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Abstract

A programis described which computes the pseudoinverse, and other

related quantities, of an m X n matrix A of unknown rank. The pro-

gram obtains least square solutions to singular and/or inconsistent

linear systems AX = B, where m < n or m > n and the rank of A may

be less than min(m,n). A complete description of the program and its

use 1s given, including computational experience on a variety of problems,
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I. Introduction.

A method for the computation of the pseudoinverse, and other

related quantities, corresponding to an m x n matrix A of unknown

rank r, has recently been described[5 ]. The method determines the

pseudolnverse IN ofA and a related matrix af, The pseudoinverse

has the property that given the linear system Ax = b, the solution

X = Ap satisfies lax - b|| < | Ax - b|| for all x, and Ix | < lll

for all x such that lax - fl = [lax - bl. The minimum basic solution

X, = PS has the property that lax, - b|| < || Ax - b|| forall xX, and
xy has at most r non-zero elements.

Thecomputational difficulty for this problem arises primarily

because the rank r is not known. In particular, 1t may be difficult

to assign the correct rank i1f one or more of the singular values of A

are small but non-zero [3]. Several other recent papers [ 1], [2],

[4], on the computation of the pseudoinverse have not considered this

. 1mportant practical question.

The approach used here to handle this difficulty can be summarized

as follows. The desired matrices A" and IN are formed from a matrix

B, which consists of linearly independent columns selected from A'.



We would like to determine B so that it spans the same space as A,

in which case B will containr columns. Suppose we have a matrix

B, with g linearly independent columns selected from A, (where q < r)

and the corresponding approximation x to A+. Adding another linearly
independent column of A to B, giving Boer’ should give an imppeoved

approximation Ko to the pseudoinverse. However, due to roundoff error
in the calculation it may turn out for an i1ill-conditioned system that the

new approximation 1s actually worse 1n the sense that la? 1 - Ill > fla - Il.
Such a test 1s made in the pseudoinverse determination with the result that

the effective-rank of A (the number of columns in B) 1s the maximum

possible consistent with minimizing the error [aa Il.

A closely related aspect of the method used here to compute the

pseudoinverse 1s what might be called its "smoothing" property. In many

practical situations one would like to obtain a solution to a linear

system which 1s stable in the sense that small changes in the matrix

elements do not cause large changes in the solution vector. In general,

the solution x = A, where A is the true pseudoinverse, will not

behave smoothly. In fact, the norm of x will increase without bound

as a singular value ofA approaches zero. This difficulty can be

. eliminated by imposing a predetermined upper bound on the norm of ('8)"L,

This 1s accomplished by estimating the effect of adding a new column of

A to Bq and only adding this new column to Bq 1f 1t does not cause

any element of Ko to exceed the bound. Details of this selection
procedure and the manner 1n which it depends on the choice of the bound

SUPER 1s discussed 1n the next section.
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In Section 3 the use of the Algol program, written to perform this

algorithm, 1s described and suggested values for the input parameters

are given. The program use 1s 1llustrated by means of a sample problem.

A large number of problems have been solved using this program.

Several different kinds of tests have been performed:

a) Very 1ll-conditioned matrices like the segments of the Hilbert

matrix [6] have given a clear example of the smoothing property of the

method.

b) Random rectangular matrices of random sizes have been generated and

the pseudoinverse have been computed. The sizes were allowed to vary

between 1 and 25. In all the cases the results were satisfactory.

c) Same as in b) but with random ranks. In every case the rank was

correctly determined by the program.

d) Random matrices of specified size covering a range of values of m

and n were run 1n order to obtain time estimates for different size

problems.

e) A number of least-square problems, 1.e., with m>>n and only one

right-hand side.

f) A variety of matrices for which an independent check on the

accuracy of the solution was available.

Tests b) through f) showed that in reasonable problems in which

© the rank 1s well determined the program will work very well, while a)

has shown that in very 1ll-conditioned cases the smoothing property of

the method 1s effective.

These test results are discussed more fully in Section 4. The

notation used in [5] will also be followed here.

Details of storage requirements are given 1n Section 5.

A copy of the program appears 1n the Appendix.

5



II. Program Description.

+ [ ' I

The method used to compute Ii and A from B 1s essentially that |

given in Section 2 of [5]. For convenience we will repeat the key relations

here. The pseudoinverse of the m Xx r matrix B of rank r is given by

+ -

(2.1) B" = (B’B) Lp

The non-zero rows of the n x m matrix at then consists of the corre-
+

sponding rows of B'. An r x n matrix of rank r is also obtained from

+
B according to

(2.2) C = B+A

Note that, 1f B contains all the independent columns of A, then A = BC.

+ +

Finally, A 1s obtained from C and B by

+ tlm on=Ll oF(2.3) at = ccc)lB

The determination of B 1s based on the algorithm of Section 3 in [5],

using the more sophisticated selection procedure described below.

The program consists essentially of two parts. One part has all the

input-output and the other 1s a PROCEDURE ¢glled PSEUDOINVER which may also

be used separately as a part of other programs'. The program solves the

matricial problem,

(2.4) AX=RHS

where RHS 1s a matrix containing several right hand sides.

a) The first part of PSEUDOINVER normalizes the matrix A by scaling

each column so that its Euclidean norm 1s equal to one. The normalization

constants are saved 1n order to get back to the original problem.
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The search for independent columns of A 1s then made to determine

the matrix B, according to the formulas described in section 3 of [5].

