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I. Introduction.

A method for the computation of the pseudoinverse, and other
related quantities, corresponding to an m x n matrix A of unknown
rank r, has recently been described [5 ]. The method determines the
pseudoinverse Af of A and a related matrix ak, The pseudoinverse
has the property that given the linear system Ax = b, the solution
x = A*b satisfies lax - ol < llax - o]l for a1l x, and lx [l < i«
for all x such that "Axm - b]| = ||lAx - bll. The minimum basic solution
X, = A#b has the property that "Axb - b"_f lax - b|| forail x, and
X, has at most r non-zero elements.

Thecomputational difficulty for this problem arises primarily
because the rank r is not known. In particular, it may be difficult
to assign the correct rank if one or more of the singular values of A
are small but non-zero [3 ]. Several other recent papers [ 1], [2 ],
[4], on the computation of the pseudoinverse have not considered this

important practical question.

The approach used here to handle this difficulty can be summarized
as follows. The desired matrices A¥ and At are formed from a matrix

B, which consists of linearly independent columns selected from A'.




We would like to determine B so that it spans the same space as A,
in which case B will contain r columns. Suppose we have a matrix
Bq with g linearly independent columns selected from A, (where g < r)
and the corresponding approximation Ag to A+. Adding another linearly

independent column of A to B4| giving B + should give an imppeved

q+l’

+ .
approximation A to the pseudoinverse. However, due to roundoff error

g+l
in the calculation it may turn out for an ill-conditioned system that the
new approximation is actually worse in the sense that “AA;+1 - I” > HAA; - ﬂL
Such a test is made in the pseudoinverse determination with the result that
the effective-rank of A (the number of columns in B) is the maximum

B

A closely related aspect of the method used here to compute the

, , , . +
possible consistent with minimizing the error|MA -1

pseudoinverse is what might be called its "smoothing" property. In many
practical situations one would like to obtain a solution to a linear
system which is stable in the sense that small changes in the matrix
elements do not cause large changes in the solution vector. In general,
the solution x = A+b, where A" is the true pseudoinverse, will not
behave smoothly. In fact, the norm of x will increase without bound

as a singular value of A approaches zero. This difficulty can be
eliminated by imposing a predetermined upper bound on the norm of (B'B)-l.
This is accomplished by estimating the effect of adding a new column of
A to Bq and only adding this new column to Bq if it does not cause
any element of A;&l to exceed the bound. Details of this selection
procedure and the manner in which it depends on the choice of the bound

SUPER is discussed in the next section.
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In Section 3 the use of the Algol program, written to perform this
algorithm, 1is described and suggested values for the input parameters
are given. The program use 1is illustrated by means of a sample problem.
A large number of problems have been solved using this program.

Several different kinds of tests have been performed:

a) Very ill-conditioned matrices like the segments of the Hilbert
matrix [6] have given a clear example of the smoothing property of the
method.

b) Random rectangular matrices of random sizes have been generated and
the pseudoinverse have been computed. The sizes were allowed to vary
between 1 and 25. 1In all the cases the results were satisfactory.

c) Same as»ln b) but with random ranks. 1In every case the rank was
correctly determined by the program.

d) Random matrices of specified size covering a range of values of m
and n were run in order to obtain time estimates for different size
problems.

e) A number of least-square problems, i.e., with m>>n and only one
right-hand side.

f) A variety of matrices for which an independent check on the
accuracy of the solution was available.

Tests b) through f) showed that in reasonable problems in which

- the rank is well determined the program will work very well, while a)
has shown that in very ill-conditioned cases the smoothing property of

the method is effective.

These test results are discussed more fully in Section 4. The
notation used in [5] will also be followed here.
Details of storage requirements are given in Section 5.

A copy of the program appears in the Appendix.



II. Program Description.

The method used to compute A% ana A+ from B is essentially that
given in Section 2 of [5]. For convenience we will repeat the key relations

here. The pseudoinverse of the m X r matrix B of rank r 1is given by
(2.1) B - (3B)”! B

The non-zero rows of the n x m matrix A# then consists of the cotrre-
+
sponding rows of B'. An r x n matrix of rank r is also obtained from

+
B according to
(2.2) C = B+A

Note that, if B contains all the independent columns of A, then A = BC.

Finally, A is obtained from C and B by
(2.3) A = cf(cen)t B

The determination of B is based on the algorithm of Section 3 in [5],
using the more sophisticated selection procedure described below.

The program consists essentially of two parts. One part has all the
input-output and the other is a PROCEDURE ‘c¢alled PSEUDOINVER which may also
be used separately as a part of other programs'. The program ‘solves the

matricial problem,

(2.4) AX=RHS

where RHS is a matrix containing several right hand sides.
a) The first part of PSEUDOINVER normalizes the matrix A by scaling

each column so that its Euclidean norm is equal to one. The normalization
constants are saved in order to get back to the original problem.

M




The search for independent columns of A is then made to determine
the matrix B, according to the formulas described in section 3 of [5].
At this stage, the condition for a vector to be accepted as independent of
the ones already included in the basis is that @, the square of the norm of
the projection on the orthogonal subspace to that basis, be less than a
quantity ORTIP, which is an input parameter. Later we will discuss the
appropriate choice of ORTP and the other parameters appearing in the
program.

