r)

is diagonally strictly concave it follows from (3.10) that 8 > O.

But this contradicts (3.14), so thet we cannot have two distinct equilibrium

points and therefore x° is unique.

We now consider the general case where R

is a coupled constraint set and

is giver by (3.1). The values of the nonnegative multipliers u°, i=1, ...n
£

iven by the Xuhn-Tucker conditions at an equilibrium point will, in general,

- 11 -



= ﬁ°/ri, i=1,...0 (3.17)

L _
“or some r >0, and u® > 0. We will call this a normalized equilibrium

“hers exists a normalized ecuilibrium point to a concave n-person game for
erery specified r > 0.
Proot:

For a Tixed value r =r >0, let

n -
o(x,y,r) = Z ?.q)i(xl,.,.yi...xn) (3.18)
151

[~}

jsing the fixed point theorem as in Theorem 1, there’j;axists a point x such
L 4

p(xo:xo:;) = max {D(XO:Y);) n(y) > 0} (3.19)
¥y

Then by the necessity of the Kuhn-Tucker conditions, h(x°) >0, and 3u° > 0,

such that uw° h(x°) = 0 and

J
rivicpi(f) + 321 wiln,(x*) =0, i=1,....n (3.20)

But these are just the conditions {(3.3), (3.Lk) and (3.6), with ul. = ue/r.,
0

S
T ou; = u°/?i, which are su® :ent to insure that x° satisfies (2.1).
e
x° is therefore a normalized ecuilibrium point for the specified value of =7,

- 12 -



et o(x,r) be diagonally stirictly concave for every r € Q, where @

. e ; A -n ‘ ,
1s & convex subset of the positive orthant of . Then for each r € Q there

is & unigue normalized equilibrium point.

- Assume that for some r =r € Q we have two normalized equilibrium

points x° and x'. Then we have for £ =0, 1 and i= 1,...n,

n(x?%) >0 (3.21)

_3 uﬂ > G, uﬁ € 2&, such that

by =0 (3.22)
- 2 < 2
ri‘éyi(x ) + Z: uj‘éh(x.) =0 (3.23)
=1

S,
We multiply (3.23) by (x;-x;)l for £ =0 and by (x;-x{) ‘for 4 =1, and

stn on i. As in the proof of Theorem 2 this gives B+ ¥ = 0, where B 1is

given by (3.15) and

o

Y= 5 7 o .
& {uj(xi-xi) Vin(x®) + ué(xi-xi)‘géh(xx)J
> uIn(x')-b(x*)] + u’ [n(x*)-n(x")] (3.21)

1t

v h(x') + u h(x®) >0

e,

Tren since o(x,r) is diagonally strictly concave we have B > 0, which

contradicis 3 + J = O and proves the theorem.

- 13 -



We will now investigate the dependence of the normalized egquilibrium point
cn whe value of r for the general case where R 1s a coupled constraint set.
For an orthogonal constraint set it follows from Theorem 2 that if o(x,r is
diagonally strictly concave for some r = r > 0, +the eqguilibrium point x° is
independernt of r. On the other hand it is not difficult to construct a simple
example with a coupled constraint set (see Fig. 2) where the equilibrium point

x® does depend on r.

e 1 2
0, (x) = -5 %y + X%,
‘ v oo -
%5 A
nl(x) = x> 0
hz(x) =x, >0
h3(x) =Xt X, - 1>0
. o ‘ ° o _ o
(x°) =max { © (x°'; )‘ h(x® xl)> O1 = x2-
Polx) = Tot X | 1’2-} 17
x3 Loy . ,
r N »
5 [ r , risn)
Xi: r1+2r 5 X2=l—xl
ro .’ f17 7%
1 2
) : '
Figure 2

In such a case we will now show that in a certain sense the equilibrium value

of @i is a monotone increasing function of ri.