At this stage, the condition for a vector to be accepted as independent of

the ones already included in the basis 1s that«, the square of the norm of

the projection on the orthogonal subspace to that basis, be less than a

quantity ORTP, which is an input parameter. Later we will discuss the

appropriate choice of ORTP and the other parameters appearing in the

program.

As the columns chosen in this fashion might not necessarily be the

first columns of A, a record is kept of the column number of the accepted

vectors,

After all the columns have been inspected two situations can arise;

either all the n columns of A have been accepted or some have been

rejected. In the first case we have finished and the computations indicated

at the beginning of this section are performed to get A+, AFF xX and
X - Other computed quantities are the residuals, ©NXM = lax - RES||

NXB = lax - RHS|| corresponding to x and X and EST = IBC - All.
EST would be zero 1f the computation were performed exactly; in

general EST will be very small for well-conditioned matrices and will

increase with the 1ll-conditioning or if an almost dependent column 1is

- added to B.

If only gq < n columns of A are selected for inclusion in B then

the basis thus constructed 1s called Bq and the second part of PSEUDOINVER
1s called.

b) The projections on the subspace orthogonal to By are computed for
all the rejected columns. The Euclidean norm of each projection 1s computed,

p
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(2.5) a; = [(z - BB) all

and the column corresponding to the maximum a. (the most independent one)
1s stored in SAV.

c) A test 1s now performed which 1s based upon an estimation of the norm

that (B +1 Bui) would nave 1f we were to include SAV in the basis,,
The norm used ig|| A = max )) EN and the estimate 1s derived from the

i Jj=1

f ormula,

(B’ B y~L 0 u

(2.6) (B’ B )7 EE)ot =) | -1)q+l q+ = 0 0 atl -1 aq

where 4, = B, SAV and orl 1s the square of the norm of the projection
of SAV on the orthogonal subspaceto that spanned by By’ Then

Ce" 4a Bo) < ESTIM = 3 3) n op 1+ Ya)

If ESTIM is larger than SUPER (an input parameter) then SAV 1s re-

jected and Ba 1s taken as the final B .
This test avoids large elements in the pseudoinverse and gives the

smoothing property discussed 1n the introduction.

d) If the test in c) is passed then the PROCEDURE GARBG, which computes

all the matrices and quantities mentioned at the beginning of this section,

1s called and a second test 1s made. GARBG is used again, now with the

basis B, plus the column SAV. The test consists in comparing the

values of lax _-rHs|], lax, -Ras|| and |BC-4| obtained with one basis, with
the corresponding ones obtained with the incremented basis. If all these

values for Bal are smaller than for Bq then SAV 1s definitely
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accepted. After shifting all the useful quantities, part (b) 1s repeated

for the new basis Batl and so on, until either an exit 1s provided for

one of the tests or the columns of A are exhausted. All the scalar

products are performed in double precision. The block diagram in Fig. I

shows the most essential parts of the program.

It 1s worth noting that this strategy has been dictated by the

problem 1tself and achieves the best numerical pseudoinverse possible

using the method of [5] and taking into account the numerical roundoff

error of the computer being used. This strategy takes advantage of the

step by step algorithm for determining B, and constructs an independent

basis, the degree of independence being determined by the parameter ORTP.

By picking the most independent vector among the remaining ones, and

checking to see 1f this decreases the residuals (by taking this vector in

the basis) we are answering 1n a direct manner the two questions: how

many columnsof A do we need to minimize the residual? and, among all

the possible sets of independent columns,which set gives the best rep-

resentationof the pseudoinverse?
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Fig. 1 - BLOCK DIAGRAM
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IIT. Program Use.

As describedin the previous section, several parameters are

needed besides the matrix A . Now-we will explain the use and pos-

sibilities of these parameters.

Input,

M (integer) number of rows in A .

N (integer) -number of columns in A .

T (integer) number of right-hand sides.

OPC (Boolean) If OPC 1s equal to 1 then the program will compute

~. the matrices At and A , and the right-hand side

RHS = I(mx m) will be automatically provided.

Moreover, OPC decides 1f 1n the test described

in Section 2,d) the quality of the representation

(A = BC) 1s controlled. That test is done only if

OPC = TRUE . If OPC 1s equal to FALSE then

RHS an M x T matrix has to be provided and the

program will compute xg = a%, RES, and Xv = A". RES,
matrices that will be printed out instead of At

and Ni

SUPER (real) It is the SUPER of Section 2,c). If an upper

bound for the elements of At 1s known then SUPER

can be set to this bound to take advantage of the

smoothing property of this method; otherwise it 1s

suggested that 12H be used. It should be

noted that, in general, a larger value than 101
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will increase computing time by throwing unnecessary

decisions into the test of Section 2,d), On the

other hand, much smaller values may completely

eliminate from further consideration some columns

which could be used to decrease the error,

ORTP (real) This parameter was described in Section 2, a). Small

values for ORTP (around 107%) in general will accel-

erate the process because the first part (construc-

tion of a basis of strongly independent column) 1s

the fastest and as many columns as possible should be

accepted there. Nevertheless, there are at least

two cases in which a more careful choice of ORTP may

be important. If higher precision in the answers

is desired (atthe cost of increased computing time),

then a larger value of ORTP should be used, say

0.05. This will allow the second part of the program

to choose "better" columns.

The other delicate case occurs when the matrix is

very 1ll-conditioned and the rank 1s therefore not

well defined. Here the use of a relatively'large

ORTP is important. Again values around 0,05 are

recommended.