As the columns chosen in this fashion might not necessarily be the

first columns of A, a record is kept of the column number of the accepted

vectors,

After all the columns have been inspected two situations can arise;
either all the n columns of A have been accepted or some have been
rejected. In the first case we have finished and the computations indicated
at the beginning of this section are performed to get A+, A#, Xb and
Xm. Other computed quantities are the residuals, NXM =|hXh - RHSH
NXB = HAXb - Rus|| corresponding to Xh and XS) and EST = ||BC - 4.

EST would be zero if the computation were performed exactly; in
general EST will be very small for well-conditioned matrices and will

increase with the ill-conditioning or if an almost dependent column is

- added to B.

If only g < n columns of A are selected for inclusion in B then
the basis thus constructed is called Bq and the second part of PSEUDOINVER
is called.

b) The projections on the subspace orthogonal to Bq are computed for

all the rejected columns. The Euclidean norm of each projection is computed,




+ 2
(2.5) o = I(: - B, Bq) ajll

and the column corresponding to the mathmlo% (the most independent one)

is stored in SAV.
c) A test is now performed which is based upon an estimation of the norm

that (B! would have if we were to include SAV in the basis,,

-1
g+l Bq+1)

The norm used igl|§ = max and the estimate is derived from the

n
i j=1

f ormula,
(B’ B )‘:L 0 u
qQ aq q ,
+ —_ (uq' -1)

(2.6) (B,) Buy) -

-

0] l 0]

+
where uq = Bq SAV and « + is the square of the norm of the projection

q+l
of SAV on the orthogonal subspace to that spanned by Bq’ Then

-1 -1
(6" yp Boyp)ll < msTIM = ll(B" B )T 4 0y (2 Vo)

If ESTIM is larger than SUPER (an input parameter) then SAV is re-
jected and Bq is taken as the final B

This test avoids large elements in the pseudoinverse and gives the
smoothing property discussed in the introduction.
a) If the test in c¢) is passed then the PROCEDURE GARBG, which computes
all the matrices and quantities mentioned at the beginning of this section,
is called and a second test is made. GARBG is used again, now with the
basis Bq. plus the column SAV . The test consists in comparing the
values of “AXm-RHSH,HAXb-RHS“ and |[Bc-A|| obtained with one basis, with
the corresponding ones obtained with the incremented basis. If all these

values for Bq+l are smaller than for Bq then SAV is definitely




accepted. After shifting all the useful quantities, part (b) is repeated
for the new basis Bq+l and so on, until either an exit is provided for
one of the tests or the columns of A are exhausted. All the scalar
products are performed in double precision. The block diagram in Fig. I
shows the most essential parts of the program.

It is worth noting that this strategy has been dictated by the
problem itself and achieves the best numerical pseudoinverse possible
using the method of [5] and taking into account the numerical roundoff
error of the computer being used. This strategy takes advantage of the
step by step algorithm for determining B, and constructs an independent
basis, the degree of independence being determined by the parameter ORTP.
By picking the most independent vector among the remaining ones, and
checking to see if this decreases the residuals (by taking this vector in
the basis) we are answering in a direct manner the two questions: how
many columns of A do we need to minimize the residual? and, among all

the possible sets of independent columns,which set gives the best rep-

resentation of the pseudoinverse?
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III. Program Use.

As described in the previous section, several parameters are
needed besides the matrix A . Now-we will explain the use and pos-
sibilities of these parameters.

Input.

M (integer) number of rows in A .

N (integer) -number of columns in A .

T (integer) number of right-hand sides.

OPC (Boolean) If OPC is equal to 1 then the program will compute

~ the matrices At and at* , and the right-hand side
RHS = I(m x m) will be automatically provided.

Moreover, OPC decides if in the test described

in Section 2,d) the quality of the representation
(A = BC) is controlled. That test is done only if
OPC = TRUE . If OPC is equal to FALSE then
RHS an M x T matrix has to be provided and the
program will compute XB = A#.RHS, and XM = A+.RHS,
matrices that will be printed out instead of N
and A#.

SUPER (real) It is the SUPER of Section 2,¢). If an upper
bound for the elements of a* is known then SUPER
can be set to this bound to take advantage of the
smoothing property of this method; otherwise it is

suggested that 101)+ be used. It should be

noted that, in general, a larger value than 1014



will increase computing time by throwing unnecessary
decisions into the test of Section 2,d), On the
other hand, much smaller values may completely
eliminate from further consideration some columns
which could be used to decrease the error,

ORTP (real) This parameter was described in Section 2, a). Small
values for ORTP (around 10 ) in general will accel-
erate the process because the first part (construc-
tion of a basis of strongly independent column) is
the fastest and as many columns as possible should be
accepted there. Nevertheless, there are at least
two cases in which a more careful choice of ORTP may
be important. If higher precision in the answers
is desired (atthe cost of increased computing time),
then a larger value of ORTP should be used, say
0.05. This will allow the second part of the program
to choose "better" columns.

The other delicate case occurs when the matrix is
very 1ill-conditioned and the rank is therefore not
well defined. Here the use of a relatively'large
ORTP is important. Again values around 0,05 are
recommended.

Summarizing, in a reasonable, well behaved problem a recommended

set of parameters is:

10

4
SUPER = lO1 , ORTP

10



If the representation becomes very bad.(HA-BC” too large), the problem
is not well behaved and more burden should be passed on to the second and
safer test by increasing SUPER and decreasing ORTP

If the user has information that certain variables are more sig-
nificant than others,this information can be used by ordering the matrix
A so that the columns of A corresponding to these variables appear
first. This will insure that these columns are considered first for
inclusion in the basis B

If the complete program is used, then only the numerical data have
to be punched,, This is done in the following way.