M 2 N = -
Mmeorem 5

LlaT

Let o(x,r) be diagonally sirictly concave for r € Q. Let r°, r' e Q

be such that r! =1, i# q and ra > ra. Let x° and x', with

[,
He o

x' # x°, be the corresponding unigue normalized equilibrium points. Then the

directioral derivative of mo(x°} along the ray (xé-xa) is positive.

- 1 -



Let u® and ' Dbe the .. . vliers corresponding to the normzlized
eguilibrium points x° and x'. Then for £ =1.arn® i=1,....m, and for
E — A 2 -+ P o 3 zZ Pl 33 ot
Z2=0 and i # q, the relatio-: (3.21), (3.22) and (3.23) are sztisfied

with r, =r!. For £ =0 and 1 =g, we have

- (i)vqcpq(x°) i X) Vh(x = ’ (5-25)

q q q

et o o s . ., s .
Vultiplying by (x!-x2)" for 2 =0 and (x;—xi) for 4 =1, and summing
-“

<

nowW gives

(rgry) (e} Vq@q(x") =-(B+¥) <O (3.26)

or since r' >r°,
(e - ch (x°) >0 (3.27)

But this is Just the directional derivative of © (x° along the reay
o q J

-

A useful interpretation of Theorem 5 is obtained by observing that if

@q(x) has bounded 222 partial derivatives and Hxé—x;“ is sufficientiy small
then it Tollows from (3.27) that @an >>Qq(x°), where X = (xz,...xé,...x;).
Since x° is an equilibrium point X cannot be a feasible point, and the
value of @G(X) mey decrease as X goes from the infeasible point X to

ihe new {feasible) equilibrium point xl, as illustrated in Fig. 5. Because

of tre diagonal concavity property of ©.(x), the dependence of @q(x) on

s

¥ will usually dominate its &2 .nlence on X5 i# q. Therefore, it will

3

usuelly be true that $q(x‘) > Qq(z°). Thisa;s illustrg;ed by the example of

Fig. 2, where it is easy to show that both BFL and 552 are.nonnegative.

-15 -
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Figure 3

We complete this section by giving a sufficient condition on the functions

), which insures that o{x,r) is diagonally strictly concave. The

condition is given in terms of the mxm matrix G(x,r) which is the Jacobian

th

of z(x,r) for fixed r > 0. That is, the column of G(x,r) is
\~ ~r
Or:-;(‘ > T . , . ’:;)\
—_—, j=1,...m, where g(x,r) is define® by (3.9).
O,
5
Treorem 6
A sufficient condition that of{x,r) be diagonally strictly concave for

X ¢ R and fixed r =1r >0,

<het the symmetric matrix [G{x,r) + G’(x,r)]

*

ve negative cdefinite for x e R.

Prooci:

-

Let x°, x' be any two distinct points in R, and let x{(8) = 6x' + (1-9)x

so that x(6) e R for 0 < 6 < 1. Now since G{(x,r) 1is the Jacobian of g(x,Tr)

we have

RS S - — & — .
8e(x(0),1) _ 5(x(s),7) 2x(0) _ G(x(6),5) (x'-x") (3.28)

- 16 -



~n
e

-

— o — B —_ o
glx',r) - alx’,r) = [ 6(x(8), r)(x'-x°) d 6 (3.29)
Maltiplying both sides by (x°-x')" gives
o N\ o\’ o — 1 0\ —_ °
(x°=x') glx',r) + (x'=x") g(x°,7) = - [~ (x'-x°) 6(x(6),r)(x"-x°) 4 6

[ (xx°Y [6(x(8),7) + ¢ (x(8),)] (x'=x*) d 8 > 0 (3.30)

'
M|

which shows that (3.10) is satisfied.
The Interesiing case wnere @i(x) 1s pilinear in the sirategzies xj

empnasizes an important relation ovetween this condition and a stability matrix.