Summarizing, 1n a reasonable, well behaved problem a recommended

set of parameters 1s:

SUPER = 100° , ORTP = 10° .
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If the representation becomes very bad (la - BC|| too large), the problem

1s not well behaved and more burden should be passed on to the second and

safer test by increasing SUPER and decreasing ORTP .

If the user has information that certain variables are more sig-

nificant than others,this information can be used by ordering the matrix

A so that the columns of A corresponding to these variables appear

first. This will insure that these columns are considered first for

inclusion in the basis B .

If the complete program is used, then only the numerical data have

to be punched,, This 1s done in the following way.

As all the read statements are in the FREE FIELD form, availlable

in the EXTENDED ALGOL for the B5000 at Stanford, no special format is

necessary. Numbers can be punched in any format, needing just one space

in between to separate them.

lst. card: M N T OPC SUPER ORTP

for instance 10 10 10 1 @1kL 0.001

Next cards will contain the matrix A punched by rows. As each

: READ asks for a whole row, care must be taken not to mix different rows

in the same card.

Finally, 1f 0 P C = 0 the right-hand sides (RHS) have to be

provided and are read by columns. Each new column must be started on a

new card, so that there will be at least T cards required for the RHS .

If the PROCEDURE 1s used separately, then all these quantities

are input parameters (with the same names as above).
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A complete sample input 1s given by,

3 3 1 0 @1h 0.001

1.3 2 =o"

A 4 1 0

-1 -1.3 @3

RHS ( 1 2 2.1

output h

All the matrices printed out by the program will have the follow-

ing format:

Eight columns per line, each number in floating point with 6 sig-

nificant digits. If the matrix is more than eight columns wide, then

successive blocks will be printed in new pages. All the rows are

printed together.

The output 1s described now in the order in which it will occur.

First the matrix A is printed out.

Then, if 0 P C = 0 , the right-hand sides are printed out.

Norm of (BC = A) .

The residuals ax(3) - ras (3) | lax{ +) - rs (1) .
If OPC =1 , then the matrix pseudoinverse 1s printed out with

the format explained above; also in this case the non-zero rows of the

matrix AF are printed, each of them with a heading: ROW NUMBER.... .

12



If OPC =0 , then instead of these two last matrices, the

minimum and basic solutions are printed out. As an example, we give the

output for the problem: }

9 21 1 0
X =| 21 Xe) | | 0 1 |

PSEUDOINVERSION OF THE MATRIX A . A IS 2 x 2 .

g. 00000 @ + 00 2.10000 @ + 01

2.10000 @ + 01 4.90000 @ + 01

[ PAGE] -

NORM OF (BC = A) 2.37582 @ - 12

RESIDUAL FOR XM

9.19145 @ - 01 5.95919 @ - Ol

RESIDUAL FOR XB

9.19145 @ ~ O01 3,9%3919 @ - O01

[PAGE]

MATRIX APSEUDOINVERSE

2.67532 @ -03 6.24314@ - 03

6.24381 @ - 03 1.457% @ - 02

[PAGE]

MATRIX ADAGGER

ROW NUMBER 1

1.72461 @ - 02 L,02332 @ - 02

END OF THE RUN

KH KKK HK KKK KKK KK KKK KK
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The PROCEDURE PSEUDOINVER.

The call for this PROCEDURE 1is,

PSEUDOINVER (M, N, TI, OPC, SUPER, ORTP, A, RHS, EST, NXM, NXB,

APSEUDO, ADAGER, COF, XM, XB);

The first 8 parameters are input parameters and they have been des-

cribed before. The only detail needed is: A(double real array

[O:M, O:N]), RHS [0O:M, O:TI];

OUTPUT PARAMETERS:

EST (real) Contains lize - | .

NXM, NXB (single real arrays [0:TI]) . They contain the residuals

lax - RHS|| and lax, - RHS|| respectively.
APSEUDO, ADAGER (Double real array [O:N, 0:M])

They contain the pseudoinverse of A and the matrix A" .

COF (Single integer array [0:N]) .

If COF[I] = 0 then both, the pth row of A" and X, are dif-
ferent from zero, otherwise they are zero and that means the program has

decided that the corresponding columns in A were linearly dependent

. with respect to-the current basis.

XM, XB (double real arrays, [O:N, 0:TI])

They contain the minimum and basic solutions.

1h



IV. Test Problems.

a) Square segments of the Hilbert matrix have been tried, sizes

varying between 3 and 10. )

For5 <n <10 the rank found in each case was 4 . The norm

of the pseudoinverses remained below 10° while for the true

pseudoinverse (the inverse in these cases) the norms ranged be-

tween 10” for n=5 and 10% for n=10 . The norm, lA - BC||

was around 1077 for all cases.

As 1s well known, the ill-conditioning of the Hilbert matrix seg-

ments increase with their dimension. However, because of the

smoothing property of the method a bounded and reasonably accurate

representation for the pseudoinverse was always obtained.

b) Eighteen random matrices with random dimensions varying between

1 and 25 were generatedand pseudoilnverted. The norm |/A - BC]

was always below 1077 and the ranks were always found to be

equal to min(m,n).

c) Given three random integers m, n and r in the interval [1, 25]

a routine generated two random matrices, L (mxr) and

R(r x n) . Multiplying them we obtained a matrix A (m x n) with

rank at most equal to (1) . With 20 matrices generated in this

way, the results were similar to b) . In every case the rank r

was correctly determined. For most of these cases the rank r was

less than min(m,n), and of course was unknown for the program.