As all the read statements are in the FREE FIELD form, available
in the EXTENDED ALGOL for the B5000 at Stanford, no special format is
necessary. Numbers can be punched in any format, needing just one space
in between to separate them.
lst. card: M N T OPC SUPER ORTP

for instance 10 10 10 1 @14 0.001

Next cards will contain the matrix A punched by rows. As each
READ asks for a whole row, care must be taken not to mix different rows
in the same card.

Finally, if 0 P C = 0 the right-hand sides (RHS) have to be
provided and are read by columns. Fach new column must be started on a
new card, so that there will be at least T cards required for the RHS

If the PROCEDURE is used separately, then all these quantities

are input parameters (with the same names as above).

11




A complete sample input is given by,

3 3 1 0 @14 0.001
1.3 2 -5

A 4 1 0
-1 -1.3 @3

RHS 1 2 2.1

output

All the matrices printed out by the program will have the follow-
ing format:

Eight columns per line, each number in floating point with 6 sig-
nificant digits. If the matrix is more than eight columns wide, then
successive blocks will be printed in new pages. All the rows are
printed together.

The output is described now in the order in which it will occur.

First the matrix A is printed out.

Then, if 0 P C = 0 , the right-hand sides are printed out.

Norm of (BC - A)

The residuals ﬂAx(i) - RHS(i)” ) HAxbi) - RHS(i)H .

If OPC =1, then the matrix pseudoinverse is printed out with
the format explained above; also in this case the non-zero rows of the

matrix A¥ are printed, each of them with a heading: ROW NUMBER....

12



If OP C =0, then instead of these two last matrices, the
minimum and basic solutions are printed out. As an example, we give the
output for the problem:

9 21 1 0

21 kg 0 1

PSEUDOINVERSION OF THE MATRIX A . A IS 2 x 2

g. 00000 @ + 00 2.10000 @ + 01
2.10000 @ + 01 L., 90000 @ + 01
[ PAGE] -
NORM OF (BC = A) 2.37582 @ - 12
RESIDUAL FOR XM
9.19145 @ - 01 3.93919 @ - O1
RESIDUAL FOR XB
9.19145 @ - 01 3.93919 @ - Ol
[PAGE]
MATRIX APSEUDOINVERSE
2.67532 @ -03 6.2431h @ - 03
6.24381 @ - 03 1.4579% @ - 02
[PacE]
MATRIX ADAGGER
ROW NUMBER 1
1.72461 @ - O2 4.02332 @ - 02

END OF THE RUN

F OFK K K K K KK X KK KX KKK KX KX

13



The PROCEDURE PSEUDOINVER.

The call for this PROCEDURE is,
PSEUDOINVER (M, N, TI, OPC, SUPER, ORTP, A, RHS, EST, NXM, NXB,
APSEUDO, ADAGER, COF, XM, XB);
The first 8 parameters are input parameters and they have been des-
cribed before. The only detail needed is: A(double real array
[0:M, O:N]), RHS [O:M, O:TI];

OUTPUT PARAMETERS:

EST (real) Contains “BC - A” .

NXM, NXB (single real arrays [0:TI]) . They contain the residuals
”AX - RHSH andHAXb - RuHS|| respectively.

APSEUDO, ADAGER (Double real array [O:N, O:M])

They contain the pseudoinverse of A and the matrix A~

COF (Single integer array [0:N]) .

If COF[I] = 0 then both, the Ith row of A" and X, are dif-
ferent from zero, otherwise they are zero and that means the program has
decided that the corresponding columns in A were linearly dependent
with respect to-the current basis.

XM, XB (double real arrays, [0:N, 0:TI])

They contain the minimum and basic solutions.

14




Iv.

a)

(1)

Test Problems.

Square segments of the Hilbert matrix have been tried, sizes
varying between 3 and 10.

For 5 <_n < 10 the rank found in each case was L . The norm
of the pseudoinverses remained below 105 while for the true
pseudoinverse (the inverse in these cases) the norms ranged be-

2 for n=5 and 1O13 for n=10 . The norm, ”A - BCH

p)

tween 10
was around 10~ for all cases.

As is well known, the ill-conditioning of the Hilbert matrix seg-
ments increase with their dimension. However, because of the
smoothing property of the method a bounded and reasonably accurate
representation for the pseudoinverse was always obtained.

Eighteen random matrices with random dimensions varying between

1 and 25 were generated and pseudoinverted. The nOIHl“A - BQ”

9

was always below 10° and the ranks were always found to be

equal to min(m,n).

Given three random integers m, n and r in the interval [1, 25]
a routine generated two random matrices, L (mxr) and

R (r x n) . Multiplying them we obtained a matrix A (m x n) with

r(l) With 20 matrices generated in this

rank at most equal to
way, the results were similar to b) . In every case the rank r
was correctly determined. For most of these cases the rank r was

less than min(m,n), and of course was unknown for the program.

This test was suggested by Professor Gene H. Golub.

15




d) For each pair of values (m,n) several random matrices were

generated and pseudoinverted. Average values of ”A-BC“ for these
matrices with m=10,20,30 and n=10,20,30 are shown in Table I.
For the same problems, average computation time on the Burroughs

B5000 at Stanford Computation Center are shown in Table II.

n

In all these matrices the rank was the maximum possible, i.e., rank

min (m,n) and it was properly determined by the program.