We liet
n
s ’, .
Ax) = el, + xIC..J x i=1,...n .31
0;(x) = X [lefy+xfe, 0 x,, ) (3.31)
J=1 .
: m,
waere e, is a constant vector in E Y9 and C.. is an m.Xm, cons ant

<9 1d . i g
3
vaTrix. The bimatrix game [7,8] is a special case of (3.31) witn

~ / n ~ ~

=0 and C, #0, Gy # O. The two-persoa zero-sum

o= C. C
2 Tig Y1l 22
geme 1s a further specialization with Gy = -Cié.

From -w- definition (3.9) of g(x,r) and G(x,r) as its Jacobian matrix,’

we obtailn

G(x,r) =D C (3.32)

+

is the mxm constant ratrix

(@]

where

C

c = el e (3.33)

C 2C
nn



ant. D is the diagonal positive definite matrix D = aiag{ri}. For this
bilinear case it follows from Theorems 2 and 6 that we have unigueness if

there exists some r > O such that
De+cD=-1 (3.34)

where D = diag.{r%}. But this is Just the condition which ensures that
every eigenvalue of C has a negative real part (see, for example,

Bellman [ 3]). Thus the same condition which guarantees uniqueness also

2 e 7 N}

irplies that C 1s a stability matrix.
A case which might be considered as a generalization of the .wo-person
zero-sum game 1is the n-person "skew-symmetric" game where

=1, ...n. For such a geme we will have [C + C'] negative

-
e

-

[

AN

J
definite if [C,., + C i] is negative definite for 1 =1, ...n.

e
e
[N
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. Clobal Stability of Ecuilibriws Point.

- .«

"

woich each player cnenges his own sirategy in such a way that the

e will now coasider a reasonztie dynamic model of a concave

v
ia

o

remains in R and his own payoff function would increase if all other players

held to their current sirategy. That is, each player changes his strategy at

f

& rate proportional to the gradient with respect to his strategy of his payoff

Tunction, subject to the constraints. If we let the proportionality constant

for thn i— player be r., we obtain the following system of differential

e

eguations for the strategies x.,

e
as = xi = rilei(X) +:;l ujvihj<x) b 1= l)
J=

esoll

(4.1)

where the vector u lies in a bounded subset U(x) of the positive orthant of

=K

E7. The effect of the summation term, with the appropriate choice of u, is

+o ensure ihat starting with any x € R, <he solution to (4.1) remains r 2.
(=] 2

m

YL¢.{x) on the menifold formed by the active constraints at

an mxk matrix H(x), whose jEE column is ‘7hj(x),

E(x) = [Vn(x)  Vny(x) - - -V, (x)]

X.

fact, the right hand side of (4.1) is just the projection of the gradient

If we define

(k.2)

and use the definition (3.9) of g(x,r), we can define the mapping f(x,u,r)

mt+k -

of = -~ E for each fixed r >0, as follows

f(x,u,;) = g(x,;) + H(X)u

Then the system (4.1) can be written
x = flx,u,r) , u = (x)

- 19 -
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(4.4)

-person game in

‘oint strategy



The set U(x)C =5 is determined as follows

U(x) = (ulif(xu,7)i = nin jo(x,v,T)! (=.5)
Vbio,jeJ
v.=0,5¢J
J
wnere
J=J(x) = {J hj(X) < 0} - (k.6)
Xote that Tor every interior point x of R the set J(x) is empty and
U{x) = 0, so tnat P(x,u,r) = glx,r).
We will assume that g(x,r) and H(x) are continuous in x for all x ¢ §4

waere RIR is a compact set such that every point of the compact set R is
interior to R.