(1) This test was suggested by Professor Gene H. Golub.
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d) For each pair of values (m,n) several random matrices were

generated and pseudoinverted. Average values of ||a-B| for these

matrices with m=10,20,30 and n=10,20,30 are shown in Table I.

For the same problems, average computation time on the Burroughs

B5000 at Stanford Computation Center are shown in Table II.

In all these matrices the rank was the maximum possible, 1.e., rank =

min (m,n) and it was properly determined by the program.

TABLE I TABLE I IT

NEE ERES NEE ES ”

-10 -

-10 ~~ ~=9 Pp ( 030 [5.8x10 6.9x10 2.6x10 13 27.3 92.5 180.6

| - BC|| Comp. time 1n seconds

For a 40 x 40 matrix the answers were:

t = 413 sec. | |a -xc| = 2.7 x 107

rank = 40 .

e) A common problem in many branches of applied sciences 1s the least

squares fit, and 1s therefore one of the most important applica-

tions for this program. A related feature of the program is that,

by ordering the variables, the user will be able to test their

independence and eventually to decide 1f his model 1s appropriate

to the phenomena being investigated. This 1s done by ordering

16



the matrix A so that the first coefficients correspond to the

more important variables. The program will attempt, to use these

columns first to form the basis B . The necessity for such an

ordering 1s clear from the fact that if we have n columns in

A and the subspace spanned by these columns has dimension

(n-p) then we can construct with these columns as many as

(n%p) linearly independent sets.

In Figures II and III are shown the results obtained by running

the program with least squares type problems. Again the elements

of the matrices were generated randomly. Fig. II shows computa-

tion times on the B5000 for different values of m and n=5, 10.

Fig. 111 shows the norm ||A - Bc] for the same problems.

f) Matrices with exact known inverses were tried obtaining good re-

sults and accuracy. Of course this program should not be used to

invert a matrix which is known to be nonsingular and well-

conditioned, because it will be around four times slower than an

efficient matrix inverter. The program has also been used to

obtain the pseudoinverse of singular and almost singular matrices

steming from the discretization of integral equations of the first

kind, and problems 1n pattern recognition.
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Vv. Storage Requirements.

As all the array declarations are dynamical, the amount of

storage depends on several parameters. If M, N, T are as before, and

R 1s the final rank (number of accepted columns) then an estimate for

the storage used in the PROCEDURE PSEUDOINVER 1s,

| Storage ¥ + 5SMN + MR + 2NR + 2NT + max RZ, MN, MT)

the last term is present because in the PROCEDURE GARBGwe have several

independent blocks, and the storage corresponding to certain arrays 1s

not simultaneously used.

If, as usual, R 1s not known,then it can be replaced by

min (n,m) . If the complete program is used then additional storage is

needed,

Addit. storage =3MN + MT + 2NT

Computer time rapidly increases when abusive use of the drum 1s made.

From the experience obtained with the test problems, 1t 1s suggested

| that the total storage be less than 40,000 words.
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APPENDIX

AN EXTENDED ALGOL PROGRAM TO COMPUTE THE

PSEUDOINVERSE OF AN M x N REAL MATRIX

AND OTHER REIATED QUANTITIES.
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BEGI N COMMENT PSEUDOI NVERSE OF A MXN MATRIX OF UNKNOWN RANK:
INTEGER MsNsTis1sJ J} REAL SUPERSEST»TPOD,ORTP 3
BOOLEAN OPC 7 LABEL OVER,F1IU}

COMVENT DRI VER PROGRAM FIRST PARAMETERS ARE READ IN,
AND USED FOR FURTHER DYNAM CAL ARRAY DECLARATI ONS;

OVER: READ (MsN»TI1,0PC,»SUPER,ORTP)[FIUJ}S

BEGI N I NTEGER ARRAY COF[OIN3}
ARRAY ALODIMsOINI»RHSLO!MsOSTII»XMpXBLOIN2OSTI)IsNXMANXBLOLTI)

APSEUDO,ADAGERIOIN,OSM)3 LABEL NOPR, NOPR1} |

FORMAT PRMAT(C BEL14,5)///)»
TIT{C("PSEUDDINVERSION OF THE MATRIX AM™///"A IS",13,"x"»13/)»
TIT7("NDRM OF (BC=A)Y"//X3,E15.,5/"RESIDUAL FOR XM"/(BE1545/))>»

TITBC"VMATRIX A PSEUDOINVERSE"/)»TITO("MATRIX ADAGGER™/),
TITI0CX6o "XM" / Ys TIT20C//7X6s"XB"/)pTITL38C(/"ROW NUMBER"»13/)»

TIT?77(/"RESIDUAL FOR XB "/(BE15:5/))»SOL(BE15:6/)>»
ENDEC//"END OF THE RUN™//X15,"% % # « * *x %* & =» ¥" ////),

PROCEDURE PRTCA,M»N)

INTEGER M»N} ARRAY AL0,01}

COMMENT PRT PRINT OUT THE MXN MATRIX A:
BEGI N ForVAT TITL46(¢/ BE14.5)3 INTEGER SEsK»R}

SE + NDIV 8 3 K ¢« N MOD 8

FOR R*0 STEP 1 UNTIL SE-1I DO

BEGIN FOR 1e¢1 STEP 1 UNTIL M DO

WRITE (TITL46,F0OR Jet STEP 1 UNTIL 8 DO A(1»,8 xXR+J}))
WRITE (LPAGE])