TABIE I TABLE I I
N 20 30 N’ 10 20 30
10 | sx10-9]  9x1079| k.5%1078 10 | 7.6 13.9 20.7
20 | 3x107° bx10®® 2 ]ox10-7 20 | 16.5 k9 9N
30 [5.8x107°] 6.9x1077 | 2.6x1077 |30 |er3 %.5 | 180.6
|2 - Bcl Comp. time in seconds

For a 40 x 40 matrix the answers were:

t = 413 sec. | |a-s8c)=2.7 x 107
rank = L0
e) A common problem in many branches of applied sciences is the least

squares fit, and is therefore one of the most important applica-
tions for this program. A related feature of the program is that,
by ordering the variables, the user will be able to test their
independence and eventually to decide if his model is appropriate

to the phenomena being investigated. This is done by ordering

16




the matrix A so that the first coefficients correspond to the
more important variables. The program will attempt, to use these
columns first to form the basis B . The necessity for such an
ordering is clear from the fact that if we have n columns in

A and the subspace spanned by these columns has dimension

(n-p) then we can construct with these columns as many as

(n8p) linearly independent sets.

In Figures II and III are shown the results obtained by running
the program with least squares type problems. Again the elements
of the matrices were generated randomly. Fig. II shows computa-
tion times on the B5000 for different wvalues of m and n=5, 10.
Fig. 111 shows the nOIHl"A - BC” for the same problems.
Matrices with exact known inverses were tried obtaining good re-
sults and accuracy. Of course this program should not be used to
invert a matrix which is known to be nonsingular and well-
conditioned, because it will be around four times slower than an
efficient matrix inverter. The program has also been used to
obtain the pseudoinverse of singular and almost singular matrices
steming from the discretization of integral equations of the first

kind, and problems in pattern recognition.

17
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V. Storage Requirements.

As all the array declarations are dynamical, the amount of
storage depends on several parameters. If M, N, T are as before, and
R is the final rank (number of accepted columns) then an estimate for

the storage used in the PROCEDURE PSEUDOINVER 1is,
= 2
Storage T + 5MV + MR + 2NR + 2NT + max (R~, MN, MT)

the last term is present because in the PROCEDURE GARBG we have several
independent blocks, and the storage corresponding to certain arrays is
not simultaneously used.

If, as usual, R 1s not known,then it can be replaced by
min(n,m) . If the complete program is used then additional storage is
needed,

Addit. storage =3MN + MT + 2NT

Computer time rapidly increases when abusive use of the drum is made.
From the experience obtained with the test problems, it is suggested

that the total storage be less than 40,000 words.

19
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APPENDIX

AN EXTENDED ALGOL PROGRAM TO COMPUTE THE
PSEUDOINVERSE OF AN M x N REAL MATRIX

AND OTHER RELATED QUANTITIES.

21



BEGI N COMMENT PSEUDOI NVERSE OF A MxN MATRI X OF C'NKNONN RANK;
INTEGER MsNsTislsJ § REAL SUPERSEST»TPD,ORTP 3
BOOLEAN ©0OPC ;7 LABEL OVER,FIU;
COMMENT DRI VER PROGRAM FIRST PARAMETERS ARE READ 1IN,
AND USED FOR FURTHER“ DYNAM CAL ARRAY DECLARATI ONS;
OVERS READ (MsN,TI,0PC,»SUPER,ORTP) [FIUJ}
BEGI N INTEGER ARRAY COF[OtN313 )
ARRAY ACOIMsONI»RHSLOSM,OSTI)»XMpXBLOIN2OSTII»NXMANXBLOSTIS
APSEUDO,ADAGERIOIN,OSM) 3 LABEL NOPR, NOPRY1 )}
FORMAT PRMAT(( BE14,5)///)»
TITIC("PSEUDDINVERSION OF THE MATRIX A"///"A IS"»13,"XxX"»13/)»
TIT7C("NDRM OF (BC~AX"//X3,E15.5/"RESIDUAL FOR XM"/(BE15:5/))»
TITBC"MATRIX A PSEUDOINVERSE™/),»TITO("MATRIX A DAGGER"™/),
TITI0CX6s "XM"/)s TIT20C//X65"XB"/)»TITL38C/"RON NUMBER",13/)»
TIT?7C(/"RESIDUAL FOR XB "/(BE15,5/))»S0L(8E15.6/)>»
ENDEC//"END OF THE RUN"//X15,"* % # & * % % & « w" ////))
PROCEDURE PRT(A,M,N) 3}
INTEGER M»N} ARRAY A[0,01)
COMVENT PRT PRINT OUT THE MXN MATRI X A;
BEGI N ForvAT TITL46¢/ B8E14.5)} INTEGER SEs»K»R}
SE + NDV 8 3 K ¢« N MOD 8
FOR R«0 STEP 1 UNTIL SE-1I DO
BEGIN FOR I¢1 STEP 1 UNTIL M DO
WRITE (TITL46,FOR Jeq STEP 1 UNTIL 8 DO A(1,8 xXR+J)))
WITE (CPAGE))
"END 3 IF K¥0 THEN FOR Ie¢{ STEP 1 UNTIL M DO
WRITECTITLUG6,FOR Jet STEP 1 UNTIL' K DO AC1s,8 XSE+J))}
WITE ([PAGE))
END PRT .
PROCEDURE PSEUDOINVER (MsNsTI»SUPERs,OPCrA»RHS»ORTPSEST»NXM»
NXBsAPSEUDOSADAGER,COF»XM»XB)}
INTEGER MsN»T1 3 INTEGER ARRAY COF({035 BOOLEAN OPC;
REAL SUPER, EST,QORTP 3
ARRAY A,RHS,APSEUDDs»ADAGER,XM,XBLOs0)sNXM,NXBLOIS
COMVENT PSEUDOI NVER COMPUTES THE PSEUDOINVERSE OF A MXN MATRIX A,
AND DTHER RELATED QUANTI TIES. THE ESPECI AL WAY OF ROUNDING=OFF
AFTER DOUBLE PRECISIDN OPERATIONS IS DUE TO
MR, PETER RUSINGER AND PROF. GENE GOLUB3;
BEGI N INTEGER JsCONT,»Q»K, T»BUENO,R»I,PEsMA3 BOOLEAN SUITCH}
ARRAY BQ,AN[COSMsOSNI» INVOQLOSN,)OSNI,NRHS,UPI»DOPILOtTI)»
GrUO»SAVIOINI»X1,X2C08N»08TI)»BPSsAPI»ADILOINLOIMY}
REAL CLUF»ALFAQ,BEQsAL»SUPALF»BsNXB1aNXML1»AAA»BBB2»CCC»
UPIL,DDPIL,ESTI»ASO»SUMSES,PERTUBSESTIM»TPOLMINIRS
MA t IF M<N THEN N ELSE M 3}
BEGI N ARRAY TRUC,TU,VQ,TEMPLOSMA)S LABEL SECND,RFIN,
NONESsLLOP» TRES,CUATRO,MAIS,CAS,FINI,OTRA,FORCED}
COMVENT TRMAVC»MATRIMUL,»MULTIVEC»ESC» TRANSP AND VECSUM ARE
PROCEDURES PERFORM NG MATRI X AND VECTOR OPERATI ONS,
SOME OF THEM IN DOUBLE PRECI SION,;
PROCEDURE TRMAVC (CA»VslsJdaMsN)}
ARRAY A[0»0).V(033 INTEGER l»sJsMsN }
BEGI N I NTEGER K3
IF I=0 THEN FOR K¢i STEP 1 UNTIL M DO VIKI¢ ALK, J])
ELSE FOR Kei STEP 1 UNTIL, N DO V(Kle ACI»K]
END TRMAVC 3}