Theorem 7T
' I
x € R a continuous solution x(t) o (4.h) exists,

Starting at any vpoint

LN

such that %(t)  remains in R- . for.all t>0.- D
DPrcof

Because of the continuity in x, andé assuming only that u is measurable |
in we have from the Carathéodory existence theory [1k4,16]that a continuous

not, :

solution x(t) exists for x(t) in R, which satisfies (4.4) almost eversy herJ

Now suppose that for some point x'e R on the trajectory x(t) we have J

h (x') < 0. Then by the continuity of x(t) there must be an earlier point x i
n the trajectory, such that h?( X) = 0 and EZ(I) < 0. But from the latter

and {4.4) we have

— "—].
hz(x; = /% E\XJ % —K7n (x) £ <0 (%.7)

-.20 -=



=glg+2uHg+ WHEHET (4.8)

or
Wz- =2 nj(x)[g+m] = 2\/ny(x) £ <o (4.9)

According to (4.9) we could decrease the norm £ by increasing Gz > 0. But

since nz(z—f} =0, we have £ e J{x) by (4.6) and therefore u cannot satisfy

(=.5, s0 That U & U(X). This contradiction shows that <here is no point x'

on the trajectory such that “i(x') <0, for any i, which proves the theorem.
3y a direct épplication of the necessity of the XKuhn-Tucker conditions for

the constrained minimization problem in (4.5) it is not difficult to demonstrate

tne Tollowing

Avene o
AT

Cne nonzero elements of every vector u e U(x) are given by a vector
= —12 b )
uwez, kK<Kk, where
- =l=yv -1 = -
u=-(HH ~Heglxr) >0 ) (4.10)

o~

The mXk matrix H = H(x) consists of k 1linearly independent columns of

selected from \/h.(x) Zor je J.
oJ
We now consider an equilibrium point x of the system of differential
eci-sions (4.4). That is, for a fixed r =r, we will call X an equilibrium

point of (L.4) if

f(x,u,r) = 0, u e U(X) (4.11)

- 21 -



Tre system (k.4) will be called asymptotically stable in R if for ever

initial point x € R, the solution x(t) to (4.4) converges to an equilibrium

Theoren 8

’

If R is given by (3.1) and [G + G’] is negative definite for x ¢ R,

3

where G 1s the Jacobian, of g(x,r), then the system (1.k) is as oL

r
) i

ne prooi consists of showing thet for x and u satisTying [4.4), the
LE(x,u,7)I° s alweys negative for f(x,u,r) # 0. We first
consider the situation when the selection of columns in H(x) remains unchanged.
Then since all elements of u are zero except those given by u > 0, we have

from (4.3)

f=g+:5=g+EEJth (5.12)
b
anc
f-0%x+VT0.Q %x+Fu 4,13
NS (4.13)

where Q. is the Jacobian of K7hj(x) (or its eguivalent, the Hessian of h,(x))
J - 9]

and is therefore negative semidefinite from the concavity of hj{x). Now using

(£.13) and (4.4) we have

s e et S (e = =e s+ BN, £, £ PET (ha1k)

We consider the last term and make use of (4.12) and (4.10) to show that

FEu= [@H+ TFT G- [0 - ¢F 5= 0 (4.15)

—Dp -



1
(]
+
(@]
N
=N
+
|
<1
)

(L.16)

f?
I\
M|
L

Tor scme ¢ > O.

4 chenge in the columns selecied for H(x) can never increase the value of

e . - . . . . - . PRI Hoalt
'# since tae selection as determired by (4.5) will always wminimize £, It

trerefore Tollows from (4.16) so that x(t) -, where x

. Ar2 T 2 TAA T s 2 =2l A
1S an SCQuLLLorLium poLnT waich

By Theorem 7, we izve that

e

T, = S S N L T M a—an 5
X € &, 50 toat (k.4) is asymptoticelly stabvle in R.

in ecuillibrium point x° € R will be called globally asymptotically stable
i R if for every starting point x € R the solution x(t) %o (L.L) converges
to x°. We will now show that with the sppropriate concavity conditions the

vn.gue equilibrium point x° of (2.1) is also glovally asymptotically stable in

Theoren O

T2t R e given vy (3.1) and G be the Jacobian of g(x,r) for some
- - - . 7 . e P A -
ixed r =1 > 0. Then if [G + G“] 1is negsetive definite for x € &, the
rorrelized eguilibrium point x°(r) is globally asymptotically stadble in R.
.) -