"END 3 IF K20 THEN FOR I&¢% STEP 1 UNTIL M DO

WRITECTITLUG6,FOR Jet STEP 1 UNTILK DO A[l1s8 XSE+J3)}
WRITE ([PAGE))

END PRT |
PROCEDURE PSEUDOINVER (MsNsT1,SUPER,OPC2»A»RHS»ORTPSEST»NXM»

NXB2APSEUDODSADAGERSCOF» XM» XB) :
INTEGER MsN»TI3 INTEGER ARRAY COF([{0J)5 BOOLEAN OPC;
REAL. SUPER, EST,»QRTP3}
ARRAY AsRHS,APSEUDDsADAGER,XM»XBLO»0)sNXM,NXBLO])})

COMMENT PSEUDOI NVER COMPUTES THE PSEUDOINVERSE OF A MXN MATRIX A,
AND OTHER RELATED QUANTITIES. THE ESPECIAL WAY OF ROUNDING=OQOFF

AFTER DOUBLE PRECISIDN OPERATIONS IS DUE TO

MR, PETER RUSINGER AND PROF. GENE GOLUB;

BEGI N INTEGER J»CONT»QsK,ToBUENO,R»I,PESMAS BOOLEAN SUITCH}
ARRAY BQsAN[LOSMaOSNI» INVOLOISN,OINI,NRHS,UPI»DOPILCO2T1)>»

GoUQ»SAVIOINI»X1oX2L0SN»OSTI)sBPSsAPISADILOINSOIMY}

REAL CLUF»ALFAQ,BEQsALs»SUPALF»BsNXB12NXM1»AAA»BBB2CCC»
UPI1,D0PI1,ESTI,ASO»SUMMES,PERTUBSESTIMATPOIMINIR)

MA t IF M<N THEN N ELSE M 3}

BEGI N ARRAY TRUC,TU,VQ,TEMPLOIMA)S LABEL SECND,RFIN,
NONES» LOPS» TRES,CUATRO,MAIS,CAS,FINI»OTRA,FORCED]

COMMENT TRUAVCAOMATRIMULSMULTIVEC»ESC»TRANSP AND VECSUM ARE
PROCEDURES PERFORM NG MATRIX AND VECTOR OPERATI ONS,

SOME OF THEM IN DOUBLE PRECI SI ON;
PROCEDURE TRMAVC (CA»VslaJaMseN);

ARRAY A[O0»03,VI0335 INTEGER lsJaMsN }

BEGI N I NTEGER K3}
IF I=0 THEN FOR Ke¢i STEP 1 UNTIL M DO VIKI« ALK,» J)

ELSE FOR Kei STEP 1 UNTIL, N DO V(K)e A[CI,K]
END TRMAVC 3
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PROCEDURE MATRIMUL (AsBsC»sPrQ»R) J
ARRAY A»B,C[0»0) JINTEGER P,Q»R 3

BEGI N INTEGER 1,J,K REAL AC,BC};
FOR Jet STEP { UNTIL P DO FOR J#i STEP {1 UNTILR DO
SEGIN ACe¢8Ce«0} FOR X¢1 STEP § UNTIL Q@ DO

DOUBLECALI»K)»0sBLKsJIsO0usXxpAC,BCre»¢»AC»BC)}S

CrI»Jl + AC+BCRAC[131:8)/5,49755B13809019811

END

END MATRIMUL J
PROCEDURE MILTI VEC (AsV3isV2,P»Q)}

ARRAY A[0,013,V1,V2[0) 3INTEGER P»Q3}

BEGI N INTEGER 11»J3 REAL AC,BC3
FOR «1 STEP 1 UNTIL P 00

BEGI N ACe«8C«0} FOR J*! STEP 1 UNIIL @ DO
DOUBLE €(ACL1,J)50,V1itJ)s0s%xsACs»BCr+,¢»AC»BC))

V2[1le AC+BCRACL121138)/5,497558138090190811

END

END MILTI VEC }

PROCEDURE ESC(CA»BsC»P)}

ARRAY A,B[0) JREAL €C 3 INTEGER P3
BEGIN INTEGER 1 J

C«03 FOR l«% STEP 1 UNTIL P 00 CeAfllx B(I)+C

END ESC 1}

PROCEDURE TRANSP (AsB»PsQ)J
ARRAY A,B [0,0]3 INTEGER P»Q}

BEGI N INTEGER 1»J}
FOR l¢Y STEP 1 UNTIL P DO

FOR Je¢%1 STEP I UNTIL @ DO BLJ,1] « AlI,J] |
END TRANSP 3

PROCEDURE VECSUM (A»B,CsALFsBETHN)J
ARRAY AsB,C[03Y} REAL ALF,BET 3INTEGERN

BEGI N I NTEGER I}
FOR 1¢%1 STEP 1 UNTIL N DO CllleAlTIxA_F+BLI)x BET

END VECSUM }

PROCEDURE PSEUDO (NQsALFQ,UQ,Q)J

ARRAY NQ[O0,0,UQL0)} REAL ALFQ3 INTEGER QJ

COMMENT GI VEN (BQ"BQ) INVERSE, PSEUOO CONSTRUCT (B(Q+1)"B(Q+1))
| I NVERSE;

BEGI N REAL A; INTEGER 1»J3}
ALFQ « 1/ALFQ)
FDR l¢{ STEP 1 UNTIL @ DO FOR J*1 STEP 1 UNTIL @ DO

DOUBLECALFQO0»URLII»0,%oUQLJI20sX%XsNATL»JIs0s*sey

NQLI»J1sA)d} QeQ+l 3 UQLQ)e =]}
FOR J¢% STEP 1 UNTIL Q DO

NQLJ,Q)e¢ NQLQaJ) ¢ =ALFQ x YQCLJ]