22




MATRIMUL (A»B»C»P»Q»R) J
ARRAY A»B,CL0»0] 3INTEGER P,Q»R 3

BEGI N INTEGER 1,J,K JREAL AC,»BC;
FOR Ie¢} STEP 1 UNTIL P DO FOR J¢i1 STEP 1 UNTIL R DO

BEGIN AC¢8Ce«03} FOR K¢1 STEP 1 UNTIL @ DO
DOUBLECALI,KY»0,BIK»J1»0,%,ACsBCr+5¢»AC»BC)3
CCLI»JY + AC+BCRACL18138)/5,49755813891811

PROCEDURE

END
END MATRIMUL 3
PROCEDURE MILTI VEC (A»V1sV2,P,Q))
ARRAY A[0,03,V1,V200) JINTEGER P»Q3J
BEGI N I NTEGER 1sJ3 REAL AC,»BC}

FOR 1«1 STEP 1 UNTIL P 00
BEGI N AC+#8C¢03 FOR J*1 STEP 1 UNTIL @ DO
DOUBLE CACI»J1,0,V1itJ)»0s%XsACs»BCr+,¢»AC»BC))

V2(1)e AC+BCRACL1313B8)/5,497558138901811

END
END MILTI VEC 3}
PROCEDURE ESC(A»BsCsP)}
ARRAY A,BCL0) SREAL C 3 INTEGER P}
BEGIN INTEGER 1 3
Ce03 FOR I¢1 STEP 1 UNTIL P 00 CeAlllx B[I)+C
END ESC
PROCEDURE TRANSP (A»B,P»Q) 3
ARRAY A,»B [0,0] 3 INTEGER P»Q }
BEGI N INTEGER 1sJ3
FOR l¢{ STEP 1 UNTIL P DO
FOR J¢! STEP 1 UNTIL @ DO BLJ,1) « AlI,J) |

END TRANSP 3
PROCEDURE VECSUM (A»B,CoALFsBETHN) J}
ARRAY A,B,C[03)} REAL ALF,BET JINTEGERN}
BEGI N I NTEGER I}
FOR 1¢#1 STEP 1 UNTIL N DO ClIJ)¢AlTIxA_F+B(I)x BET
END VECSUM }
PROCEDURE PSEUDO (NQ»ALFQ,U0,Q) 3
ARRAY NQLO0,031,UQC0)3 REAL ALFQ3 INTEGER Q }
GI VEN (BQ"BQ) INVERSE, PSEUOO CONSTRUCT (B¢(Q+1)"B(Q+1))

I NVERSE;

BEGI N REAL A; INTEGER 1»J 3}

ALFQ ¢ 31/ALFQ)

FDR l¢1 STEP 1 UNTIL @ DO FOR J*1 STEP 1 UNTIL Q@ DO
DOUBLECALFQs0,URLII»0,%UQLJ)20sX%XsNALT»JYs0s¢sre,

NQLI»J1,A)3 QeQ+1 3 UQLQ)e =1}

FOR J¢1 STEP 1 UNITIL Q@ DO
NQLJ,»QJe NQCQ,J) ¢ =ALFQ x UQLJ)