Since [G + G7] is negative definite, o(x,r) is diagonally sirictly
concave by Theorem 6. Then by Theorem & there is a unique normalized eguilibrium

n ecuilibriun

™

point x° = x°(r), which satisfies (3.21), (3.22) and (3.23). But
point x of (4.4) also satisfies these three relations. The first relation is

satisTied since x € R, while (4.11) is eguivalent to (3.22) and (3.23).

Therefore We must have X = x°. By Taeorem 8, the system (4.L) is asymptoically

-23 -



s=zZle in 2. Since x = x° is urique the solution to (4.4) will converge o

H

x° Zrom every starting point in R, and the system is globally asymptotically

N
stadie.

LR

—2h -



erxination of Ecuilibrium Point.

PADIINSL -}

The global stability of the eguilibrium point permits us to determine
the unique eguilibrium point for any concave game by appropriate mathematical
orograrming computational methods. In particular, gradient methods for the
concave nonlinear programming problem [17,18] can be modified fo find the
ecullivpriun point for a concave game. Such methods take finite steps in the

direcvion of the gradient of the function to be maximized taking account of the

constraints by projection, or appropriate penalties, in order to remain in the

o)

Teasitle region R. The essential idea in applying one of these gradient
metnods to the concave game problem is to use the vector g(x,r), given by
(3.9;, as if it were the gradient of a function of x, where the function is
10 Te maximized for x € R. The sclution to this "maximization"” problem will

ive a point x° € R where the Kuhn-Tucker conditions (3.21), (3.22) and (3.23)

. But as has been shown such a point is the unique eguilibrium

fu

are savisrlie
voint for the concave game. Note thet the optimalitxgconditions involve only
the gradient g(x,r) and do not recuire that the fuﬂgéion itself be xnown.

Tre gradient projection method carn be considerecd as a finite difference
approximation to the system (4.L), where the solution is obtained by a secquence
of finite steps in the direqﬁion of the projected gradient f(x,ﬁ,;). The

only practical difference between this and a true maximization prcbiem is that
in the latter case we choose the step length so as to give a maximum of the
true funciion value along the chosen ray, whereas for the equilibrium point
problem we choose the step length so as to minimize the norm éf T.

To show how this is done we consider the finite difference approximation

¢ {4.4) given by

L 3 £(x9,u9,7) e U(xj) (5.1)

woere TJ is the step length to be selected.



. Trneoren 10.
-

If the assumptions of Theorem 8 are satisfied then a finite step length
; h L pady y

N Lo I n ] , i 5 =
1Y can e chosen so that |ITV |l < |29, for f£9 £ 0, where £V = £(xY,u’,r).

o

For u=1u held fixed we have

T L p (09T = 0 s Tt - i) (5.2)

waere = 1is a mean value of the Jacobian of f, so that fF 7 < 0,
for f£# 0. Then from (5.1) we have
—_‘:‘+l . — 'y :
o (14 1) T (5.3)
- =j+1 . ot = n .
The norm of I is minimized by the choice
Y
. o e ~
— s N0 — o’ .
= - [FeY] /20 FeY > 0 (5.1)
walich gives
i—""l||2 ‘f_cnjl’g ' j 2 —,:‘"—:_;_\J' .:-. 2 :
T = 20T ¢ (29)7 29 FeY < e (5.5)
. . j+1 S+l j+1 = 3+ o S
Firally since £9 ©— = f£(xY",u’ ,T), where ud L U(x¥" "), it follows
—."7'15 ’:.';—l" )
from (4.5) and (5.2) that |lrv7 =} < 1T < Ned].

The convergence of this finite difference procedure to the urique

equilibrium point x° can be shown as in Theorem 8.

38}
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