END PSEUDO 1}

PROCEDURE GARBGC(MsNsT»TI»COF»BRsGsRHS,BPS»A»NRHS,AAA,

NXMsNXBsNXM1,NXBL»APSEUDO»ADAGERS XM» XBLEST))
REAL. NXM1,NXB1,EST,AAA} INTEGER NsMsT»T1}
I NTEGER ARRAY COF(O01}}

ARRAY XM» XB, APSEUDO,»ADAGER»BQsRHS»BPS»AL[0»0],

NXBsNXM»pGoNRHSIO]}

COMMENT GiveN THE BASIS B83 A PSEUDOI NVERSE, A DAGGER, XM» XB,
NXMs NXB, AND NORM OF (A=BQC) ARE COMPUTED)

BEGI N INTEGER 1s@sJsRsMA 3} REAL BsPERsALFAQ }
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ARRAY ClO:T,O:N), BQI[OSM,O08TI,UQLOIN] 3
IF MSN THEN MAeN ELSE MA eM 3}

BEGI N ARRAY ANEO¢!T,0!N]
BEGIN ARRAY INVQICLOS$T,0sTI»TU,TEMPLOIMAYS

COMVENT A DAGGER IS CALCULATED;
FOR «1 STEP I UNTIL N DO

BEGI N. Q ¢« COFLI) J ]
IF @#0 THEN FOR J¢} STEP 1 UNTIL M 00

BEGI N BRI[lJ,Q) « BQLJNQI/GLLIY

ADAGERILI»Jdle BPS[{QsJle BPSILQ,JIX G[1)}
END

END;

COMVENT C AND C=PSEUDDINVERSE ARE CALCULATED)
MATRIMULC(BPS»A»CrToMseN)3

TRMAVCC(C»TU»1»1»ToNY3 ESCCTUSTU,BAN)S

INVQI{1,1]e 1/B;
FOR @« 2 STEP 1 UNTIL T DO

BEGIN Re Q=1} TRMAVCC(C»TU»QsQrToN)}
MULTIVECCC»TU>TEMP»RsN)}
MULTIVECCINVQI,»TEMP»UQ,R,RY3

-. FOR l¢1 STEP 1 UNTIL N DO

BEGIN PERe 03)

FOR Jet STEP 1 UNTIL R 00

PER+ PER+C[J»1] X URCLJI} TEMP(I] ¢ PER
END}

VECSUMCTUSTEMP,»TEMP» 1s=1,N)}

ESC(TEMP,TEMP, ALFAQ,N)3
PSEUDOCINVRL,ALFAQsUQsR)

END } MATRIMULCINVQL,CorAN2T»TaN) J

END;

BEGI N ARRAY BQCLOIMAL,OQOIN]J
COMMVENT NORM OF ¢(A=BC) IS COMUTED;

TRANSP(CAN»BQC»TaN) 3

MATRIMUL(BQC»BPS,APSEUDDsN»ToM)}

MATRIMUL(BQ1»C»rBQCH»MsTaNY} EST ¢ O;
FOR Ie! STEP 1 UNTIL M DO

BEGIN PER+ Of

FOR J+1 STEP 1 UNTIL N DO
PER+ PER+ABS(BQC(I»JI=Al15J])}
IF PER2 EST THEN EST ¢ PER

END

END

END;
EST « EST/ZAAAS

COMMENT THE MNIMM AND BASIC SOLUTIONS ARE CDMPUTED]S
MATRIMULCAPSEUDD»RHS»XMsNsMsT1)}

MATRIMULCADAGER,)RHS» XBsNsM»T1))

BEGIN ARRAY AN[(OtM»03TIY}

COMVENT THE RESIDUALS FOR THESE SOLUTIONS ARE COMPUTED!
MATRI MIL (As XMpAN2MaN,TI1)}

FOR Je! STEP { UNTIL TI DO

BEGIN NXM1ie 0}

FOR I«1 STEP 1 UNTIL M 00

NXM €(AN[I»JI*RHS[I»JIIWN2+NXM1}

NXM1e SQRTUENXM1)3 NXMEJ) + NXM1I/NRHSCJ])
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END}

MATRIMULCA,XBsAN» MN, TI);

FOR J¢i STEP 1 UNTIL TI 00

BEGIN NXB1¢0;

FOR 1¢1 STEP 1 UNTIL M DO

NXBL1e¢(AN[I,J)=RHSII,J))%2 + NXBi }

NXBle SORT(NXB1)3 NXBI[J)e NXB1/NRHS[J]

END 5 NXBi ¢ NXM1 ¢ 0}

FOR I¢1 STEP 1 UNTIL TI DO

BEGIN NXBi ee NXB1+ NXBLI1]#2 }

NXML & NXMI+NXM[T]) »2

END # NXMie¢ SQRT(NXM1)3 NXBie SQRT(NXB1)j
END

END GARBG

COMVENT PROCEDURE PSEUDDINVER BODY
HINIR «@=203; AAA€CCC«0 3

COMVENT NORM OF A AND NORM OF THE RHS}
FOR J*1 STEP 1 UNTIL N DO FOR lei STEP 1 UNTIL M DO
BEGIN 888¢ AB8S(A[I,J)); If BBB>AAA THEN AAA+BBB