END PSEUDO 3
PROCEDURE GARBG(MsNsT»TI»COF,BQsGsRHS»BPS»A»NRHS,AAA,
NXMsNXB2NXM1,NXB1,» APSEUDO» ADAGERSXMs XBLEST))
REALL. NXM1,NXB1,EST,AAA} INTEGER NaM»T»TI1}
INTEGER ARRAY COF[01}
ARRAY XM»XB, APSEUDO»ADAGER»BQsRHS»BPS»AL0»0),

NXBsNXM»G,NRHSLO}
GiviN THE BASIS B@3A PSEUDOI NVERSE, A DAGGER, XM» XB»
NXMs, NXB, AND NORM OF (A=BQC) ARE COMPUTED)
BEGI N I NTEGER 1,0»Js2RsMA 3 REAL BsPERsALFAQ }

COMVENT

COMMVENT
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COMMVENT

COMMVENT

COMMVENT

COMMVENT

COMMVENT

ARRAY C[O:T,0:N), BQICOtM,0tTI,UQLOIN]Y 3
IF MSN THEN MAeN ELSE M M 3}
BEGI N ARRAY AN[O!T,0:N) 3
BEGI N ARRAY INVQ1C[OStT,0sT)»TU,TEMPLOIMA)S

A DAGGER 1S CALCULATEDS
FOR l¢1 STEP I UNTIL N DO
BEGI N. Q@ « COFLI) 3

IF @#0 THEN FOR J¢} STEP 1 UNTIL M 00
BEGI N BR1lJ,Q) ¢ BQLJ,QI/GLLIY
ADAGERII»J)e BPS[QsJle BPSIQ,JIX GL1)}
END
END;

C AND C=PSEUDDINVERSE ARE CALCULATEDS
MATRIMULCBPS,A»CsrTHMpN)3
TRMAVCC(C»TU»1»15ToN)S ESCCTU»TULBAN)I
INVQIC1,1]e 1/B;

FOR @« 2 STEP 1 UNTIL T DO
BEGIN Re¢ Q=13 TRMAVC(C,»TU»Q»Q»ToN)}
MULTIVECCC,»TUL>TEMPsRsN)S
MULTIVECCINVQI,»TEMP,UQLR,R)3
- FOR l¢1 STEP { UNIIL N DO
BEGI N PERe 03
FOR J¢i STEP 1 UNTIL R 00
PER+ PER+C[J»1] X UQRLJI} TEMP(I] ¢ PER
END 3
VECSUMC(TU»TEMP»TEMP»1s=1{,N)}
ESC(TEMP,TEMP,ALFAQsN)3
PSEUDOCINVQL,ALFAQsUQ,s,R)
END MATRIMULCINVQIsCoANsToToN) J
END;
BEGI N ARRAY BQCLOSMA,OQIN]
NORM OF (A=BC) IS COMUTED;
TRANSP(AN»BQC»TsN) 3
MATRIMUL(BQCsBPS,APSEUDDIN»TAIM)}
MATRIMUL(BQ1,CsBQCIMsToNY} EST ¢ 0;
FOR I€¢1 STEP 1 UNTIL M DO
BEGIN PER+ Of
FOR J+1 STEP 1 UNTIL N DO
PER+ PER+ABS(BQC(I»J)=Al1-J])))
IF PER2 ST THEN EST ¢ PER
END
END
END;
£S8T ¢ EST/ZAAAS
THE MNIMM AND BRASIC SOLUTIONS ARE COMPUTED]
MATRIMULCAPSEUDD,RHS,»XMsNsM»TI )}
MATRIMULCADAGER,)RHS»XBsN»M»T1)3
BEGIN ARRAY AN[OtM»0:TI)3
THE RESIDUALS FOR THESE SOLUTIONS ARE COMPUTED!
MATRIMIL (AsXMsAN2sMaN,TI)}
FOR Je¢1 STEP { UNTIL TI DO
BEGIN NXMie 03
FOR 1«1 STEP 1 UNTIL M 00
NXM €CANCI,JI=RHSLI»JII*2+NXM13
NXM1¢ SQRTE(NXM1)3 NXMEJ) + NXMI/NRHSCJ)
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COMMVENT

COMMVENT

END3
MATRIMULCA,XBs ANIM,N,TI))
FOR J¢! STEP 1 UNTIL TI DO
BEGIN NXB1¢0;
FOR 1¢1 STEP 1 UNTIL M DO
NXB1e(ANDTI,J)=RHSTI,JI)*2 + NXBY
NXBle SORT(NXB1)3 NXBLJ)le¢ NXB1/NRHS[J]
END 5 NXB1 ¢ NXM1 ¢ 0J
FOR I¢1 STEP 1 UNTIL TI DO
BEGIN NXBi & NXB1+ NXBL[I)*2 }
NXML ¢ NXMI4NXMLT) %2
END # NXMie SQRT(NXM1)3 NXBle SQRT(NXB1)j
ENDJ
END GARBG 3
PROCEDURE PSEUDDINVER BODY J
HINIR +«8=20} AAA€CCCe0 3
NORM OF A AND NORM OF THE RHS}
FOR J¢1 STEP 1 UNTIL N DO FOR I#1 STEP 1 UNTIL M DO
BEGIN B8B8B¢ ABSCA[I,J))} If BBB>AAA THEN AAA+BBB
END 3 FOR J¢1 STEP 1 UNTIL TI Do
BEGIN CCCe¢03 FOR l¢i STEP 1| UNTIL M DO
CCC” CCC+RHS[I»Jl* 2 3 CCCe SQRT(CCC)HI
--- NRHS[JJ¢ IF CCC>1 THEN CCC ELSE 1 $
END3 IF AAA<] THEN AAAe¢}] 3}
FOR I¢{ STEP 1 UNTIL N DO
BEGIN COF[Ile 03
FORJel STEP 1 UNTIL M DO ADICI,J)«ADAGER(I,J)e 0O}
END 3

COMMVENT THE MATRIX A IS NORMALIZED AND STORED ON AN »

G CONTAINS THE NORMALIZING COEFFICIENTS
FOR Jet STEP 1 UNTIL N DO
BEGIN TRMAVCCA»TU»OrJaMyN)}
ESCCTU,TUSCLUF2M)}
GCLJ)eIF CLUF > 1,0 THEN 1,0/SQRT(CLUF) ELSE 1,0/
END 3 FOR 1¢1 STEP 1 UNTIL M DO
BEGIN FOR J¢i1 STEP 1 UNTIL N DO
ANCI»J)Y ¢ ALLI,U3X GLJ]
END 3

COMMENT THE CONSTRUCTION OF A BASIS OF STRONGLY

COMMVENT

LOP 3
COMVENT

CAS a

I NDEPENDENT VECTORS IS STARTED;

CONTel1) SUPALFe 0 5 Q¢ Ke Te 13
COFC1)e¢1; INVQ[1,1le 13 SUITCHe FALSE 3
FOR I«1 STEP 1 UNTIL M DO BQCI.11¢ ANCI»11)}
SEARCH FOR INDEPENDENT COLUMNS Of A+ WIEN THE COLUMS
ARE EXHAUSTED AN EXIT IS PROVIDED To LABEL FINIs IN CONT
A RECORD IS KEPT ON THE WAY IN WHICH COLUMS ARE ACCEPTEDI
If Q=N THEN Go T0 FXNI 3
TeK 3 QeQ+13 KeK+l
PROJECTION OF A COLUMN OF AN ON THE ORTHOGONAL
SUBSPACE OF BQ
TRMAVCCAN»VQRs0sQ0oMpN)Y 3
FOR I¢1 STEP 1 UNTIL T DO
BEGIN ALFAQe 03

FOR Je¢i{ STEP 1 UNTIL M DO

ALFAQe ALFAQ+BQCLJ,IIXVQLJIS TEMPLI)e ALFAQ
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END
MULTIVECCINVQRSTEMP,UQ,TH»T)Y3
MULTIVEC(BR,UQ,TEMP,M,»T);
VECSUM(VO,TEMPs TEMPs1,=1,M)}
ESCCTEMP,TEMP,ALFAQ,M)3
If SUITCH THEN GO TD TRESS
COMVENT FIRST TEST FOR ACCEPTANCE AS AN INDEPENDENT COLUMN;
If ALFAQ € ORTP THEN GO T0 NONES;
If CONT=2 THEN CONTe¢ 3 3
COMVENT CONSTRUCTION OF B(QR+1)3
PSEUDO C(INVQ»ALFAR,UQ,T)3
FOR I*¢1 STEP 1 UNTIL M DO BQUIs,Kle VO[13}
COF tQ)e K 3 GO TD LOP 3
NONES ¢ COFCQ) ¢ 05 Ke K1 3
If CONT # 3 THEN
BEGIN CONT¢2 3} GO TO TRES 3
END 3 GO Tn LOP
COMVENT If CONT¥2 THEN THE REJECTED COLUMNS ARE REVISED IN ORDER
TO0 TAKE THE MDST INDEPENDENT WITH RESPECT T0 THE BASIS B@,
CONT=1 MEANS THAT ALL THE COLUMNS HAVE BEEN TakEn IN THE
FIRST SWEPT, CONT=3 YEANS THAT A COLUMN HAS BEEN REJECTED
AND LATER 0N, ANOTHER HAS BEEN ACCEPTED;
DIRA Qe 2 3 SUPALFe O BUENQDe 0;
MAIS 1 If @=N+1 THEN GO TO CUATRD 3
IF COFtQ)% 0 THEN
BEGIN Q¢ Q+1 5} GO TO MA1S }
END 3 GO TO CAS 3
TRES ¢ IF ALFAQ 2 SUPALF THEN
BEGIN SUPALF + ALFAQ
FOR 1e1 STEP 1 UNTIL M DO TRUCCIJe VQC[I3}
FOR 1«1 STEP 1 UNTIL T DO
SAVLIYe UQCIY 3 BUENO ¢ @
END 3 IF CONT=2 THEN GO TO LOP 3}
If @=N THEN GO TO CUATRO }
Q¢ Q+1; GO TO MALSS
COMMENT If THE PROJECTION OF THE SELECTED COLUMN IS LESS THAN @*20
THEN SAV IS REJECTED AND WE FINISH;
CUATRD ¢ If SUPALF S MNIR THEN GO TO RFIN 3}
AL ¢SUM ¢ 03
COMVENT THE NORM OF ¢(B(Q+1)"B(Q+1)) INVERSE IS ESTIMATED,AND ITS
VALUE IS CONTROLLED;
FOR 1¢1 STEP 1 UNTIL T DO
BEGIN FOR J¢1 STEP 1 UNTIL T DO
SUM ¢SUM+ ABSCINVALI,JY)}
IF SUM>AL THEN AL«SUM
END 3
ESTIM & AL+(SQRT(TI+1.0)/SUPALF 3
If ESTIM 2 SUPER THEN GO TO RFIN 3
COMVENT SAV HAS PASSED THE TESTS Of SECTION 2sC)e NOW IS USED
TENTATIVELY IN B8(Q+1) TO SEE If THE RESIDUALS DI M NI SH:
FORCED ¢ PSEUDOCINVQ,SUPALFsSAV,T)}
COFCBUEND]e T 3
FORI«1 STEP 1 UNTIL M DO BQ[I1,Tle¢ TRUCCI)S
COMVENT NE CONSTRUCT NOW B=PSEUDO,C,A«PSEUDD AND ADAGGER)
FINI FOR I¢1 STEP { UNTIL T DO FOR Je¢i STEP §{ UNTIL M DO
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BEGIN ESe¢03 FORPE«1 STEP 1 UNTIL T DO
ES*¢ ES + INVRLI,PE] x BQCLJ,PE) 3 BPS[I»J] ¢ES
COMMVENT AS WE WANT TO COMPARE RESULTS FOR TWO DI FFERENT BASES,
SUITCH PROVIDES A WAY TO DECIDE THE CALL OF GARBG;
END IF SUTCH THEN GO TO SECND 3}
GARBG (MsN»T»T1»COF»BR5GoRHS»BPS»A,NRHS»AAA,
NXMpNXBsNXM1,NXBL,APSEUDD,ADAGER,XM»XB»EST) 3
If T=N THEN GO TO RFIN 3} SUITCH ¢ TRUE 3
If CONT = 2 THEN
BEGI N CONT ¢ 1; GO TO CUATRO :
END 3 GO TO OTRA 3
SECND ¢ GAR3G (MsNsT»TI»COF»BA»GsrRHS»BPS»AsNRHS,AAAS
UPI,DDPILUPI1,D0PI1»API»ADI»X1,»X2,ESTI)}
COMMENT NOA THE TEST OF SECTION 2,D) IS MADE;
If NXB12 DOPIY AND NXMi2UPI11 THEN
BEGIN IF NOT OPC OR EST2 ESTI THEN
COMMENT If SAV IS ACCEPTED THEN ALL THE USEFUL QUANTI TIES
ARE SHIFTED3
3EGIN NXMi€UPTI13 NXBl¢ DOPII; ESTeESTI
FOR l¢1 STEP 1 UNTIL N 0O
BEGIN FOR Jei STEP 1 UNTIL M DO
BEGIN APSEUDOL I» J)&¢ APILI»J) 3
ADAGER[I,J)«ADILI,J]
END; FOR Jei STEP 1 UNTIL TI 0O
BEGIN XMLI,JleXil1,J)3 XBLIsJde X2010J)3
NXMIJIeUPICLJU)S NXBLJIeDOPICJIY}
END3