END3 FOR J¢1 STEP 1 UNTIL TI Do

BEGIN CCCe¢03 FOR l¢i1 STEP 1 UNTIL M DO

CCC” CCC+RHSLI»JI« 2 3 CCCe SQRT(CCCHS
--- NRHSCJle¢ IF CCC>1 THEN CCC ELSE 1

ENDS IF AAA<)1 THEN AAAe¢)}
FOR 1«1 STEP 1 UNTIL N DO

BEGIN COF[Ile 03

FORJel STEP 1 UNTIL M DO ADI[I,»J)«ADAGERC(I»J)e 0}
END 3

COMMENT THE MATRIX A IS NORMALIZED AND STORED ON AN »

G CONTAINS THE NORMALIZING COEFFICIENTS 3
FOR Jet STEP 1 UNTIL N DO

BEGIN TRMAVCCA»TUS»Or JaMeN)}

ESCCTU»TULCLUF2M)}

GCJ)eIF CLUF > 1,0 THEN 1,0/SQRT(CLUF) ELSE 1,0}
ENDJ FOR l¢1 STEP 1 UNTIL M DO

BEGIN FOR J¢1 STEP 1 UNTIL N DO

ANCI»JY « ALI,UXX GLJ)
END }

COMMENT THE CONSTRUCTION OF A BASIS OF STRONGLY

I NDEPENDENT VECTORS IS STARTED)

CONTe1} SUPALFe 0 5 Q¢ Ke Te 13
COFC1le¢1} INVQI1,1)e13 SUITCHe FALSE 3

FOR I«1 STEP 1 UNTIL M DO BQCIs1le¢ AN(I»11}

COMMENT SEARCH FOR INDEPENDENT COLUMNS Of Aes WIEN THE COLUMNS
ARE EXHAUSTED AN EXIT IS PROVIDED To LABEL FINle IN CONT

A RECORD IS KEPT ON THE WAY IN WHICH COLUMS ARE ACCEPTEDI
LOP 13 If @=N THEN Go TO FXNI3}

TeK 3 QeQ+13 KeK+l)

COMVENT PROJECTION OF A COLUMN OF AN ON THE ORTHOGONAL
SUBSPACE OF BQ

CAS a TRMAVCC(AN»VQ 0s QrpMpN)J
FOR I¢1 STEP 1 UNTIL T DO

BEGIN ALFAQe 0}

FOR Je¢i STEP 1 UNTIL M DO

ALFAQe ALFAQ+BQCJ,IIxVvQ[JI} TEMPLI)+e ALFAQ
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END 3;

MULTIVECCINVQsTEMP,UQSTH» TY

MULTIVEC(BQ,UQ,TEMP, M,T)}

VECSUM(VO,TEMP, TEMP 1,=1,M)}

ESCCTEMP,TEMP,ALFAQsM)3

If SUITCH THEN GO TD TRESS
COMVENT FIRST TEST FOR ACCEPTANCE AS AN INDEPENDENT COLUMN;

If ALFAQ € ORTP THEN GO T0 NONES;
If CONT=2 THEN CONTe 3 3;

COMMENT CONSTRUCTION OF B(QR+1)}
PSEUDO C(INVQ2ALFAQ»UR»T)J

FOR I¢#! STEP 1 UNTIL M DO BQCI,KJe VQ[I13J
CAF (Q)e K 3 GO TO LOP 3

NONES ¢ COFCQ) « 05 Ke K-1 3

If CONT # 3 THEN

BEGIN CONT¢2 3} GO TO TRES 3

END 32 GO TO LOP

COMVENT If CONT%2 THEN THE REJECTED COLUMNS ARE REVISED IN ORDER
TO TAKE THE MOST INDEPENDENT WITH RESPECT TQ THE BASIS B@,
CONT=1 MEANS THAT ALL THE COLUMNS HAVE BEEN TaAkEN IN THE

FIRST SWEPT, CONT=3 YEANS THAT A COLUMN HAS BEEN REJECTED
AND LATER ON» ANOTHER HAS BEEN ACCEPTED;

DTRA ¢ Qe 2 3  SUPALFe 0; BUENQe 0;
MAIS If Q=N+1 THEN GO TO CUATRD 3

IF COF{QY% 0 THEN

BEGIN Q¢ Q+1 } GO TO MAIS3}
END ; GO TO CAS 3

TRES IF ALFAQ 2 SUPALF THEN
BEGIN SUPALF ¢ ALFAQ }

FOR I¢1 STEP 1 UNTIL M DO TRUCLIJe VQL[I3}
FOR Iel STEP 1 UNTIL T DO

SAV{1)e UQCIY 3 BUENO « Q

END 3 IF CONT=2 THEN GO TO LOP J

If &@=N THEN G8 TO CUATRO 3

@¢ Q+15 GO TO MALS}

COMMENT If THE PROJECTION OF THE SELECTED COLUMN IS LESS THAN @=20
THEN SAV IS REJECTED AND WE FINI SH:

CUATRD $8 If SUPALF S MNR THEN GO TO RFINJ
AL SUM ¢ 03}

COMMENT THE NORM OF (B(Q+1)"B(Q+1)) INVERSE IS ESTIMATED,AND 1TS
VALUE 18 CONTROLLED:

FOR 1¢1 STEP 1 UNTIL T DO

BEGIN FOR J¢1 STEP 1 UNTIL T DO
SUM ¢SUM+ ABSCINVALI»JI))S

IF SUM>AL THEN AL¢SUM

END 3

ESTIM  AL+C(SQRTCTI+1.0)/SUPALF }

If ESTIM 2 SUPER THEN GO TO RFIN 3}

COMVENT SAV HAS PASSED THE TESTS Of SECTION 2sC)¢ NOW IS USED
TENTATIVELY IN B(Q+1) TO SEE If THE RESIDUALS DIMNI SH:

FORCED ¢ PSEUDDCINVQ,SUPAFsSAV,T)}
COFLBUEND)e T 3}

FORI«1 STEP 1 UNTIL M DO BQC[I»Tle TRUCLI)S

COMVENT WE CONSTRUCT NOW B=PSEUDO,C,A«PSEUDD AND ADAGGER}
FINI FOR l¢1 STEP { UNTIL T DO FOR Jel STEP § UNTIL M DO
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BEGIN ESe¢(Q3 FOR PE«{ STEP 1 UNTIL T DO

ES¢ ES + INVQII,PE] x BQLJ,PE]) 3 BPS[I»rJ] «ES

COMMVENT AS WE WANT TO COMPARE RESULTS FOR TWO DIFFERENT BASES,

SUI TCH PROVIDES A WAY TO DECI DE THE CALL OF GARBG;
END IF SUITCH THEN GO TO SECND 3}

GARBG (Ms NsT»TI»COF»BR5G»RHS»BPS»A»NRHS»AAA,

NXMs NXBpNXM1,NXBL,APSEUDD,ADAGER,XM» XBHEST) 3}
If T=N THEN GO TO RFIN 3} SUUTCH ¢ TRUE 3

If CONT = 2 THEN

BEGI N CONT ¢ 1; GO TO CUATRO
END 3 GO TO OTRA

SECND ¢ GARBG (MsNsT»TI»COF,BR»GsRHSSBPS»A»NRHS,»AAAS
UPI,DNPI,UPIL1,D0PI1,APIADI »X1»X2,ESTL)}

COMMVENT NOA THE TEST OF SECTION 2,0) IS MADE;
If NXBi2 DOPIY AND NXMi2UPI1 THEN

BEGIN IF NOT OPC OR EST2 ESTI THEN

COMMVENT If SAV IS ACCEPTED THEN ALL THE USEFUL QUANTI TIES
ARE SHIFTED?

SEGIN NXMieUPI13 NXBie¢ DOPII; ESTeESTI ;
FOR I«1 STEP 1 UNTIL N 0G

_ BEGIN FOR Je&t STEP 1 UNTIL M DO

BEGIN APSEUDOLI» Je APILI»J) 3

ADAGER[I»JI¢ADILI,»J]

END; FOR Je1 STEP § UNTIL TI DO
BEGIN XMLI,JYeX1T1»J)3 XBL1oJde X201pJ1)3

NXMIJIeUPICJU)S NXBLJIeDOPICLJ])}
ENDS

END IF TeN THEN

BEGI N BUENDO«O 3 GO TO RFIN

END 4 GO TO OTRA

END

END 3}

RFIN COFLBUENQ)e 03

END

END PSEUDOINVER }

COMMVENT BODY OF THE DRI VER PROGRAM THE INPUT-OUTPUT AND THE CALL
Of PSEUDDINVER ARE INCLUDED;

FOR I«1 STEP 1 UNTIL M DO

READCFOR Jel STEP 1 UNTIL N DO All,J1l))

WRITEC [PAGE))} WRITECTIT1,MsN)} PRTCANMAN)I

IF NOT OPC THEN FOR I«1 STEP 1 UNTIL TI DO
READ( FOR J¢! STEP 1 UNTIL M DO RHSCJ»11)

ELSE FOR l«i1 STEP 1 UNTIL M DO FOR J*1 STEP 1 UNTIL M DO

RHS(1»J)¢ If I=J THEN { ELSE 0 3

PSEUDDINVER(MINSTI»SUPERIDPC2A»RHSH»ORTPIESTINXM»
NXB» APSEUDD» ADAGER,COF »XMe XB)

WRITECTITZS»ESTH,»FOR lel STEP 1 UNTIL TI DO NXMC11]))3}
WRITE(TIT?77» FOR Ie¢i{ STEP 1 UNTIL TX DO NXB[11)}
If OPC THEN

BEGI N NRITECCPAGE])) 3 WRITECTIT8)}
PRTCAPSEUDOsN,MY)3 WRITE (TIT9)3

FOR I«1 STEP 1 UNTIL N DO

BEGIN IFCOF(IY=0 THEN GO TO NOPR}

WRITE (TITL38»1)3

WRITE (PRMAT,FOR Jed STEP 1 UNTIL M DO ADAGERLI.J]) ;
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NOPR?t END

END ELSE

BEGIN WRITE(LPAGE))S WRITECTIT10)j

FOR lei STEP 1 UNTIL N DO

NRITECSDLsFOR Jel STEP 1 UNTIL TI DIXMLI»J1)}
WRITE (TIT20)~5FOR I#1 STEP 1 UNTIL NDO

BEGIN IF COF (!J=0 THEN G60 TO NOPR1}

ARITECTITL38,1))
NRITECSOL»FOR Jel STEP 1 UNTIL TI DO XBUI»Jl)}

NOPR1 ENDS
COMMENT JUST BY ADDING NEw SETS OF DATAS MORE PROBLEMS CAN BE RUNJ

END 5 WRITECENOE)? GO TO OVER 3
END J

FIU 3

END
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