END# IF TeN THEN

BEGI N BUEND«O 3 GO TO RFIN

END 3 GO TO OIRA

END
END 3}
RFIN ¢ COFIBUEND]e 03
END
END PSEUDOINVER }
COMVENT BODY OF THE DRI VER PROGRAM THE INPUT-OUTPUT AND THE CALL
Of PSEUDOINVER ARE I NCLUDED;
FOR I«1 STEP 1 UNIIL M DO
READCFOR Jel STEP 1 UNTIL N DO All,J41);
WRITEC C(PAGE))} WRITECTITL1,MsN)3 PRTCA»MsN)J
IF NOT OPC THEN FOR I¢!1 STEP 1 UNTIL TI 0_0
READ( FOR J¢! STEP 1 UNTIL M DO RHSLJ»11)
ELSE FOR I¢1 STEP 1 UNTIL M DO FOR J*#i STEP 1 UNTIL M DO
RMSCI»JY¢ If I=J THEN § ELSE 0
PSEUDNDINVER(MINSTI»SUPER,OPC2AsRHSIORTPIESTAINXM»

NXB» APSEUDD» ADAGERSCOF »XM»XB) S
WRITECTIT7»ESTH,FOR le1 STEP 1 UNTIL TI DO NXMC11)}
WRITECTIT7?» FOR I¢1 STEP 1 UNTIL TX DO NXBLI}))

If OPC THEN
BEGI N NRITECIPAGE)) 3 WRITE(CTIT8))
PRTCAPSEUDOMN,MI3 WRITE (TIT9)3
FOR I«1 STEP 1 UNTIL N DO
BEGIN IFCOF{I3=0 THEN GO TO NOPR 3
WRITE (TITL38,1)3
WRITE (PRMAT,FOR Je1 STEP 1 UNTIL M DO ADAGER[I,J)) ;
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NOPRt END
END ELSE
BEGIN WRITE(CLPAGE)); WRITE(TIT10)
FOR I¢1 STEP 1 UNIIL N DO
WRITECSOLsFOR Je1 STEP 1 UNTIL TI DIXMII»J1)}
WITE (TIT20)-3 FOR I*#1 STEP 1 UNTIL N DO
BEGIN IF COF (1)=0 THEN GO TO NOPR13
ARITEC(TITL38,1)}
NRITECSOL,FOR J¢1 STEP 1 UNTIL TI DO XBCUI»Jl)J
NOPRY END}
COMMVENT JUST BY ADDING NEw SETS OF DATAS MORE PROBLEMS CAN BE RUNJ
END 3 WRITECENDE)3 GO TO OVER 3
END 3
FIU 3
END
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